Further results on H-matrices and their Schur complements

Ljiljana Cvetković a,*, Vladimir Kostić a, Maja Kovačević b, Tomasz Szulc c

a Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Novi Sad, Serbia
b Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
c Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland

Abstract

It is well-known [D. Carlson, T. Markham, Schur complements of diagonally dominant matrices, Czech. Math. J. 29 (104) (1979) 246–251, [1]] that the Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant. Also, if a matrix is an H-matrix, then its Schur complement is an H-matrix, too [J. Liu, Y. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl. 389 (2004) 365–380, [8]]. Recent research showed that the same type of statement holds for some special subclasses of H-matrices, see, for example, Liu et al. [J. Liu, Y. Huang, F. Zhang, The Schur complements of generalized doubly diagonally dominant matrices, Linear Algebra Appl. 378 (2004) 231–244]. The aim of this paper is to show that the proof of these results can be significantly simplified by using “scaling” approach as in Zhang et al. [F. Zhang et al., The Schur Complement and its Applications, Springer, New York, 2005] and to give another invariance result of this type.

© 2007 Elsevier Inc. All rights reserved.

Keywords: H-matrices; Schur complement; Diagonal scaling

1. Introduction

The core idea of the considerations that follow is the fact that a matrix A is an H-matrix if and only if there exists a diagonal nonsingular matrix W such that AW is a strictly diagonally dominant (SDD) matrix. In other words, see [10], the class of H-matrices is diagonally derived from the class of SDD matrices. Some special subclasses of H-matrices could be characterized by the form of the corresponding scaling matrix W. These characterizations will be presented in Section 2, although they have already been proven in [3] as the corresponding Geršgorin-type theorems. In Section 3, a simplified proofs of the main theorems from [7] will be presented. Section 4 deals with one more subclass of H-matrices, for which we can prove invariance property of the Schur complement in a similar way, i.e. by using scaling approach.

* Corresponding author.
E-mail address: lila@im.ns.ac.yu (L. Cvetković).

0096-3003/S - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2007.09.001
Throughout the paper we will use the following notations:

\[N := \{1, 2, \ldots, n\} \text{ for the set of indices} \]
\[S \text{ for any nonempty proper subset of } N \]
\[\overline{S} := N \setminus S \text{ for the complement of } S \]
\[r_i(A) := \sum_{k \in N, k \neq i} |a_{ik}| \text{ for } i \text{th row sum and} \]
\[r^S_i(A) := \sum_{k \in S, k \neq i} |a_{ik}| \text{ for part of } i \text{th row sum, which corresponds} \]
\[\text{to the subset } S. \]

Obviously, for arbitrary subset \(S \) and each index \(i \in N, r_i(A) = r^S_i(A) + r^{\overline{S}}_i(A) \).

It is important to emphasize that all the time we are dealing with nonsingular \(H \)-matrices, calling them shortly \(H \)-matrices. To be precise, we recall the definition of \(H \)-matrices, as well as some more preliminaries.

Definition 1. A matrix \(A = [a_{ij}] \in \mathbb{C}^{n,n} \) is called an \(H \)-matrix if its comparison matrix \(\langle A \rangle = [m_{ij}] \) defined by

\[m_{ii} = |a_{ii}|, \quad m_{ij} = -|a_{ij}|, \quad i, j = 1, 2, \ldots, n, \quad i \neq j \]

is an \(M \)-matrix, i.e. \(\langle A \rangle^{-1} \geq 0 \).

Theorem 1. If a matrix \(A \in \mathbb{C}^{n,n} \) is an SDD matrix, then it is nonsingular, moreover it is an \(H \)-matrix.

Theorem 2. A matrix \(A \) is an \(H \)-matrix if and only if there exists a diagonal nonsingular matrix \(W \) such that \(AW \) is an SDD matrix. Moreover, we can always assume that \(W \) has only positive diagonal entries.

The following subclass of \(H \)-matrices has been investigated in [5,6].

Definition 3. A matrix \(A = [a_{ij}] \in \mathbb{C}^{n,n} \) is called a Dashnic–Zusmanovich matrix if there exists an index \(i \in N \) such that

\[|a_{ii}| \cdot (|a_{jj}| - r_j(A) + |a_{ji}|) > r_i(A) \cdot |a_{ji}|, \quad \text{for all } j \neq i, \quad j \in N. \]

Theorem 3. If a matrix \(A \in \mathbb{C}^{n,n} \) is a Dashnic–Zusmanovich matrix, then it is nonsingular, moreover it is an \(H \)-matrix.

Class of \(\mathcal{S} \)-SDD matrices was defined in the present form in [2,9]. It is easy to see that this class (which is also the subclass of \(H \)-matrices) is the same one defined in [7] under the name strictly generalized doubly diagonally dominant matrices. Here we will recall one of several equivalent definitions of the \(\mathcal{S} \)-SDD class, for more details see [4].

Definition 4. Given any matrix \(A = [a_{ij}] \in \mathbb{C}^{n,n}, n \geq 2 \), and given any nonempty proper subset \(S \) of \(N \), then \(A \) is an \(S \)-strictly diagonally dominant (\(S \)-SDD) matrix if

\[|a_{ii}| > r^S_i(A) \quad \text{for all } i \in S \quad \text{and} \quad \left(|a_{ii}| - r^S_i(A) \right) \left(|a_{jj}| - r^S_j(A) \right) > r^S_j(A) r^S_i(A) \quad \text{for all } i, j \in S, \quad j \in \overline{S}. \]

Definition 5. If there exists a nonempty proper subset \(S \) of \(N \), such that \(A = [a_{ij}] \in \mathbb{C}^{n,n}, n \geq 2 \) is an \(S \)-SDD matrix, then we will say that \(A \) belongs to class of \(\mathcal{S} \)-SDD matrices.

2. Scaling matrices in characterization of some subclasses of \(H \)-matrices

According to Theorem 2, a matrix \(A \in \mathbb{C}^{n,n} \) is an \(H \)-matrix if and only if there exists a nonsingular diagonal matrix \(W \) such that \(AW \) is an SDD matrix. But, such a matrix \(W \) could be found in a very few special cases. Up to now, we are aware of two such cases: Dashnic Zusmanovich matrices and \(\mathcal{S} \)-SDD matrices.
Namely, Dashnic Zusmanovich class can be characterized as a subclass of H-matrices for which the corresponding scaling matrix W belongs to the set \mathcal{F}, defined as the set of diagonal matrices, whose diagonal entries are equal to 1, all except one, which is an arbitrary positive number, i.e

$$\mathcal{F} = \{ W = \text{diag}(w_1, w_2, \ldots, w_n) : w_i = \gamma > 0 \text{ for one } i \in N, \text{ and } w_j = 1 \text{ for } j \neq i \}. \quad (1)$$

From the other hand, the \mathcal{S}-SDD class can be characterized as a subclass of H-matrices for which the corresponding scaling matrix W belongs to the set \mathcal{W}, defined as the set of all diagonal matrices whose diagonal entries are either 1 or γ, where γ is an arbitrary positive number, i.e

$$\mathcal{W} = \bigcup_{S \subseteq N} \mathcal{W}_S,$$

$$\mathcal{W}_S = \{ W = \text{diag}(w_1, w_2, \ldots, w_n) : w_i = \gamma > 0 \text{ for } i \in S \text{ and } w_i = 1 \text{ otherwise} \}. \quad (2)$$

Although the above two facts are already known (see, for example, the related statements in the eigenvalue localization field in [3]), we find appropriate to present them here as Theorems, along with their elegant proofs.

Theorem 4. A matrix A is an \mathcal{S}-SDD matrix if and only if there exists a matrix $W \in \mathcal{W}$ such that AW is an SDD matrix.

Proof. Let A be an \mathcal{S}-SDD matrix, i.e. there exists a nonempty proper subset $S \subseteq N$ such that A is an S-SDD matrix. Define diagonal matrix $W(S) \in \mathcal{W}$ in the following way:

$$W(S) = \text{diag}(w_1, w_2, \ldots, w_n),$$

where

$$w_i = \begin{cases} \gamma, & i \in S, \\ 1, & i \in \bar{S}. \end{cases}$$

We will show that for a given S, A is an S-SDD matrix if and only if $AW(S)$ is an SDD matrix.

First, assume that A is an S-SDD matrix. We choose γ from the interval $(\gamma_1(A), \gamma_2(A))$, with:

$$0 \leq \gamma_1(A) := \max_{i \in S} \frac{r_i^S(A)}{a_{ii}}, \quad \gamma_2(A) := \min_{j \in S} \frac{|a_{ji}| - r_j^S(A)}{r_j^S(A)},$$

where if $r_j^S(A) = 0$ for some $j \in \bar{S}$, the final fraction is defined to be $+\infty$. Note that, according to the definition of S-SDD matrices, the interval $(\gamma_1(A), \gamma_2(A))$ is not empty. Now, it is easy to check that $AW(S)$ is an SDD matrix.

Second, if we suppose that $AW(S)$ is an SDD matrix, then γ has to be chosen from the interval $(\gamma_1(A), \gamma_2(A))$, which means that this interval is not empty. But, this implies that matrix A is an S-SDD matrix. \(\square\)

Similarly, we can prove the following theorem:

Theorem 5. A matrix A is a Dashnic–Zusmanovich matrix if and only if there exists a matrix $W \in \mathcal{F}$ such that AW is an SDD matrix.

3. Schur complement of S-SDD matrices

In [7], the following theorems have been proven:

Theorem 6. Let $A \in \text{SGDD}_n^{n_1, n_2}$. If $n_1 \subseteq m \subseteq n$ or $n_2 \subseteq m \subseteq n$, then

$$A/m \in \text{SD}_n^{-|m|}.$$

Theorem 7. Let $A \in \text{SGDD}_n^{n_1, n_2}$. Then for any proper subset m of n,

$$A/m \in \text{SGDD}_n^{-|m|^{n_1-m}n_2-m}.$$
First, let us explain the above notation. A matrix A from $\mathbb{C}^{n \times n}$ is called a strictly generalized doubly diagonally dominant matrix in $\mathbb{C}^{n \times n}$ if there exist proper subsets n_1, n_2 of n such that $n_1 \cap n_2 = \emptyset$, $n_1 \cup n_2 = n$ and

$$\left(|a_{ii}| - \sum_{j \in n_1 \cap n_j} |a_{ij}| \right) - \beta_j \alpha_j > 0$$

for all $i \in n_1$ and $j \in n_2$, where with $s = i$ or j,

$$\alpha_s = \sum_{j \in n_1 \cap n_s} |a_{ij}|, \quad \beta_s = \sum_{j \in n_2 \cap n_s} |a_{ij}|.$$

For this choice of n_1, n_2, we write $A \in \text{SGDD}_{n,n}$. But, obviously, $\text{SGDD}_{n,n}$ is the same set as the one that we call n_1-DD matrices, while the set SGDD_n of all strictly generalized doubly diagonally dominant matrices in $\mathbb{C}^{n \times n}$ is, in fact, our set \mathcal{F}-SDD. The set SD_n is actually the set of all strictly diagonally dominant (SDD) matrices in $\mathbb{C}^{n \times n}$.

The Schur complement of A with respect to a proper subset of n, α, is denoted by A/α and defined to be:

$$A(\bar{\alpha}) = A(\bar{\alpha}, \alpha)(A(\alpha))^{-1}A(\alpha, \bar{\alpha}),$$

where $A(\alpha, \beta)$ stands for the submatrix of $A \in \mathbb{C}^{n \times n}$ lying in the rows indexed by α and the columns indexed by β, while $A(\alpha, \bar{\alpha})$ is abbreviated to $A(\alpha)$. Throughout the paper we assume that $A(\alpha)$ is a nonsingular matrix.

The previous two theorems have been proven in [7] using various algebraic inequalities. We will show here the simplified proof for both of them.

Theorem 8 (Same as Theorem 6). Let $A = [a_{ij}] \in \mathbb{C}^{n \times n}$ be an S-SDD matrix. Then for any nonempty proper subset α of n such that $S \subseteq \alpha$ or $\bar{S} \subseteq \alpha$, A/α is an SDD matrix.

Proof. Let A be an S-SDD matrix. Then, from Theorem 4, there exists a matrix $W \in \mathcal{W}$ (defined by (2)), such that AW is an SDD matrix. As the Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant, too, we conclude that AW/α is strictly diagonally dominant matrix. As in [10], it is easy to see that

$$(AW)/\alpha = (A/\alpha) \cdot (W/\alpha),$$

where W/α is actually $W(\bar{\alpha})$. Since W/α is either the identity matrix, I (if $S \subseteq \alpha$), or $\gamma \cdot I$ (if $\bar{S} \subseteq \alpha$), it will not affect the strict diagonal dominance. Therefore, A/α is a strictly diagonally dominant matrix. \(\square\)

Theorem 9 (Same as Theorem 7). Let $A = [a_{ij}] \in \mathbb{C}^{n \times n}$ be an \mathcal{F}-SDD matrix. Then for any nonempty proper subset α of n, A/α is also an \mathcal{F}-SDD matrix. More precisely, if A is an S-SDD matrix, then A/α is an $(S \setminus \alpha)$-SDD matrix.

Proof. Let A be an \mathcal{F}-SDD matrix. Then, from Theorem 4, there exists a matrix $W \in \mathcal{W}$ (defined by (2)), such that AW is an SDD matrix. As the Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant, too, we conclude that AW/α is strictly diagonally dominant matrix. Again, we have

$$(AW)/\alpha = (A/\alpha) \cdot (W/\alpha).$$

Since $W/\alpha \in \mathcal{W}$, i.e. the class \mathcal{W} is closed under taking principal submatrices, from Theorem 4, we obtain that A/α is an \mathcal{F}-SDD matrix. To complete the proof it is enough to see that the matrix W/α is of the form

$$W/\alpha = \text{diag}(w_{i_1}, w_{i_2}, \ldots, w_{i_l})$$

with

$$w_{i_j} = \gamma > 0 \quad \text{for} \quad i_j \in S \setminus \alpha \quad \text{and} \quad w_{i_j} = 1 \quad \text{otherwise}. \quad \square$$

4. New invariance result for Schur complement

Let us now consider another subclass of H-matrices and corresponding invariance theorem.
Theorem 10. Let $A = [a_{ij}] \in \mathbb{C}^{n,n}$ be a Dashnic–Zusmanovich matrix. Then for any nonempty proper subset α of N, A/α is also a Dashnic–Zusmanovich matrix.

Proof. Let $A = [a_{ij}] \in \mathbb{C}^{n,n}$ be a Dashnic–Zusmanovich matrix. Then, from Theorem 5, there exists a matrix $W \in \mathcal{F}$ (defined by (1)), such that AW is an SDD matrix. As the Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant, AW/α is strictly diagonally dominant, too. Since

$$(AW)/\alpha = (A/\alpha) \cdot (W/\alpha)$$

with $W/\alpha \in \mathcal{F}$, Theorem 5 provides that A/α is a Dashnic–Zusmanovich matrix. \square

Moreover, if for the given matrix A, there exists a scaling matrix $W \in \mathcal{F}$ with $w_i = \gamma > 0$, where $\{i\} \subseteq \alpha$ or $N \setminus \{i\} = \alpha$, then A/α is a strictly diagonally dominant matrix. This can be derived from Theorem 8 with $S = \{i\}$.

Acknowledgements

This work is partly supported by the Ministry of Science and Environmental Protection of Serbia, Grant 144025 and by the Provincial Secretariat of Science and Technological Development of Vojvodina, Serbia, Grant 621.

References