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Abstract. The introductory part of this paper contains an overview of known
results about elementary and delta shock solutions to Riemann problem for well
known Chaplygin gas model (nowadays used in cosmological theories for dark
energy) in terms of entropic shadow waves. Shadow waves are introduced in
[16] and they are represented by shocks depending on a small parameter ε with
unbounded amplitudes having a distributional limit involving the Dirac delta
function. In a search for admissible solutions to all possible cases of mutual
interactions of waves arising from double Riemann initial data we found same
cases that can not be resolved with already known types of elementary or
shadow wave solutions. These cases are resolved by introducing a sequence of
higher order shadow waves depending on integer powers of ε. It is shown that
such waves has a distributional limit but only until some finite time T .

1. Introduction

Many conservation law systems posses formal delta (or singular) shock wave
solutions but only some of them are physically relevant. The most common admis-
sibility criteria used to select a proper solution of that type is overcompressibility.
A wave is called overcompressive if all characteristics from both sides run into the
shock. That resembles a mass concentration that goes to infinity at some points
(see [3] for a real model of such a process). In paper [16], the author introduces
shadow wave solution to conservation law systems. They are represented by nets of
piecewise constant function for time variable t fixed parametrized by ε > 0. Some
of these constants are of order ε−1 but supported by volumes of order ε ≪ 1 so they
stays bounded in L1

loc-sense with respect to x-variable for each t. They contains
delta and singular shocks as special but the most important examples. Their con-
struction enables one to easily check admissibility of the obtained solution by using
the Lax (semi)convex entropy – entropy flux pair for the given system by using
standard Rankine–Hugoniot conditions. In almost all cases from literature where
delta or singular shocks appear, these admissibility conditions are are proved to be
good enough for selecting a unique (and physically relevant) delta shock (singular
shock or shadow) wave solution (see [16]). Another strong point of the shadow
wave theory is that the interaction problems can be easily approached. That is
due to the fact that shadow waves resemble a well known and efficient Wave Front
Tracking procedure (see [4] for example).

In this paper, we faces he following problem. After a successful use of both
(equivalent in this case also) admissibility conditions for finding a unique solution
to any Riemann problem. We look for a solution to a double Riemann problem (used
for investigation of wave interactions). There are case with no admissible solution in
the class of elementary and shadow waves. In fact, there exists a shadow wave weak
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solution but it is not admissible in the above sense. We tried to overcome that prob-
lem by introducing a sequence of shadow waves each new one parametrized by some
new, smaller parameter that previous ones. Let us explain a bit that procedure:
We fix ε (the initial shadow wave parameter) and solve the new initial problem
obtained in such way by using elementary waves and shadow waves parametrized
now by a new ε1 ≪ ε. New shadow wave is said to have order one. At a new
interaction time we fix ε1 and introduce a new parameter ε2 for shadow waves of
order two and solve the initial problem. And so on. The introduction of each new
parameter increase the shadow wave order by one. Later on, it will be shown that
it is enough to use a sequence of parameters εi = εi+1, i = 1, 2, . . .. That procedure
resembles well known weak asymptotic methods (let us just mention two in a huge
set of papers dealing with similar objects, [12] and [7]).

The system that we investigate is the Chaplygin gas model. Some of the cos-
mology theories uses it as a model of the so called dark energy of the Universe. It
models a compressible fluid with the pressure inversely proportional to the gas en-
ergy density, p = −A/ρ, for some A > 0 (see [10] for physical explanations). There
are also more recent models with the pressure defined by p = −A/ρα, 0 < α ≤ 1,
with the first one (up to our knowledge) introduced in [1], that are called general-
ized Chaplygin gas. In these models there is a significant mathematical difference
between the cases α = 1 and α ∈ (0.1). The first case is analyzed here, while the
second one is considered in [17].

The system modeling Chaplygin gas consists of mass and momentum conserva-
tion laws

∂tρ+∂x(ρu) = 0

∂t(ρu)+∂x

(

ρu2−A

ρ

)

= 0,

where u denotes the velocity of the gas. In this paper we shall fix A = 1 and use
the momentum variable q = ρu,

∂tρ+∂xq = 0

∂tq+∂x

(q2−1

ρ

)

= 0.
(1.1)

The physical domain for the system is the hyperplane {(ρ, q)| ρ > 0} since a pressure
in the vacuum state would be infinite otherwise. The sound speed of the system
tends to zero as ρ → ∞. That property allows the mass concentration in a finite
time and one can expect delta shock or some other wave with similar properties to
be a part of a solution at least for some initial data.

Important clues for our investigation can be found in the classical pressureless
gas dynamics model (p = 0) where the delta shock solutions are well known and
examined (see [3], [5], [8], for instance). Moreover, the existence of delta shocks for
system (1.1) was already proved in [2]. A detailed analysis of the system properties
is presented there and we will state only some important facts here. The system
is strictly hyperbolic with the characteristics λ1(ρ, q) =

q−1
ρ < λ2(ρ, q) =

q+1
ρ , and

both fields are linearly degenerate (let us note that it is not the case for the gener-
alized Chaplygin gas). So, there are only contact discontinuities as the elementary
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wave solutions for the Riemann data

(ρ, q) =

{

(ρ0, q0), x < 0

(ρ1, q1), x > 0.
(1.2)

The contact discontinuity curves are given by

CD1(ρ0, q0) : q1 = 1+
q0−1

ρ0
ρ1, CD2(ρ0, q0) : q1 = −1+

q0+1

ρ0
ρ1 (1.3)

Using the standard methods for finding entropies (see [6] for example), one finds
that the system posses an infinite number of convex entropies. The general form of
an entropy function for (1.1) is

η =
ρ

2

(

F
(q−1

ρ

)

+G
(q+1

ρ

))

(1.4)

with the entropy-flux function given by

Q =
1

2

(

(q+1)F
(q−1

ρ

)

+(q−1)G
(q+1

ρ

))

. (1.5)

The entropy function η is convex if and only if both F and G are convex. The most
important additional conservation law is the energy conservation (see [2])

∂t

(q2+1

ρ

)

+∂x

( q

ρ

q2−1

ρ

)

= 0.

It is straightforward to see from (1.3) that the states (ρ0, q0) and (ρ1, q1) in (1.2)
can be connected by the elementary waves if and only if

λ2(ρ1, q1) =
q1+1

ρ1
>

q0−1

ρ0
= λ1(ρ0, q0), i.e. when

ρ0(q1+1)−ρ1(q0−1) > 0.
(1.6)

The solution then consists of two contact discontinuities connected by a constant
state

(ρs, qs) =
( 2

λ1(ρ1, q1)−λ2(ρ0, q0)
,
λ2(ρ1, q1)+λ1(ρ0, q0)

λ2(ρ1, q1)−λ1(ρ0, q0)

)

.

We shall call such a solution the contact discontinuity combination (CDC) in the
sequel.

If the condition (1.6) is not satisfied, then there exists a solution in the form of
single delta shock wave as it was proved in [2]. The proof is obtained using a kind
of measure spaces that does not suit our purposes. Therefore, we will proceed as
follows. First, we repeat the results of [2] for shadow waves. One of the results is
that there exists an entropic single shadow wave solution if and only if condition
(1.6) does not hold. Let us remark that violation of (1.6) is equivalent to the
fact that a shadow wave is overcompressive. Here we prove that that condition is
equivalent to the entropy inequality for a convex entropy function. Moreover, it is
enough to take a single entropy function that represents the energy. So, we have a
unique solution just using the fact that energy can not rise in the system.

Note that the system (1.1) can not be solved using the canonical methods given
in [16] due to the lack of linearity in both of the variables. Nevertheless the non-
linearity in the flux can be resolved with shadow waves as we will present bellow.
Some problems involving nonlinear operations with delta functions are successfully
resolved in [11] and or [13] using approximate delta functions.
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In this paper we analyze all possible cases of interactions. The incoming waves
can be shadow waves and contact discontinuity combination so there are three
possible cases: the interaction of two shadow waves, the shadow wave–contact
discontinuity combination and the two contact discontinuity combinations. The
last case is the simplest one - an outgoing wave after a double contact discontinuity
interaction is either a contact discontinuity combination or a single shadow wave like
in the case of the Riemann data. In the case of a double shadow wave interaction
an outgoing wave is always a single weighted shadow wave (that can be interpreted
as a delta shock with variable strength and variable speed). In the second case,
when a shadow wave and contact discontinuity combination interacts, the possible
solutions are two delta contact discontinuities (see [15] for the definition of delta
contact discontinuity) or a single weighted shadow wave. In both cases these waves
are followed by the second incoming contact discontinuity without an interaction.
But there is also a possible case of special interest to us when neither elementary
nor shadow wave solution exists. More precisely, if that is the case, each solution
candidate we have used does not satisfies the entropy condition.1

Thus we shall present a new type of approximated solution consists of sequence
of higher order shadow waves. Shadow waves of the second order are made by using
new parameter ε1 ≪ ε while the old one, ε, is treated as a constant. Each shadow
wave of the higher order is made recursively by using a new negligible parameter
εn+1 ≪ εn. There are two possibilities for a result of such a procedure. In the
first one a sequence of higher order shadow waves has a distributional limit but
only up to some finite time. That is, it can be used as an explanation of a blow-up
mechanism for system admitting delta shock solutions in such case. The existence
of entropic solution after the shadow wave blows-up is still open. We suspect that
any kind of approximate solution does not have a distributional limit after the blow
up time. In some way a similar situation is described in [14] for ionic gas model
([9]), where a wave that carries the delta function (a singular shock) disappear after
interaction with another one (a rarefaction wave). But contrary to our case, there
are a classical double shock wave solution after delta function annihilates. One can
also look for some solutions of a different type as it was done in [18].

In the second one a sequence of the higher order waves turns to be a sequence
of parametrized classical contact discontinuities and a distributional limit exists for
all times.

2. Riemann problem

Let us start with a piecewise constant function of the following form called the
simple shadow wave (SDW for short)

(ρ, q) =







(ρ0, q0), x < (c−ε)t

(ρ0,ε, q0,ε), (c−ε)t < x < ct

(ρ1,ε, q1,ε), ct < x < (c+ε)t

(ρ1, q1), x > (c+ε)t.

1Let us note that some author used relaxed entropy condition to get a solution [?]. We do not
find any physical reason to support such solution and we omitted it in our analysis.
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The SDW (p, q) solves (1.1,1.2) in the weak sense if

lim
ε→0

〈ρ, ∂tφ〉+〈q, ∂xφ〉 = 0

lim
ε→0

〈q, ∂tφ〉+
〈q2−1

ρ
, ∂xφ

〉

= 0

for every test function φ ∈ C∞
0 (R2

+). Using Lemma 1 from [16] one gets the following
formulas for the derivatives

∂tρ ≈
(
−c[ρ]+(ερ0,ε+ερ1,ε)

)
δ−c(ερ0,ε+ερ1,ε)tδ

′

∂xq ≈ [q]δ+(εq0,ε+εq1,ε)tδ
′

∂tq ≈
(
−c[q]+(εq0,ε+εq1,ε)

)
δ−c(εq0,ε+εq1,ε)tδ

′

∂x

(q2−1

ρ

)

≈
[q2−1

ρ

]

δ+

(

ε
(q20,ε−1

ρ0,ε

)

+ε
(q21,ε−1

ρ1,ε

))

tδ′.

Here and bellow aε ≈ bε means limε→0 aε−bε = 0 while [y] := y1−y0 is the standard
designation of a jump in the variable y across a shock front. The support of delta
function and its derivative above is called a shock front. In the above formulas, the
shock front is the line x = ct.

It is easy to see that the only possibility to avoid a trivial case when ρi,ε and
qi,ε disappear is that ρi,ε, qi,ε ∼ ε−1, i = 0, 1. Denoting ξi := limε→0 ερi, χi :=

limε→0 εqi, i = 0, 1, we have
q20,ε−1

ρ0,ε
≈ χ2

i

ξi
, i = 0, 1. So the Riemann problem

(1.1,1.2) reduces to the following system of algebraic equations

−c[ρ]+(ξ0+ξ1)+[q] = 0

c(ξ0+ξ1) = χ0+χ1

−c[q]+(χ0+χ1)+
[q2−1

ρ

]

= 0

c(χ0+χ1) =
χ2
0

ξ0
+
χ2
1

ξ1
.

(2.1)

Denote by κ1 := c[ρ]−[q] and κ2 := c[q]−
[
q2−1
ρ

]

so-called the Rankine-Hugoniot

deficits. One immediately gets κ2 = cκ1 from the second equation. The third and
fourth equation then imply

c =

[q]±
√

[q]2−[ρ]
[
q2−1
ρ

]

[ρ]
=

[q]+κ1

[ρ]
. (2.2)

From the fourth equation one can see that the only possible relations between the
unknowns ξi and χi, i = 0, 1, are

ξ0 =
χ0

c
and ξ1 =

χ1

c
.

The first and the third equation in (2.1) uniquely determine strength of the SDW
(ξ, χ) defined by

ξ := ξ0+ξ1 = κ1, χ := χ0+χ1 = κ2 = cκ1.

The variable ρ denotes the density so κ1 > 0 (the case κ1 = 0 corresponds to the
contact discontinuity solution). The positivity of κ1 implies that one has to take
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the plus sign in expression (2.2) for the speed c. A simple computation gives

κ1 =

√

ρ0ρ1

(q0−1

ρ0
−q1−1

ρ1

)(q0+1

ρ0
−q1+1

ρ1

)

=
√

ρ0ρ1(λ1(ρ0, q0)−λ1(ρ1, q1))(λ2(ρ0, q0)−λ2(ρ1, q1)).

It is obvious that the negation of condition (1.6) ensures the positivity of the term
under the square root. Thus, we have well defined SDW solution whenever (1.6) is
not satisfied i.e. when λ1(ρ0, q0) ≥ λ2(ρ1, q1). It remains to prove that the SDW is
entropic. A SDW (ρ, q) is entropic (and thus admissible) if for every (semi)convex
entropy function η and corresponding entropy flux function Q we have

〈∂tη(ρ, q)+∂xQ(ρ, q), φ〉 ≤ 0 (2.3)

for every non-positive test function φ ∈ C∞
0 . According to formulas (4.2) and (4.3)

from [16], a SDW solution (ρ, q) to (1.1) is entropic if and only if

lim
ε→0

−c(εη(ρ0,ε, q0,ε)+εη(ρ1,ε, q1,ε))+εQ(ρ0,ε, q0,ε)+εQ(ρ1,ε, q1,ε) = 0

−c(η(ρ1, q1)−η(ρ0, q0))+Q(ρ1, q1)−Q(ρ0, q0)

+ lim
ε→0

(εη(ρ0,ε, q0,ε)+εη(ρ1,ε, q1,ε)) ≤ 0.

(2.4)

Substituting (1.4) and (1.5) into the first relation above we obtain

− c

2

(

ξ0F (c)+ξ1G(c)
)

+
1

2

(

χ0F (c)+χ1G(c)
)

= 0

since χi = cξi, i = 0, 1. The second relation from (2.4) reduces to

−c

(

ρ1
2

(

F
(q1−1

ρ1

)

+G
(q1+1

ρ1

))

−ρ0
2

(

F
(q0−1

ρ0

)

+G
(q0+1

ρ0

))
)

+
1

2

(

(q1+1)F
(q1−1

ρ1

)

+(q1−1)G
(q1+1

ρ1

)

−(q0+1)F
(q0−1

ρ0

)

−(q0−1)G
(q0+1

ρ0

))

+
ξ0+ξ1

2

(

F (c)+G(c)
)

≤ 0.

Here we give the proof for G ≡ 0 only. The proof for F ≡ 0 (and thus for a general
case since one can prove the inequality for each addend separately) goes along the
same lines so we omit it.

One has to prove

−
(
(
q0+1−cρ0

)
F
(q0−1

ρ0

)

+
(
cρ1−(q1+1)

)
F
(q1−1

ρ0

))

+κ1F (c) ≤ 0.

In order to do it, let us put

I := −
(
q0+1−cρ0

κ1
F
(q0−1

ρ0

)

+
cρ1−(q1+1)

κ1
F
(q1−1

ρ0

))

+F (c).

Using

q0+1−cρ0
κ1

+
cρ1−(q1+1)

κ1
=

c(ρ1−ρ0)−(q1−q0)

κ1
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and the convexity of F one has

I ≤−F
(q0+1−cρ0

κ1

q0−1

ρ0
+
cρ1−(q1+1)

κ1

q1−1

ρ1

)

+F (c)

=−F

(

1

κ1

(

c(ρ1−ρ0)−
(q21−1

ρ1
−q20−1

ρ0
︸ ︷︷ ︸

=κ2=cκ1

))
)

+F (c) = −F (c)+F (c) = 0.

Note that it is necessary that both of
q0+1−cρ0

κ1
and

cρ1−(q1+1)

κ1
are non-negative.

Thus the SDW has to satisfy

λ2(ρ0, q0) ≥ c ≥ λ2(ρ1, q1). (2.5)

If one of the terms q0+1−cρ0 or cρ1−(q1+1) is negative then it is easy to find an
F such that I > 0. Therefore I ≤ 0 for every convex F if and only if (2.5) holds.

Using the same procedure for G one can get that the wave is entropic if and only
if

λ1(ρ0, q0) ≥ c ≥ λ1(ρ1, q1). (2.6)

A wave satisfying (2.5) and (2.6) is said to be overcompressive.
So, we have proved the following theorem.

Theorem 2.1. The Riemann problem (1.1,1.2) has a unique entropic solution
which consists of two contact discontinuities if (1.6) holds. If (1.6) does not hold,
the solution is a single SDW represented by

(ρ, q) =







(ρ0, q0), x < (c−ε)t

(ξ0/ε, χ0/ε), (c−ε)t < x < ct

(ξ1/ε, χ1/ε), ct < x < (c+ε)t

(ρ1, q1), x > (c+ε)t,

with c = q1−q0+κ1

ρ1−ρ0
, ξ0+ξ1 = κ1, χ0+χ1 = cκ1, where the Rankine-Hugoniot deficit

is given by κ1 =
√

ρ0ρ1(λ1(ρ0, q0)−λ1(ρ1, q1))(λ2(ρ0, q0)−λ2(ρ1, q1)).

Remark 2.1. The term “unique solution” in Theorem 2.1 should be understood
as a weakly unique sense defined by Definition 4.1. in [16], that means that all
SDW solutions have the same distributional limit. Next, all assertions are valid
for any combination of ξ0 and ξ1 or χ0 and χ1 as long as ξ0 and ξ1 stay non-
negative and have sums determined in the theorem. Particularly, it is safe to take
ρ0,ε = ρ1,ε =: ρε (i.e. ξ0 = ξ1) and q0,ε = q1,ε = qε (i.e. χ0 = χ1) in the sequel.

3. Weighted SDWs

In order to examine results of different wave interactions, let us start with the
new initial data

(ρ, q)(x, 0) =







(ρ0, q0), x < −x0

(ρ1, q1), −x0 < x < 0

(ρ2, q2), −x > 0.

(3.1)

where x0 is a positive real. Assume that an SDW emerges from the point (−x0, 0).
The case when it comes from the right-hand side of the wave that it will interact
with can be treated in the same way. The waves will always interact because any
entropic SDW is overcompressive. Denote by T the time when the SDW reaches
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another wave and denote by ξin and χin the sum of the SDW strengths in ρ and
q variable, respectively. One of solutions we are looking for when t > T will be a
weighted SDW (see [16]) of the general form

(ρ, q) =







(ρ0, q0), x < c(t)−a0,ε(t)

(ρ0,ε, q0,ε)(t), c(t)−a0,ε(t) < x < c(t)

(ρ1,ε, q1,ε)(t), c(t) < x < c(t)+a1,ε(t)

(ρ2, q2), x > c(t)+a1,ε(t).

(3.2)

Denote ξi(t) = limε→0 ρi,ε(t)ai,ε(t), χi(t) = limε→0 qi,ε(t)ai,ε(t), i = 0, 1, ξ(t) =
ξ0(t)+ξ1(t) and χ(t) = χ0(t)+χ1(t). It is enough to assume ξ(T ) = ξin and χ(T ) =
χin and then the weighted SDW for t > T , if it exists, can be joined with the
incoming waves (for t < T ). That follows from Theorem 7.1 and the note after
Lemma 10.1 in [16]. By Lemma 10.1 from [16], we have

∂tρ =−c′(t)[ρ]δ+lim
ε→0

d

dt

(
a0,ε(t)ρ0,ε(t)+a1,ε(t)ρ1,ε(t)

)
δ

−c′(t) lim
ε→0

(
a0,ε(t)ρ0,ε(t)+a1,ε(t)ρ1,ε(t)

)
δ′

≈
(
−c′(t)[ρ]−(ξ′0(t)+ξ′1(t))

)
δ−c′(t)(ξ0(t)+ξ1(t))δ

′

∂xq ≈[q]δ+(χ′
0(t)+χ′

1(t))δ
′,

∂tq ≈
(
−c′(t)[q]−(χ′

0(t)+χ′
1(t))

)
δ−c′(t)(χ0(t)+χ1(t))δ

′

∂x

(q2−1

ρ

)

=
[q2−1

ρ

]

δ+lim
ε→0

(

a0,ε(t)
q20,ε(t)−1

ρ0,ε(t)
+a1,ε(t)

q21,ε(t)−1

ρ1,ε(t)

)

δ′

≈
[q2−1

ρ

]

δ+
(χ2

0(t)

ξ0(t)
+
χ2
1(t)

ξ1(t)

)

δ′

with the support of δ and δ′ being the curve x = c(t). Substitution of these
expressions into the system yields the following system of differential equations

c′(t)[ρ]−[q] = (ξ0(t)+ξ1(t))
′

c′(t)(ξ0(t)+ξ1(t)) = χ0(t)+χ1(t)

c′(t)[q]−
[q2−1

ρ

]

= (χ0(t)+χ1(t))
′

c′(t)
(
χ0(t)+χ1(t)

)
=

χ2
0(t)

ξ0(t)
+
χ2
1(t)

ξ1(t)

with the initial conditions ξ0(T )+ξ1(T ) = ξin, χ0(T )+χ1(T ) = χin. We assume
without a loss in generality (as in Remark 2.1) that ξ0 = ξ1 and χ0 = χ1. Then
the above system reduces to

c′(t)[ρ]−[q] = ξ′(t)

c′(t)ξ(t) = χ(t)

c′(t)[q]−
[q2−1

ρ

]

= χ′(t)

c′(t)χ(t) =
χ2(t)

ξ(t)
, ξ(T ) = ξin, χ(T ) = χin.

(3.3)
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Obviously, the fourth equation in (3.3) is satisfied if the second one is i.e. χ(t) =
c′(t)ξ(t). More precisely, the first three equations determines all quantities c(t), ξ(t)
and χ(t). After some straightforward calculations one finds that the SDW speed is

c′(t) =
[q]

[ρ]
+

(

[q]2−[ρ]
[
q2−1
ρ

])

(t−T )+([ρ]χin−[q]ξin)

[ρ]

√
(

[q]2−[ρ]
[
q2−1
ρ

])

(t−T )2+2([ρ]χin−[q]ξin)(t−T )+ξ2in

.

The choice of the proper sign in the above expression follows from the fact that
Rankine-Hugoniot deficit in the first equation represent the density and therefore
it should be nonnegative. Furthermore, one gets the following solution to (3.3)

c(t) =c(0)+
1

[ρ]

(

[q](t−T )−ξin

+

√
(

[q]2−[ρ]
[q2−1

ρ

])

(t−T )2+2([ρ]χin−[q]ξin)(t−T )+ξ2in

)

ξ(t) =

√
(

[q]2−[ρ]
[q2−1

ρ

])

(t−T )2+2([ρ]χin−[q]ξin)(t−T )+ξ2in,

(3.4)

and χ(t) = c′(t)ξ(t) as already known.
That is, a solution in the form of weighted SDW exists provided

0 < [q]2−[ρ]
[q2−1

ρ

]

(t−T )2+2([ρ]χin−[q]ξin)(t−T )+ξ2in.

But that is obviously true, at least in a neighborhood of T . Now, one has to check
entropy conditions for such wave. The following lemma makes that task easier.

Lemma 3.1. Weighted SDW given by (3.2) satisfy the overcompressibility condi-
tion λ1(ρ0, q0) ≥ c′(t) ≥ λ2(ρ2, q2), if and only if satisfies the entropy condition for
any convex entropy pair (1.4, 1.5).

Proof. The entropy condition for the weighted SDW consists of the following two
relations (see (10.6) and (10.7) in [16])

lim
ε→0

c′(t)
(
a0,ε(t)η(ρ0,ε(t), q0,ε(t))+a1,ε(t)η(ρ1,ε(t), q1,ε(t))

)

−
(
a0,ε(t)Q(ρ0,ε(t), q0,ε(t))+a1,ε(t)Q(ρ1,ε(t), q1,ε(t))

)
= 0

(3.5)

and

−c′(t)
(
η(ρ2, q2)−η(ρ0, q0)

)
+Q(ρ2, q2)−Q(ρ0, q0)

+ lim
ε→0

d

dt

(
a0,ε(t)η(ρ0,ε(t), q0,ε(t))+a1,ε(t)η(ρ1,ε(t), q1,ε(t))

)
≤ 0

(3.6)

Suppose that limε→0
qi,ε(t)

ρi,ε(t)
= ζi exists for i = 0, 1. Then (3.5) is satisfied for the

entropy pair (η,Q) given by (1.4, 1.5) if χi = c′(t)ξi(t), i = 0, 1:

c′(t)

(

a0,ε(t)
ρ0,ε(t)

2

(

F
(q0,ε(t)−1

ρ0,ε(t)

)

+G
(q0,ε(t)+1

ρ0,ε(t)

))

+a1,ε(t)
ρ1,ε(t)

2

(

F
(q1,ε(t)−1

ρ1,ε(t)

)

+G
(q1,ε(t)+1

ρ1,ε(t)

))
)
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−a0,ε(t)

2

(

(q0,ε(t)+1)F
(q0,ε(t)−1

ρ0,ε(t)

)

+(q0,ε(t)−1)G
(q0,ε(t)+1

ρ0,ε(t)

))

−a1,ε(t)

2

(

(q1,ε(t)+1)F
(q1,ε(t)−1

ρ1,ε(t)

)

+(q1,ε(t)−1)G
(q1,ε(t)+1

ρ1,ε(t)

))

≈
(1

2
c′(t)ξ0−χ0

)

(F (ζ0(t))+G(ζ0(t)))+
(1

2
c′(t)ξ1−χ1

)

(F (ζ1(t))+G(ζ1(t))) = 0,

Note that the choice ξ0(t) = ξ1(t), χ0(t) = χ1(t) is safe again. It would be clear
later that one can use that choice trough the paper without loss in generality in
the distributional sense (needed for the weak uniqueness).

The second relation (3.6) is a bit more difficult to prove. We shall give a proof
for η = ρF/2, first.

Let us fix t for a moment and drop the dependence on t from the notation. The
function F is a convex one, so the curve (x, F (x)) lies above each of its tangent
lines y = ax+b. Chose a = F ′(c′) and an appropriate constant b. Then

F (x) = ax+b+F (x), where F ≥ 0, F (c′) = 0 and F
′
(c′) = 0.

We have to find conditions that ensure E(= E(t)) ≤ 0, where

E =−c′

(

ρ2
2

(

a
q2−1

ρ2
+b+F

(q2−1

ρ2

))

−ρ0
2

(

a
q0−1

ρ0
+b+F

(q0−1

ρ0

))
)

+
q2+1

2

(

a
q2−1

ρ2
+b+F

(q2−1

ρ2

))

−q0+1

2

(

a
q0−1

ρ0
+b+F

(q0−1

ρ0

))

+
1

2
ξ′(ac′+b+F (c′))+

1

2
ξac′′ =: Iaa+Ibb+I.

We have

Ia =−c′
(q2
2
−q0

2

)

+
q22−1

2ρ2
−q20−1

2ρ0
︸ ︷︷ ︸

=−χ′/2

+
1

2
ξ′c′+

1

2
ξc′′

︸ ︷︷ ︸

=(ξc)′/2=χ′/2

= 0,

Ib =
1

2
(−c′(ρ2−ρ0)+q2−q0
︸ ︷︷ ︸

=−ξ′

+ξ′) = 0.

That was expected due to affinity. Also

I =−c′
(
ρ2
2
F
(q2−1

ρ2

)

−ρ0
2
F
(q0−1

ρ0

))

+
q2+1

2
F
(q2−1

ρ2

)

−q0+1

2
F
(q0−1

ρ0

)

+
1

2
ξ′F (c′)
︸ ︷︷ ︸

=0

= −
(

(q0+1−c′ρ0)F
(q0−1

ρ0

)

+(c′ρ2−(q2+1)F
(q2−1

ρ2

))

.

Due to the above construction F ≥ 0 and the sufficient condition for I to be non-
positive is

q0+1−c′ρ0 ≥ 0 and c′ρ2−(q2+1) ≥ 0 i.e. λ2(ρ2, q2) ≤ c′ ≥ λ2(ρ2, q2).

Using exactly the same procedure for I where F is substituted by G, while the
term q+1 is substituted by q−1 and oposite, one gets that I modified in such way
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is non-positive if and only if

q0−1−c′ρ0 ≥ 0 and c′ρ2−(q2−1) ≥ 0
(

i.e. λ1(ρ0, q0) ≥ c′ ≥ λ1(ρ2, q2)
)

.

Both conditions taken together are equivalent with the overcompressibility of
the weighted SDW.

It is not so hard to see from the proof above that overcompressive SDW satisfies
the entropy condition for each convex entropy–entropy flux pair. So we are allowed
to use any of these two conditions in the rest of the paper. �

Note. One could see from the proof that the following three assertions are equiv-
alent:

• An SDW is overcompressive.
• An SDW satisfies the entropy inequality for every convex entropy–entropy
flux pair (1.4, 1.5).

• An SDW satisfies the entropy inequality for a single convex entropy–entropy
flux pair (energy conservation law, for example)

4. SDW shock interactions

First, let us look at the simpler case, a double SDW interaction.

Theorem 4.1. Suppose that two SDWs emerge from the points (−x0, 0) and (0, 0).
The solution of the interaction problem is a single weighted SDW emerging from
the interaction point.

Proof. In that case relation (1.6) is not satisfied for any of the Riemann problems,
i.e. λ1(ρ0, q0) ≥ λ2(ρ1, q1) and λ1(ρ1, q1) ≥ λ2(ρ2, q2) imply

λ1(ρ0, q0) ≥ λ2(ρ2, q2). (4.1)

Thus one can try to find an overcompressive weighted SDW solution after the
interaction. The following notation will be used:

A :=[q]2−[ρ]
[q2−1

ρ

]

= ρ0ρ2(λ1(ρ0, q0)−λ1(ρ2, q2))(λ2(ρ0, q0)−λ2(ρ2, q2)),

B2 :=[q]−χin

ξin
[ρ], [x] := x2−x0, here.

With these variables we have

c′(t) =
[q]

[ρ]
+

A(t−T )+Bχin

[ρ]
√

A2(t−T )2−2Bχin+χ2
in

,

ξ(t) =
√

A2(t−T )2−2Bχin+χ2
in, and χ(t) = c′(t)ξ(t).

Denote
D(t) := A2(t−T )2−2Bχin+χ2

in

and use ·̄ for data of the SDW on left-, and y ·̃ for data of the one on right-hand
side respectively (the speed of the left(right)-hand SDW is denoted c̄ (c̃), etc). In
order to verify (3.4), we have to prove that D(t) ≥ 0 for t > T . We already know
that the first variable represents the density so all ξ’s should be nonnegative and
A > 0 due to (4.1). Next, assume ρ2 > ρ0. Then

χin

ξin
=

χ̄T+χ̃T

ξ̄T+ξ̃T
=

c̄ξ̄T+c̃ξ̃T

ξ̄T+ξ̃T
=

(c̄−c̃)ξ̄T

ξ̄T+ξ̃T
+c̃ > c̃
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and

B2 =q2−q0−(ρ2−ρ0)
χin

ξin
≤ q2−q0−(ρ2−ρ0)c̃ ≤ q2−q0−(ρ2−ρ0)

q2+1

ρ2

=
1

ρ2
(−ρ2(q0+1)+ρ0(q2+1))
︸ ︷︷ ︸

<0 due to (4.1)

< 0.

If ρ0 > ρ2, then

χin

ξin
= c̄+

(c̃−c̄)ξ̃T

ξ̄T+ξ̃T
< c̄

and

B2 ≤q2−q0−(ρ2−ρ0)c̄ ≤ q2−q0−(ρ2−ρ0)
q0−1

ρ0

=
1

ρ0
(−ρ2(q0−1)+ρ0(q2−1))
︸ ︷︷ ︸

<0 due to (4.1)

< 0.

In both cases we have D(T ) ≥ ξ2in > 0, D′(t) = 2(A(t−T )−B2ξin) > 0, and
consequently, D(t) > 0 for all t ≥ T . If ρ2 = ρ0 then A = B2

2 and D(t) =
(B2(t−T )−ξin)

2 ≥ 0. That is, all expressions in (3.4) are well defined and we can
check the SDW admissibility using Lemma 3.1. The speed of the outgoing wave
equals

c′(t) =
[q]

[ρ]
+

A(t−T )−B2ξin

[ρ]
√

A(t−T )2−2B2ξin+ξ2in
, with c′(T ) =

[q]

[ρ]
+
[ρ]χin

ξin
−[q]

[ρ]
.

We already saw that
χin

ξin
=

c̄ξ̄T+c̃ξ̃T

ξ̄T+ξ̃T
∈ (c̃, c̄) because ξ̄ and ξ̃ are positive. The

incoming SDWs are both overcompressive, so λi(ρ0, q0) ≥ c̄ >
χin

ξin
> c̃ ≥ λi(ρ2, q2),

i = 1, 2, and the resulting wave is also overcompressive in a neighborhood of t = T .
Differentiating c′(t) once again

c′′(t) =
Aξ(t)2−

(
A(t−T )−B2ξin

)2

[ρ]ξ(t)3
=

(
A−B2

2

)
ξ2in

[ρ]ξ(t)3
(4.2)

since ξ(t) > 0 is given by (3.4). It is now easy to see that the sign of c′′(t)
does not depend on t at all: sign(c′′(t)) = sign(A−B2

2) sign(ρ2−ρ0). So, c′(∞) =

limt→∞ c′(t) =
[q]

[ρ]
+

√
A

[ρ]
. Therefore, if the wave is overcompressive in t = T and at

infinity, then it is overcompressive for all t ∈ [T,∞) since c′(t) is monotone. Let us
assume ρ2 > ρ0 (ρ0 > ρ2, resp). Then

q0−1

ρ0
≥ q2−q0
ρ2−ρ0

+

√
A

ρ2−ρ0

ρ2

(q0−1

ρ0
−q2−1

ρ2

)

≥ (≤)
√
A (after multiplication by (ρ2−ρ0))

ρ22

(q0−1

ρ0
−q2−1

ρ2

)2

≥ (≤)ρ0ρ2

(q0−1

ρ0
−q2−1

ρ2

)(q0+1

ρ0
−q2+1

ρ2

)

ρ2

(q0−1

ρ0
−q2−1

ρ2

)

≥ (≤)ρ0

(q0+1

ρ0
−q2+1

ρ2

)
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=ρ0

(q0−1

ρ0
−q2−1

ρ2
+

2

ρ0
− 2

ρ2
︸ ︷︷ ︸

= 2
ρ0ρ2

(ρ2−ρ0)

)

q0−1

ρ0
−q2−1

ρ2
≥ 2

ρ2
(after another multiplication by (ρ2−ρ0)

−1).

But the last inequality is equivalent to λ1(ρ0, q0) ≥ λ2(ρ2, q2) which follows from
(4.1). In almost the same manner one can prove the inequality

q2−q0
ρ2−ρ0

+

√
A

ρ2−ρ0
≥ q2+1

ρ2
.

So we have proved that the resulting SDW is overcompressive and thus entropic. �

We deal with the interaction of a SDW with a wave consisting of two contact
discontinuities in the following assertions. Suppose that (ρ0, q0) is connected to
(ρ1, q1) by a SDW, (ρ1, q1) is connected to (ρs, qs) by a CD1 that is connected to
(ρ2, q2) by a CD2.

There are different results depending on the relation between the constants in
(3.1). Each of the following assertions is devoted to one possibility. We start with
the case when system (1.1) with the Riemann data

(ρ, q)(x, 0) =

{

(ρ0, q0), x < 0

(ρ2, q2), x > 0

has a solutions consisting of two contact discontinuities. Now, there is a delta
function in the initial data so an elementary CDC solution is impossible to find.
But one can try with the so called delta contact discontinuities (defined in [15]).
These waves are carrying delta measure and acting in a linear way – their strength
do not change with time and they are spreading along the characteristics. A typical
representative of the i-th delta contact discontinuity connecting the states (ρl, ql)
and (ρr, qr) is given by

(ρ, q) =







(ρl, ql), x < cit−ε

(ρ0,ε, q0,ε), cit−ε < x < cit

(ρ1,ε, q1,ε), cit < x < cit+ε

(ρr, qr), x > cit+ε,

(4.3)

where ci = λi(ρl, ql) = λi(ρr, qr).

Theorem 4.2. Suppose that a solution to problem (1.1,3.1) consists of a SDW
emanating from (−x0, 0) followed by two centered contact discontinuities. Denote by
(ρs, qs) an intermediate state between these contact discontinuities. If λ1(ρ0, q0) <
λ2(ρs, qs), i.e. if

2

ρs
>

q0−1

ρ0
−q1+1

ρ1
+

2

ρ1
= λ1(ρ0, q0)−λ1(ρ1, q1) (4.4)

then there exists a unique solution to the interaction problem in the form of two delta
contact discontinuities emanating from the interaction point. It does not interact
with the second incoming contact discontinuity.
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Proof. Our first task is to find a solution to (1.1) with the initial data

(ρ, q)|t=T =

{

(ρ0, q0), x < xT

(ρs, qs), x > xT

+(ξin, χin)δ(xT ,T ) (4.5)

at time T of the interaction of the SDW and the first CD. Here, xT is a space
component of the interaction point while ξin and χin are incoming SDW strengths
for ρ and q variable, respectively. Note that an overcompressive SDW can not
follow or be followed by any other wave. Substitution of a weighted SDW into
the equation with the new initial data (4.5) leads again to ODEs system (3.3).
A necessary condition for existence of a non-constant solution to the system is
ρs(q0−1)−ρ0(qs+1) > 0. But that clearly contradicts assumption (4.4). Thus, only
possible choice for a SDW solution is a non-overcompressive wave ξ(t) = const and
χ(t) = const. Then c(t) = const ·t and the weighted SDW reduces to a wave of
the form (4.3). The first and third equation in the system are just the Rankine–
Hugoniot conditions. The other itwo equations in (3.3) are satisfied if χ/ξ equals
the speed of wave. The Rankine–Hugoniot conditions further implies that (ρr, qr)
lies on a CD1(ρl, ql) or CD2(ρl, ql). Let us observe that relation (4.4) is equivalent
to (1.6) with (ρ1, q1) substituted by (ρs, qs). Thus there exist a state (ρss, qss) such
that it lies on CD1(ρ0, q0) and (ρs, qs) ∈ CD2(ρss, qss). That enables us to construct
an SDW solution to (1.1,4.5) consisting of two delta contact discontinuities

(ρ, q) =







(ρ0, q0), x−xT < c1(t−T )−ε

(ρ0,ε, q0,ε), c1(t−T )−ε < x−xT < c1(t−T )

(ρ1,ε, q1,ε), c1(t−T ) < x−xT < c1(t−T )+ε

(ρss, qss), c1(t−T )+ε < x−xT < c2(t−T )−ε

(ρ2,ε, q2,ε), c2(t−T )−ε < x−xT < c2(t−T )

(ρ3,ε, q3,ε), c2(t−T ) < x−xT < c2(t−T )+ε

(ρs, qs), c2(t−T )+ε < x−xT ,

(4.6)

where c1 = λ1(ρ0, q0) = λ1(ρss, qss), c2 = λ2(ρs, qs) = λ2(ρss, qss), ρ0,ε = ρ1,ε =
ξ1

2ε
, q0,ε = q1,ε =

χ1

2ε
, ρ2,ε = ρ3,ε =

ξ2

2ε
, q2,ε = q3,ε =

χ2

2ε
. The positive reals ξ1, ξ2

are solutions to the system

ξ1+ξ2 = ξin,

c1ξ
1+c2ξ

2 = χin,

and χi = ciξ
i, i = 1, 2. The above system has a unique solution because c1 < c2.

The above solution (4.6) is already unique in the weak sense but the entropy
condition has to be proved. The first entropy relation (3.5) is satisfied since ciξ

i =
χi (see the proof of Lemma 3.1). For the first wave in (4.6), the second entropy
condition (3.6) reduces to

−c1
(
η(ρss, qss)−η(ρ0, q0)

)
+Q(ρss, qss)−Q(ρ0, q0) ≤ 0.
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The left-hand side of the above inequality equals

− q0−1

ρ0
︸ ︷︷ ︸

= qss−1
ρss

(

ρss
2

(

F
(qss−1

ρss

)

+G
(qss+1

ρss

))

−ρ0
2

(

F
(q0−1

ρ0

)

+G
(q0+1

ρ0

))
)

+
qss+1

2
F
(qss−1

ρss

)

+
qss−1

2
G
(qss+1

ρss

)

−q0+1

2
F
(q0−1

ρ0

)

−q0−1

2
G
(q0+1

ρ0

)

= 0.

The same holds for the second wave in (4.6) so the solution is admissible.
Finally, one can see that the speed of the second delta contact discontinuity

equals c2 = λ2(ρss, qss) = λ2(ρs, qs) which is the same as the speed of the incoming
CD2 = λ2(ρs, qs) = λ2(ρ2, q2). That means that these waves will never interact,
and the proof is completed. �

The condition equivalent to (4.4) written without involving the state (ρs, qs) is

q2 < −1+
q0−1

ρ0
ρ2.

Suppose now that it is not satisfied. Then we have the following assertion as the
first possibility.

Theorem 4.3. Suppose that the solution to problem (1.1,3.1) consists of a SDW
emanating from (−x0, 0) followed by two centered contact discontinuities as in the
previous theorem. If c̄ ≥ λ2(ρs, qs), i.e. if

2

ρs
≤ c̄−q1−1

ρ1
= c̄−λ1(ρ1, q1) = c̄−λ1(ρs, qs) (4.7)

then there exists a weakly unique weighted SDW solution to the above interaction
problem. The symbol c̄ denotes the speed of the incoming SDW,

c̄ =

[q]1+

√

[q]21−[ρ]1

[
q2−1
ρ

]

1

[ρ]1
, with [y]1 := y1−y0.

Proof. Note that (4.7) imply 2
ρs

≤ λ1(ρ0, q0)−λ1(ρs, qs) since the incoming SDW

is overcompressive. That excludes (4.4), so the solution is weakly unique. As
before, denote by T the interaction time of the initial SDW and CD1. A weighted
SDW solution (3.2) to (1.1,4.5), with (ρ2, q2) substituted by (ρs, qs), exists since
λ1(ρ0, q0) > λ2(ρs, qs). One just have to prove that the wave is overcompressive
due to Lemma 3.1. The proof is similar to the one of Theorem 4.1 and we give just
the main points and differences. Note that the initial speed of the outgoing SDW

is c′(T ) =
χin

ξin
= c̄. The incoming SDW is overcompressive and assume a strict

inequality λ1(ρ0, q0) > c̄ = c′(T ), c̄ > λ1(ρs, qs)+
2

ρs
= λ2(ρs, qs) for a moment.

The cases of equality will be considered later. Thus, the outgoing SDW is entropic
in a neighborhood of t = T . Denote [y] = ys−y0. The speed c′(t) has the same
formula as in the proof of Theorem 4.1,

c′(t) =
[q]

[ρ]
+

A(t−T )−B2ξin

[ρ]
√

A(t−T )2−2B2ξin+ξ2in
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with

A = ρ0ρs(λ1(ρ0, q0)−λ1(ρs, qs))(λ2(ρ0, q0)−λ2(ρs, qs)), B2 = [q]−χin

ξin
[ρ].

Also c′′(t) has a constant sign for t > T due to (4.2), so c′(t) is monotone. At

infinity c′(t) takes the value c′(∞) =
qs−q0+

√
A

ρs−ρ0
, so we have λ1(ρ0, q0) ≥ c′(∞) ≥

λ2(ρs, qs) obtained in the same way as in the proof of Theorem 4.1 just substituting
ρ2 by ρs. Thus the outgoing SDW is overcompressive for all t ≥ T . On the other
hand, c′(t) > λ2(ρs, qs) implies c′(t) > λ2(ρ2, q2) since (ρs, qs) and (ρ2, q2) are
connected by CD2 and λ2(ρs, qs) = λ2(ρ2, q2). Thus the outgoing SDW is faster
than incoming CD2. Denote by (T1, X1) the interaction point of the outgoing SDW
and the incoming CD2. Then we have to solve the problem (1.1) with the initial
data

(ρ, q)|t=T1 =

{

(ρ0, q0), x < X1

(ρ2, q2), x > X1

+(ξ(T1), χ(T1))δ(T1,X1).

But λ1(ρ0, q0) > c′(T1) ≥ λ2(ρs, qs) = λ2(ρ2, q2) means that (4.1) is satisfied so
the complete proof of Theorem 4.1 can be applied in the present situation: There
exists only a single weighted SDW as a solution after t > T1. Weak uniqueness
easily follows as above.

Let us now check cases λ1(ρ0, q0) = c̄ and c̄ = λ2(ρs, qs). In both of them we
have to check overcompressibility condition in a neighborhood of t = T by more
precise control of c′(t) there.

If c̄ = λ2(ρs, qs) then

A−B2
2 = ρ0(ρs−ρ0)

(

λ2(ρ0, q0)−λ2(ρs, qs)
)(

λ1(ρ0, q0)−λ1(ρs, qs)−
2

ρs

)

︸ ︷︷ ︸

=λ1(ρ0,q0)−λ2(ρs,qs)

.

Therefore,
A−B2

2

ρs−ρ0
> 0 and c′′(t) > 0. Thus c′(t) is increasing and c′(t) > λ2(ρs, qs)

for t > T .
If c̄ = λ1(ρ0, q0) then

A−B2
2 = ρs(ρ0−ρs)(λ1(ρ0, q0)−λ1(ρs, qs))

(

λ1(ρ0, q0)−λ1(ρs, qs)−
2

ρs

)

,

A−B2
2

ρs−ρ0
< 0 and c′(t) < λ1(ρ0, q0) for t > T.

That completes the proof. �

5. Higher order SDWs

The remaining case is completely different from the others and we shall examine
it in this section. Suppose that all assumptions of Theorem 4.3 are valid but the
inequality (4.7) do not hold, i.e. c̄ < λ2(ρs, qs). One could see that there are no
difficulties to construct the same SDW solution as in that theorem, but the initial
speed of the resulting SDW would satisfy c′(0) = c̄ < λ2(ρs, qs) = λ2(ρ2, q2) and
the outgoing wave can not be overcompressive (entropic).

Therefore we have to use different approach to find out what is going on in this
case. Assume that a SDW starting at the point (−x0, 0) interacts with a centered
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CDC wave. The interaction happens at the time T =
x0

c̄+ε−λ1(ρs, qs)
when the

SDW front from the right-hand side x = −x0+(c̄+ε)t meets the centered CD1

supported by x = λ1(ρ1, q1) at the point Y1 =
λ1(ρs, qs)

c̄+ε−λ1(ρs, qs)
x0. Now, we do not

let ε → 0 as we done it above, but we use a more precise procedure. We stop the
initial solution at t = T so there are three new Riemann problems.

• The first Riemann problem connects (ρ0, q0) with (ρε, qε) at the point X1 =
λ1(ρs, qs)−2ε

c̄+ε−λ1(ρs, qs)
x0.

• The second Riemann problem connects the states (ρε, qε) and (ρs, qs) at
the point Y1.

• For the third Riemann problem at the point (λ2(ρ2), q2)t there is no need
for anything to do because (ρs, qs) and (ρ2, q2) are still connected by the
same incoming CD2. The same will be at any other interaction of that
CD2-wave.

While the incoming speed of SDW at the interaction point violates the over-
compressibility condition on the right-hand side, there are two main possibilities
concerning the left hand-side: λ1(ρ0, q0) > c̄ or λ1(ρ0, q0) = c̄. The first one is
called the compressive while the second one is called the marginal interaction.

5.1. The compressive interaction. Suppose λ1(ρ0, q0) > c̄. We will use a se-
quence of small parameters {εn}n∈N, ... ≪ ε2 ≪ ε1 ≪ ε to describe new waves.
The general idea goes as follows. After an interaction occurs we fix the parameter
from the previous interaction, εn, and introduce a new one εn+1 ≪ εn to describe
a new approximate solution. Now we present the details.

The first interaction. Let ε be fixed. For the first Riemann problem in X1, the

condition (1.6) is violated since λ2(ρε, qε) =
qε+1

ρε
= c̄+ξ0ε and λ1(ρ0, q0) > c̄, too.

Put ξ0 := ρεε = 1
2κ1 (due to Theorem 2.1) and χ0 := qεε = 1

2κ2 = c̄ξ0. We are in
position to use Theorem 2.1 with ε substituted by ε1. The speed of the new SDW

(i.e. SDW of the second order) is c1 =
qε−q0+κ1,1

ρε−ρ0
with

κ1,1 =
√

ρ0ρε(λ1(ρ0, q0)−λ1(ρε, qε))(λ2(ρ0, q0)−λ2(ρε, qε))

=

√

ρ0
ξ0
ε

(q0−1

ρ0
−c̄+

ξ0
ε

)(q0+1

ρ0
−c̄−ξ0

ε

)

≈
√

ρ0ξ0

(q0−1

ρ0
−c̄
)(q0+1

ρ0
−c̄
)

ε−1/2

being the Rankine–Hugoniot deficit in the first equation. Thus

c1 ≈ c̄ξ0−εq0+
√
Cξε

ξ0−ερ0
≈ c̄+

2
√
Cξ

ξ0
ε1/2, Cξ =

1

4
ρ0

(q0−1

ρ0
−c̄
)(q0+1

ρ0
−c̄
)

.

Denote the inner value in the outgoing SDW by (ρε1 , qε1) (again identifying both
sides of SDW). The fronts of the SDW have speeds c1,− = c1−ε1 and c1,+ = c1+ε1.
Denote ξ1 := ε1ρε1 = 1

2κ1,1 and χ1 := ε1qε1 . As before, χ1 = c1ξ1, but ξ1 and χ1

are not constants now and they depend on ε.
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For the second problem at Y1, the condition (1.6) is satisfied because of the as-
sumption c̄ < λ2(ρs, qs), so the solution consists of two contact discontinuities.

The speed of the first one is λ1(ρε, qε) =
qε−1

ρε
= c̄−ξ0ε while the speed of the

second one is λ2(ρs, qs). The components of the intermediate state are ρs1 =
2

λ2(ρs, qs)−λ1(ρε, qε)
≈ 2

λ2(ρ2, q2)−c̄
and qs1 =

λ2(ρs, qs)+λ1(ρε, qε)

λ2(ρs, qs)−λ1(ρε, qε)
≈ λ2(ρ2, q2)+c̄

λ2(ρ2, q2)−c̄
.

The second interaction. Take ξ1 = ε1ρε1 The distance between X1 and Y1 is
2Tε while the difference between the speeds of the interacting waves starting at
these point equals

c1,+−λ1(ρε, qε) = c1+ε1−
(

c̄− ε

ξ0

)

≈ 2
√
Cξ

ξ0
ε1/2.

The next interaction time of the waves after t > T will be denoted by T1 and

T1 =
2εT

c1+ε1−λ1(ρε, qε)
≈ ξ0T

Cξ
ε1/2.

At t = T1 with ε and ε1 fixed we have again three Riemann problems at the
points (X2, T1), (Y2, T1) and (λ2(ρ2, q2)T1, T1), where X2 = X1+(c1−ε1(T1−T ))
and Y2 = X1+(c1+ε1(T1−T )). Let us and introduce a new parameter ε2 ≪ ε1 that
will be used for construction of an approximate solution when t > T1. Riemann
problem solutions at these points are similar to the ones for t = T : at the point
X2 we have an SDW with the inner value (ρε2 , qε2), while there is an CDC solution
with the intermediate state (ρs2,qs2 ) at Y2. As we already noted, the third solution
is just the incoming wave. Using notation analogous to the previous interaction
analysis, put ξ2 = ε2ρε2 = 1

2κ2,1 and χ2 = ε2qε2 = c2ξ2.
Due to overcompressibility, the SDW starting from X2 will interact with CD1

starting from Y2 and the procedure repeats recursively. Let us show how. (One can
see the illustration at Figure 5.1.)
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Figure 1. The compressive case

Further interactions. Suppose that an interaction occurs at a time t = Tn and
a point Yn. Values Xn, εn, ρn, qn, ξn, χn are defined as above. Let us fix εn and
introduce εn+1 ≪ εn. As before, at the point Xn, there is a SDW solution of order
higher by one with speed cn+1 and inner value (ρεn+1 , qεn+1). In the point Yn there
is an CDC solution with the intermediate state (ρsn+1 , qsn+1). The initial CD2

continues to run on the right-hand side of Yn as we already noticed. Denote ξn+1 =
εn+1ρn+1 and Tn+1 the time of next interaction is determined by the intersection
of the lines x = Xn+(cn+1+εn+1)(t−Tn) and x = Yn+λ1(ρεn , qεn)(t−Tn).

Let us now estimate some of the important quantities.
First, note that ξn+1 > ξn and cn ≈ c̄. For every n, εn → 0, but one has to keep

in mind the relation . . . εn ≪ · · · ≪ ε1 ≪ ε. We have

ξn+1 =
1

2

√

ρ0ρεn

(q0−1

ρ0
−qεn−1

ρεn

)(q0+1

ρ0
−qεn+1

ρεn

)

≈1

2

√

ρ0
ξn
εn

(q0−1

ρ0
−cn+

εn
ξn

)(q0+1

ρ0
−cn−

εn
ξn

)

≈ C
1/2
ξ ε−1/2

n ξ1/2n .

Using the above recursive relation one gets

ξn+1 ≈C
∑n+1

i=1 2−i

ξ ε−2−(n+1)
n∏

i=1

ε−2−(n+1−i)

i < Cξε
2−(n+1)

n∏

i=1

ε−2−(n+1−i)

i ,

as · · · ≪ ε1 ≪ ε → 0, for some Cξ independent of ε’s.

(5.1)

We have used that ξ1 ≈ C
1/2
ξ ξ

1/2
0 ε−1/2.
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Then

cn+1−cn =
qεn−q0+2ξn+1

ρεn−ρ0
−cn =

εn(cnρ0−q0)+2εnξn+1

ξn−εnρ0
≈ 2εn

ξn+1

ξn

∼ε2
n+1

εn

n∏

i=1

ε−2−(n+1−i)

i

n−1∏

i=1

ε2
(n−i)

i =

n∏

i=1

ε2
−(n+1−i)

i .

The last important quantity is the distance between two successive interactions
∆Tn+1 = Tn+1−Tn. We have

∆Tn+1 =
2εn∆Tn

cn+1+εn+1−λ1(ρεn , qεn)
=

2εn∆Tn

cn+1+εn+1−cn+
εn
ξn

≈2
ξn

ξn+1
∆Tn ∼ ε−2−(n+1)

ε1/2n

n−1∏

i=1

ε−2−(n+1−i)

i ∆Tn.

Using that recursive formula we have

∆Tn+1 ∼ ε−1/2+2−(n+1)
n∏

i=1

ε2
−(n+1−i)

i ∆T1
︸︷︷︸

≈
ξ0

C
1/2
ξ

Tε1/2

∼ ε2
−(n+1)

n∏

i=1

ε2
−(n+1−i)

i T. (5.2)

So, each ∆Tn+1 is less than ∆Tn so the first question one should ask is whether
the sum

∑∞

n=1 Tn is convergent or not. That is, whether the interaction procedure
has a time limit or not. The answer depends on relations between ε, ε1, ..., εn,.... In
order to find them, we will check when the piecewise constant function constructed
by the above procedure

(ρ, q)|t∈[Tn,Tn+1) =







(ρ0, q0), x < Xn+(cn+1−εn+1)(t−Tn)

(ρεn+1 , qεn+1), Xn+(cn+1−εn+1)(t−Tn) < x

< Xn+(cn+1+εn+1)(t−Tn)

(ρεn , qεn), Xn+(cn+1+εn+1)(t−Tn) < x

< Yn+λ1(ρsn , qsn)(t−Tn)

(ρsn , qsn), Yn+λ1(ρsn , qsn)(t−Tn) < x

< Yn+λ2(ρsn , qsn)(t−Tn)
...

(ρs, qs), Y1+λ2(ρs, qs)(t−T ) < x < λ2(ρs, qs)t

(ρ2, q2), x > λ2(ρs, qs)t

(5.3)

n = 1, 2, . . . satisfies system (1.1) in the approximated sense and when it satisfies
the entropy inequality (2.3). Here, T is identified with T0.

We will use the same method as in [16] for the normal (i.e. first order) SDWs.

Let us consider the interval [Tn, Tn+1]. Put f(ρ, q) =
(

q,
q2−1

ρ

)

and U = (p, q).

Then

(I1, I2) := 〈∂tUε+∂xf(Uε), φ〉 =
∞∑

n=1

Jn,
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where

Jn =−
Tn+1∫

Tn

(cn−εn)(Uεn−U0)φ((cn−εn)(t−Tn)+Xn, t)dt

−
Tn+1∫

Tn

(cn+εn)(Uεn−1−Uεn)φ((cn+εn)(t−Tn)+Xn, t)dt

−
Tn+1∫

Tn

(Usn−Uεn)λ1(Uεn−1)φ(λ1(Uεn)(t−Tn)+Yn, t)dt

(here λ1(Uεn−1) = λ1(Usn))

+

Tn+1∫

Tn

(f(Uεn)−f(U0))φ((cn−εn)(t−Tn)+Xn, t)dt

+

Tn+1∫

Tn

(f(Uεn−1)−f(Uεn))φ((cn+εn)(t−Tn)+Xn, t)dt

+

Tn+1∫

Tn

λ1(Uεn−1)(f(Usn)−f(Uεn−1))φ(λ1(Uεn−1)(t−Tn)+Yn, t)dt.

As in [16] the next step is using the Taylor expansions of the test function around
Γn := {(x, t) : (cn(t−Tn)+Xn, t)} after the time t = Tn. First, note that all
integrals supported by the characteristics cancels due to the contact discontinuity
construction. We expand the other integrals in neighborhood of the line Γn. Then

Jn ≈−
Tn+1∫

Tn

(cn−εn)(Uεn−U0)
(
φ|Γn−∂xφ|Γn ·εn(t−Tn)

)
dt

−
Tn+1∫

Tn

(cn+εn)(Uεn−1−Uεn)
(
φ|Γn+∂xφ|Γn ·εn(t−Tn)

)
dt

+

Tn+1∫

Tn

(f(Uεn)−f(U0))
(
φ|Γn−∂xφ|Γn ·εn(t−Tn)

)
dt

+

Tn+1∫

Tn

(f(Uεn−1)−f(Uεn))
(
φ|Γn+∂xφ|Γn ·εn(t−Tn)

)
dt.

Neglecting terms converging to zero with the rate at least as ε and using cn ≈ c̄
we have

Jn ≈
∫ Tn+1

Tn

(
2εnUεn+cnU0−cnUεn−1−εnUn−1

︸ ︷︷ ︸

→0

−f(U0)+f(Uεn−1)
)
φ Γndt
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+

∫ Tn+1

Tn

(
cnεnUεn−cnεnUn−1

︸ ︷︷ ︸

→0

cn+εnUεn−2εnf(Uεn)
)
(t−Tn)∂xφ Γndt

Using the fact that and ε−1
n εn+1 ≈ 0 as we have used const·ε ≈ 0 in the case

of normal SDWs, one get the convergence to zero for two terms above for each
n, i.e. both components of Uεn = (ρεn , qεn) go to infinity slower than ε−1

n+1. But

there are infinitely many such terms in the sum
∑∞

n=1 Jn, so one has to control

their behavior. That can be done by supposing that
εn+1

εn
≤ dε → 0, uniformly

with respect to the first perturbation parameter ε). The most natural choice is
εn = εn+1 (dε = ε), as it was ussual in weak asymptotic methods (see [12] or [7]
for example).

With such assumption, the following relations should be fulfilled

cn(ρεn−1−ρ0)−(qεn−1−q0)+2εnρεn ≈ 0

cnεnρεn−εnqεn ≈ 0

cn(qεn−1−q0)−
(qεn−1−1

ρεn−1

−q0−1

ρ0

)

+2εnqεn ≈ 0

cnεnρεn−εnqεn ≈ 0

cnεnqεn−
εnqεn−1

ρεn
≈ 0.

But all these relations are already satisfied during the construction of (n+1)-th
order SDWs (after fixing εn−1 and introducing εn ≪ εn−1) by setting

lim
εn→0

εnρεn = ξn =
1

2
κn,1, lim

εn→0
εnqεn = χn, cn =

χn

ξn
.

We have used the notation ε0 = ε while κn,1 is the Rankine-Hugoniot deficit for
the first equation in the strip [Tn, Tn+1]. Note that the relations for n = 0 have
been already established when the Riemann problem was solved.

Thus we have proved the existence of a sequence of higher order SDWs that solves
our problem in approximate sence. The next step is to prove that the solution is
admissible, i.e.

∂tη(ρ, q)+∂xQ(ρ, q) ≤ 0 for (ρ, q) given by (5.3)

in distributional sense for each convex entropy pair (η,Q) given by (1.4,1.5). Like

in the previous cases, we shall prove the above inequality for η = ρ
2F
(

q−1
ρ

)

, F is

convex, while the appropriate entropy flux is then Q = 1
2 (q+1)F

(
q−1
ρ

)

.

The case η = ρ
2G
(

q+1
ρ

)

can be treated in the same way. Admissibility of the

waves before t = T has been already proved. Using the above calculations with
U = η(ρ, q) and f(U) = Q(ρ, q) one gets that the following relations have to be
satisfied in each interval [Tn, Tn+1]:

−cn(η(ρεn−1 , qεn−1)−η(ρ0, q0))+Q(ρεn−1 , qεn−1)−Q(ρ0, q0)

+2εnη(ρεn , qεn) ≤ 0, εn ≪ 1

and cnεnη(ρεn , qεn)−εnQ(ρεn , qεn) ≈ 0.
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The second relation is true since qεn = cnρεn so the difference between εn
1
2 (qεn+

1)F
(qεn−1

ρεn

)

and εn
1
2ρεnF

(qεn−1

ρεn

)

equals 1
2εnF (c̄n) ≈ 0. Letting all εn to zero

one gets

2εnη(ρεn , qεn) ≈ ξnF (cn).

The first relation is satisfied if for every n,

En := cn(η(ρεn−1 , qεn−1)−η(ρ0, q0))−(Q(ρεn−1 , qεn−1)−Q(ρ0, q0)) ≥ ξnF (cn).

But

En =
cnρεn−1−qεn−1−1

2
F
(qεn−1−1

ρεn−1

)

+
q0+1−c1ρ0

2
F
(q0−1

ρ0

)

=
cn(ρεn−1−ρ0)−(qεn−1−q0)

2
︸ ︷︷ ︸

=κn,1>0

(
cnρεn−1−qεn−1−1

cn(ρεn−1−rho0)−(qεn−1−q0)
F
(qεn−1−1

ρεn−1

)

+
q0+1−c1ρ0

cn(ρεn−1−rho0)−(qεn−1−q0)
F
(q0−1

ρ0

))

≥κn,1

2
F

(cn(qεn−1−q0)−
(

qεn−1
−1

ρεn−1
− q0−1

ρ0

)

κn,1

)

=
κn,1

2
F
(κn,2

κ1,1

)

.

As
κn,2

κn,1
=

χεn−1

ξεn−1

= cn, we have E2 ≥ 1
2κn,1F (cn) = ξnF (cn). That proves the

admissibility of the approximate solution in [0, T ]∪
⋃∞

n=1[Tn−1, Tn].

Taking into account the relation
εn+1

εn
≤ dε, dε → 0 one can find more precise

estimates for the parameters in (5.1) and (5.2):

ξn+1 ∼d−n+1−2−n

ε ε1−2−(n+1)

∞∑

n=1

∆Tn ∼
∞∑

n=1

dn−2+2−(n−1)

ε ε1−2−n ≤ ε1/2(1+d1/2ε +d1+1/4
ε +......

≤ ε1/2
∑

(d1/2ε )n

︸ ︷︷ ︸

convergent for ε≪1

→ 0, as ε → 0.

That is, there is a limit limε→0 Tn = T̄ that can be considered as a lifespan of SDW

solution - note that the first interaction point T tends to T̄ =
x0

c̄−λ1(ρs, qs)
. Put

X̄ = limε→0 Xn (= limε→0 Yn).
The total mass after T is now

∑∞

n=1 Pn, where

Pn =
1

2
ρεn+1εn+1(Tn+1−Tn)

2

︸ ︷︷ ︸

mass in △XnYn+1Xn+1

+
1

2
ρεnεn(Tn+1−Tn)(Tn−Tn−1)
︸ ︷︷ ︸

mass in △XnYnYn+1

+
1

2
ρsn+1(λ2(ρsn , qsn)−λ1(ρsn , qsn))(Tn+1−Tn)
︸ ︷︷ ︸

mass in CDC part

∼1

2
ξn+1(∆Tn+1)

2+
1

2
ξn∆Tn∆Tn+1+

ρsn+1

ρsn
∆Tn+1



24 MARKO NEDELJKOV

∼ ε2
−(n+1)

n∏

i=1

ε2
−(n+1−i)

i T 2 ∼ ∆Tn+1.

Therefore,
∑∞

n=1 Pn ∼ ε1/2 → 0 as ε → 0.

Due to the above analysis, the entropic approximate higher order SDW solution
depending on the parameters ε ≫ ε1 ≫ ....... exists only below T̄ < ∞. Its

limit is the Riemann data (ρ, q)|t=T̄ =

{

(ρ0, q0), x < X̄

(ρs, qs), x > X̄
. One can construct an

entropic weak solution in t > T̄ for such initial data, but that solution can not be
a continuation of the initial solution for t < T̄ since a distributional limit for t < T̄
contains a delta function while the one for t > T̄ does not.

One could say that SDW solution ”blows up” at time T̄ . So the search for
entropic weak solution after that time is left as an open problem.

5.2. The marginal case. Now, consider the case when c̄ = λ1(ρ0, q0). A solution
to the Riemann problem at the point (T,X1) is now CDC since λ1(ρ0, q0) = c̄ < c̄+

ε
ξ0

= λ2(ρε, qε). The values between CDs are ρr1 =
2

λ2(ρε, qε)−λ1(ρ0, q0)
=

2ξ0
ε

and

qr1 =
λ2(ρε, qε)+λ1(ρ0, q0)

λ2(ρε, qε)−λ1(ρ0, q0)
=

2ξ0c̄+ε

ε
. The solution to the Riemann problem at

(T, Y1) is the same as in the previous case consisting of a CDC with the intermediate
state (ρs1 , qs1). The difference between slopes of the interacting waves started at

the points X1 and Y1 is λ2(ρε, qε)−λ1(ρε, qε) =
2

ρε
=

2ε

ξ0
. Thus the next interaction

time T1 equals

T1 = T+
2εT

λ2(ρε, qε)−λ1(ρε, qε)
= T+ξ0T.

At that moment there are two unsolved Riemann problems at the points X2 = X1+
λ1(ρ0, q0)(T1−T ) and Y2 = X1+λ2(ρr1 , qr1)(T1−T )Y1. At the pointX2, λ1(ρ0, q0) =
c̄ < λ2(ρr1 , qr1) = λ2(ρε, qε) and the solution to the Riemann problem in that point

is a CDC with the intermediate state (ρr2 , qr2), ρr2 =
2

λ2(ρr1 , qr1)−λ1(ρ0, q0)
and

qr2 =
λ2(ρr1 , qr1)+λ1(ρ0, q0)

λ2(ρr1 , qr1)−λ1(ρ0, q0)
. It is exactly the same as the one at the point X1

at t = T since λ2(ρr1 , qr1) = λ2(ρε, qε). At X2, λ1(ρr1 , qr1) = λ1(ρ0, q0) = c̄ <

λ2(ρs1 , qs1) = λ2(ρs, qs) and the solution is also a CDC with ρs2 =
2

λ2(ρs, qs)−λ1(ρr1 , qr1)
,

qs2 =
λ2(ρs, qs)−λ1(ρr1 , qr1)

λ2(ρs, qs)−λ1(ρr1 , qr1)
. Note that the later one is bounded with respect to

ε. The difference between slopes of interacting waves started at the points X2 and
Y2 is λ2(ρε, qε)−λ1(ρε, qε) =

1
ρε

= ε
ξ0
, while the distance between X2 and Y2 is ε.

So the next interaction time is T2 = T1+ξ0. Again, we have to solve two Riemann
problems, but the solutions are the same as the ones at points X2 and Y2. And the
procedure repeats again with the same solutions at new interaction points. Thus,
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we have the following approximate solution. For T < t < T1,

(ρ, q) =







(ρ0, q0) x < X1+c̄(t−T )

(ρr1 , qr1), X1+c̄(t−T ) < x < X1+λ2(ρε, qε)(t−T )

(ρε, qε), X1+λ2(ρε, qε)(t−T ) < x < Y1+λ1(ρε, qε)(t−T )

(ρs1 , qs1), Y1+λ1(ρε, qε)(t−T ) < x < Y1+λ2(ρs, qs)(t−T )

(ρs, qs), Y1+λ2(ρs, qs)(t−T ) < x < λ2(ρ2, q2)t

(ρ2, q2), x > λ2(ρ2, q2)t

.

And for t > T1,

(ρ, q) =







(ρ0, q0) x < X2+c̄(t−T1)

(ρr1 , qr1), X2+c̄(t−T1) < x < Y2+c̄(t−T1)

(ρs2 , qs2), Y2+c̄(t−T1) < x < Y2+λ2(ρs, qs)(t−T1)

(ρs, qs), Y2+λ2(ρs, qs)(t−T1) < x < λ2(ρ2, q2)t

(ρ2, q2), x > λ2(ρ2, q2)t

.

Contrary to the case λ1(ρ0, q0) > c̄ when the distribution limit of the approximate
solution does not exists after a finite time, now there exists a distributional limit
for T > 0. Denote limε→0 T = T̄ , limε→0 X1 = X̄. Then (ρ, q) tents to

(ρ̄, q̄) =







(ρ0, q0), x < XT+c̄(t−T̄ )
(

2
λ2(ρs,qs)−c̄ ,

λ2(ρs,qs)+c̄
λ2(ρs,qs)−c̄

)

, X̄+c̄(t−T̄ ) < x < X̄+λ2(ρs, qs)(t−T̄ )

(ρs, qs), x > X̄+λ2(ρs, qs)(t−T̄ )

+σ(t)(1, c̄)δx=X̄+c̄(t−T̄ ),

for t > T̄ . Here σ(t) = ξ20(t−T̄ ). The above analysis is illustrated in Figure 5.2.
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Figure 2. The marginal case

6. Conclusion

Let us conclude with an overview of the different cases of the initial data (3.1)
that yield the wave interaction with an SDW on the left-hand side. The right-hand
side can be done in an analogous way and we omit it here.

The necessary condition for existence of an incoming SDW on the left-hand side
is λ1(ρ0, q0) ≥ λ2(ρ1, q1). Let us fix the states (ρ0, q0) and (ρ1, q1) satisfying that
relation and denote by c̄ the speed of the incoming SDW.

(a) If λ1(ρ1, q1) ≥ λ2(ρ2, q2) i.e. q2 ≤ −1+
q1−1

ρ1
ρ2, then the second incoming

wave is also an SDW, and the outgoing wave is a single weighted SDW.

(b) If q2 > −1+
q1−1

ρ1
ρ2 the second incoming wave is an CDC. Let (ρs, qs)

denotes the state between these contact discontinuities. Then λ1(ρ1, q1) =

λ1(ρs, qs) and λ2(ρs, qs) = λ2(ρ2, q2) imply
2

ρs
= λ2(ρ2, q2)−λ1(ρ1, q1) =

q2+1

ρ2
−q1−1

ρ1
.

(1) If
2

ρs
> λ1(ρ0, q0)−λ1(ρ1, q1) i.e. q2 > −1+

q0−1

ρ0
ρ2 the outgoing wave

consist of two delta contact discontinuities. The case is possible since

we have
q0−1

ρ0
>

q1−1

ρ1
already.
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(2) If c̄ ≥ q2+1

ρ2
, i.e. q2 ≤ −1+c̄ρ2 then the solution is a single weighted

SDW. Again, c̄ >
q2+1

ρ2
− 2

ρ1
so the above situation can happen.

(3) If c̄ <
q2+1

ρ2
and c̄ <

q0−1

ρ0
there exists an approximated piecewise

constant solution in the form of sum of higher order shadow waves

until the critical time T̄ =
x0

c̄−λ2(ρ2, q2)
. The question of existence of

entropic weak (approximate) solution after that time is still open.

(4) If q2 > −1+c̄ρ2 and c̄ =
q0−1

ρ0
we apply the same procedure as above,

but now we get a sequence of CDCs as an approximate solution. That
solution is a global one unlike the previous one and also has a distri-
butional limit for each T > 0.

(c) The case of a double CDC interaction can be solved by a straightforward use
of Riemann problem solutions as follows. Suppose that an CD2 connecting
states (ρ0, q0) and (ρ1, q1) interact with an CD1 connecting states (ρ1, q1)
and (ρ2, q2). Then the result of the interaction depends on the relation
between (ρ0, q0) and (ρ2, q2) in the following way.

(1) If
q0−1

ρ1
<

q1+1

ρ0
, then the outgoing wave consists of the CDs with the

state

(ρs, qs) =
( 2ρ0ρ1
ρ0(ρ1+1)−ρ1(q0−1)

,
ρ0(ρ1+1)+ρ1(q0−1)

ρ0(ρ1+1)−ρ1(q0−1)

)

.

(2) If
q0−1

ρ1
≥ q1+1

ρ0
, then the outgoing wave is a single simple SDW as in

the cases where Theorem 2.1 is applied.
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