Special H-matrices and their Schur and diagonal-Schur complements

Ljiljana Cvetković a, *, Maja Nedović b

a Faculty of Science, Mathematics and Informatics, University of Novi Sad, Trg D. Obradovica 4, Novi Sad 21000, Serbia
b Faculty of Technical Sciences, University of Novi Sad, Serbia

ARTICLE INFO

Keywords:
H-matrices
Schur complement
Diagonal scaling

ABSTRACT

It is well known, see [D. Carlson, T. Markham, Schur complements of diagonally dominant matrices, Czech. Math. J. 29 (104) (1979) 246–251 [2]; J. Liu, J. Li, Z. Huang, X. Kong, Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices, Linear Alg. Appl. 428 (2008) 1009–1030] [14], that the Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant, as well as its diagonal-Schur complement. Also, if a matrix is an H-matrix, then its Schur complement and diagonal-Schur complement are H-matrices, too, see [J. Liu, Y. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Alg. Appl. 389 (2004) 365–380] [13]. Recent research, see [J. Liu, Y. Huang, F. Zhang, The Schur complements of generalized doubly diagonally dominant matrices, Linear Alg. Appl. 378 (2004) 231–244] [12]; J. Liu, J. Li, Z. Huang, X. Kong, Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices, Linear Alg. Appl. 428 (2008) 1009–1030] [14], showed that the similar statements hold for some special subclasses of H-matrices. The aim of this paper is to give more invariance results of this type, and simplified proofs for some already known results, by using scaling approach.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The main idea of the considerations that follow is the fact that a matrix A is an H-matrix if and only if there exists a diagonal nonsingular matrix W such that AW is a strictly diagonally dominant (SDD) matrix. In other words, see [16], the class of H-matrices is diagonally derived from the class of SDD matrices. Some special subclasses of H-matrices could be characterized by the form of the corresponding scaling matrix W. These characterizations will be presented in short in the first section, as they have already been proven in [6], and some other subclasses of H-matrices will be recalled. In the second section simplified proofs of the statements from [14] will be presented, as well as another result of the same type concerning diagonal-Schur complement and Dashnic–Zusmanovich (DZ) matrices. The third section deals with another subclass of H-matrices, called S-Nekrasov matrices, for which we give some closure properties under taking the Schur complement and the diagonal-Schur complement in a similar way, i.e., by using scaling approach.

* This work is partly supported by the Ministry of Science of Serbia, grant 144025 and by the Provincial Secretariat of Science and Technological Development of Vojvodina, grant 0708.

* Corresponding author.

E-mail address: lila@im.ns.ac.yu (L. Cvetković).

096-3003/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
Throughout the paper we will use the following notations:

\[N := \{1, 2, \ldots, n\} \] for the set of indices,

\[S \] for any nonempty proper subset of \(N \),

\[\bar{S} := N \setminus S \] for the complement of \(S \),

\[r_i(A) := \sum_{k \in N, k \neq i} |a_{ik}| \] for \(i \) th row sum, and

\[r_i^S(A) := \sum_{k \in S, k \neq i} |a_{ik}| \] for part of \(i \) th row sum, which corresponds to the subset \(S \).

Obviously, for arbitrary subset \(S \) and each index \(i \in N \),

\[r_i(A) = r_i^S(A) + r_i^\bar{S}(A). \]

It is important to emphasize that all the time we are dealing with nonsingular \(H \)-matrices, calling them shortly \(H \)-matrices. To be precise, we recall the definition of \(H \)-matrices, as well as some more preliminaries.

Definition 1. A matrix \(A = [a_{ij}] \in \mathbb{C}^{n \times n} \) is called an \(H \)-matrix if its comparison matrix \(\langle A \rangle = [m_{ij}] \) defined by

\[m_{ii} = |a_{ii}|, \quad m_{ij} = -|a_{ij}|, \quad i, j = 1, 2, \ldots, n, \quad i \neq j \]

is an \(M \)-matrix, i.e., \(\langle A \rangle^{-1} \geq 0 \).

Definition 2. A matrix \(A = [a_{ij}] \in \mathbb{C}^{n \times n} \) is called an SDD matrix if, for each \(i \in N \), it holds that

\[|a_{ii}| > r_i(A). \]

Theorem 1. If a matrix \(A \in \mathbb{C}^{n \times n} \) is an SDD matrix, then it is nonsingular, moreover it is an \(H \)-matrix.

The above statement that SDD matrices are nonsingular is an old and recurring result in matrix theory, see [15]. This basic result can be traced back to at least Levy (1881), Desplanques (1887), Minkowski (1900) and Hadamard (1903).

The next theorem was formulated in the present form in [3], but it can be treated as the same result as (M35) of Theorem 2.3 in the chapter 6 of [1].

Theorem 2. A matrix \(A \) is an \(H \)-matrix if and only if there exists a diagonal nonsingular matrix \(W \) such that \(AW \) is an SDD matrix. Moreover, we can always assume that \(W \) has only positive diagonal entries.

The following subclass of \(H \)-matrices has been investigated in [8,9].

Definition 3. A matrix \(A = [a_{ij}] \in \mathbb{C}^{n \times n} \) is called a Dashnic–Zusmanovich matrix if there exists an index \(i \in N \) such that

\[|a_{ii}| \cdot (|a_{ij}| - r_i(A) + |a_{ij}|) > r_i(A) \cdot |a_{ij}|, \quad \text{for all } j \neq i, j \in N. \]

Theorem 3. [8]. If a matrix \(A \in \mathbb{C}^{n \times n} \) is a Dashnic–Zusmanovich matrix, then it is nonsingular, moreover it is an \(H \)-matrix.

Class of \(\mathcal{S} \)-SDD matrices was defined in the present form in [4,15]. It is easy to see that this class (which is also the subclass of \(H \)-matrices) is the same one defined in [14] under the name strictly generalized doubly diagonally dominant matrices. Here we will recall one of several equivalent definitions of the \(\mathcal{S} \)-SDD class, for more details see [5].

Definition 4. Given any matrix \(A = [a_{ij}] \in \mathbb{C}^{n \times n} \geq 2 \), and given any nonempty proper subset \(S \) of \(N \), then \(A \) is an \(S \)-strictly diagonally dominant (\(S \)-SDD) matrix if

\[|a_{ii}| > r_i^S(A) \quad \text{for all } i \in S \text{ and}, \]

\[(|a_{ii}| - r_i^S(A))(|a_{ij}| - r_i^S(A)) > r_i^S(A) r_i^S(A) \quad \text{for all } i \in S, j \in \bar{S}. \]

Definition 5. If there exists a nonempty proper subset \(S \) of \(N \), such that \(A = [a_{ij}] \in \mathbb{C}^{n \times n} \geq 2 \) is an \(S \)-SDD matrix, then we will say that \(A \) belongs to class of \(\mathcal{S} \)-SDD matrices.

The following classes have been investigated under different names, see, for example, [11]. In order to be precise, we will recall all definitions we need.

First of all, we define \(h_i(A) \) recursively:

\[h_1(A) := \sum_{j=1}^{n} |a_{ij}|, \]

\[h_i(A) := \sum_{j=1}^{i-1} |a_{ij}| h_{i}(A) + \sum_{j=i+1}^{n} |a_{ij}|, \]

\[r_i^S(A) := \sum_{k \in S, k \neq i} |a_{ik}| \] for part of \(i \) th row sum, which corresponds to the subset \(S \).

Throughout the paper we will use the following notations:
and $h_i^S(A)$:
\[
\begin{gathered}
\forall i \in S, h_i^S(A) := r_i^F(A), \\
\forall i \in S, h_i^S(A) := \sum_{j=1}^{n} \left| a_{ij} \right| \frac{h_j^S(A)}{|a_{ij}|} + \sum_{j=1, j \notin S}^{n} |a_{ij}|.
\end{gathered}
\]

Obviously, for arbitrary subset S and each index $i \in N$,
\[
h_i(A) = h_i^S(A) + h_i^S(A).
\]

Definition 6. A matrix $A = [a_{ij}] \in \mathbb{C}^{n \times n}, n \geq 2$ is called Nekrasov matrix if, for each $i \in N$, it holds that $|a_{ii}| > h_i(A)$.

Definition 7. Given any matrix $A = [a_{ij}] \in \mathbb{C}^{n \times n}, n \geq 2$, and given any nonempty proper subset S of N, then A is an S-Nekrasov matrix if
\[
\begin{aligned}
|a_{ii}| &> h_i^S(A) &\text{for all } i \in S, \\
|a_{i\cdot}| &> h_i^S(A) &\text{for all } j \in S, \quad \text{and,} \\
|a_{i\cdot}| - h_i^S(A) &> h_i^S(A) - h_i^S(A) &\text{for all } i \in S, j \in S.
\end{aligned}
\]

Definition 8. If there exists a nonempty proper subset S of N, such that $A = [a_{ij}] \in \mathbb{C}^{n \times n}, n \geq 2$ is an S-Nekrasov matrix, then we will say that A belongs to class of \mathcal{S}-Nekrasov matrices.

2. Scaling matrices in characterization of some subclasses of H-matrices

According to **Theorem 2**, a matrix $A \in \mathbb{C}^{n \times n}$ is an H-matrix if and only if there exists a nonsingular diagonal matrix W such that $A W$ is an SDD matrix. But, such a matrix W could be found in a very few special cases. Up to now, we are aware of two such cases: Dashnic–Zusmanovich matrices and \mathcal{S}-SDD matrices.

Namely, Dashnic–Zusmanovich class can be characterized as a subclass of H-matrices for which the corresponding scaling matrix W belongs to the set \mathcal{F}, defined as the set of diagonal matrices, whose diagonal entries are equal to 1, all except one, which is an arbitrary positive number, i.e.,
\[
\mathcal{F} = \{ W = \text{diag}(w_1, w_2, \ldots, w_n) : w_i = \gamma > 0 \text{ for one } i \in N, \text{ and } w_j = 1 \text{ for } j \neq i \}.
\]

From the other hand, the \mathcal{S}-SDD class can be characterized as a subclass of H-matrices for which the corresponding scaling matrix W belongs to the set \mathcal{F}, defined as the set of all diagonal matrices whose diagonal entries are either 1 or γ, where γ is an arbitrary positive number, i.e.,
\[
\mathcal{F} = \bigcup_{S \subseteq N} \mathcal{F}^S,
\]
\[
\mathcal{F}^S = \{ W = \text{diag}(w_1, w_2, \ldots, w_n) : w_i = \gamma > 0 \text{ for } i \in S \text{ and } w_i = 1 \text{ otherwise} \}.
\]

In the next section we will use the following theorems, proved in [6]:

Theorem 4. A matrix A is an \mathcal{S}-SDD matrix if and only if there exists a matrix $W \in \mathcal{F}$ such that $A W$ is an SDD matrix.

Theorem 5. A matrix A is a Dashnic–Zusmanovich matrix if and only if there exists a matrix $W \in \mathcal{F}$ such that $A W$ is an SDD matrix.

Concerning the class of S-Nekrasov matrices, at this point we just want to emphasize that it can be characterized as a subclass of H-matrices for which the corresponding scaling matrix W, which scales it into the class of Nekrasov matrix, belongs to the set \mathcal{F} defined above.

3. Diagonal-Schur complement of S-D matrices and DZ matrices

The diagonal-Schur complement of A with respect to a proper subset of N, α, is denoted by $A(\alpha, \alpha)$ and defined to be
\[
A(\alpha, \alpha) - \{ A(\alpha, \beta)(A(\beta))^{-1}A(\alpha, \beta) \} \circ I
\]
\[
A(\alpha, \beta) \text{ stands for the submatrix of } A \in \mathbb{C}^{n \times n} \text{ lying in the rows indexed by } \alpha \text{ and the columns indexed by } \beta, \text{ while } A(\alpha, \alpha) \text{ is abbreviated to } A(\alpha). \text{ For } A = (a_{ij}) \in \mathbb{C}^{n \times n} \text{ and } B = (b_{ij}) \in \mathbb{C}^{n \times n}, \text{ the Hadamard product of } A \text{ and } B \text{ is the matrix } (a_{ij}b_{ij}), \text{ which we denote by } A \odot B. \text{ Throughout the paper we assume that } A(\alpha) \text{ is a nonsingular matrix.}
In [14] the following theorem has been proven.

Theorem 6. Let $A \in SGDD_{n}^{N_{1},N_{2}}, \alpha \subset N$. If $N_{1} \subseteq \alpha$ or $N_{2} \subseteq \alpha$, then

$$A/_{/\alpha} \in SDn_{\alpha}[.].$$

If $N_{1} \subseteq \alpha$ and $N_{2} \not\subseteq \alpha$, then

$$A/_{/\alpha} \in SDGDD_{n}^{N_{1},N_{2} - \alpha}.$$

First, let us explain the above notation. A matrix A from $C^{n,n}$ is called a strictly generalized doubly diagonally dominant matrix in $C^{n,n}$ if there exist proper subsets N_{1},N_{2} of N such that $N_{1} \cap N_{2} = \emptyset, N_{1} \cup N_{2} = N$ and

$$(|a_{ii}| - \alpha_{i})(|a_{ij}| - \beta_{j}) > \beta_{i}\alpha_{j}$$

for all $i \in N_{1}$ and $j \in N_{2}$, where, with $s = i$ or j,

$$\alpha_{s} = \sum_{t \in N_{1} \cup s} |a_{st}|,$$

$$\beta_{s} = \sum_{t \in N_{2} \cup s} |a_{st}|.$$

For this choice of N_{1},N_{2}, we write $A \in SGDD_{n}^{N_{1},N_{2}}$. But, obviously, $SGDD_{n}^{N_{1},N_{2}}$ is the same set as the one that we call N_{1}-SDD matrices, while the set $SGDD_{n}$ of all strictly generalized doubly diagonally dominant matrices in $C^{n,n}$ is, in fact, our set \mathcal{S}-SDD. The set SDn is actually the set of all strictly diagonally dominant (SDD) matrices in $C^{n,n}$.

Theorem 6 has been proven in [14] using various algebraic inequalities. We will show here the simplified proof for both statements in this theorem.

Theorem 7 (The same as **Theorem 6**). Let $A = [a_{ij}] \in C^{n,n}$ be an S-SDD matrix. Then for any nonempty proper subset α of N:

- such that $S \subseteq \alpha$ or $\bar{S} \subseteq \alpha$, $A/_{/\alpha}$ is an SDD matrix;
- $A/_{/\alpha}$ is also an \mathcal{S}-SDD matrix. More precisely, if A is an S-SDD matrix, then $A/_{/\alpha}$ is an $(S \setminus \alpha)$-SDD matrix.

Proof. Let A be an S-SDD matrix. Then, from **Theorem 4**, there exists a matrix $W \in \mathcal{W}$ (defined by (2)), such that AW is an SDD matrix. As the diagonal-Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant, too, we conclude that $AW/_{/\alpha}$ is strictly diagonally dominant matrix. As in [6], it is easy to see that

$$(AW)/_{/\alpha} = (A/_{/\alpha}) \cdot W(\alpha).$$

- Since $W(\alpha)$ is either the identity matrix, I (if $S \subseteq \alpha$), or $\gamma \cdot I$ (if $\bar{S} \subseteq \alpha$), it will not affect the strict diagonal dominance. Therefore, $A/_{/\alpha}$ is a strictly diagonally dominant matrix.
- Since $W(\alpha) \in \mathcal{W}$, i.e., the class \mathcal{W} is closed under taking principal submatrices, from **Theorem 4** we obtain that $A/_{/\alpha}$ is an \mathcal{S}-SDD matrix. To complete the proof it is enough to see that the matrix $W(\alpha)$ is of the form

$$W(\alpha) = diag(w_{1},w_{2},\ldots,w_{\ell})$$

with

$$w_{i} = \gamma > 0 \text{ for } i \in S \setminus \alpha \text{ and } w_{i} = 1 \text{ otherwise}.$$

Obviously, using diagonal scaling, the proofs can be significantly shortened, but this technique allows us to get invariance theorems for some other subclasses of H-matrices, as we can see from the following theorem.

Theorem 8. Let $A = [a_{ij}] \in C^{n,n}$ be a Dashnic–Zusmanovich matrix. Then for any nonempty proper subset α of N, $A/_{/\alpha}$ is also a Dashnic–Zusmanovich matrix.

Proof. Let $A = [a_{ij}] \in C^{n,n}$ be a Dashnic–Zusmanovich matrix. Then, from **Theorem 5**, there exists a matrix $W \in \mathcal{F}$ (defined by (1)), such that AW is an SDD matrix. As the diagonal-Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant, $AW/_{/\alpha}$ is strictly diagonally dominant, too. Since

$$(AW)/_{/\alpha} = (A/_{/\alpha}) \cdot W(\alpha)$$

with $W(\alpha) \in \mathcal{F}$, **Theorem 5** provides that $A/_{/\alpha}$ is a Dashnic–Zusmanovich matrix.

Moreover, if for the given matrix A there exists a scaling matrix $W \in \mathcal{F}$ with $w_{i} = \gamma > 0$ where $\{i\} \subseteq \alpha$ or $N \setminus \{i\} = \alpha$, then $A/_{/\alpha}$ is a strictly diagonally dominant matrix. This can be derived from **Theorem 8** with $S = \{i\}$.

Notes:
- $C^{n,n}$ refers to the set of all $n \times n$ matrices.
- \mathcal{S}-SDD refers to strictly diagonally dominant matrices.
- \mathcal{W} refers to a class of matrices.
- $diag(w_{1},w_{2},\ldots,w_{\ell})$ denotes a diagonal matrix with diagonal entries $w_{1},w_{2},\ldots,w_{\ell}$.
- $w_{i} = \gamma > 0$ indicates scaling by a factor γ.
- \mathcal{F} refers to another class of matrices.
- The proofs rely on algebraic inequalities and scaling techniques.
- The theorems provide insights into the structure and properties of these matrices.
4. Schur and diagonal-Schur complements of Nekrasov and S-Nekrasov matrices

As we have already mentioned before, S-Nekrasov matrices can be characterized by the form of scaling matrices which transform them to Nekrasov matrices. Here, we present this fact as a theorem, for its proof see [7].

Theorem 9. A matrix A is an \mathcal{S}-Nekrasov matrix if and only if there exists a matrix $W \in \mathcal{W}$ such that AW is a Nekrasov matrix.

To prove some properties of the Schur and diagonal-Schur complements, we need some additional notation and preliminaries.

Definition 9. The Schur complement of A with respect to a proper subset of \mathcal{N}, \mathcal{A}, is denoted by $A(\mathcal{A})$ and defined to be

$A(\mathcal{A}) = A(\mathcal{N}, \mathcal{A})(A(\mathcal{A}))^{-1}A(\mathcal{A}, \mathcal{N})$.

Definition 10. For a given proper subset of the index set, \mathcal{A}, we say that a matrix class \mathcal{C} is \mathcal{A}-SC-closed if for any $A \in \mathcal{C}$, $A(\mathcal{A}) \in \mathcal{C}$.

Definition 11. A matrix class \mathcal{C} is SC-closed if \mathcal{C} is \mathcal{A}-SC-closed for all \mathcal{A}.

Definition 12. We say that a matrix class \mathcal{C} is \mathcal{A}-diagonal-SC-closed if for any $A \in \mathcal{C}$, $A(\mathcal{A})^{(1)} \in \mathcal{C}$.

Definition 13. A matrix class \mathcal{C} is diagonal-SC-closed if \mathcal{C} is \mathcal{A}-diagonal-SC-closed for all \mathcal{A}.

Theorem 10 (Sequential property of Schur complement [16]). Let $A \in \mathbb{C}^{n \times n}$ be principally nonsingular and suppose that \mathcal{A} is a proper subset of \mathcal{N} and that \mathcal{B} is a proper subset of \mathcal{A}. Then,

$(A(\mathcal{A}))^{(\mathcal{B})} = A(\mathcal{A} \cup \mathcal{B})$.

It is important to note that the same property does not hold for the diagonal-Schur complement.

In [10], it has been proven that Nekrasov property is hereditary for Gaussian elimination, which implies the following:

Corollary. The Nekrasov class is $\{1\}$-SC-closed.

Using the scaling characterization, from the above fact we obtain:

Theorem 11. If A is S-Nekrasov matrix, then $A(\{1\})$ is $S(\{1\})$-Nekrasov matrix.

Proof. Let A be an S-Nekrasov matrix. Then, from Theorem 4, there exists a matrix $W \in \mathcal{W}$ (defined by (2)), such that AW is an Nekrasov matrix. As the $\{1\}$-Schur complement of a Nekrasov matrix is an Nekrasov matrix, too, we conclude that $AW(\{1\})$ is a Nekrasov matrix. We have also

$(AW)(\{1\}) = (A(\{1\})) \cdot W(\{\mathcal{T}\}))$.

Since $W(\{\mathcal{T}\}) \in \mathcal{W}$ is of the form

$W(\{\mathcal{T}\}) = \text{diag}(w_1, w_2, \ldots, w_\ell)$

with

$w_i = \gamma > 0$ \quad for $i \in S \setminus \{1\}$ and $w_i = 1$ otherwise,

from Theorem 4 we obtain that $A(\{1\})$ is an $S(\{1\})$-Nekrasov matrix. □

Or, in other words:

Theorem 12. The \mathcal{S}-Nekrasov class is $\{1\}$-SC-closed. Moreover, from the sequential property of Schur complement, it is \mathcal{A}-SC-closed for all $\mathcal{A} = \{1, 2, \ldots, m\}$.

The similar closure properties hold for diagonal-Schur complement:

Theorem 13. The Nekrasov class is $\{1\}$-diagonal-SC-closed.

Theorem 14. If A is S-Nekrasov matrix, then $A(\{1\})$ is $S(\{1\})$-Nekrasov matrix.

Theorem 15. The \mathcal{S}-Nekrasov class is $\{1\}$-diagonal-SC-closed.

We are concluding this section with the following remark: As the sequential property doesn’t hold for diagonal-Schur complement, we don’t have immediately the \mathcal{A}-diagonal-SC-closure for $\mathcal{A} = \{1, 2, \ldots, m\}$ as before.
References