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Abstract. The paper deal with two key problems for delta (or singular) shock
solutions to systems of conservation laws: entropy admissibility conditions
for them (which is connected to the notorious uniqueness problem) and their
interaction. A way we chose is to represent them by nets of piecewise constant
(or constant with respect only to the space variable) functions, here called
shadow waves. All the calculations then can be done on each element of such
net using the usual Rankine-Hugoniot conditions only. The 3× 3 pressureless
gas dynamics model is the main example in the paper.

1. Introduction

Consider a following conservation law system

∂tf(U) + ∂xg(U) = 0, U : R2
+ → Ω ⊂ Rn, (1.1)

where f = (f1, . . . , fn) and g = (g1, . . . , gn) are continuous mapping from Ω in Rn.
A name of f is density function, while g is called flux function. The functions f
and g are continuous mappings from a physical domain Ω ⊂ Rn into Rn.

In a number of papers (some of them will be cited bellow) one can find exam-
ples of such systems having non-classical (singular) solutions for Riemann problem.
The majority of them are delta (see [1], [2], [4], [10], [11], [13], etc) and singular
shock solutions (see [12], [16], etc). These two solution types are the major objects
in the paper. In the sense that we incorporate them in a new solution type – a
shadow wave. Solutions concepts in these examples are different: measure theoreti-
cal method ([1], [2], [4], [11]), generalized variational principle (and measures [10]),
use of smooth functions nets and weighted measure spaces ([12]), split delta func-
tions ([15], [18]), Colombeau generalized functions ([16]), weak asymptotic method
([8], [9]),... Some of these concepts are limited by the form of a flux function, which
has to be linear in one solution component (measure theoretical and split delta
function methods, among others), or have some other special form as in weak as-
ymptotic method. The others have a non-uniqueness problem in a way that there
is a lot of possible choices for solution which cannot be collected in the same class
(that is the case for Colombeau generalized functions). Entropy and entropy-flux
functions for such systems usually do not have properties as nice as density and
flux functions, and that could cause checking the usual Lax entropy condition to be
impossible. That is one of the reasons why the authors of the above papers usually
take some other admissibility criteria as overcompressibility. In fact, that condition
is used in all the papers cited above. In most of them it is the only condition.
Besides the uniqueness problem there is also a problem of treating an interaction
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problem which involves singular solutions. The result of such an interaction de-
pends on a given system and chosen solution concept. For example, one can find
some results in [8], [17], [18] and [23].

We shall try to overcome such problems by introducing so called shadow wave
solution to systems of conservation laws in the present paper. A definition of a
shadow wave is made to be as simple and robust as possible in order to get a
chance to obtain a sort of uniqueness. Also, the definition is made to include delta
and singular shocks as special cases as already said. Roughly speaking, we perturb
a speed c of a wave from both sides by some small parameter ε so that the states
U0 and U1 of a solution candidate Uε are connected by three shocks. Two of them
have perturbed speeds and the third one, in the middle, has a speed c. The equality
is taken to be equality of distributional limit. The intermediate values, U1,ε on the
left- and U2,ε on the right-hand side of the shock front, can tend to infinity as
ε→ 0. Here, we use the following types of shadow waves.

• Constant shadow wave has constant U1,ε and U1,ε for each ε. If its speed is
constant, it is called simple.

• Weighted shadow wave has U1,ε and U1,ε depending on t.

Thus, Uε is still a piecewise constant function for each ε (or a piecewise constant
for each t in the case of the weighted shadow wave) and one can use the usual
Rankine-Hugoniot conditions and see whether the distributional limit equals zero
as ε → 0. Also, the usual entropy inequality can be easily checked regardless of
the form of entropy and entropy-flux functions. The next advantage is a simplicity
of treating an interaction problem involving a shadow wave (thus delta or singular
shock, since they are included in the shadow wave definition as already said above).
Let us give more detailed explanation of these advantages.

The starting point is that all delta and singular shock solutions in physical
examples found in the references can be simply transferred into the shadow waves
defined as above. One can then treat them is a uniform way with straightforward
and simple calculations. The obtained results agree completely to the ones given
in the original literature (see the references with their descriptions above). Note
that some theoretical examples from [16] cannot be directly rewritten in the terms
of shadow waves: A complete analysis for systems in such general form described
in that paper is possible but it contains a lot of variants to be investigated and
avoided here. One can find a brief description of a way to deal with such systems
in Appendix.

It is possible to solve interaction problem involving one or two shadow waves
in a pretty general form (see Theorem 7.1 bellow). Again the results of interac-
tions recover the ones given in [18] for delta shock and in [17] for singular shock
interactions.

Contrary to the papers cited above, an entropy admissibility condition can now
be easily checked provided that there exists an entropy–entropy flux pair. That is
of great importance when dealing with systems permitting delta or singular shocks:
We are now in position to define a kind of uniqueness, so called weak uniqueness for
shadow waves and all solutions containing it and other elementary waves (shocks,
rarefactions, contact discontinuities and vacuum). Roughly speaking weak unique-
ness means that all entropy shadow wave solutions to system (1.1) have a same
distributional limit.
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Even more, we proved that the overcompressibility is really equivalent to entropy
conditions satisfied by all (weakly) convex entropies in a lot of cases from literature
(see again the list of delta and singular shock papers above).

The definition of shadow waves resembles the wave front tracking procedure (see
[3]) in a way that delta (or singular) shock is substituted by a fan of shocks de-
pending on some small positive parameter ε which itself do not satisfy the Rankine-
Hugoniot condition. A substitution of such a fan into the given system gives zero
as a limit as ε goes to zero. That approximation procedure makes the interaction
problem more treatable than before.

Let us mention that the perturbed speeds appeared in the papers [4], [5] and [14]
in connection of hyperbolic perturbation of pressureless gas dynamic system (and
some more general weakly hyperbolic systems in the paper [14]). A perturbation
of the original system with vanishing (generalized) pressure term yields strictly
hyperbolic genuinely nonlinear system. It posses classical solution and the solution
consists of a shock followed by another shock for some initial data. It converges to
a delta shock as perturbation parameter goes to zero. That situation looks exactly
like the shadow wave solution with the equal intermediate states which solves the
non-perturbed system in the sense given in the present paper.

The paper consists of four parts with an appendix. The plan of exposition is the
following. We give a basic definition and a lemma which will be used trough the
paper in the beginning.

The first part is devoted to shadow wave solutions to Riemann problem. The
type used here is the most simple one, the simple constant shadow wave. We look
first at Riemann problem for a system given in a general form. The result of that
section is a set of formulas used afterward in specific cases. A set of all the states on
the right which can be joined to a fixed state on the left by a shadow wave is called
shadow locus. Also, one can find a general entropy condition for shadow waves by
using convex or semi-convex entropy function with an appropriate entropy-flux for
the given system. A subset of a shadow locus for which points the appropriate
shadow wave solution is admissible is called admissible shadow locus. That was the
contents of Sections 3 and 4.

In Section 5 we look at a case when the given system is linear in one component of
unknown function. That case is well balanced between generality and usefulness of
results. The main (model) example of the paper is 3× 3 pressureless gas dynamics
model derived from the Euler gas dynamics model (see [6], [7] and [21]) and it
is described in Section 6. The entropy solution of that system obtained here is
coherent to the known ones of 2× 2 model given in [2], [4] or [10].

In the second part we use a constant shadow wave as a solution pattern. It is
similar to the simple one with constant intermediate states but with non-zero initial
mass. Also, its strength can be decreasing or constant function of time which can
not be the true for the simple shadow wave. The main result is a theorem given in
Section 7 about shadow waves in interactions and entropy conditions for them. It
gives a way for joining incoming shadow wave(s) with an outgoing one. In Section 8
one can learn that our model example rarely posses such a solution to an interaction
problem. That is the main reason for introducing the new type of shadow wave,
the weighted one.

Before solving the interaction problem in our main example in the third part, we
just recalculate a lot of shadow wave solutions to systems known to have delta or
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singular shock solution. It turns out that all of the results are practically recovered
in the new setting. Even more, we are now in position to use entropy pairs to
justify the obtained non-classical solutions. One will see that 2 × 2 systems are
significantly simpler for analysis compared to higher dimensional ones. For example,
shadow locus is expected to has 2-dimensional Lebesgue measure greater that zero,
interaction of waves containing a shadow wave is much easier to handle, and so on.

The complete entropy solution to interaction problem involving shadow waves for
our model problem can be found in the fourth part. Building blocks for such a con-
struction are the weighted shadow waves. We use the joining theorem from Section
7 in the second part. Said in a very simplified way, for a system of dimension more
than two a probability to find a constant shadow wave solution to the interaction
problem is practically zero that is not the case for weighted shadow wave. It would
be clear that the procedure described in the fourth part can be easily adopted for
other (even for whole classes of) systems. Let us notice that one can always find a
local solution (but not necessary entropy one) to general interaction problem.

The reader will soon be aware that we restrict ourselves with assumptions used
in the definition of shadow waves despite a variety of other possibilities. That was
done in order to explain a fairly general case of conservation law systems. Also,
the main attention is focused on the delta shock case for the same reason. For
example, systems admitting singular shocks can not be easily collected into well
defined classes. Such assumptions are generally not needed when one deals with
a concrete system and they can be more relaxed. In Appendix one will find two
examples. The first one is shadow wave solution that violates the usual growth
assumptions with respect to ε. Thus, we cannot use the basic formulas proved at
the beginning. Nevertheless an overcompressive solution do exists and converges
to δ′ solution for the same system described in [20]. We have to mention that the
entropy inequality holds only for a subclass of semi-convex entropy functions.

A singular shock given in its general form cannot always be directly treated as
a singular shock (see [16]). So there is possibility that some systems given in a
general form having a singular shock solution belonging to Colombeau space of
generalized function do not admit a shadow wave solution. But one can use a bit
different form of SDWs which easily incorporate these cases in Appendix (so called
composite SDWs).

In the present paper we have used a majority of our attention for recovering
previously known examples of delta and singular shock solutions now as entropic
and weakly unique shadow waves. The definition of shadow waves could contain
some other “objects” which also solve some systems without standard BV solutions
as already mentioned δ′ shocks. That was the first important left for the further
investigation.

Also we just presented possibility for construction of a procedure for finding
non-standard solutions to full Cauchy problems which would resembles wave front
tracking procedure. That was the second problem left for a further investigation.

2. Basic formulas

The following notation will be used trough the paper. A parameter ε belongs to
some interval (0, ε0) with ε0 being as small as needed. Let aε be a net of reals and
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uε be a net of locally integrable functions over some domain ω ⊂ Rm. We say that

aε ∼ ε if there exists A ∈ (0,∞) such that lim
ε→0

aε

ε
= A,

and

uε ≈ g ∈ D′(ω) if
∫

ω

uεφ→ 〈g, φ〉 as ε→ 0 for every test function φ ∈ C∞0 (ω).

The relation uε ≈ vε means uε − vε ≈ 0, and we called it distributional equality or
just equality if there is no chance for misunderstanding.

In the sequel, relations ∼, ≈, a “growth order”, Landau symbols O(·) and o(·)
will always be used assuming ε → 0. The half-space {(x, t) ∈ R × R+} is denoted
by R2

+.
All calculations in the paper are based on exploitation of the Rankine-Hugoniot

conditions. We will obtain all results by the following basic lemma and its minor
revisions.

Lemma 2.1. Let f, g ∈ C(Ω : Rn) and U : R2
+ → Ω ⊂ Rn be a piecewise constant

function given by

Uε(x, t) =


U0, x < c(t)− aε(t)− x1,ε

U1,ε, c(t)− aε(t)− x1,ε < x < c(t)
U2,ε, c(t) < x < c(t) + bε(t) + x2,ε

U1, x > c(t) + bε(t) + x2,ε

. (2.1)

Here x1,ε, x2,ε ∼ ε, while aε, bε are smooth functions equal zero at t = 0 with growth
order less or equal to ε. Assume

max
i=1,2

{‖f(Ui,ε)‖L∞ , ‖g(Ui,ε)‖L∞} = O(ε−1). (2.2)

Then

∂tf(Uε) ≈− c′(t)
(
f(U1)− f(U0)

)
δ +

(
a′ε(t)f(U1,ε) + b′ε(t)f(U2,ε)

)
δ

− c′(t)
(
(aε(t) + x1,ε)f(U1,ε) + (bε(t) + x2,ε)f(U2,ε)

)
δ′

∂xg(Uε) ≈
(
g(U1)− g(U0)

)
δ +

(
(aε(t) + x1,ε)g(U1,ε) + (bε(t) + x2,ε)g(U2,ε)

)
δ′,

(2.3)

where δ and its derivative δ′ are supported by the line x = ct.

Remark 2.1. The assumption (2.2) is not always necessary when one deals with a
specific system of conservation laws. But it would be practically impossible to use
a weaker assumption than it in order to deal with systems in a general form. At
the end of the paper we present an example when a solution of a conservation law
system of the form (1.1) which do not satisfy (2.2)

Remark 2.2. The constants xi,ε, i = 1, 2 are useful when initial data contains delta
function: If σ := limε→0 x1,εU1,ε + x2,εU2,ε ∈ Rn exists, then the function U from
(2.1) satisfies

U |t=0 =

{
U0, x < 0,
U1, x > 0

+ σδ(0,0).
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Proof. We shall use the Taylor expansion formula for a test function φ ∈ C∞0 (R2
+):

φ(c(t)− aε(t)− x1,ε, t) = φ(c(t), t) +
m∑

j=1

∂j
xφ(c(t), t)

(−aε(t)− x1,ε)j

j!
+O(εm+1)

φ(c(t) + bε(t) + x2,ε, t) = φ(c(t), t) +
m∑

j=1

∂j
xφ(c(t), t)

(bε(t) + x2,ε)j

j!
+O(εm+1).

Due to the above growth assumptions on aε, bε, f(Ui,ε) and g(Ui,ε), i = 1, 2 one
will see that it is enough to take m = 1 in the above expansion, so

φ(c(t)− aε(t)− x1,ε, t) = φ(c(t), t)− ∂xφ(c(t), t)(aε(t) + x1,ε) +O(ε2)

φ(c(t) + bε(t) + x2,ε, t) = φ(c(t), t) + ∂xφ(c(t), t)(bε(t) + x2,ε) +O(ε2).

Using the standard Rankine–Hugoniot shock calculations and the above approxi-
mations we have (up to terms less or equal to ε2 to be precise)

〈∂tf(Uε), φ〉 ≈ −
∫ ∞

0

(c′(t)− a′ε(t)) (f(U1,ε)− f(U0))φ(c(t)− aε(t)− x1,ε, t) dt,

−
∫ ∞

0

c′(t) (f(U2,ε)− f(U1,ε))φ(c(t), t) dt

−
∫ ∞

0

(c′(t) + b′ε(t)) (f(U1)− f(U2,ε))φ(c(t) + bε(t) + x2,ε, t) dt

≈− (f(U1,ε)− f(U0))
∫ ∞

0

(c′(t)− a′ε(t))
(
φ(c(t), t)− ∂xφ(c(t), t)

· (aε(t) + x1,ε)
)
dt

− (f(U2,ε)− f(U1,ε))
∫ ∞

0

c′(t)φ(c(t), t) dt

− (f(U1)− f(U2,ε))
∫ ∞

0

(c′(t) + b′ε(t))
(
φ(c(t), t) + ∂xφ(c(t), t)

· (bε(t) + x2,ε)
)
dt.

The assumptions from Lemma 2.1 imply

〈∂tf(Uε), φ〉 ≈ − (f(U1)− f(U0))
∫ ∞

0

c′(t)φ(c(t), t) dt

+
∫ ∞

0

(
a′ε(t)f(U1,ε) + b′ε(t)f(U2,ε)

)
φ(c(t), t) dt

+
∫ ∞

0

c′(t)
(
(aε(t) + x1,ε)f(U1,ε) + (bε(t) + x2,ε)f(U2,ε)

)
· ∂xφ(c(t), t)dt

≈
〈(

− c′(t)(f(U1)− f(U0)) + a′ε(t)f(U1,ε) + b′ε(t)f(U2,ε)
)

· δ(x− c(t)), φ(x, t)
〉

〈
− c′(t)

(
(aε(t) + x1,ε)f(U1,ε) + (bε(t) + x2,ε)f(U2,ε)

)
· δ′(x− c(t)), φ(x, t)

〉
.
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With the same type of reasoning, one sees that the space derivative is given by

〈∂xg(Uε), φ〉 ≈(g(U1,ε)− g(U0))
∫ ∞

0

φ(c(t), t)− ∂xφ(c(t), t) (aε(t) + x1,ε) dt

+ (g(U2,ε)− g(U1,ε))
∫ ∞

0

φ(c(t), t) dt

+ (g(U1)− g(U2,ε))
∫ ∞

0

φ(c(t), t) + ∂xφ(c(t), t) (bε(t) + x2,ε) dt

≈(g(U1)− g(U0))
∫ ∞

0

φ(c(t), t) dt

−
∫ ∞

0

(
(a′ε(t) + x1,ε)g(U1,ε) + (b′ε(t) + x2,ε)g(U2,ε)

)
∂xφ(c(t), t) dt

≈
〈(
g(U1)− g(U0)

)
δ(x− c(t)), φ(x, t)

〉
+

〈(
(aε(t) + x1,ε)g(U1,ε) + (bε(t) + x2,ε)g(U2,ε)

)
· δ′(x− c(t)), φ(x, t)

〉
.

�

Remark 2.3. We used only constant mean-states U1,ε, U2,ε and constant central
SDW speed curve (ct, t)t≥0 in (2.1). Such SDWs are not good enough for solving
an SDW interaction problem for the main example in the paper, 3× 3 pressureless
system. The problem will be solved by introducing variable mean-states U1,ε(t)
and U2,ε(t) in the fourth part. Lemma 10.1 will be a natural modification of the
above assertion.

Definition 2.1. Functions of the form (2.1) are called constant shadow waves or
constant SDW for short. We shall drop the word “constant” in the sequel if there
is no chance for confusion. The value

σε(t) := (aε(t) + x1,ε)U1,ε + (bε(t) + x2,ε)U2,ε

is called the strength and c′(t) is called the speed of the shadow wave. We assume
that limε→0 σε(t) = σ(t) ∈ Rn exists for every t ≥ 0 and

lim
ε→0

∫
Uε(x, t)φ(x, t) dx dt =〈σ(t)δ(x− c(t)) + U0 + [U ]θ(x− c(t)), φ(x, t)〉

=
∫
σ(t)φ(c(t), t)dt+

∫
(U0 + [U ]θ(x− c(t))φ(x, t)dx dt,

where θ is the Heaviside function and [U ] := U1 − U0. The SDW central line is
given by x = c(t), while x = c(t)− aε(t)−x1,ε and x = c(t)+ bε(t)+x2,ε are called
the external SDW lines. The values x1,ε and x2,ε are called the shifts while U1,ε

and U2,ε are called the intermediate states of a given SDW.
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Part 1. The Riemann problem

3. General formula

The following special case of (2.1)

Uε(x, t) =


U0, x < (c− aε)t
U1,ε, (c− aε)t < x < ct

U2,ε, ct < x < (c+ bε)t
U1, x > (c+ bε)t

(3.1)

is general enough for solving Riemann problem as one could see bellow. We shall
call it the simple SDW.

The formula (2.3) now has a simpler form

∂tf(Uε) ≈− c(f(U1)− f(U0))δ − c(aεf(U1,ε) + bεf(U2,ε))tδ′

+ (aεf(U1,ε) + bεf(U2,ε))δ

∂xg(Uε) ≈(g(U1)− g(U0))δ + (aεg(U1,ε) + bεg(U2,ε))tδ′.

(3.2)

The support of δ (and δ′ consequently) is the line x = ct.

A way to find a shadow wave solutions to a system of conservation laws (1.1)
directly follows from Lemma 2.1. We use the following assumption to keep our dis-
cussion on a general level. An actual construction of SDW solution highly depends
on a particular choice of f and g without it.

Assumption 3.1. All the components U i
ε, i = 1, . . . , n of an SDW (2.1) satisfy

‖U i
ε‖L∞ = O(ε−1), if f and g are at most linear with respect to i-th variable

or

‖U i
ε‖L∞ has a growth order small enough for (2.2) to hold, otherwise.

Definition 3.1. Components satisfying the first criteria are called the major com-
ponents or ε−1-components, while all other are called the minor ones.

A delta shock is a SDW associated with a δ distribution with all minor compo-
nents having finite limits as ε→ 0. If some of them are unbounded as ε→ 0, then
the wave is called singular shock.

The following definition contains an analogous notion to Hugoniot locus for
shocks.

Definition 3.2. Let U0 be fixed. The set of all U1 ∈ Ω such that there exists an
SDW solution to (1.1) with the initial data

U |t=0 =

{
U0, x < 0
U1, x > 0

is called the shadow locus. Points for which the above wave is admissible constitutes
the it admissible locus. The admissibility will be defined trough entropy conditions
given bellow. In the case when the SDW is delta (singular) shock, the above set is
called delta (singular delta) locus.



SHADOW WAVES . . . 9

Let us start a search for SDW solutions of 1.1. Substitution of the function U
from (3.1) into the i-th equation in (1.1) yields(

− c(f i(U1)− f i(U0)) + aεf
i(U1,ε) + bεf

i(U2,ε)
)
δ(x− ct)

− ct
(
aεf

i(U1,ε) + bεf
i(U2,ε)

)
δ′(x− ct) +

(
gi(U1)− gi(U0)

)
δ(x− ct)

+ t
(
aεg

i(U1,ε) + bεg
i(U2,ε)

)
δ′(x− ct) ≈ 0.

That implies

−c(f i(U1)− f i(U0)) + aεf
i(U1,ε) + bεf

i(U2,ε) + gi(U1)− gi(U0) ≈ 0

−c(aεf
i(U1,ε) + bεf

i(U2,ε)) + aεg
i(U1,ε) + bεg

i(U2,ε) ≈ 0,
i = 1, . . . , n.

(3.3)

Define
κi := c(f i(U1)− f i(U0)− (gi(U1)− gi(U0))

to be so called Rankine-Hugoniot deficit (RH deficit for short) in the i-th equation.
Now (3.3) reads as

aεf
i(U1,ε) + bεf

i(U2,ε) ≈ κi

aεg
i(U1,ε) + bεg

i(U2,ε) ≈ cκi, i = 1, . . . , n.
(3.4)

That was the most general case with Assumption 3.1. Let us start our investi-
gation of the above system for the the simplest, evolutionary case.

3.1. Evolutionary systems. If the system of conservation laws (1.1) is given in
the evolutionary form f i(y) ≡ yi, i = 1, . . . , n, then the system (3.3) reduces to

−c(U i
1 − U i

0) + aεU
i
1,ε + bεU

i
2,ε + gi(U1)− gi(U0) ≈ 0

−c(aεU
i
1,ε + bεU

i
2,ε) + aεg

i(U1,ε) + bεg
i(U2,ε) ≈ 0, i = 1, . . . , n.

(3.5)

and the system (3.4) has now a simpler form

aεU
i
1,ε + bεU

i
2,ε ≈ κi

aεg
i(U1,ε) + bεg

i(U2,ε) ≈ cκi, i = 1, . . . , n.
(3.6)

All the results in the present paper can be divided roughly into two types:
• general, descriptive results for systems given in a general form, and
• precise, concrete solutions to specific (physical) systems.

The following proposition belongs to the first class, and the phrase “. . . is con-
tained in . . . ” instead of expected “. . . is . . . ” bellow explains what is difference
between a “general result” and a “concrete solution”.

Proposition 3.1. Suppose that all the flux-functions in (1.1) are of at most linear
growth with respect to k components, say U1, . . . , Uk and superlinear with respect
to others. Then a shadow locus to the system with f(y) = y is contained in a
(k + 1)-dimensional manifold.

Proof. We know that U i,ε
j ,j = 1, 2 and i = k + 1, . . . , n has a growth order with

respect to ε are as small as needed by Assumption 3.1. If the flux function has
superlinear growth with respect to the i-th component U i, then U i

j,ε = o(ε−1) by
that assumption. That implies κi = 0 for such i and the system (3.6) is now partially
determined because of that ((n − k) of 2n components are already satisfied). For
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a fixed left-hand state U0 the following n + 1 scalars: a speed c and a right-hand
state U1, have to satisfy the following n− k equations

c =
gi(U1)− gi(U0)

ui
1 − ui

0

, i = k + 1, . . . , n,

When the speed c is determined, the set of all possible values U1 = (U1
1 , . . . , U

n
1 )

solving the above system belongs to some intersection of k+1-dimensional manifold
and the physical domain Ω. Its dimension would be maximal if it is possible to find
all intermediate states U i

1,ε and U i
2,ε to solve (3.6) for each i = 1, . . . , k once when

c, U0 and U1 are known. Since κk+1 = . . . = κn = 0, the system (3.6) has n + k
non-trivial equations with 2n unknowns U i

j,ε, i = 1, . . . , n, j = 1, 2.

aεU
i
1,ε + bεU

i
2,ε ≈ κi i = 1, . . . , k

aεg
i(U1,ε) + bεg

i(U2,ε) ≈ cκi, i = 1, . . . , k.

aεg
i(U1,ε) + bεg

i(U2,ε) ≈ 0, i = k + 1, . . . , n.

In general, such a system could have a solution (despite it is nonlinear). For
example, problems might be caused by a special form of flux-functions (if gi ≡ gj ,
i 6= j) or by a fact that the solution for intermediate states should lie in a physical
domain Ω. �

In the case of delta shocks the situation is simpler because we can assume U i,ε
j →

U i
s,j ∈ R, i = k + 1, . . . , n, j = 1, 2, and that the limits ξi

1 := lim
ε→0

aεU
i
1ε and ξi

2 :=

lim
ε→0

bεU
i
2,ε, i = 1, . . . , n exist. Suppose that gi(U) =

∑k
j=1 g

i
j(U

k+1, . . . , Un)U j .

Then the system (3.6) reduces to

ξi
1 + ξi

2 = κi, i = 1, . . . , k
k∑

j=1

gi
j(U

k+1
s,1 , . . . , Un

s,1)ξ
j
1 +

k∑
j=1

gi
j(U

k+1
s,2 , . . . , Un

s,2)ξ
j
2 = cκi, i = 1, . . . , n,

where κi = 0, i = k + 1, . . . , n,

and the analysis given in the proof of previous proposition is significantly simpler:
The above system has 2k major intermediate states U i

j,ε, i = 1, . . . , k, j = 1, 2 and
2(n−k) minor ones with limits U i

s,j , i = k+1, . . . , n, j = 1, 2 as ε→ 0. The general
idea for solving the system is to treat these limits as real parameters which are to
be chosen such that the system has a solution ξi

j , i = 1, . . . , k, j = 1, 2.

The introductory part of the paper finishes with this section. We have trans-
formed the question of SDW existence into the question of solving systems of equa-
tions in reals. Before analysis of some more specific cases (take, for example, systems
linear in one variable), we shell do two important things:

• Give appropriate admissibility conditions via entropy – entropy flux pairs,
and

• Give a method for continuation of SDW solutions after wave interactions
take places.

Along with that plan we shall try to use these results in some specific systems
of conservation laws.
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4. Entropy conditions

Let η(U) be a (strictly) convex or semi-convex entropy function for (1.1), with
entropy-flux function q(U). We shall use entropy condition in the following form.
A solution Uε to the system (1.1) with initial data U |t=0 = U0,ε is admissible if for
every T > 0 we have

limε→0

∫
R

∫ T

0

η(Uε)∂tφ+ q(Uε)∂xφdt dx+
∫

R
η(U0,ε(x, 0))φ(x, 0) dx ≥ 0, (4.1)

for all non-negative test functions φ ∈ C∞0 (R× (−∞, T )).
Take a simple SDW Uε from (3.1) and use the equality (2.3) from Lemma 2.1 with

f substituted by η and g by q. As the delta function is a non-negative distribution,
the first condition becomes

limε→0 − c(η(U1)− η(U0)) + aεη(U1,ε) + bεη(U2,ε) + q(U1)− q(U0) ≤ 0 (4.2)

But a derivative of the delta function has no constant sign and the second con-
dition becomes

lim
ε→0

−c(aεη(U1,ε) + bεη(U2,ε)) + aεq(U1,ε) + bεq(U2,ε) = 0. (4.3)

Here, U0, U1, U1,ε and U2,ε are constants.
In the most of papers with delta or singular shock solution, the authors use over-

compressibility as the admissibility condition: A wave is called the overcompressive
one if all characteristics from both sides of the SDW line run into a shock curve,
i.e.

λi(U0) ≥ c′(t) ≥ λi(U1), i = 1, . . . , n,
where c is a shock speed and x = λi(U)t, i = 1, . . . , n are the characteristics of the
system.

In the rest of the paper we shall present few examples when the entropy admis-
sibility condition implies the overcompressibility admissibility condition.

The entropy condition is connected with a problem of uniqueness for a weak
solution of a conservation law system. We give a definition of weak (distributional)
uniqueness and some results about it afterward.

Definition 4.1. An SDW solution is called weakly unique if its distributional image
is the unique. More precisely, a speed c of the wave has to be unique as well as the
limit

lim
ε→0

aεU1,ε + bεU2,ε.

Let i ∈ {1, . . . , n}. If a limit lim
ε→0

aεU
i
1,ε + bεU

i
2,ε is unique, then we say that the

i-th component is unique.

Note that all minor components of Uε are unique by the above definition. The
following proposition is a direct consequence of the SDW definition.

Proposition 4.1. Suppose that (1.1) has an SDW solution.
(a) If there exists an equation of the system, say i-th one, such that a density

function f i(U) is independent of major components of U , then a speed of
the SDW is uniquely determined by the equation

−c[f i(U)] + [gi(U)] = 0.
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(b) If there is an equation in the system, say i-th one, such that f i(U) = U j,
where U j is a major component, then it is uniquely determined by

aεU
j
1,ε + bεU

j
2,ε = κi ∈ R.

Consequently, if (a) holds and (b) holds for all major components, then a distribu-
tional limit of an SDW solution to (1.1) is unique. Specially, that is the case for a
system given in evolutionary form.

Definition 4.2. We say that a solution to (1.1) is weakly unique if it consists from a
unique combination of standard admissible elementary waves (shocks, rarefactions
and contact discontinuities) and admissible SDW.

In the present paper, admissible solution means that it satisfy entropy inequality
(4.1) for each entropy pair with convex (for strictly hyperbolic systems) or semi-
convex entropy function (for weakly hyperbolic ones).

We shall prove a weak uniqueness of a solution to two systems: The first one is
an 3× 3 pressureless gas dynamics model with delta shocks, and the second one is
a 2× 2 system given in [12] with singular shocks.

5. Systems linear in one variable

When a given system (1.1) is linear in one component (say U1 in the sequel),
then we are in position to get additional results concerning the existence of shadow
wave solutions to a Riemann problem. More precisely, we shall present some general
results about delta shocks in the present section. That is an introduction for the
next section where the main example is given. That is a well known 2×2 pressureless
gas dynamics model given in [10] and [4] (“sticky particles” model in [2]), but now
extended with the energy conservation law. It is important to add that the obtained
results in two variables agree (their distributional limits at least) with the ones from
the cited papers.

Let the system (1.1) be linear in U1. Then the i-th equation of the system is

∂t

(
f i
1(U)U1 + f i

2(U)
)

+ ∂x

(
gi
1(U)U1 + gi

2(U)
)

= 0, (5.1)

where fi, gi, i = 1, 2 are continuous functions with U := (U2, . . . , Un). Set U1,ε and
U2,ε as follows.

U i,ε := Us,i ∈ Rn−1, i = 1, 2, lim
ε→0

aεU
1
1,ε = ξ1, lim

ε→0
bεU

1
2,ε = ξ2,

where Us,i and ξi, i = 1, 2 will be determined later. For an SDW Uε given by (3.1)
the difference f(U1)− f(U0) is denoted by [f(Uε)].

From (5.1) one derives the following system of equations with respect to ξ1 and
ξ2 for each i = 1, . . . , n:

f i
1(Us,1)ξ1 + f i

1(Us,2)ξ2 = κi

gi
1(Us,1)ξ1 + gi

1(Us,2)ξ2 = cκi.
(5.2)

Here κi := c[f i
1(U)U1 + f i

2(U)]− [gi
1(U)U1 + gi

2(U)] as before.
The following theorem can be proved in such general case.

Theorem 5.1. Assume that the density function f does not depend on U1 in k
equations of the system (5.1) (i.e. f i

1 ≡ 0, i = i1, . . . , ik). Then the shadow locus is
a subset of n− k + 1-dimensional manifold intersected by Ω.
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Proof. Suppose fn−k+1
1 = . . . = fn

1 = 0. From the first equation in (5.2) it follows
κi = 0 for each i = n − k + 1, . . . , n. Assume for a moment that Us,1 and Us,2

are known. If the left-hand side state U0 is fixed, then the speed c and U1 =
(U1

1 , . . . , U
n
1 ) has to satisfy the following system

c =
[gi

1(U)U1 + gi
2(U)]

[f i
2(U)]

, i = n− k + 1, . . . , n. (5.3)

There are k equations and n + 1 scalar variables: c, U1
1 , . . . , U

n
1 , so we are free to

chose n− k + 1 of them provided that Us,1 and Us,2 are chosen in a good way.
Thus, the set of all possible values U1 such that (5.3) is satisfied lies in an

n − k + 1-dimensional manifold (if the speed c was excluded from the above free
choice).

Now we turn our attention to Us,1 and Us,2 and the first n− k systems given by
(5.2). Let i ∈ {1, . . . , n− k}. Assuming

Di
s(Us,1, Us,2) :=

∣∣∣∣f i
1(Us,1) f i

1(Us,2)
gi
1(Us,1) gi

1(Us,2)

∣∣∣∣ 6= 0,

the solution (ξ1, ξ2) for each system (5.2) is given by

ξi
1(Us,1, Us,2) =

κi(gi
1(Us,2)− cf i

1(Us,2))
Di

s

,

ξi
2(Us,1, Us,2) =

κi(gi
1(Us,1)− cf i

1(Us,1))
Di

s

.

(5.4)

A consistency for ξ1 and ξ2 found from each system produces the new one

ξ11(Us,1, Us,2) = . . . = ξn−k
1 (Us,1, Us,2)

ξ12(Us,1, Us,2) = . . . = ξn−k
2 (Us,1, Us,2)

(5.5)

of 2(n− k − 1) equations.
Let i ∈ {n− k+ 1, . . . , n}. We already know that f i

1 ≡ 0, and substitution of ξ11
and ξ12 into the second equation in (5.2) for such i gives the following

gi
1(Us,1)ξ

1
1(Us,1, Us,1) + gi

1(Us,2)ξ
1
2(Us,1, Us,1) = 0. (5.6)

So, there are k such equations, and the final conclusion is that the shadow locus
is defined by (5.3) provided that there exist a solution U2

s,1, . . . , U
n
s,1, U

2
s,2, . . . , U

n
s,2

to (5.5, 5.6) of 2n − k − 2 equations. Since there are 2n − 2 variables there is a
chance for solving the system, and obtain a maximal dimension n−k+1 of shadow
locus. �

Roughly speaking, each additional density function independent of U1 reduces
the dimension of the locus by 1.

The extreme case is when none of f1 components vanishes (i.e. all density func-
tions depend on U1). We then solve (5.2) with respect to ξ1 and ξ2. For each
i = 1, . . . , n all the solutions is given by (5.4) have to be the same, so we get the
system

ξ11 = ξ21 = . . . = ξn
1

ξ12 = ξ22 = . . . = ξn
2

of 2(n − 1) equations with 2n − 1 unknowns: c, U i
s,j , i = 2, . . . , n, j = 1, 2. Also,

the condition Di
s 6= 0, i = 1, . . . , n is assumed as above. There are no conditions
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on a speed c and right-hand values U1 with fixed U0. If the solution of the above
really exists, then the shadow locus is whole Ω.

The other extreme case, f i
1 ≡ 0, i = 2, . . . , n is described in Proposition 3.1. The

dimension of a shadow locus is at most 2 in that case.

Remark 5.1. One can see in [16] that a dimension of a delta locus for 2× 2 system
linear in one variable was expected to be one when generalized functions were used.
A delta locus obtained by using SDWs usually has a dimension equal two in such
a case. Thus, a SDW delta locus form the present paper is much richer than delta
locus from the cited paper. That is the answer to the problem of relatively small
delta locus in general case for 2 × 2 system and problems with a construction of
solution to arbitrary Riemann data posed in [16].

6. Entropy solutions to Riemann problem for pressureless gas
dynamics model

One dimensional Euler gas dynamics system is given by
∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + p) = 0

∂t(ρu2/2 + ρe) + ∂x((ρu2/2 + ρe+ p)u) = 0,

where ρ is a density, u is a velocity, p is a pressure and e is an internal energy of
fluid particles. If the pressure is constant p ≡ p0 ≥ 0, then the system reduces to

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) = 0

∂t(ρu2/2 + ρe) + ∂x((ρu2/2 + ρe+ p0)u) = 0.

(6.1)

For p0 = 0 it is called pressureless gas dynamics (or sticky particles) model. The
system has triple eigenvalue λ1,2,3 = u. In the pressureless case, p0 ≡ 0, the
Riemann problem

(ρ, u, e)|t=0 =

{
(ρ0, u0, e0), x < 0
(ρ1, u1, e1), x > 0

(6.2)

has a classical entropy solution consist of two contact discontinuities connected with
the vacuum state (ρ = 0) if u0 ≤ u1:

(ρ, u, e)|t=0 =


(ρ0, u0, e0), x < u0t

(0, ψ2(x/t), ψ3(x/t)), u0t < x < u1t

(ρ1, u1, e1), x > u1t,

where ψ2(ui) = ui, ψ3(ui) = ei, i = 0, 1. (ψ2(y) ≡ y, more precisely.)
We are now turning to the case u0 > u1 when there is no classical solution to

the Riemann problem (6.1, 6.2).

6.1. Entropy pairs and entropy solution. Construction of an SDW solution to
(6.1) is the same for all non-negative reals p0. But, there are differences between
entropies in the cases p0 = 0 and p0 6= 0.

An entropy pair (η, q) for a system in non-evolutionary form can be found in the
following way (see [7], Chapter 3). We search for matrix B such that

Dη :=
[
∂η/∂ρ ∂η/∂u ∂η/∂e

]
= BDf, Dq = BDg. (6.3)
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We have

Df :=

 1 0 0
u ρ 0

e+ u2/2 ρu ρ

 , Dg :=

 u ρ 0
u2 2ρu 0

u(e+ u2/2) ρe+ 3ρu2/2 + p0 ρu

 .
The general solution to (6.3) after inserting the above values for Df and Dg is given
by

η(ρ, u, e) =ρS(u, e+ p0/ρ)− φ′(u)

q(ρ, u, e) =ρuS(u, e+ p0/ρ)− uφ′(u) + φ(u),
(6.4)

where S and φ are some smooth functions.
Now we shall find necessary conditions for η to be semi-convex with respect to

(ρ, ρu, ρu2/2 + ρe) when p0 = 0. The Hessian matrix of S with respect to these
variables is positive semi-definite if ∂12S = 0, ∂11S ≥ 0, ∂2S ≤ 0, ∂22S ≥ 0. Take
functions R and S to be smooth enough. We use the following entropy pair

η = ρ(R(u) + S(e)), q = ρu(R(u) + S(e)), where R′′ ≥ 0, S′ ≤ 0, S′′ ≥ 0. (6.5)

Let p0 6= 0, say p0 = 1. Then

η = ρS(u, e+ 1/ρ), q = uη, ∂11S ≥ 0, ∂2S ≤ 0, ∂22S ≥ 0 (6.6)

and η is semi-convex.

The obtained entropy pairs resembles the case of full gas dynamics system: It
has an entropy function η = ρ h(S), where S = S(ρ, u) satisfies ρ2∂ρS = −p∂eS,
∂eS > 0 (see [21], Lemma 4.8.2). The appropriate entropy flux equals q = uη and
if the entropy is convex, then h is decreasing.

Theorem 6.1. Suppose that u0 > u1. Then there exists a unique shadow wave
solution of the form (3.1) to the Riemann problem (6.1, 6.2) satisfying entropy the
inequality

∂tη(ρ, u, e) + ∂xq(ρ, u, e) ≤ 0,
where η and q are defined by (6.5) or (6.6).

Moreover, the validity of the above inequality for all semi-convex entropies η are
equivalent to the overcompressibility of the SDW.

Proof. We use the results obtained in the previous section. In the case of the system
(6.1), the relations (5.2) transform in the following three systems:

ξ1 + ξ2 = κ1

us,1ξ1 + us,2ξ2 = cκ1,
(6.7)

where κ1 := c[ρ]− [ρu],
us,1ξ1 + us,2ξ2 = κ2

u2
s,1ξ1 + u2

s,2ξ2 = cκ2

(6.8)

where κ2 := c[ρu]− [ρu2], and

(u2
s,1/2 + es,1)ξ1 + (u2

s,2/2 + es,2)ξ2 = κ3

(u3
s,1/2 + es,1us,1)ξ1 + (u3

s,2/2 + es,2us,2)ξ2 = cκ3

(6.9)

where κ3 := c[ρu2/2 + ρe]− [ρu3/2 + ρeu+ p0u].
The system (6.7-6.9) is a degenerate case of (5.2) when it is impossible to find

Us,1 and Us,2 such that there exists a non-negative solution (ξ1, ξ2) with Di
s =
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us,2 − us,1 6= 0 (i.e. Theorem 5.1 can not be used) because the second equation
in (6.7) and the first one in (6.8) imply cκ1 = κ2. After some straightforward
calculations, one sees that the only possibility is to put one of the following

• us,1 = us,2 = c
• us,1 = c, us,2 = ξ2 = 0 or us,2 = c, us,1 = ξ1 = 0.

In all the cases the corresponding SDWs are practically the same (up to a choice
of aε and bε) and one can treat them in an exactly same way. We choose the first
one in the sequel.

If ρ0 6= ρ1, then the relation cκ1 = κ2 determines the speed

c =
ρ1u1 − ρ0u0 + |u0 − u1|

√
ρ0ρ1

ρ1 − ρ0
. (6.10)

As κ1 ≥ 0 (ξ1 and ξ2 represents densities and they are non-negative), we took
the plus sign in the expression for c above. In the special case ρ0 = ρ1 we have
c = (u0 + u1)/2. Once c is known all the RH deficits κi, i = 1, 2, 3 are also
determined.

It is now clear that one of ξ1 and ξ2 may be chosen freely, say ξ2. The next step
is to equal both values for ξ1 from (6.7) and (6.9), and solve the obtained equation

κ1 − ξ2 =
2κ3 − κ2(2es,2 + c2)ξ2

2es,1 + c2

for es,1, es,2. The choice of es,1 and es,2 will be made to satisfy the entropy con-
dition. The obtained SDW solutions always satisfies the second entropy condition
(4.3) for functions of the form (6.4) and any p0 because of the following two reasons:

• Assumption 3.1 implies that aερ1,ε and bερ2,ε are bounded.
• The above SDW construction implies u1,ε, u2,ε → c as ε→ 0.

Let us now prove that (4.2) is also satisfied for appropriate es,1 and es,2.

Case I Take p0 ≡ 0 and the entropy pair (6.5) first. Let us check the first entropy
condition (4.2). Denote

∂tη(ρ, u, e) + ∂xq(ρ, u, e) =: I1 + I2,

where
I1 = (u1 − c)ρ1

(
R(u1) + S(e1)

)
+ (c− u0)ρ0

(
R(u0) + S(e0)

)
(Classical part)

I2 = (ξ1 + ξ2)R(c) + ξ1S(e1,s) + ξ2S(e2,s) (Delta part).

Take for a moment R(u) ≡ 0, i.e. the entropy pair does not depend on u (that could
be a real physical situation as described in [21], see the exact references above).

In a moment it will be clear why we take a particular solution for e1,s and e2,s

in (6.9) to be

e1,s = e2,s =
κ3

κ1
− c2

2
.

The equation (6.7) now implies

I2 = κ1S
(κ3

κ1
− c2

2

)
.

Using (6.10) and the assumption u0 ≥ c ≥ u1, u0 > u1 we have

c =
ρ1u1 − ρ0u0 + (u0 − u1)

√
ρ0ρ1

ρ1 − ρ0
.
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Substituting values for κ1 and κ3 defined at the beginning of the proof, we have

κ3

κ1
− c2

2
=

ρ1(c− u1)
ρ1(c− u1) + ρ0(u0 − c)

e1 +
ρ0(u0 − c)

ρ1(c− u1) + ρ0(u0 − c)
e0

+
c[ρu2/2]− [ρu3/2]

κ1
− c2

2
.

We need to prove

A :=
c[ρu2/2]− [ρu3/2]

κ1
− c2

2
≥ 0

in order to use semi-convexity of the function S. It is enough to prove

κ1A =
c

2
(ρ1u

2
1 − ρ0u

2
0)−

1
2
(ρ1u

3
1 − ρ0u

3
0)

− c3

2
(ρ1 − ρ0) +

c2

2
(ρ1u1 − ρ0u0)

=− ρ1

2
(c− u1)2(u1 + c) +

ρ0

2
(u0 − c)2(u0 + c) ≥ 0,

since κ1 = (u0 − u1)
√
ρ0ρ1 ≥ 0. The speed c is uniquely determined by (6.10), so

(c− u1) =
u0 − u1

ρ1 − ρ0

√
ρ0(

√
ρ1 −

√
ρ0) ≥ 0, and

(u0 − c) =
u0 − u1

ρ1 − ρ0

√
ρ1(

√
ρ1 −

√
ρ0) ≥ 0.

Substitution of these relations in the expression for κ1A gives

κ1A =
ρ0ρ1

2

(u0 − u1

ρ1 − ρ0
(
√
ρ1 −

√
ρ0)

)2

(u0 − u1),

and that is always non-negative since u0 > u1.
If u0 ≥ c ≥ u1, then ρ1(c− u1) ≥ 0, ρ0(u0 − c) ≥ 0 and we can write

κ3

κ1
− c2

2
= αe0 + (1− α)e1 +A,

where

α =
ρ1(c− u1)

ρ1(c− u1) + ρ0(u0 − c)
.

Then

I2/κ1 = S(αe0 + (1− α)e1 +A) ≤ αS(e0) + (1− α)S(e1) = −I1/κ1,

because S′ ≤ 0 and S is semi-convex. The last relation means I1 + I2 ≤ 0 and the
entropy condition is satisfied.

One can see that the assumption e1,s = e2,s = κ3/κ1 − c2/2 and the condition
u0 ≥ c ≥ u1 are necessary conditions for the entropy inequality (4.1) to be true for
an arbitrary semi-convex η: The second condition simply means that the entropy
SDW is overcompressive.

Let us return to the general case when R = R(u) is semi-convex and R′′ ≥ 0.
We have to prove that Ĩ1 + Ĩ2 ≤ 0, where

Ĩ1 =(u1 − c)ρ1R(u1) + (c− u0)ρ0R(u0)

Ĩ2 =(ξ1 + ξ2)R(c) = κ1R(c)
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Use of the semi-convexity of R gives

R(c) =R
(√ρ0ρ1 − ρ0

ρ1 − ρ0
u0 +

ρ1 −
√
ρ0ρ1

ρ1 − ρ0
u1

)
≤
√
ρ0ρ1 − ρ0

ρ1 − ρ0
R(u0) +

ρ1 −
√
ρ0ρ1

ρ1 − ρ0
R(u1) =: Ĩ3.

Since the first RH deficit satisfies κ1 ≥ 0, Ĩ1 = −κ1Ĩ3, Ĩ2 = κ1R(c), we have
Ĩ1 + Ĩ2 ≤ 0 that concludes the case p0 ≡ 0.

Case II Take p0 = 1. Now, the entropy pair is given by (6.6), and

I1 =(u1 − c)ρ1S(u1, e1 + 1/ρ1) + (c− u0)ρ0S(u0, e0 + 1/ρ0)

I2 =ξ1S(us,1, es,1) + ξ0S(us,0, es,0).

We already know that us,1 = us,2 = c. As in the previous case assume u0 > u1,
u0 ≥ c ≥ u1 and put e1,s = e2,s = (κ3 − c2κ1/2)/κ1. Again, one will see that
the choice is the unique if one wants (4.2,4.3) to hold for each entropy pair with
semi-convex η. Now

I2 = κ1S
(
c,
κ3

κ1
− c2

2

)
.

The equality √
ρ0ρ1 − ρ0

ρ1 − ρ0
=
ρ0u0 − cρ0

κ1

implies

c =
√
ρ0ρ1 − ρ0

ρ1 − ρ0
u0 +

ρ1 −
√
ρ0ρ1

ρ1 − ρ0
u1, and

es,1 =
√
ρ0ρ1 − ρ0

ρ1 − ρ0
(e0 + 1/ρ0) +

ρ1 −
√
ρ0ρ1

ρ1 − ρ0
(e1 + 1/ρ1) +A,

where A is a non-negative constant from above.
Since S is semi-convex and ∂2S ≤ 0, we have

S(c, es,1) ≤S
(√ρ0ρ1 − ρ0

ρ1 − ρ0
u0 +

ρ1 −
√
ρ0ρ1

ρ1 − ρ0
u1,

√
ρ0ρ1 − ρ0

ρ1 − ρ0
(e0 + 1/ρ0) +

ρ1 −
√
ρ0ρ1

ρ1 − ρ0
(e1 + 1/ρ1)

)
≤
√
ρ0ρ1 − ρ0

ρ1 − ρ0
S(u0, e0 + 1/ρ0) +

ρ1 −
√
ρ0ρ1

ρ1 − ρ0
S(u1, e1 + 1/ρ1).

Thus,
1
κ1

(I1 + I2) ≤ 0

and the proof is finished. Again, the SDW solution satisfies the entropy conditions
(4.2, 4.3) for each semi-convex entropy η if and only if it is overcompressive.

Uniqueness. One could see from the above that c is always uniquely determined
and that is the first condition for the weak uniqueness. That implies uniqueness of
all RH deficits for fixed left- and right-handed states. Then, the first equation in
(6.7) implies

lim
ε→0

aερ1,ε + bερ2,ε = κ1,
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for any representatives aε, bε, ρ1,ε and ρ2,ε. That is precisely the second condition
of the weak uniqueness (Definition 4.1). Thus the distributional images of all SDWs
which solves the given system are the same and the obtained SDW solution is weakly
unique. �

Remark 6.1. One can easily see that the obtained result is consistent with the ones
obtained in [2], [4] and [10] in the sense that ρε and uε weakly (in the distribution
sense) converges to the solutions given in these papers.

Part 2. Interaction problem

Let us briefly list the main differences between a simple SDW and a constant
SDW needed in an interaction problem. Everything is based on the fact that we
now have a delta function added to the initial data.

• The shifts x1,ε and x2,ε in (2.1) are needed when delta (singular) shock
is involved in wave interaction. A sum of strengths of incoming SDWs is
controlled by x1,ε + x2,ε.

• In the case of delta (singular) shocks of constant strength (see [17] about
such waves) or in the case of delta contact discontinuities (see [18] for their
definition) one has aε(t) = −aε and bε(t) = bε in (2.1), where aε and bε are
some non-negative constants.

• In the case of delta (singular) shock with decreasing strength (see [17] again)
the lines aε(t)− x1,ε and bε(t) + x2,ε meets the line ct at a point (X1, T1):
cT1 = aε(T1)−x1,ε +o(ε) and cT1 = bε(T1)+x2,ε +o(ε). Then the relation
(3.2) is valid for t < T1. We can continue a solution after t = T1 by solving
Riemann problem again (translated to the point (X1, T1), of course).

• We have used only simple SDWs for the Riemann problem. Let us explain
a genesis of SDWs with variable speed (2.1). Its intermediate states are
constant for each ε, so the only way for speed to become non-constant
is that U0 or U1 are non-constant. That would be the case when SDW
interact with a rarefaction wave. If that interaction takes place, we divide
the rarefaction wave into a fan of non-entropic shocks. Like in the wave front
tracking algorithm (see [3]), substitution of the fan into system gives a term
associated with zero. Then we shall look at interaction of the shadow wave
with the elements of the fan. At least for some time (before the shadow wave
changes its nature, i.e. before it ceases to be entropic), the approximated
solution consists of a number of simple SDWs of the form (2.1) with a
constant speed defined in small time intervals. Let T = T0 < T1 < . . . < TN

be the end points of that time intervals, and c1, . . . , cN be the resulting wave
speeds there. Note that all of ci and Ti, i = 1, . . . , N depend on ε. Then a
continuous curve

cε(t) =


c1t+ const1, t ∈ [T0, T1]
c2t+ const2, t ∈ [T1, T2]

. . .

cN t+ constN , t ∈ [TN−1, TN ]

is an approximation of the resulting wave trajectory. Taking a limit as the
strength of non-entropic shocks goes to zero we get the function described
by the form (2.1) where U0 or U1 is non-constant (depending on which side
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of SDW is rarefaction). In a lot of systems a limit of such curves as ε→ 0
can be explicitly calculated (see [17] for singular shock and [18] for delta
shocks).

So we start this part of the paper with the key assertion about SDWs continua-
tion after interaction time. An important fact is that the assertion will be true for
weighted SDWs used in the third part, too.

7. The basic formula for constant SDWs

The present section is devoted to finding a possibilities to join SDW(s) existing
before the interaction time with a solution candidate afterward. That will give us
conditions for SDW solution existence after the interaction.

Suppose that two SDW solutions to (1.1)

Ũε(x, t) =


U0, x− a < (c̃− ãε)t
Ũ1,ε, (c̃− ãε)t < x− a < c̃t

Ũ2,ε, c̃t < x− a < (c̃+ b̃ε)t
U1, x− a > (c̃+ b̃ε)t

and

Ûε(x, t) =


U1, x− b < (ĉ− âε)t
Û1,ε, (ĉ− âε)t < x− b < ĉt

Û2,ε, ĉt < x− b < (ĉ+ b̂ε)t
U2, x− b > (ĉ+ b̂ε)t

meat each other (when c̃ > ĉ and a < b). Denote by (X,T ) the intersection
point of the external SDW lines x = a + (c̃ + b̃ε)t and x = b + (ĉ − âε)t, i.e.
X = a+ (c̃+ b̃ε)T = b+ (ĉ− âε)T and T = (b− a)/(c̃− ĉ+ âε + b̃ε). At the time
t = T a distributional limit of solution is a sum of a classical piecewise constant
function and a delta function supported by the interaction point. So, it is natural
to ask ourselves a question: When the interaction produces a shadow wave solution
for t > T? In order to answer that question we shall use the following assumptions.

Assumption 7.1. There exist a shadow wave solution

Uε(x, t) =


U0, x < (c− aε)t
U1,ε, (c− aε)t < x < ct

U2,ε, ct < x < (c+ bε)t
U2, x > (c+ bε)t

to (1.1) with the initial data

U(x, 0) =

{
U0, x < 0
U2, x > 0.

(7.1)

Denote by κ̂, κ̃, κ ∈ Rn the Rankine-Hugoniot deficits corresponding to Û , Ũ and
U , respectively. The relation (3.4) imply that ãεf(Ũ1,ε)T + b̃εf(Ũ2,ε)T ≈ T κ̃ and
âεf(Û1,ε)T + b̂εf(Û2,ε)T ≈ T κ̂.

Assumption 7.2. It is possible to chose α ≥ 0 such that ακ = T (κ̃+ κ̂).
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Let us analyze these assumptions. Let x1,ε, x2,ε = O(ε) be non-negative numbers
for ε small enough. We have seen that the system (1.1) has a SDW solution if (3.3)
holds. Using Lemma 2.1 one can see that the function

Uε(x, t) =


U0, x < (c− aε)t− x1,ε

U1,ε, (c− aε)t− x1,ε < x < ct

U2,ε, ct < x < (c+ bε)t+ x2,ε

U2, x > (c+ bε)t+ x2,ε

is a SDW solution if
−c(f i(U2)− f i(U0)) + aεf

i(U1,ε) + bεf
i(U2,ε) + gi(U2)− gi(U0) ≈ 0

−c(aεf
i(U1,ε) + bεf

i(U2,ε)) + aεg
i(U1,ε) + bεg

i(U2,ε) ≈ 0

−c(x1,εf
i(U1,ε) + x2,εf

i(U2,ε)) + x1,εg
i(U1,ε) + x2,εg

i(U2,ε) ≈ 0.

The first two equations in the above system are the same as in (3.3). Their left-
hand sides are terms which multiply δ and tδ′ in the i-th equation of the system
(1.1). The left-hand side of the last equation above is a term which multiply δ′ and
it does not appear when SDW is of the form (3.1).

Since (3.3) is solvable by Assumption 7.1, the first two relations are satisfied.
Also, one can see easily that (x1,ε, x2,ε) = α(aε, bε) solves the last equation for any
real α in that case.

Assumption 7.2 could be relaxed when dealing with specific systems. The choice
of x1,ε and x2,ε need not always be proportional to aε and bε in that case. As many
times in the paper, we put restrictive assumptions in order to treat fairly general
systems.

Define

Uε(x, t) =


U0, x−X < (c− aε)(t− T )− x1,ε, t > T

U1,ε, (c− aε)(t− T )− x1,ε < x−X < c(t− T ), t > T

U2,ε, c(t− T ) < x−X < (c+ bε)(t− T ) + x2,ε, t > T

U2, x−X > (c+ bε)t+ x2,ε, t > T.

(7.2)

The solution before interaction is given by

(Ũε ∧ Ûε)(x, t) =



U0, x < (c̃− ãε)t+ a, t < T

Ũ1,ε, (c̃− ãε)t+ a < x < c̃t+ a, t < T

Ũ2,ε, c̃t+ a < x < (c̃+ b̃ε)t+ a, t < T

U1, (c̃+ b̃ε)t+ a < x < (ĉ− âε)t+ b, t < T

Û1,ε, (ĉ− âε)t+ b < x < ĉt+ b, t < T

Û2,ε, ĉt+ b < x < (ĉ+ b̂ε)t+ b, t < T

U2, x > (ĉ+ b̂ε)t+ b, t < T.

The anticipated solution Vε is obtained by gluing the solution for t < T (denoted
by Ũε ∧ Ûε) with the one defined by (7.2) for t > T (denoted by Uε):

Vε(x, t) =

{
(Ũε ∧ Ûε)(x, t), t < T

Uε(x, t), t > T,
(7.3)

Theorem 7.1. If Assumptions 7.1 and 7.2 hold, then

∂tf(Vε) + ∂xg(Vε) ≈ 0,
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where Vε is defined in (7.3).

Proof. Denote by ~n0 = (0, 1) the unit normal to the line t = T and define

γ1 := {(x, t), t = T, x− a ≤ (c̃− ãε)T}
γ2 := γ′2 ∪ γ′′2 , where

γ′2 := {(x, t), t = T, (c̃− ãε)T ≤ x− a ≤ c̃T}

γ′′2 := {(x, t), t = T, c̃T < x− a < (c̃+ b̃ε)T}
γ3 := γ′3 ∪ γ′′3 where

γ′3 := {(x, t), t = T, (ĉ− â)T ≤ x− b ≤ ĉT}

γ′′3 := {(x, t), t = T, ĉT ≤ x− b ≤ (ĉ+ b̂ε)T}

γ4 := {(x, t), t = T, x− b ≥ (ĉ+ b̂ε)T}
γ5 := {(x, t), t = T, x ≤ X − x1,ε}
γ6 := {(x, t), t = T,X − x1,ε ≤ x ≤ X + x2,ε}
γ7 := {(x, t), t = T, x ≥ X + x2,ε}.

The function Ũε ∧ Ûε is an approximate solution to (1.1) for t < T . Assumption
7.1 implies that Uε is also an approximate solution to the same system for t > T .

Let γ ⊂ R2
+ be the union of discontinuity curves for both Ũε ∧ Ûε and Uε, and

ω = R2
+ \ γ. The Divergence Theorem implies∫
f(Vε)∂tφ+ g(Vε)∂xφdx =

∫
γ

(g, f)(Vε) · ~nφ ds

−
∫

(x,t)∈ω,t<T

∂tf(Ũε ∧ Ûε)φ+ ∂xg(Ũε ∧ Ûε)φdx

−
∫

(x,t)∈ω,t>T

∂tf(Uε)φ+ ∂xg(Uε)φdx.

The integrals over ω and the line integrals over γ \∪7
i=1γi converge to zero because

both of Ũε ∧ Ûε and Uε are approximated solutions to the system below and above
the line t = T . The only fact which was left unproved is∫

γ1

(g, f)(Ũε) · ~n0 φds+
∫

γ2

(g, f)(Ũε) · ~n0φds

+
∫

γ3

(g, f)(Ûε) · ~n0 φds+
∫

γ4

(g, f)(Ûε) · ~n0 φds

−
∫

γ5

(g, f)(Uε) · ~n0 φds−
∫

γ6

(g, f)(Uε) · ~n0 φds−
∫

γ7

(g, f)(Uε) · ~n0 φds ≈ 0.

Note that Ũε and Uε are equal on the set γ1∩γ5, while Ûε and Uε are equal on the
set γ4 ∩ γ7. Also, one-dimensional Lebesgue measure of the sets (γ1 \ γ5)∪ (γ5 \ γ1)
and (γ4 \ γ7) ∪ (γ7 \ γ4) tends to zero as ε→ 0 (because all of aε, bε, x1,ε and x2,ε

tend to zero as ε → 0) while Vε is bounded on these sets. Thus, one has only to
prove that ∫

γ2

f(Ũε)φds+
∫

γ3

f(Ûε)φds ≈
∫

γ6

f(Uε)φds.
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But, that is a direct consequence of Assumption 7.2:

lim
ε→0

∫
γ2

f(Ũε)φds =
∫

γ′2

f(Ũε)φds+
∫

γ′′2

f(Ũε)φds

= lim
ε→0

(
ãεf(Ũ1,ε) + b̃εf(Ũ2,ε)

)
Tφ(X,T ) = κ̃Tφ(X,T ),

and likewise
lim
ε→0

∫
γ3

f(Ûε)φds = κ̂Tφ(X,T ).

On the other hand

lim
ε→0

∫
γ0

f(Ũε)φds = lim
ε→0

(
x1,εf(U1,ε) + x2,εf(U2,ε)

)
φ(X,T ) = ακφ(X,T ),

and put α = T (κ̂+ κ̃)/κ. That concludes the proof. �

Let us note that the main assumptions of the theorem are that there exists an
SDW solution to (1.1) with the initial data (7.1), and that there exist shifts xi,ε,
i = 1, 2, described above. Let us explain what could happen if these assumptions
are not satisfied.

If Assumption 7.1 is not satisfied, then there are some other possibilities for
solving the above interaction problem. Maybe it is possible to insert some inter-
mediate states Ũm,j , j = 1, . . . , n− 1. between U0 and U2 in the area above t = T
so that shadow wave follow or be followed by some other elementary wave(s). One
can look in [17] for a similar situation when an interaction of two singular shocks
produces one of the following three wave combinations: a single singular shock, an
1-rarefaction wave followed by a singular shock or a singular shock followed by a
2-rarefaction wave.

If a system is given in the evolution form with only one major component,
say U1, then there is a good chance to find α from Assumption 7.2: All RH-
deficits, κ̃i, κ̂i, and κi, i = 2, . . . , n are zero, one puts α = T (κ̃1 + κ̂1)/κ1 provided
sign(κ̃1 + κ̂1) sign(κ1) = 1. An example with a negative result one can find in [14]
for a 2× 2 generalized pressureless gas dynamics model.

The above theorem applies also to the case when one of the incoming waves Ũ
or Û is a shock. The proof is the same with some obvious changes (for example,
âε = b̂ε = 0 if the second wave is a shock). Obviously, the assertion also holds if a
contact discontinuity is in the place of the shock.

Finally, the above theorem is useful for dealing with shadow and rarefaction
wave interaction as already announced in the introduction of this part. When a
rarefaction wave is substituted by a fan of non-entropy shocks of small strength
(which solve the system in an approximated sense – see [3], for example), then
the above theorem can be applied on interaction of an SDW and such non-entropy
shock. After each such interaction we obtain a solution in the fan-form containing
at least one SDW of the type (2.1) with x2

1,ε + x2
2,ε > 0 and the procedure can be

continued. A trajectory of a resulting SDW is a broken line

∪m
i=1{(cit+ αi, t), t ∈ [Ti−1, Ti], αi ∈ R},

where Ti, i = 1, . . . ,m are time coordinates of interaction points. One can find
specific cases in [17] and [18] when it is possible to find an SDW central line (c(t), t)
as limit of the above trajectories by solving a governing ODE. Note that the re-
sulting SDW can be of different nature, for example, with a constant or decreasing
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strength. That fact opens a door for solving the complete interaction problem in
similar cases to the ones in that papers.

Remark 7.1. Suppose that the assumptions of the above theorem are true. It is
easy to see what is the entropy condition for Vε in that case. Let (η, q) be an
entropy and entropy-flux pair for the system (1.1). Suppose that the functions Ũε,
Ûε and Uε satisfy the entropy inequality in their domains. Then one can see that
the entropy condition is fulfilled if

limε→0

( ∫
γ6

η(Uε)φ−
∫

γ2

η(Ũε)φ−
∫

γ3

η(Ûε)φ
)
≤ 0, (7.4)

for every non-negative φ ∈ C∞0 . Due to the construction of Vε we have

η(Ũε) =

{
η(Ũ1,ε), (x, t) ∈ γ′2
η(Ũ2,ε), (x, t) ∈ γ′′2

, η(Ûε) =

{
η(Û1,ε), (x, t) ∈ γ′3
η(Û2,ε), (x, t) ∈ γ′′3

,

where γ2 = γ′2 ∪ γ′′2 , γ3 = γ′3 ∪ γ′′3 ,

meas(γ′2) = T ãε,meas(γ′′2 ) = T b̃ε,meas(γ′3) = T âε,meas(γ′′3 ) = T b̂ε.

Relation (7.4) is satisfied if and only if

limε→0 (x1,εη(U1,ε) + x2,εη(U2,ε))

−
(
ãεη(Ũ1,ε) + b̃εη(Ũ2,ε) + âεη(Û1,ε) + b̂εη(Û2,ε)

)
T ≤ 0.

(7.5)

Definition 7.1. The set of all states U2 such that there exists (entropic) shadow
wave solution to an interaction problem connecting the states U0, U1 and U2 is
called the second (entropic) shadow locus. We shall call it the forward locus, and
the set of all states U0 satisfying the above with U1 and U2 fixed will be then called
the backward shadow locus.

7.1. Pressureless gas dynamics. Let us look at a shadow wave interaction prob-
lem for the system (6.1) and p0 ≡ 1. The results for p0 ≡ 0 are practically the same.
Suppose that two shadow waves interact in the point (X,T ). Entropy condition
implies that that is possible only if u0 > u1 > u2, where the first shadow wave joins
(ρ0, u0, e0) with (ρ1, u1, e1), while the second joins (ρ1, u1, e1) with (ρ2, u2, e2).

We immediately see from Theorem 6.1 that (ρ0, u0, e0) and (ρ2, u2, e2) can be
joined by an entropy shadow wave since u0 > u2. Thus Assumption 7.1 is satisfied.
Let us look at Assumption 7.2 using the notation from Theorem 7.1.

In Theorem 6.1 we found that us,1 = us,2 = c, ũs,1 = ũs,2 = c̃ and ûs,1 = ûs,2 =
ĉ. Denote limε ãερ̃1,ε = ξ̃1, limε b̃ερ̃2,ε = ξ̃2, limε âερ̂1,ε = ξ̂1, limε b̂ερ̂2,ε = ξ̂2,
limε aερ1,ε = ξ1, and limε bερ2,ε = ξ2. Also, the variables es,1 = es,2, ẽs,1 = ẽs,2

and ês,1 = ês,2 are uniquely determined there.
The condition in Assumption 7.2 says that there exists a real α such that

α

 κ1

cκ1

κ3

 = T

 κ̃1 + κ̂1

c̃κ̃1 + ĉκ̂1

κ̃3 + κ̂3


From the first two equations of the above system one can see that the speed of the
resulting wave is determined by the data in before-interaction waves:

c =
c̃κ̃1 + ĉκ̂1

κ̃1 + κ̂1
=
c̃(ξ̃1 + ξ̃2) + ĉ(ξ̂1 + ξ̂2)

ξ̃1 + ξ̃2 + ξ̂1 + ξ̂2
=: ξπ.
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Using (6.10) we get the first condition for a second SDW locus (not involving
variable e):

ρ2u2 − ρ0u0 + (u0 − u2)
√
ρ0ρ2

ρ2 − ρ0
= ξπ, ρ2 > 0.

Also, the constant α is determined by α := (κ̃1 + κ̂1)T/κ1.
The third equation of the above system reduces to κ3(κ̃1 + κ̂1) = κ1(κ̃3 + κ̂3),

which is a linear equation with respect to e2. So one can find easily a value for e2
(we omit the exact formula since it does not carry any useful information). That
was the second condition for the locus.

Thus, the second SDW locus is a just a curve and an SDW interaction problem
cannot be solved with a usual SDWs in general. The complete solution will be
given by using weighted SDWs in the fourth part.

Contrary to the above case, interaction problems for lot of 2× 2 systems can be
solved completely using the above notion of the second delta locus and constant
SDWs. The original results are given in [17] and [18] and one can find a translation
into SDW environment in the following part of the paper.

Part 3. Some 2× 2 systems revised

In order to connect our results with the known ones about delta and singular
shocks, we shall focus our attention on 2 × 2 systems. That means we look at
systems having a delta or singular shock solution obtained by using different solution
concepts (see the references given in the introduction). All the systems (except some
artificial examples) from these papers have appropriate SDW solution converging
to the known one in the distributional sense.

8. Delta shocks

8.1. Non-evolutionary case. Let a system be given in a general form (1.1) with
U = (u, v) where C0-functions f i, gi, i = 1, 2 are of at most linear growth with
respect to variable v. We fix that notation trough this section. Assume that the
following limits exist

lim
v→∞

f i(u, v)
v

= f
i
(u), lim

v→−∞

f i(u, v)
v

= f i(u),

lim
v→∞

gi(u, v)
v

= gi(u), lim
v→−∞

gi(u, v)
v

= gi(u),

lim
ε→0

aεv1,ε = ξ1, lim
ε→0

bεv2,ε = ξ2.

Also, assume ξi ≥ 0, i = 1, 2. All other sign combinations of ξ1 and ξ2 can be treated
in the same way as that one. Let us also assume that the limits limε→0 uj,ε = us,j

exist for j = 1, 2 and denote

f i
j := f

i
(us,j), gi

j := gi(us,j), i, j = 1, 2.

Now, the system (3.3) reduces to

−c[f1] + [g1] + f1
1 ξ1 + f1

2 ξ2 = 0

−c[f2] + [g2] + f2
1 ξ1 + f2

2 ξ2 = 0

−c(f1
1 ξ1 + f1

2 ξ2) + g1
1ξ1 + g1

2ξ2 = 0

−c(f2
1 ξ1 + f2

2 ξ2) + g2
1ξ1 + g2

2ξ2 = 0.

(8.1)
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One can explicitly solve the first two equations in (8.1) with respect to ξ1 and ξ2:

ξ1(us,1, us,2) =
([g1]− c[f1])f2

2 + (c[f2]− [g2])f2
1

f1
2 f

2
1 − f1

1 f
2
2

ξ2(us,1, us,2) = − ([g1]− c[f1])f2
1 + (c[f2]− [g2])f1

1

f1
2 f

2
1 − f1

1 f
2
2

,

provided f1
2 f

2
1 − f1

1 f
2
2 6= 0. Then the last two equations in (8.1) are reduced to

c2[f1]− c[g1] = g1
1ξ1(us,1, us,2) + g1

2ξ2(us,1, us,2)

c2[f2]− c[g2] = g2
1ξ1(us,1, us,2) + g2

2ξ2(us,1, us,2).

Since there are two (nonlinear) equations with three unknowns, c, us,1 and us,2,
one could expect that there is a solution to (8.1). Of course, existence depends on
functions f i and gi, i = 1, 2, and the physical domain Ω as one will see during the
presentation of particular cases bellow. Nevertheless, the shadow locus is usually
not restricted to a curve, and possibilities for solving the system (1.1) by means
of SDWs seams to be much richer than the procedure with generalized functions
presented in [16]. In the latter case one could expect that all possible values for
(u2, v2) belong to a curve.

Remark 8.1. Analogous situation appears in the case of n × n system when all of
the functions f i, gi, i = 1, . . . , n, are linear with respect to V := (U2, . . . , Un).
The system (3.3) can be transferred into one very similar to (8.1): One eliminates
variables ξi

1 := limε→0 aεU
i
1,ε and ξi

2 := limε→0 bεU
i
2,ε, i = 2, . . . , n, from the first

2(n − 1) equations. After their substitution into the last two, one gets again two
equations with three unknowns c, U1

s,1 and U1
s,2 which seems to be solvable in

general.

8.2. Evolutionary systems. We shall use the notation from the previous case.
Suppose now that f1(u, v) = u and f2(u, v) = v. Instead of (8.1) we have

−c[f1] + [g1] = 0

−c[f2] + [g2] + ξ1 + ξ2 = 0

g1
1ξ1 + g1

2ξ2 = 0

−c(ξ1 + ξ2) + g2
1ξ1 + g2

2ξ2 = 0.

From the first equation in the system it follows c =
[g1]
[f1]

. From the second and

third equation one can find

ξ1(us,1, us,2) = − ([g2]− c[f2])g1
2

g1
2 − g1

1

ξ2(us,1, us,2) =
([g2]− c[f2])g1

1

g1
2 − g1

1

.

The solution is unique providing g1
2 6= g1

1 . Substitution of these values in the fourth
equation gives

g2
1ξ1(us,1, us,2) + g2

2ξ2(us,1, us,2) = c2[f2]− c[g2].

Thus, there is a single equation with two unknowns us,1 and us,2, so the chances
to solve it seems to be good, except in some “degenerate cases” (for example, when
g1 is a nonzero constant).
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8.3. Relation with the known results. Definition and assertions about exis-
tence of delta shock solutions to 2 × 2 conservation laws systems with Colombeau
generalized functions are given in [16]. One can easily compare delta shocks in that
and the present paper. Assume that there exists a generalized delta shock solu-
tion (u, v) to some conservation law system in that sense, where the delta function
part is contained in the v-variable. Then there exists a shadow wave solution with
u1,ε = u0, u2,ε = u1 and vi,ε = αi/ε, i = 1, 2, for some constants α1 and α2.

Thus, all the examples from the cited paper can be directly recovered in this
new framework. The opposite is not true. For example, Riemann problem for the
system

∂tρ+ ∂x(ρg(u)) = 0

∂t(ρu) + ∂x(ρug(u)) = 0
(8.2)

(so called ”generalized pressureless gas dynamics model”) has a solution in the form
of delta shock when one uses Borel measure spaces (see [11]). A generalized function
delta shock solution does not exist (nor two-sided delta shock solution). A singular
shock wave solution does exist, but ρ is not non-negative – only its distributional
limit is non-negative. One can show easily that is an SDW solution (delta shock,
to be precise) to (8.2) converging to the one given in [11] like in Theorem 6.1.

Suppose that there exists a two-sided delta shock solution

u =

{
u0, x < ct

u1, x > ct
, v =

{
v0, x < ct

v1, x > ct
+ αLδ

− + αRδ
+.

defined in [15] and [18] to some conservation law system linear in one of solution
component, v for definiteness. A construction of an appropriate SDW solution is
straightforward: Put

u1,ε = u0, u2,ε = u1, lim
ε→0

aεv1,ε = αL, lim
ε→0

bεv2,ε = αR.

The results with a solution containing Borel measure in v (given in [2], [4] and [11]
among others) transfers into an SDW solution simply bu putting us,1 = us,2 = us

where us is a value of u on a delta shock curve, and v1,ε = v2,ε = α/ε, where αt is
a delta shock strength.

9. Singular shocks

While delta shocks usually appear in weakly hyperbolic systems, singular shocks
are associated with strictly hyperbolic systems. Now we permit that a minor com-
ponent of a solution satisfy both |ui,ε| → ∞ and ε|ui,ε| → 0. That is the main
feature of singular shocks, as already mentioned.

In this section, we consider the system given in the following form

∂tu+ ∂x(g11(u)v + g12(u)) = 0

∂tv + ∂x(g21(u)v + g22(u)) = 0,
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where gij , i, j = 1, 2 are C0-functions. The system (3.5) now reduces to

−c(u1 − u0) + aεu1,ε + bεu2,ε

+(g11(u1)v1 + g12(u1)− g11(u0)v0 − g12(u0)) ≈ 0

−c(aεu1,ε + bεu2,ε) + aεg11(u1,ε)v1,ε + bεg11(u2,ε)v2,ε

+aεg12(u1,ε) + bεg12(u2,ε) ≈ 0

−c(v1 − v0) + aεv1,ε + bεv2,ε

+(g21(u1)v1 + g22(u1)− g21(u0)v0 − g22(u0)) ≈ 0

−c(aεv1,ε + bεv2,ε) + aεg21(u1,ε)v1,ε + bεg21(u2,ε)v2,ε

+aεg22(u1,ε) + bεg22(u2,ε) ≈ 0

Using the assumptions on (uε, vε), from the first equation we have

c =
[g11(u)v + g12(u)]

[u]
, (9.1)

and from the third equation we have

aεv1,ε + bεv2,ε ≈ c[v]− [g21(u)v + g22(u)] =: κ2. (9.2)

Finally, from the rest of the equations we have

lim
ε→0

aε(g11(u1,ε)v1,ε + g12(u1,ε)) + bε(g11(u2,ε)v2,ε + g12(u2,ε)) = 0

lim
ε→0

aε(g21(u1,ε)v1,ε + g22(u1,ε)) + bε(g21(u2,ε)v2,ε + g22(u2,ε)) = cκ2.
(9.3)

It is impossible to do analysis of all possible cases for such a general form, so we
analyze a special case, the system given in [12],

∂tu+ ∂x(u2 − v) = 0

∂tv + ∂x(u3/3− u) = 0.
(9.4)

Here g11(u) = −1, g12(u) = u2, g21(u) = 0 and g22(u) = u3/3 − u. We assume
aε = bε = ε without a loss of generality. Then, from (9.1) and (9.2) we have

c =
[u2 − v]

[u]
and ε(v1,ε + v2,ε) = κ2 = c[v]−

[u3

3
− u

]
,

while (9.3) implies

lim
ε→0

ε(−v1,ε + u2
1,ε − v2,ε + u2

2,ε) = 0

lim
ε→0

ε
(u3

1,ε

3
− u1,ε +

u3
2,ε

3
− u2,ε

)
= lim

ε→0
ε
(u3

1,ε

3
+
u3

2,ε

3

)
= cκ2.

Let us put ui,ε = ūi,ε + zi,ε with u2
i,ε = vi, zi,ε = c, i = 1, 2 and ū1,ε = −ū2,ε (up to

a term of growth rate o( 3
√
ε) actually) with respect to ε. Then the first equation is

obviously satisfied while

lim
ε→0

ε
(u3

1,ε

3
+
u3

2,ε

3

)
= lim

ε→0

(1
3
ū3

1,ε + ū2
1,εc+ ū1,εc

2 +
1
3
c3 +

1
3
ū3

2,ε + ū2
2,εc+ ū2,εc

2 +
1
3
c3

)
ε

= lim
ε→0

c(ū2
1,ε + ū2

2,ε)ε = cκ2.
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Also, RH deficit κ2 defined in (9.2) has to be positive. In order to avoid problems
with the entropy condition later, we put v1,ε = v2,ε = ū2

1,ε. (It would be enough to
take v1,ε ≥ u2

1,ε/2 and v2,ε ≥ u2
2,ε/2.)

The form of that solution resembles very much the one obtained in [12] (see also
[16]). We have used the word “resemble” because the same distributional limit is
not appropriate criteria. The main property which make difference between singular
and delta shocks is a correction factor contained in minor components. Thus, it
would not appear in distributional limit of a solution.

The system (9.4) is strictly hyperbolic, so we expect to find a entropy pair with
a convex entropy function for it. That would give an admissibility criterion for
shadow wave solutions.

Using the standard procedure (see, for example, [7] or [21]) one finds an entropy
function η to be a solution to the equation

4
∂2η

∂x ∂y
+
∂η

∂x
+
∂η

∂y
= 0,

where x = v − u2/2− u and y = v − u2/2 + u. Convex entropy functions and their
corresponding fluxes are given by

η(u, v) =ceγ(v−u2/2−u)e−γ(v−u2/2+u)/(1+4γ),

q(u, v) =(u+ 1 +
1
2γ

)η(u, v), c > 0, γ < −1/4.
(9.5)

We can now check (4.2) and (4.3) for the above entropy pair and aε = bε = ε.
Due to the construction of an SDW solution to (9.4) we have

lim
ε→0

vi,ε − u2
i,ε/2± ui,ε = +∞, i = 1, 2.

Convexity restrictions γ < −1/4 and −γ/(1 + 4γ) < 0 imply that both η(ui,ε, vi,ε)
and q(ui,ε, vi,ε), i = 1, 2 tend to zero faster than any power of ε as ε → 0. Thus,
the second entropy condition (4.3) is satisfied.

Let us check the first entropy condition. We have

limε→0εη(u1,ε, v1,ε) + εη(u2,ε, v2,ε) = 0.

So it reduces to

−c(η(u1, v1)− η(u0, v0)) + q(u1, v1)− q(u0, v0) ≤ 0.

Substituting the entropy pair (9.5) into that inequality we have

η(u1, v1)
(
u1 + 1 +

1
2γ

− c
)

+ η(u0, v0)
(
c−

(
u0 + 1 +

1
2γ

))
≤ 0.

Since η is always positive for c > 0, the speed c has to satisfy

u0 + 1 +
1
2γ

≥ c ≥ u1 + 1 +
1
2γ
, γ ∈ (−∞,−1/4).

That is
u0 − 1 ≥ c ≥ u1 + 1,

because −2 <
1
2γ

< 0. So we have proved that SDW is overcompressive if and only

if it satisfy entropy condition. One can find a proof that singulars shock solution to
(9.4) in [12] is unique when overcompressibility is used as an admissibility condition.
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Let us now turn to the situation when two singular shocks interact at some
point (X,T ). There are three possible results of such an interaction: a single
singular shock, a 1-rarefaction wave followed by a singular shock, and a singular
shock followed by a 2-rarefaction wave (see [17]). To keep discussion simple we
shall assume that the result of interaction is a single singular shock, i.e. there is a
singular shock solution to (9.4) connecting the states (u0, v0) and (u2, v2). (In fact,
we are using Assumption 7.1.)

The RH deficits of the incoming and outgoing waves are given by

κ =
[
κ1

κ2

]
=

[
0

c(v2 − v0)− 1
3 (u3

2 − u3
0) + (u2 − u0)

]
κ̃ =

[
0

c̃(v1 − v0)− 1
3 (u3

1 − u3
0) + (u1 − u0)

]
and

κ̂ =
[

0
ĉ(v2 − v1)− 1

3 (u3
2 − u3

1) + (u2 − u1)

]
Also,

f(Ũε) =
[
ε(ũ1,ε + ũ2,ε)T
ε(ṽ1,ε + ṽ2,ε)T

]
≈

[
0

(ξ̃1 + ξ̃2)T

]
, and f(Ûε) ≈

[
0

(ξ̂1 + ξ̂2)T

]
,

where ξi := limε→0 εvi,ε, ξ̃i := limε→0 εṽi,ε and ξ̂i := limε→0 εv̂i,ε, i = 1, 2. (We
have used the same notation as before.)

Assumption 7.2 holds since it is enough to put

α :=
T

κ2
(κ̃2 + κ̂2),

because RH deficits for all the first equations are zero. That is, the result of
interaction is really a singular shock.

Let us check the entropy condition. Due to (7.5), the following relation has to
be satisfied

limε→0 (x1,εη(u1,ε, v1,ε) + x2,εη(u2,ε, v2,ε))

−Tε(η̃(ũ1,ε, ṽ1,ε) + η̃(ũ2,ε, ṽ2,ε))− Tε(η̂(û1,ε, v̂1,ε) + η̂(û2,ε, v̂2,ε)) ≤ 0,

where x1,ε = x2,ε = αε, where the value of α is already defined above. Again, all
the terms above tends to zero as ε→ 0 for both families of entropy pairs. Thus, the
entropy condition for singular shock interaction solution defined in Theorem 7.1 is
satisfied.

Remark 9.1. Note that the above conclusion holds when one of the incoming waves
is just a shock: If a shock is on the right-hand side, then one can just put âε = b̂ε =
0, or Ui,ε = U0 and U2,ε = U1. The complete interaction problem for elementary
waves and singular shock ones is solved in [17] using a smooth approximations of
waves. These results can be translated into the frame used through the present
paper when a rarefaction wave is substituted by a fan of non-admissible shocks
(like in Front Tracking Algorithm, [3]).

Part 4. Weighted SDWs

As one could see in Section 7.1 there is a need for some other type of solution to
deal with a general SDW interaction problem. (It it is also true for 2×2 pressureless
gas dynamic model). Thus, we shall start our investigation by that special case.
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10. Interactions of SDWs in the case of pressureless gas dynamics
model

As in the case of constant SDWs we have the following basic lemma.

Lemma 10.1. Let f, g ∈ C(Ω : Rn) and U : R2
+ → Ω ⊂ Rn be a piecewise constant

function for every t ≥ 0:

Uε(x, t) =


U0, x < c(t)− aε(t)
U1,ε(t), c(t)− aε(t) < x < c(t)
U2,ε(t), c(t) < x < c(t) + bε(t)
U1, x > c(t) + bε(t)

. (10.1)

The functions aε, bε are C1-functions satisfying aε(0) = x1,ε and bε(0) = x2,ε.
Also, suppose that f and g satisfy (2.2). Then

〈∂tf(Uε), φ〉 ≈
∫ ∞

0

lim
ε→0

d

dt

(
aε(t)f(U1,ε(t)) + bε(t)f(U2,ε(t))

)
φ(c(t), t) dt

−
∫ ∞

0

c′(t)
(
f(U1)− f(U0)

)
φ(c(t), t) dt

+
∫ ∞

0

lim
ε→0

c′(t)
(
aε(t)f(U1,ε(t)) + bε(t)f(U2,ε(t))

)
∂xφ(c(t), t) dt

(10.2)

and

〈∂xg(Uε), φ〉 ≈
∫ ∞

0

(
g(U1)− g(U0)

)
φ(c(t), t) dt

−
∫ ∞

0

lim
ε→0

(
(aε(t)g(U1,ε(t)) + (bε(t)g(U2,ε(t))

)
∂xφ(c(t), t) dt.

(10.3)

The proof of the first relation in (2.3) from Lemma 2.1 can be easily adopted
for (10.2) and we omit it here (one just have to take care that Ui,ε depends on t,
i = 1, 2). The proof of (10.3) is the same as the one given for that lemma.

One can see that Theorem 7.1 is still valid when Uε defined by (7.2) is substituted
by an appropriate weighted SDW. Assumption 7.1 is still needed but with “exists an
SDW” substituted by “exists a weighted SDW”. One will see bellow that existence
of a weighted SDW is much easier to obtain than the existence of constant SDW
to the same initial data.

10.1. Two SDWs interaction. So, let us apply Lemma 10.1 for (6.1) in the
situation when two SDWs interact.

Theorem 10.1. A result of two SDW interaction for the pressureless system (6.1)
is a weakly unique single entropic weighted SDW.

Proof. Suppose that the SDWs interact in some point (X,T ). We use the notation
from Section 7.1. The sign ·̃ is reserved for data in the first (from the left) while
the sign ·̂ is reserved for the second SDW. (A speed of the first SDW is c̃ while a
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speed of the second one is ĉ, etc.) The first SDW connect the states U0 =

ρ0

u0

e0

 and

U1 =

ρ1

u1

e1

 while the second one connect the states U1 =

ρ1

u1

e1

 and U2 =

ρ2

u2

e2

.

It is safe to transfer the interaction problem into the Cauchy one by the trans-
lation for vector (X,T )

∂tf(U) + ∂xg(U) = 0

U =

{
U0, x < 0
U2, x > 0

+ σδ(0,0).

Here σ =

σ1

σ2

σ3

 is a sum of strengths of incoming SDWs, f(U) =

 ρ
ρu

ρu2

2 + ρe

 and

g(U) =

 ρu
ρu2

(ρu2

2 + ρe+ p0)u

.

Let us use the notation similar to the one in the Theorem 6.1:

lim
ε→0

aε(t)ρ1,ε(t) =: ξ1(t), lim
ε→0

bε(t)ρ2,ε(t) =: ξ2(t),

lim
ε→0

ui,ε(t) =: us,i(t), lim
ε→0

ei,ε(t) =: es,i(t), i = 1, 2,

[x]1 := x1 − x0, [x]2 := x2 − x1, and [x] := x2 − x0.

Use of (10.2) and (10.3) gives the following system of differential equations:

(ξ1(t) + ξ2(t))′ − c′(t)[ρ] + [ρu] = 0

(ξ1(t)us,1(t) + ξ2(t)us,2(t))′ − c′(t)[ρu] + [ρu2] = 0

(ξ1(t)(u2
s,1(t)/2 + es,1(t)) + ξ2(t)(u2

s,2(t)/2 + es,2(t)))′

−c′(t)[ρ(u2/2 + e)] + [ρ(u2/2 + e)u+ p0u] = 0

−c′(t)
(
ξ1(t) + ξ2(t)

)
+ ξ1(t)us,1(t) + ξ2(t)us,2(t) = 0

−c′(t)
(
ξ1(t)us,1(t) + ξ2(t)us,2(t)

)
+ ξ1(t)u2

s,1(t) + ξ2(t)u2
s,2(t) = 0

−c′(t)
(
ξ1(t)(u2

s,1(t)/2 + es,1(t)) + ξ2(t)(u2
s,2(t)/2 + es,2(t))

)
+ξ1(t)(u2

s,1(t)/2 + es,1(t))us,1(t) + ξ2(t)(u2
s,2(t)/2 + es,2(t))us,2(t) = 0

together with the initial data:

(ξ1 + ξ2)(0) = σ1 = T (ξ̃1 + ξ̃2 + ξ̂1 + ξ̂2) = T (κ̃1 + κ̂1) > 0

(ξ1us,1 + ξ2us,2)(0) = σ2 = T (c̃κ̃1 + ĉκ̂1)

(ξ1(u2
s,1/2 + es,1) + ξ2(u2

s,2/2 + es,2))(0) = σ3 = T (κ̃3 + κ̂3) > 0,

where κ̃3 =
( c̃2

2
+ ẽs

)
κ̃1 and κ̂3 =

( ĉ2
2

+ ês

)
κ̂1.

We use the following simplifying assumption

ξ1 = ξ2 =: ξ/2, us,1 = us,2 =: us, es,1 = es,2 =: es
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as in the case of Riemann problem (6.1,6.2). One will see bellow that it may be
used without a loss in generality, since entropy conditions actually would imply
us,1 ≈ us,2 and es,1 ≈ es,2.

The first thing one can notice is us(t) = c′(t) and that the three out of six
equations in the above system annihilate. So, we get the following 3 × 3 ODE
system:

ξ′(t) =us(t)[ρ]− [ρu]

(ξ(t)us(t))′ =us(t)[ρu]− [ρu2]

(ξ(t)u2
s(t)/2 + ξ(t)es(t))′ =us(t)[ρu2/2 + ρe]− [ρu3/2 + ρeu+ p0u].

(10.4)

The first two equations above are decoupled from the third one and can be
written as

ξ′(t) =
y(t)[ρ]
ξ(t)

− [ρu]

y′(t) =
y(t)[ρu]
ξ(t)

− [ρu2],with y(t) = ξ(t)us(t),

The initial data are ξ(0) = σ1 > 0 and y(0) = σ2. The standard ODE theory says
that there is at least a local solution to the above system because ξ is positive at
the initial time. We need some additional estimates for proving a global solution
existence.

Initially, we have

us(0) =
σ2

σ1
=
c̃κ̃1 + ĉκ̂1

κ̃1 + κ̂2
= c̃− (c̃− ĉ)κ̃1

κ̃1 + κ̂2
< c̃ ≤ u0,

due to the overcompressibility (implied by the entropy conditions for Riemann
problem, see Theorem 6.1). Because of the same reason,

us(0) = ĉ+
(c̃− ĉ)κ̂1

κ̃1 + κ̂2
ĉ ≥ u2.

From the first two equations in (10.4) we obtain

u′s(t) = − 1
ξ(t)

([ρ]u2
s(t)− 2[ρu]us(t) + [ρu2]).

Assume [ρ] 6= 0, first. Denote by A1 < A2 roots of the right-hand side of above
ODE,

A1,2 =
[ρu]± |u0 − u2|

√
ρ0ρ2

[ρ]
.

The value of −1/ξ(t) is always negative when exists since ξ(0) = σ1 > 0. If [ρ] > 0,
them us(t) increases when it is between A1 and A2 and decreases when it is less
than A1 or greater than A2. The opposite is true if [ρ] < 0. There are two possible
cases:

• If ρ2 > ρ0, then A1 ≤ u2 ≤ A2 ≤ u0. If us(0) ∈ (u2, A2), then us(t)
increases but stays bellow A2. If us(0) ∈ (A2, u0), then us(t) decreases but
stays above A2.

• If ρ0 > ρ2, then u2 ≤ A1 ≤ u0 ≤ A2. Again, if us(0) ∈ (u2, A1), then us(t)
increases. If us(0) ∈ (A1, u0), then us(t) decreases.
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That proves u0 > us(t) > u2, for each t ≥ 0 in both of the cases (so called the
overcompressibility condition is satisfied) if a solution to (10.4) exists. We are going
to use it immediately to estimate ξ(t). We have

ξ′(t) = [ρ]us(t)− [ρu] ≥ [ρ]u2 − [ρu] = ρ0(u0 − u2) > 0

if ρ2 > ρ0. Also

ξ′(t) = [ρ]us(t)− [ρu] ≥ [ρ]u0 − [ρu] = ρ2(u0 − u2) > 0,

if ρ0 > ρ2 So, ξ(t) is not decreasing which implies the global existence of solution
(ξ(t), us(t)).

The third equation in (10.4) is linear in es, and it is easy to find its solution es(t)
since ξ(t) and us(t) = y(t)/ξ(t) are already known. We just have to verify that it is
non-negative (that is also a physical reason – internal energy cannot be negative).

The third equation in (10.4) imply

(ξ(t)es(t))′ =
1
2
([ρ]us(t)− [ρu])u2

s(t)− ([ρu]us(t)− [ρu2])us(t)

+
1
2
([ρu2]us(t)− [ρu3]) + [ρe]us(t)− [ρue]− p0[u].

After some elementary calculations we get
1
2
([ρ]us(t)− [ρu])u2

s(t)− ([ρu]us(t)− [ρu2])us(t) +
1
2
([ρu2]us(t)− [ρu3])

=
1
2
ρ2(us(t)− u2)3 +

1
2
ρ0(u0 − us(t))3 ≥ 0

(we already have proved that u0 ≥ us(t) ≥ u2 provided a solution exists) and

[ρe]us(t)− [ρue]− p0[u] = ρ2e2(us(t)− u2) + ρ0e0(u0 − us(t)) + p0(u0 − u2) ≥ 0.

That proves (ξ(t)es(t))′ ≥ 0 and

(ξ(t)es(t))′ ≥ ρ2e2(us(t)− u2) + ρ0e0(u0 − us(t)) (10.5)

in addition (since p0(u0 − u2) ≥ 0). Initially, es(0) = σ3
σ1
− 1

2

(
σ2
σ1

)2

= σ3
σ1
− 1

2u
2
s(0).

Substitution of the values found above and a direct calculation gives

es(0) =
κ̃1κ̂1

2(κ̃1 + κ̂1)2
(c̃− ĉ)2 +

κ̃1ẽs + κ̂1ês

κ̃1 + κ̂1
≥ 0.

Thus, es(t) ≥ 0, t > 0 since we already know that ξ(t) ≥ 0, t > 0.

We have assumed [ρ] 6= 0 above. Suppose now that ρ0 = ρ2. Then the first
equation in (10.4) imply

ξ(t) = −[ρu]t+ ξ(0) = ρ0(u0 − u2)t+ ξ(0) > 0,

and from the second one we have

u′s(t) = − 2ρ0(u0 − u2)
ρ0(u0 − u2)t+ ξ(0)

us(t) +
ρ0(u0 − u2)(u0 + u2)
ρ0(u0 − u2)t+ ξ(0)

< 0, us(t) > (u0 + u2)/2
= 0, us(t) = (u0 + u2)/2
> 0, us(t) < (u0 + u2)/2.

Using elementary properties of the above ODE one can see that
• If us(0) > (u0 + u2)/2, then us(t) ∈ [(u0 + u2)/2, us(0)].
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• If us(0) < (u0 + u2)/2, then us(t) ∈ [us(0), (u0 + u2)/2].

That implies the existence of a global solution to (10.4) in this case, too. The third
equation of the system can be solved exactly in the same way as above.

Remark 10.1. The obtained solution is overcompressive as have been seen above,
and one can say that it satisfy admissible conditions used in most of the papers
about delta and singular shocks. In the present paper, overcompressibility was
consequence of (4.1) and we continue to check that condition.

Now, we have to prove that the above solution satisfies entropy condition like an
SDW solution to Riemann problem and that it is the only such a solution.

Let η, q be an entropy pair for (1.1) which admits a solution of the form (10.1).
For a solution in the form of weighted SDW the conditions (4.2,4.3) are substituted
by

−c′(t)(η(U2)− η(U0)) + (q(U2)− q(U0))

+ lim
ε→0

d

dt
(η(U1,ε(t))aε + η(U2,ε(t))bε) ≤ 0

(10.6)

and

lim
ε→0

c′(t)(η(U1,ε(t))aε + η(U2,ε(t))bε)

−q(U1,ε(t))aε(t)− q(U2,ε(t))bε(t) = 0.
(10.7)

(That is a simple consequence of (10.2) and (10.3).) In the special case of 3 × 3
pressureless gas dynamics, (10.7) is equivalent to

lim
ε→0

(c′(t)− u1,ε(t)) η(U1,ε(t)) aε + (c′(t)− u2,ε(t)) η(U2,ε(t)) bε = 0,

for every semi-convex η. That it is true if and only if u1,ε(t) ≈ u2,ε(t) ≈ us(t) as it
was already assumed during the construction of solution.

In the sequel we shall take only the case p0 = 0 for simplicity. The procedure is
similar for other values of pressure. The semi-convex entropy pair for (6.1) is now
given by

η(ρ, u, e) = ρ(R(u) + S(e)), q(ρ, u, e) = uη(ρ, u, e) = ρu(R(u) + S(e))

with R′′ ≥ 0, S′ ≤ 0, S′′ ≥ 0. The domain of R is the set of all reals and the
domain of S is the set of all non-negative reals.

Let us first choose R = 0 and prove that (10.6) is also satisfied, i.e.

I(t) :=− (u0 − us(t))ρ0S(e0)− (us(t)− u2)ρ2S(e2) + (ξ(t)S(es(t)))′

=− (u0 − us(t))ρ0S(e0)− (us(t)− u2)ρ2S(e2)

+ ξ′(t)S(es(t)) + ξ(t)S′(es(t))e′s(t) ≤ 0.

Let t be fixed for a moment and denote β := S′(es(t)) ≤ 0 and α := S(es(t))−βes(t).
Then S(e) = α+βe+S∗(e), where S∗(e) is a convex function such that S∗(es(t)) =
(S∗)′(es(t)) = 0 (due to the choice of α and β). These equalities and convexity of
S∗(e) implies S∗(e) ≥ 0.



36 MARKO NEDELJKOV

Using the above decomposition of S(e) we have

I(t) =− (u0 − us(t))ρ0(α+ βe0 + S∗(e0))− (us(t)− u2)ρ2(α+ βe2 + S∗(e2))

+ ξ′(t)(α+ βes(t) + S∗(es(t))) + ξ(t)e′s(t)(β + (S∗)′(es(t)))

=α(−(u0 − us(t))ρ0 − (us(t)− u2)ρ2 + ξ′(t))

+ β(−(u0 − us(t))ρ0e0 − (us(t)− u2)ρ2e2 + (ξ(t)es(t))′)

+ (−(u0 − us(t))ρ0S
∗(e0)− (us(t)− u2)ρ2S

∗(e2))
=αI1 + βI2 + I3.

The first equation in (10.4) implies I1 = 0. Relation (10.5) gives I2 ≥ 0, so βI2 ≤ 0.
Finally, it follows from the non-negativity of S∗(e) and relation u0 ≥ us(t) ≥ u2

that I3 ≤ 0. Thus, I(t) ≤ 0 and the first part of entropy inequality proof is finished.

Now we prove the entropy inequality for the general case of entropy pair η =
ρ(R(u) + S(e)), q = uη, R′′ ≥ 0, S′ ≤ 0 and S′′ ≥ 0. It is enough to prove

J(t) :=− (u0 − us(t))ρ0R(u0)− (us(t)− u2)ρ2R(u2)

+ ξ′(t)R(us(t))) + ξ(t)R′(us(t)))u′s(t) ≤ 0

in addition to already proved inequality for S. Obviously, J(t) = 0 for any affine
R due to (10.4), so we may assume R(us(t)) = R′(us(t)) = 0 for each t ≥ 0. Then
R(u) ≥ 0 by convexity assumption and

J(t) ≤ −(u0 − us(t))ρ0R(u0)− (us(t)− u2)ρ2R(u2) ≤ 0.

That proves the full entropy inequality in the case p0 ≡ 0 when two SDWs
interact giving a single weighted SDW. Now, the weak uniqueness follows immedi-
ately. �

10.2. An SDW interaction with a classical BV wave pattern. Take p0 = 0.
Let us examine what is a result of an SDW interaction with a wave consists from two
contact discontinuities connected with a vacuum state (CD+Vac+CD for short).
That wave combination occurs for the initial data (6.2) with u0 ≤ u1 (equality
means that wave is a single CD). For simplicity we shall look only the case when
SDW is on the left of a centered wave combination CD+Vac+CD (the SDW is
faster than the CD+Vac+CD). That situation is a result of a solution to (6.1) with
the initial data

(ρ, u, e)|t=0 =


(ρ0, u0, e0), x < −a2

(ρ1, u1, e1), −a2 < x < 0
(ρ2, u2, e2), x > 0

where u0 > u1 and u1 ≤ u2 and a is some nonzero real.
We have proved that a weighted SDW is entropic if and only if it is overcom-

pressive in the previous theorem, so we use it in the present interaction analysis.
The first interaction point (X,T ) is determined by the intersection of central

before-interaction SDW curve, x + a2 = (c̃ + bε)t and the right-handed CD curve
x = u1t. For a moment, let assume that the wave combination is divided into a fan
of small amplitude non-entropic waves. It means that the right-hand side of (X,T )
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may be taken to be (0, ur, er) with ur > u1 and ur−u1 small enough such that the
following system

ξ′(t) = −ρ0us(t) + ρ0u0 = ρ0(u0 − us(t))

(ξ(t)us(t))′ = −ρ0u0us(t) + ρ0u
2
0 = ρ0u0(u0 − us(t)) = u0ξ

′(t), or

u′s(t) =
ρ0

ξ(t)
(us(t)− u0)2.

(10.8)

substitutes the first two equations from (10.4) for t in some interval [T, Tr]. The
initial data for the above system are given by

ξ(T ) = σ1 = κ̃1T = T (u0 − u1)
√
ρ0ρ1,

us(T ) =
σ2

σ1
=
c̃κ̃1

κ̃1
= c̃ =

[ρu]1 − [u]1
√
ρ0ρ1

[ρ]1
.

A short analysis shows that again ξ(t) > 0 for t > T . Also, ξ(t) and us(t) are
non-decreasing functions in that interval.

Obviously, the second equation in (10.8), u0ξ
′(t) = (ξ(t)us(t))′, implies

R 3 c1 = u0ξ(t)− ξ(t)us(t) = (u0 − us(t))ξ(t).

The constant c1 is determined by putting t = T above:

c1 = σ1(u0 − us(T )) =
(u0 − us)2ρ1

√
ρ0√

ρ0 +
√
ρ1

T > 0.

After a change of variables w(t) = u0 − us(t), system (10.8) has a global solution
because

ξ(t) =
c1
w(t)

and w′(t) = −ρ0

c1
w3

imply

w(t) =
1√

σ2
1/c

2
1 + 2ρ0(t− T )/c1

→ 0, as t→∞.

That means us → u0, as t → ∞ while non-negativity of w implies us(t) < u0 in
addition.

Thus, the first two components ρ(t) and us(t) are known for all t > T and the
third equation in (10.4) is linear with respect to es so it has a global solution, too.

One could see that we have never used values ur and er above, since vacuum
state ρr ≡ 0 dominates them. Therefore, the obtained solution can be prolonged
after the time t = Tr provided ρ = 0, i.e. we can safely take ur = u2 and er = e2.

Let us check when the resulting SDW is overcompressive during its propagation
trough the vacuum state. The central curve of the after interaction SDW is given
by

Γ := {(x, t) : x−X =
∫ t

T

us(r) dr, t ≥ T},

where (X,T ) is the first interaction point. The value of u on the left of Γ equals u0.
The above solution us(t) satisfy us(t) < u0 so the first part of overcompressibility
condition is fine. On the right of Γ we have u = x/t (in the vacuum area). Using
the formula for Γ we have

x

t
=
X +

∫ t

T
us(r) dr
t

=
u1T +

∫ t

T
us(r) dr
t

≤ us(t)T + us(t)(t− T )
t

= us(t).
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We have used that the before-interaction SDW is overcompressive and us(T ) =
c̃ > u1. Also, the function us is proved to be non-decreasing and us(t) > u1.
The relation x/t < us(t) on the curve Γ proves that the after-interaction SDW is
overcompressive during its propagation trough the vacuum state.

The speed of right-handed (second) CD in the above wave combination equals u2

and we have the following possibilities for the behavior of after-interaction SDW.
If u2 ≥ u0, then its speed is always less or equal to the speed of the second CD

and Γ never leaves the vacuum area. That is the final answer to the interaction
problem in that case.

f u0 > u2, then there is a time when us became greater than u2 (since us(t) → u0

as shown above). Thus, Γ leaves the vacuum area after some time, say T1. Denote
the intersection point of Γ and x = u2t by (X1, T1). We stop the time and we have
again initial data containing a delta function for system (6.1)

(ρ, u, e)|t=T1 =

{
(ρ0, u0, e0), x < X1

(ρ2, u2, e2), x > X1

+ σ1δ(X1,T1)

That problem has a unique weighted SDW solution since u0 > u2. The proof is the
same as the one for Theorem 10.1. That concludes analysis of the last case.

One can use the similar arguments when CD+Vac+CD is on the left of SDW.

Part 5. Other possibilities

11. δ′-shocks

Assumption 3.1 was needed to keep a discussion on a general level – to consider
systems in as much as possible unrestricted form. It may be avoided for specific
problems. Here we present the hyperbolic system from [20]

∂tu+ ∂xf(u) = 0

∂tv + ∂x(f ′(u)v) = 0

∂tw + ∂x(f ′′(u)v2 + f ′(u)w) = 0, f ′′(u) > 0

(11.1)

and particularly its special case f(u) = u2 (also see [22] for a vanishing viscosity
approach). The above system is the main example of the one having so called
δ′-shock solution.

Let us find an SDW solution to (11.1) with an arbitrary initial data

(u, v, w)|t=T1 =

{
(u0, v0, w0), x < 0
(u2, v2, w2), x > 0.

For that purpose we have to extend the results of Lemma 2.1 (3.2, more precisely)
to one more derivative. That can be done by expanding a test function up to the
second term. Like in the lemma one can prove the following relation

∂tUε ≈(−c[U ] + lim
ε→0

(εU1,ε + εU2,ε))δ

+ (−c lim
ε→0

(εU1,ε + εU2,ε) + lim
ε→0

(ε2U1,ε − ε2U2,ε))tδ′

− c

2
lim
ε→0

((ε2U1,ε − ε2U2,ε))t2δ′′

∂xUε ≈[U ]δ + lim
ε→0

(εU1,ε + εU2,ε)tδ′ +
1
2

lim
ε→0

(ε2U1,ε − ε2U2,ε)t2δ′′,

(11.2)
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where Uε is of the form (2.1) (without Assumption 3.1) and the supports of δ and
its derivatives are x = ct as before. We have used aε = bε = ε for simplicity.

Solution to the first two equations is already known. For u0 > u1 it is a delta
shock

(u, v)(x, t) =


(u0, v0), x < (c− ε)t
(u1,ε, v1,ε), (c− ε)t < x < ct

(u2,ε, v1,ε), ct < x < (c+ ε)t
(u1, v1), x > (c+ ε)t,

where the speed is given by c = [f(u)]/[u], limε→0 ui,ε = us,i ∈ R and limε→0 εvi,ε =
ξi ∈ R, i = 1, 2. (The other three equations reduces to identities). All the above
values are determined by six equations generated from the first two equations in
system (11.1),

− c[u] + [f(u)] = 0 determines the speed, while

ξ1 + ξ2 = c[v]− [f ′(u)v] =: κ2

f ′(us,1)ξ1 + f ′(us,2)ξ2 = cκ2 determines ξ1, ξ2, provided us,1 6= us,2.

From the third equation in (11.1) we get

−c[w] + εw1,ε + εw2,ε + [f ′′(u)v2 + f ′(u)w] ≈ 0

−c(εw1,ε + εw2,ε) + ε2w1,ε − ε2w2,ε

+ε
(
f ′′(u1,ε)v2

1,ε + f ′(u1,ε)w1,ε + f ′′(u2,ε)v2
2,ε + f ′(u2,ε)w2,ε

)
≈ 0

− c
2
(ε2w1,ε − ε2w2,ε)

+
1
2
ε2

(
f ′′(u1,ε)v2

1,ε + f ′(u1,ε)w1,ε − f ′′(u2,ε)v2
2,ε − f ′(u2,ε)w2,ε

)
≈ 0.

(11.3)

From the second equation in (11.3) one can see that max{w1, w2} ∼ ε−2 since
v2

i ∼ ε−2. Together with the first equation in the system one can see that ε2wi ≈ αi,
i = 1, 2 with α1 = −α2 =: α. Denote by βi = limε→0 ε(wi − α1ε

−2) (and assume
that the above limit exists) for i = 1, 2. Then the first equation reduces to

β1 + β2 = c[w]− [f ′′(u)v2 + f ′(u)w] =: κ3. (11.4)

The second equation splits into two ones, one for each power of ε,

f ′′(us,1)ξ21 + f ′′(us,2)ξ22 + (f ′(us,1)− f ′(us,2))α = 0

(for ε−1) which determines α as a function of (us,1, us,2),

α =
f ′′(us,1)ξ21 + f ′′(us,2)ξ22
f ′(us,2)− f ′(us,1)

=
f ′′(us,1)(f ′(us,2)− c)2 + f ′′(us,2)(c− f ′(us,1))2

(f ′(us,2)− f ′(us,1))3
κ2

2

and
f ′(us,1)β1 + f ′(us,2)β2 = cκ3 − 2α (11.5)

for ε0. like in the case of unknowns (ξ1, ξ2) the system (11.4, 11.5) has a unique
solution (β1, β2) provided us,1 6= us,2. (And one can see now that there are no
solutions at all for us,1 = us,2.)

The third equation in (11.3) gives

1
2
(
f ′′(us,1)ξ21 − f ′′(us,2)ξ22

)
+
α

2
(
f ′(us,1) + f ′(us,2)

)
= αc.
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After substitutions of known values, we get the following equation with two un-
knowns (us,1, us,2)

f ′′(us,1)(f ′(us,2)− c)3 − f ′′(us,2)(c− f ′(us,1))3 = 0. (11.6)

Thus, a δ′-shock solution to (11.1) exists if and only if (11.6) has a solution
(us,1, us,2) with us,1 6= us,2. In general, one can expect that such a solution exists
since we have only one equation with two unknowns.

The distributional limit of such a solution is

u ≈u0 + (u1 − u0)θ(x− ct)

v ≈v0 + (v1 − v0)θ(x− ct) + κ2tδ(x− ct)

w ≈w0 + (w1 − w0)θ(x− ct) + κ3tδ(x− ct) + αt2δ′(x− ct),

where θ is the Heaviside function. The weak uniqueness of a δ′-shock holds if and
only if α is the same for all solutions (us,1, us,2) to (11.6).

Even for a special choice of f(u) = u2 that does not hold: Equation (11.6)

reduces to us,1 + us,2 = c, ξ1 = ξ2 =
κ2

2
and α =

ξ21 + ξ22
us,2 − us,1

=
κ2

2

2(us,2 − us,1)
.

Consequently the δ′-shock solution is not weakly unique.

Following formula (11.2), entropy conditions (4.1) are now

−c[η] + limε→0εη(U1,ε) + εη(U2,ε) + [q(U)] ≤0

−c(εη(U1,ε) + εη(U2,ε)) + ε2η(U1,ε)− ε2η(U2,ε) + εq(U1,ε) + εq(U2,ε) ≈0

− c
2
(
ε2η(U1,ε)− ε2η(U2,ε)

)
+

1
2
(
ε2q(U1,ε)− ε2q(U2,ε)

)
≈0.

for an entropy pair (η, q).
Now we give the entropy arguments in the special case f(u) = u2. (In that case

there also exists an artificial viscosity limit to δ′-shock solution as one could see in
[22].) Entropy pairs for system (11.1) are given in [19] and for f(u) = u2 we have

η(u, v, w) = G′(u)v2 + F (u)v +H(u) +G(u)w

q(u, v, w) = 2G(u)uw + 2G′(u)uv2 + 2G(u)v2 + 2F (u)uv + 2
∫
uH ′(u) du,

where
∫

denotes a primitive function and F , G and H are arbitrary twice differen-
tiable functions. The entropy function η is semi-convex if and only if η(u, v, w) =
H(u) + l(u, v, w), H ′′(u) ≥ 0 and l is a linear function. For the linear part, the
entropy condition is satisfied with equality due to the given system, so we have to
prove it taking η = H(u) and q = 2

∫
uH ′(u) du.

The inequality reduces to

−c(H(u1)−H(u0)) + 2
∫ u1

u0

uH ′(u) du ≤ 0.

Using c = u0 + u1 and integration by parts the above condition becomes

H(u0) +H(u1)
2

≥ 1
u0 − u1

∫ u0

u1

H(u) du.

It is true for u0 > u1 and any semi-convex H and the proof is completed.
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12. Composite SDWs

An SDW from Definition 2.1 is defined via one left- and one right-handed in-
finitesimal cone. We now generalize the definition with SDW with N infinitesimal
cones on each side. The new wave is called composite SDW or N -SDW. The gener-
alization of the usual SDW is straightforward. and one of the reasons to present it
here is to recover all types of singular shocks described in [16]. The second reason
is to improve chances for SDWs to be an approximate solution and to satisfy the
entropy criterion (4.2,4.3).

The composite SDWs are not given in the main part of the paper because

• We want to keep discussion in as simple as possible form.
• The “usual” SDWs are good enough for all concrete examples found in the

literature. Also, their use do not improve the results in the main example
of 3× 3 pressureless gas dynamics model.

Let us define them. Put

Uε(x, t) =



U0, x < (c+ a−N,ε)t
U−N,ε, (c+ a−N,ε)t < x < (c+ a−N+1,ε)t
...
U0,ε, (c+ a0,ε)t < x < (c+ a1,ε)t
...
UN−1,ε, (c+ aN−1,ε)t < x < (c+ aN,ε)t
U1, x > (c+ aN,ε)t

(12.1)

The simplest choice is ai,ε = iε (homogeneous), i = −n, . . . , n. A more flexible
one is ai,ε = ibiε (semi-homogeneous case), where bi ∈ R, i = −n, . . . , n are chosen
in an appropriate way.
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Using the standard assumption |Ui,ε| = O(ε−1), i = −N, . . . , N−1, we calculate
the t-derivative of composite SDW like before:

〈∂tUε, φ〉 =
∫ ∞

0

N−2∑
i=−N

−(c+ ai+1,ε) (Ui+1,ε − Ui,ε)φ((c+ ai+1,ε)t, t) dt

−
∫ ∞

0

(c+ a−N,ε) (U−N,ε − U0)φ((c+ a−N,ε)t, t) dt

−
∫ ∞

0

(c+ aN,ε) (U1 − UN−1,ε)φ((c+ aN,ε)t, t) dt

≈
∫ ∞

0

N−2∑
i=−N

−(c+ ai+1,ε) (Ui+1,ε − Ui,ε) (φ(ct, t) + ai+1,εt∂xφ(ct, t)) dt

−
∫ ∞

0

(c+ a−N,ε) (U−N,ε − U0)(φ(ct, t) + a−N,εt∂xφ(ct, t)) dt

−
∫ ∞

0

(c+ aN,ε) (U1 − UN−1,ε)(φ(ct, t) + aN,εt∂xφ(ct, t)) dt

=
∫ ∞

0

( N−1∑
i=−N

(ai+1,ε − ai,ε)Ui,ε − c(U1 − U0)
)
φ(ct, t) dt

+
∫ ∞

0

c

N−1∑
i=−N

(ai+1,ε − ai,ε)Ui,ε t∂xφ(ct, t) dt.

That is

∂tUε =
( N−1∑

i=−N

(ai+1,ε − ai,ε)Ui,ε − c(U1 − U0)
)
δ(x− ct)

− c

N−1∑
i=−N

(ai+1,ε − ai,ε)Ui,ε tδ
′(x− ct).

In the same way as above, one finds x-derivative of a composite SDW:

〈∂xUε, φ〉 ≈(U1 − U0)
∫ ∞

0

φ(ct, t) dt−
∫ ∞

0

N−1∑
i=−N

(ai+1,ε − ai,ε)Ui,ε t∂xφ(ct, t) dt

=(U1 − U0)〈δ(x− ct), φ〉+
N−1∑

i=−N

(ai+1,ε − ai,ε)Ui,ε〈tδ′(x− ct), φ〉.

Suppose that f and g are continuous mappings from the domain Ω into Rn.
Take, for example, the semi-homogeneous case where we choose the perturbation
ai,ε, i = −N, . . . , N such that

bi :=
ai+1,ε − ai,ε

ε
∈ R, i = −N, . . . , N − 1.
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Then

∂tf(Uε) ≈
(
− c(f(U1)− f(U0)) +

N−1∑
i=−N

biεf(Ui,ε)
)
δ(x− ct)

− c

N−1∑
i=−N

biε f(Ui,ε) t δ′(x− ct)

∂xg(Uε) ≈(g(U1)− g(U0))δ(x− ct) +
N−1∑

i=−N

biε g(Ui,ε) t δ′(x− ct).

Thus, a composite SDW is a approximate solution to (1.1) if

ε

N−1∑
i=−N

bif(Ui,ε) ≈ κ, and ε
N−1∑

i=−N

big(Ui,ε) ≈ cκ, (12.2)

where κ = (κ1, . . . , κn) is a vector of RH deficits.

If the system (1.1) is linear in first component, then

ξi := lim
ε→0

εU1
i,ε ∈ R, i = −N, . . . , N − 1,

while all other variables and constants have a same meaning as in Section 6. Then
(12.2) has a simpler form

N−1∑
i=−N

bif(Us,i)ξi = κ, and
N−1∑

i=−N

big(Us,i)ξi = cκ.

Next, assume that there exists a entropy pair η, q for a system which a SDW Uε

of the form (12.1). Then the limits in the distributional sense has to satisfy

limε→0 − c(η(U1)− η(U0)) +
N−1∑

i=−N

εbi η(Ui,ε) + q(U1)− q(U0) ≤0

lim
ε→0

N−1∑
i=−N

εbi (q(Ui,ε)− cη(Ui,ε)) = 0.

(12.3)

That substitutes entropy conditions (4.2,4.3) for usual SDW.
Now, one can see that choosing the constants bi, i = −N, . . . , N − 1 during a

solution construction gives us a better opportunity to satisfy the second equation
in (12.3) provided that the number of useful entropy pairs is bounded.
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