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This work gives a condition for existence of singular and delta shock wave solutions
to Riemann problem for 2 x 2 systems of conservation laws. For a fixed left-hand
side value of Riemann data, the condition obtained in the paper describes a set of
possible right-hand side values. The procedure is similar to the standard one of
finding the Hugoniot locus. Fluxes of the considered systems are globally Lipschitz
with respect to one of the dependent variables. The association in a Colombeau-
type algebra is used as a solution concept.



1. INTRODUCTION

The aim of this paper is to give a criterion for existence of, so called, delta and
singular shock wave solutions to the Riemann problem

(1) ut + (fi(w)o + f2(u,v))e =0
(2) ve + (g1 (w)v + ga(u,v))z =0.

ug, ¢ < 0 9, € <0
(3) u(z,0) = O4(x) = {u1, £>0, v(z,0) = Oy(z) = {'Uh 2> 0.

Here, f;, gi, i = 1,2 are smooth functions, polynomially bounded together with all
their derivatives, and f> and g are sublinear with respect to v.

In order to have a well defined composition of functions, we use Colombeau-type
generalized functions and solution concept defined in [16] (one can look in [1] or
[15] for a general description of such spaces). In short, a generalized function is an
object obtained by a factorization in an algebra of smooth function nets over an
appropriate ideal. The representatives will be denoted by U, where the letter e
denotes an element of the index set I = (0, 1).

Delta and singular shock waves are represented by pairs of nets (U, V:), con-
verging to linear combinations of Dirac delta and step functions in D'. Singular
shock wave contains generalized functions which are zeros in the sense of distribu-
tions, but some of their powers converge to delta functions. Let us remark that
such objects have some similarities to infinite narrow solitons which are introduced
by Maslov and Omel’anov [13]. But all powers of a infinite narrow soliton are zero
distributionally. Further results in this direction for systems of conservation laws
can be found in paper [3] of Danilov, Maslov and Shelkovich.

For a given point (ug,vp) € R?, the delta (singular delta) locus for (1-2) is a set of
points (u1,v;) € R? for which there exists a delta (singular) shock wave connecting
the Riemann data (ug,vg) and (u1,v1), i.e. (3) is satisfied. Thus, this definition is
analogous to the one of the classic Hugoniot locus, in the case of shock waves.

If system (1-2) is a hyperbolic one (the hyperbolicity condition is not used in the
construction of the solutions in this paper), admissibility condition for the delta or
singular shock waves is usually taken to be

A2(uo,v0) > A1(uo,v0) > ¢ > Xo(ug,v1) > A (ug,v1),

where ¢ is a speed of the delta or singular shock wave, A, A» are the eigenvectors
for the system, (ug,vo) and (u1,v;) denotes left- and right-hand side initial data,
respectively. The waves which satisfy the above condition are said to be overcom-
pressive (see [9], [17], [4] and [6]). Like in the classical case with Hugoniot locus,
the delta singular locus can be used for construction of solutions containing also a
rarefaction wave on the left or on the right-hand side of a singular or delta shock
wave. But, there is a difference in using a delta locus for hyperbolic systems. Ex-
cept in some particular systems, it is not possible to connect every delta shock wave
with an another elementary wave with the above admissibility criterion.

Our investigations are motivated by Keyfitz and Kranzer ([9]) who found singular
shock wave solutions to the system

(4) ug + (u? — )y =0

1
v + (—u3 - u) =0,
3 T
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in the form

. .
u=(2,1) = Galw — ct) + a\/gp (”“” Ct) oo t) = Hofa— o) + =7 (m ct) |

£ £

where G, and H. converge to appropriate step functions defined by the Riemann
initial data (3), p2(-) := e *p*(-/¢), where p € C§°, [ p =1, converges to the delta
distribution and p¢ converges to zero in D' as € — 0, i = 1,3. System (4) is a
special case of (1-2). Our paper shows that their approach is sufficiently general for
solving (1-2) after a modification of a definition for the singular shock wave. This
solution is fully recovered with our approach with Colombeau generalized functions
(as already predicted in [9]), as one can see in Corollary 1.

The following examples of conservation law systems contain delta shock wave
solutions. Notice that these systems consist of single equation pairs, that is the
first one contains only one dependent variable. After Theorem 1 it will be clear
that this in not an essential assumption on existence of solutions of this type.

An example of a system with a delta shock wave solution is

(5) us + (’U,2)x =0
v + (wv), =0,

which was obtained from a zero pressure gas dynamics model

(5") ut + (uv), =0
(uv); + (uv*), =0,

after some smooth transformations and elimination of u; from (5’). The Riemann
problem for system (5) is solved in [17]. One of possible solutions is

us(z,t) = Ge(z — ct), ve(z,t) = He(z — ct) + std-(z — ct),

where G. and H. are the same as above and d. is a delta net. Also, Tan, Zhang
and Zheng ([17]) proved the existence of the vanishing viscosity solution. Contrary
to the form of solution to (4), there is no additional “singular” term in u.. Clearly,
(5) and (5’) are not equivalent in the class of weak solutions. At the end of the
paper one can find some discussion concerning (5’).

Also, the following systems have the similar form of solutions as (5).

Joseph ([7]) and Oberguggenberger ([15]) proved that for

(6) ut + (u?/2); =0
ve + (uv)y =0
the viscosity limit is a delta shock wave.

By using Le Flock and Vol’pert definition of the product, Hayes and Le Flock
([6]) found a delta shock wave solution to

(7) ug + (u?), =0
v + ((u—1)v), =0.



They also proved that the vanishing viscosity limit exists and it is equal to the
solution of (7).
Finally, Ercole ([4]) proved that the system

(8) ur + f(u)e =0
v + (g(u)v)e =0,

with some mild assumptions on f and g, has a delta shock solution considered as
a limit of smooth solutions obtained by the vanishing viscosity method.

All the systems considered in the paper have a flux which is of the linear growth
with respect to one of the variables. An interpretation of a limit of ¢?, where ¢. is
a real valued delta net, is quite vogue. Namely, Colombeau proved in [1] that ¢?
defines an element in the space of the generalized functions which is not associated
with any classical distribution. Of course, this is not always an unsolvable problem,
but considering a fairly general form of such a systems is a difficult task.

Each of systems (5,6-8) contains a delta locus which is a subset of R?> with the
non-zero Lebesgue measure, because f; Z 0 from (1). In each of the cases when
a delta shock wave solution is found in the cited papers, Theorem 1 gives also the
same solution and vice versa. This is also true for each singular shock wave solution
of (4) found in [9] and Theorem 2.

Before looking for a generalized solution of (1-3), initial data (3) is “regularized”,
i.e. substituted by generalized functions. The regularization procedure is not a pri-
ori known. (One only knows that the generalized initial data are functions bounded
with respect to a small parameter € and equal to constants out of [—¢,¢].) Thus,
a generalized solution do not depend on a behavior of the initial data regulariza-
tion (its “microstructure”). Also, we avoid an approximation of L*-functions on a
discontinuity line.

System (5’) has a solution having the form of delta shock wave (see [18]) for a
Riemann data

ug, <0
Uy, x>0

vo, <0
v(z,0) = { 'Ul, 250’ v > v1.
)

ule,0) = {
The approach used in Theorem 1 does not permit solutions having this form. But
for the above data there exists a solution which has the form of singular shock
wave (see Example 1). Both solutions are the same in the distributional sense
(association procedure for generalized functions).

The paper is organized in the following way. In Section 2 we give the definitions
of the algebra of generalized functions, delta and singular shock wave solutions. In
Section 3 we give a form of approximate solutions which will be used in finding
delta locus for (1-2). Roughly speaking, the main property of approximations is a
splitting of a singular part “mass” with respect to the left- and right-hand side of
a discontinuity line. Properly placed masses determine the delta locus. Theorem
1 applied to systems (5,6-8) gives the results previously obtained in the quoted
papers. System (4) can not be solved by this procedure.

In Section 4 we are dealing with systems with polynomial fluxes. There exists a
broad class of polynomials for which we can find singular delta locus having non-
zero Lebesgue measure in R?, modifying u. by adding a net which converge to zero,
and some of its powers converge to the delta distribution. In fact we use the idea
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of [9] adopted for arbitrary polynomials. In contrast to the singular shock wave
solution obtained in [9], we have to assume that singular parts of approximations
ue and v. have disjoint supports. This assumption can be omitted if f; and g; are
constants, or linear functions with respect to w.

In Section 5, one can find a remark concerning the range of variables, as well
as an example of singular shock wave solution to system (5°). The case when the
system (1-2) is hyperbolic is also considered in this section. In this case the well
known criteria for entropy solutions already exists. The classical ones for shock,
rarefaction waves and contact discontinuities (see for example [12]) are combined
with the overcompressive condition for delta (singular) waves (see [6], [9] or [17]).

There are many open problems concerning system (1-2). For example one can
try to obtain a limit of viscosity self-similar solutions to the system like it was
done in Dafermos and DiPerna’s paper [2]. Also, one can try to describe singular
shock wave solution formally obtained as a net of approximate solutions by using a
weighted measure space as it was done by Keyfitz and Kranzer in [9]. Some results
on interaction of delta (but not singular) shock waves with shock or rarefaction
waves will be given in [14].

This could be starting point for investigation of Cauchy problems for (1-2) with
a fairly general initial data, which is an important open problem.

Also, there is a need for a result about existence or non-existence of delta or
singular shock waves in situation when they are not wanted, as well as any kind of
uniqueness result.

2. DEFINITIONS

We shall briefly repeat some definitions of Colombeau algebra given in [16].
Denote RY := R x (0, 0), @ = R x [0,00) and let Cp°(€2) be the algebra of
smooth functions on Q bounded together with all their derivatives. Let C2°(R%)
be a set of all functions u € C°°(RY) satisfying ulrx(o,1) € C;°(R x (0,T)) for
every T > 0. Let us remark that every element of C;°(R% ) has a smooth extension
up to the line {t = 0}, i.e. C;°(R?) = C§°(R%). This is also true for C(R2 ).

Eng(RL) is the set of all maps G : (0,1) x R& — R, (g,z,t) = G-(,1),
G- € O (RY) for every € € (0,1) satisfying:

For every (a, 3) € N3 and T > 0, there exists N € N such that

sup |6§6§G5(m,t)| =0(EN), ase = 0.
(z,t)eR%(0,T)

Ny (R%) is the set of all G- € Epr,4(R) satisfying:
For every (a,3) € N2, a € R and T > 0

sup 1090P G- (2,1)| = O(®), as e — 0.
(z,t)ER X (0,T)

Clearly, Ny(R3 ) is an ideal of the multiplicative differential algebra s 4(R2.).
Thus one defines the multiplicative differential algebra G,(R%.) of generalized func-
tions by G4 (RL) = Enr,g(RL) /Ny (RZ). All operations in Gy (R3 ) are defined by the
corresponding ones in Epr,q(R3 ).
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If one uses Cp°(R) instead of Cp°(R%) (i.e. drop the dependence on the ¢ vari-
able), one obtains £xr,4(R), Ny (R) and consequently, the space of generalized func-
tions on a real line, G, (R).

Additionaly, if functions from Epy,4(R) and N, (R) are substituded with reals, one
obtains the ring Exrp and it ideal N, respectively. Thus, the ring of generalized
real numbers is defined by R = Exr,0/Nb.

In the sequel, G denotes an element (equivalence class) in G,(Q2) defined by
G. € EM7g (Q)

Since C2°(R7) = C°(R%), a restriction of a generalized function to {t = 0} is
defined in the following way. For given G € G,(R?Y), its restriction G|i=o € G,4(R)
is the class determinated by a function G.(z,0) € Eur,g(R). In the same way as
above, G(z — ct) € G4(R) is defined by Ge(z — ct) € Enrg(R).

If G € G, and f is a smooth function polynomially bounded together with
all its derivatives, then one can easily show that the composition f(G), defined
by a representative f(G:), G € G, makes sense. It means that f(G:) € Enry if
G: € Emyg, and f(G:) — f(H:) € Ny if G. — H. € N,.

The equality in the space of the generalized functions G, is not appropriate for
conservation laws as one can see in [15]. A generalized function G € G, () is said to
be associated with u € D'(Q), G & u, if for some (and hence every) representative
Ge of G, Ge — u in D'(Q) as € — 0. Two generalized functions G and H are said
to be associated, G ~ H, if G — H =~ 0. One can easily verify that the association
is linear and an equivalence relation.

A generalized function G € G,(12) is pointwisely non-negative if for every z € (2,
G(z) > 0, i.e. there exists Z. € Nj such that G-(z) > Z., for € small enough.

A generalized function G € G,(2) is distributionally non-negative if for every
Y € C3°(), [ G=(x)i(x) > 0, for & small enough.

Let u € D} (R). Let Ag be the set of all functions ¢ € D(R) satisfying ¢(z) > 0,
z €R, [¢(z)dz =1 and supp$ C [—1,1]. Let ¢.(z) =e'¢(z/c), z € R. Then

tg s u—+ class of u x ¢

defines a mapping of D (R) into G4(R). It is clear that ¢, commutes with the
derivation. Also, t4(9) is a class defined by a delta net ¢..

Lemma 1. The generalized function defined by the representative ¢.(x — ct) €
Eng(RL), ¢ € Ao, c € R, is associated with §(z — ct) € D'(R%).

Proof. Let ¢ € C§°(RY°) and

I = // e o((x — ct) /) (x, t)dadt.

Changing the variables (z — ct)/e — y, t — s, using the Lebesgue dominated
convergence theorem and the properties of the functions from Ag gives

I = [[ vty + cs.s)dyas
—>/(/¢(y)dy)1/1(cs,s)ds = /1/J(cs,s)ds, as e = 0.A



The step functions, mapped by ¢ into G,(R), belong to the following important
class of generalized functions. G € G,(1) is said to be of a bounded type if

sup |G:(z)| = O(1) as € — 0,
zEQ

for every T > 0.

Definition 1. (a) G € G(R) is said to be a generalized step function with value
(yo,y1) if it is of bounded type and

Yo, Y < —€
G.(y) ={

Y1,y >¢€
Denote [G] := y1 — yo-
(b) D € G4(R) is said to be generalized splitted delta function (Sé-function for short)

with value (ap, 1) if D = agD™ + a; D, where ap + a; = 1 and D* € G,(R) are
given by the representatives

pr) = 2o(L ) e an

Let us note that D are in fact shifted model delta nets (for the notion of the model
delta net one can look in [15]). A

/e

'H#const | H is a Heaviside function
Left-hand side delta !

/e

Right-hand side delta

Vo

A —

_Supp D § § _suppD
‘ ‘ | 2e<<l] T

|
<= -
I I

Figure 1. Delta shock wave

Let us note that the definition of S§-function implies supp DS C (—o0, —¢) and
supp D C (g, ).

Lemma 2. If G is a generalized step function with value (yo,y1) and D is an
So-function with value (o, 1), then the following hold.
(i) f(QG) is a generalized step function with value (f(yo), f(y1)), where f is a smooth
function.
(ii)

G-D=~ (yoao + y1a1)6.



Proof. The proof is a straightforward consequence of the definitions. A

Remark. The support property of Sd-function ensures the uniqueness in the asso-
ciation sense of its product with a generalized step function.

The generalized initial data for (1-2) are now generalized step functions G and
H with values (ug,u1) and (v, v;) instead of ©; and O, respectively. One can see
that the inclusion by ¢4 of a classical step function gives a generalized step function
in the sense of Definition 1(a) for every ¢ € Aj.

Definition 2. (U,V) € (G(R3))? is called delta shock wave solution to Riemann
problem (1-3) if a) and b) hold:

a)

9) Up + (fLU)V + fo(U, V)2 = 0
(10) Vi+ (1(U)V + g2(U,V)), = 0.
(1]‘) U|t=0 = Ga V|t:0 =H.

b) U(z,t) = G(x — ct), and V(x,t) = H(x — ct) + s(t)D(x — ct),

where G and H are generalized step functions, f;, g;, ¢ = 1,2, are smooth functions
polynomially bounded together with all derivatives, fo and g» are also sublinearly
bounded with respect to V', ¢ € R is a speed of the shock, s € C*(]0,00)), s(0) =0
and D is an Sé-function. A

3. THE GENERALIZED FUNCTIONS AND THE DELTA LOCUS
Before the main theorem, we shall give two technical lemmas.

Lemma 3. Let g € C*(R?) satisfies

lg(z,y1) — g(x,y2)| < c(x)|yr —y21", 0<a <1,

for every x,y1,y2 € R. Suppose that G and H are generalized step functions of
bounded type, s is a smooth function on [0,00), ¢ € R and let D be an S§-function.
Then

g(G(x — ct), H(x — ct)) = g(G(x — ct), H(x — ct) + s(t)D(x — ct)).

Proof. First, suppose that ¢ € C§°(R%.) has a support contained in [—X, X]x [0, T,
for some X,T > 0, and let max,cr{|G-(y)|, |H-(y)|} < C. Then

I Topee 1 z—ct—¢ T peo
1D (z — ct) |11 (rz) < 2 |g¢(f) |dxdt < 2 P(y)dydt < T,
0 —00 0 —00
where RS, = {(z,t) € R} : t < T} and ¢ is either 2e or —2¢. Put

L | o/ O:O (9(G- (e — ct), Hoe — ct)

— g(Go(z — et), He( — ct) + s(t) D2 (z — ct)))¢(x, t)dxdt.
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Using the assumptions on g gives

IL|<C sup |s(®)]* sup :Ut|// g (20 £)d dt

te[0,T] (z,t)ERZ
T 00
<Ci / / ' 7% (y)dydt — 0, as e — 0,
0 —00
since
6% @®) < N L1/supp 6) 1612170 (supp ¢y < (2 diam @)*[|6]1%1 ),

where b is chosen in a way that a +b=1. A

Lemma 4. Let f,g € C°(R?), c € R, and let G and H be the generalized step
functions of the bounded type with values (yo,y1) and (&, &), respectively. Then

0:f(G(x — ct), H(z — ct)) + 0,9(G(x — ct), H(xz — ct))
~(—clf(y1,&) = f(yo,€0)) + 9(y1, &) — g(yo,&))d(z — ct).

Proof. Using the fact that gg(]Rﬁ_) is an multiplicative algebra, we have
Of(G(x —ct), H(x — ct)) = —cO, f(G(x — ct), H(x — ct)).

Suppose that suppy C [-X, X] x [0,T], for some X,T > 0. Then

// —c0, f(G ct), H.(z — ct)) + 0,9(G(z — ct), Ho(z — ct))) ¢ (z, t)dudt
= // cf (Ge(z — ct), Ho(z — ct)) — g(Ge(z — ct), Ho(z — ct))) Optp(z, t)dadt

/ / (cf (Yo, &) — 9(yo, &0)) Outh(z, t)dudt

ct+e
/ / ’ (& — ct), Ho(a — ct)) — g(Gale — ct), He (x — ct))) 0tb(x, t)dadt

+/0 /t+ (ef (1. &) = 9(y1,61)) Qo (x, t)dudt
=h + I; -:13.
First, note that
|I2| < /OT 26CCydt — 0, as e — 0,

because G, H. and 0,1 are bounded with respect to €. Then,
T
I + Iz = (cf(yo, &) — 9(90750))/ (et —e,t)dt
-7

T
~ (ef &) =9, &) [ let+en
- (_C(f(ylafl) - f(yoafo)) + g(ylafl) - g(yoafo))<5|z=cta/‘/}>a ase — 0.
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Theorem 1. a) Let f; # const. Then a delta shock wave solution to (9-11) ezists
if uo # u1, fi(uo) # fi(u1) and

_ fi(ur)vr + fa(ur,v1) — fi(uo)vo — fa(uo, vo)
_ 91(u0) f1(u1) — g1 (u1) f1 (o)
fi(ur) = fi(uo) ’

where c is the velocity of the delta shock. The set of all points (u1,v1) such that
(12) holds is the delta locus for (1-3) (for the point (uo,vo)).

b) If f1(uo) = fi(uy) =0 (specially, if f1 =0) and g1 Z const, then the delta locus
is the set of all points (u1,v1) such that g1 (uo) # g1(u1).

¢) If fi =0 and g1 = b € R, then the delta locus is the set of all points (u1,v1)
such that b(u; — ug) = fa(ur) — fo(uo).

Proof. We look for a solution in a form of the delta shock wave

(12)

(13) U(z,t) = G(x —ct), V(z,t) = H(z — ct) + s(t)D(z — ct),

where D is the Sé-function with value (ag, 1) and s is the function from Definition
2.
Substitution of (13) into (9) and Lemma 3 give

(14)
Gz — ct) + 0, (f1(G(z — ct))H (z — ct) + f2(G(z — ct), H(z — ct)))
+5(t) 0z (f1 (G(z — ct)D(x — ct))) ~ 0.

Lemma 4 implies that the sum of first two members in (14) is associated with §
multiplied by a constant, i.e.

Gz — ct) + 0, (f1(G(z — ct))H (z — ct) + f2(G(z — ct), H(z — ct)))
~— (c[G] = [fi(G)H + f2(G, H)])é(x — ct).
By Lemma 2,
0:(f1(G(z = ct))D(x — ct)) = (fi(uo)ao + fi(u1)a1)d'(z — ct).
Therefore,
c(ur —uo) = (fi(ur)vr + fo(ur,v1) = (fi(ur)or + fa(ui,01))) =0
fi(uo)ao + fi(ur)ar = 0.
The first equation in the above system equation determines the speed of the wave

_ filur)vr + fa(ur,v1) = fi(uo)ve — faluo,vo)

U1 — Up

From the definition of the S§-function we have g + a; = 1. Together with the
second equation in the above system, it implies

fi(ur) o - — f1(uo)
filur) = filuo)” " filur) — filuo)’

Qo =
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if fi(ur) # fi(uo)-

If fi = const # 0, the delta locus is the empty set. In this case it is possible
to find singular shock solutions of system (9-10), but only if fo, g1 and g are
polynomials as one will see in the next section. If f; = 0, then ag and «; can be
chosen in a way that

eD' = 0,(91(G)D),

with the single condition g;(ug) # g1(u1). The set of all (u;,v;) such that ug

satisfies the above condition, and v is arbitrary, constitutes the delta locus. If gy

is also a constant then ¢ has to be the same constant. The set of all u; for which

this is true determines the delta locus. This concludes the proofs of b) and c).
Substituting U and V into (10) gives

O H(x — ct) + s'(t)D(z — ct) — cs(t)0 D(x — ct) + 9, (91(G(z — ct))H (x — ct)
+92(G(z — ct), H(z — ct)) + g1(G(z — ct))s(t) D(z — ct))
=0:H (z — ct) + 0, (91 (G(z — ct))H (z — ct) + g2(G(x — ct), H(z — ct)))
+ 8’ (t)D(z — ct) — cs(t)0,D(x — ct) + s(t)0z (91(G(z — ct))D(z — ct)),
where we again have used Lemma 3. Since G and H are generalized step functions,
O H (z — ct) + 0, (g1 (G(z — ct))H (z — ct) + g2 (G(z — ct), H(z — ct))) ~ —ad(z —ct),
where « is Rankine-Hugoniot deficit defined by
a:=c(vy —vo) = (g1(u1)vr + g2(u1, v1) — g1(uo)vo — g2(uo, vo)).

If @« =0, then (uq,v;) has to belong to the standard Rankine-Hugoniot locus, i.e.
s =0. If a # 0, then s'(t) = «, and consequently s(t) = at, i.e.

D' ~ 8,(g1(G)D).

Therefore

g1 (wo) f1(u1) — g1(u1) f1(uo)
fl(Ul)—fl(Uo) -

That means that the delta locus is the set of all (u1,v1) such that (15) holds, since
c is already determinated. A

(15) c=

4. SINGULAR SHOCK WAVES

If the fluxes f1, f2, g1 and g, are polynomials depending only on u, we are in a
position to find a singular shock solution to system (9-11) for a larger set of initial
data. This will be done by adding some terms in u.. When the functions in the
fluxes are the polynomials, the behavior of these additional terms in u. can be
controlled. Suppose that the maximal degree of all polynomials in the fluxes equals
m. Let

m m
Zal iy foly Zcm iy a1(y) =D by’ a(y) = by’
i=0 =0

We will give the definitions of these new building blocks for singular shock waves.
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Definition 3. A generalized function d € G,(R) is said to be m-singular delta
function (mSD-function for short) with value (3o, 1) if d = Bod™ + p1d*, d* €
G,(R), suppd- C (—o00,¢), suppdt C (g,00), (d¥) ~ 0, i € {1,...,m — 1},
(dF)™ ~ 6.

Let m be an odd positive integer. A generalized function d € G4(R) is said
to be m'-singular delta function (m'SD-function for short) with value (8o, 51) if
d= ﬂOd_ +ﬂ1d+a d* € gg(]R)a suppd; - (_0075)7 Suppdg— - (5700)7 (di)l ~ 0,
ie{l,...,m—2m}, (d5)™ ! ~4.

An Sé-function and an mSD-function (or an m'SD-function) are said to be com-
patible if their representatives have disjoint supports for £ small enough. A

Remark. The definition of m'SD-function d implies Gd™ =~ 0 if G is a generalized
step function.

Ezample. One can construct mSD and m/SD functions in the following way by
using powers of the model delta nets. Let ¢ € Ayp.

(i) Put
i) = (o (22 f“‘”))”m.

Then Bod; + B1dt is a represent for an mSD-function with value (8o, 51).
(ii) Let m be an odd positive integer. Put

N N 1/(m—1)
2= (30 () o (1)) ey 2

d_(y) = —d (—y), for y < 0.

Now Bod_ + B1dS is a possible represent for an mSD-function with value (3o, 31).
The constructed mSD- and m'SD-functions are compatible with the Sd-functions
defined in the example after Definition 1.

Definition 4. (U,V) € (G(R2))? is called singular shock wave solution to Riemann
problem (1-3) if a) and b) hold:

a)

9) Up + (fLU)V + fo(U, V)2 = 0
(10) Vi+ (1(U)V + g2(U,V)), = 0.
(11) U|t:0 = G, V|t:0 = H.

b) U(z,t) = G(x — ct) + s1(t)d1 (x — ct), and V (x,t) = H(x — ct) + s2(t) D (x — ct) +
s3(t)da(z — ct),

where G and H are generalized step functions, f;,g;, ¢ = 1,2, are polynomials
of the degree at most m ¢ € R is a speed of the shock, s,s1,s2 € C'([0,00)),
51(0) = s2(0) = s3(0) = 0, D is an Sd-function, and d; are mSD or m'SD-function,
j=1,2. A

Lemma 5. a) Letd € G,(R) be an mSD-function with value (8o, 81), B +67* =1,
G € G,(R) generalized step function with value (yo,v1), s € C'(Ry), s(0) =0, and
D(y) = 3", aiy® be a real valued polynomial. Then

[(G(z —ct)) + s(t)d(z — ct))
D(G(x — ct)) + ams™(t) (ﬁg”(d_)m(a: —ct) + B (dT)™(x — ct))
~I(G(z — ct)) + ams™(t)d(z — ct).

X
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b) Let d € G4(R) be an m'SD-function with value (Bo, 1), el gl =1, while
G, s and T are as above. Then

['(G(x — ct) + s(t)d(x — ct))
~(G(z — ct) + am—1s™ () (85 (d)™ (@ —ct) + B H(dT)" 7 (z — ct))
+maps™ () (B3 yo(d )™ (@ = ct) + BT yn (d)™ (@ — et)).
~D(G(z — ct)) + am_15™ 1 (t)6(z — ct)
+mags™ ()85 yo + B yn)d (@ — ct).

Proof. a) Let ¢ € C§°(R%) with suppty) C [-X, X] x [0,T], for some X,T > 0.
Then

// G-(z — ct)d! (z — ct)ap(x, t)dxdt
—yoﬂo/ /7 T W)Yy + ct, t dydt+/ G- (y)(y + ct, t)dydt

CT

Assumptions on d implies that I; and I3 converge to zero as € — 0, for j < m. Also,
I, — 0, as € = 0, because G¢ is of bounded type. The association of m-th order of
d is given in Lemma 1, due to definition of mSD-functions. Since the multiplication
by a smooth function preserves association,

(G(x —ct) + s(t)d(z — ct))! ~ G (xz —ct), j <m
(G(x — ct) + s(t)d(x — ct))™ ~ G™(x — ct) + s™(t)d™ (x — ct).
Collecting all the terms together,
D(G(x — ct) + s(t)d(z — ct)) = T(G(z — ct)) + s (t)amd™ (x — ct).
b) Like in the previous case,
(G(x —ct) + s(t)d(z — ct))! ~ GI(x —ct), j <m—1
(G(x — ct) + s(t)d(z — ct))™ ™ = G™(z — ct) + s™ 7 (t)5(x — ct).
Also

m

(G(z —ct) + s(t)d(z — ct))™ = Z <T> Gi(x — ct)s™ {(t)d™ " (z — ct)

i=0
~G(r — ct) + ms™™ (t)(yoﬁgn Ya- (x —ct) + y1 B Ydt (z — ct))

~G(x — ct) +ms™ (1) (yo By~ +yi Bz — ct),
where we have used
G(z — ct)d™ ™ (z — ct) = yoBy'~H(d7)" "z —ct) +yu 7" (dF)" T (@ — ct)
Ao +y18)d(w — ct),
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following from the properties of the generalized function d. This proves the lemma.

A

It will be enough to look for solutions to (9-11) which has the form

(23) Ulz,t)
Viz,1)

G(z —ct) + s1(t)d(z — ct)
H(x — ct) + s2(t)D(z — ct),

where the notation is from Definition 4.

For an even m, d is an mSD-function, and the shapes of functions U and V is
illustrated in the Figure 2.

If m is odd, U can be of the same shape as above (when d is an mSD-function),
or in the shape illustrated in the Figure 3 below (when d is an m'SD-function).
The particular choice will depend on the system in question as one can see in the
proof of Theorem 2.

Definition 5. The set of all points (u;,v1) € R? for which there exists a singular
shock wave solution is called the singular delta locus.

Admissible singular delta locus is its part where the singular shock wave is over-
compressive. A

Theorem 2. Let G(x — ct) and H(x — ct) be generalized step functions with the
speed ¢ and values (ug,u1) and (vo,v1), respectively.
Let

a = c(v1 =vo) = (g1 (u1)v1 + ga(ur) = g1(uo)vo — g2(uo)) = c[H] = [91(G) H + g2(G)]

to be Rankine-Hugoniot deficit (defined in [9]).

A singular shock wave solution to (9-11) which has the form (23) exists if one
of the following two assertions are true:
(i) There exists a solution (ag,yo) € R? to the system

(24) alfi(G)]ao + o[H]a1,myo = o(viai,m + azm) + afi(ur)
alg1(G)]ao + o[H]bi,myo = o (v1b1,m + b2,m) + a(gi(u1) — ¢),

for some o € R\ {0}. If m is an even number, then o also has to be positive and
Yo € [0,1].
(i) m is an odd number and there exists a solution (ag,y0) € Rx Ry to the system

(25) a[fi(@)]ao + o(a1,m-1[G] + mar m[GH] + masz m[G])yo
=0(01,m—1V1 + M1 MUV + Ma2 mU1 + G2m—1) + @ f1(uy)
alg1(G)]ag + 0(b1,m—1[G] + mby i [GH] + mbs 1 [G])yo

0(b1,m—1v1 + mb1 muiv1 + mba mut + b m—1) + algi(u1) —¢)

for some o € Ry .
The speed of the singular shock waves is always given by

fi(un)vi + fa(ur) — fi(uo)vo — fa(uo)  [f1(G)H + fo(G)]

U1 — Uo [G]
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Figure 3. A generalized step function with an m'SD-function

Proof. (i) Without a loss in generality, we can take SJ* + f* = 1, Let U and V
be given by (23), where d is an mSD-function with values (8o, 51) and D is an S§-
function with values (ag, a1 ) such that d and D are compatible. Let s; € C*°[0, 00),
$5;(0)=0,j=1,2.

Lemma 5 b) implies

[i(G(z —ct) + s1(t)d(x — ct)) = f;(G(z — ct)) + ajmsT (t)d™ (x — ct)
9;(G(z — ct) + s1(t)d(z — ct)) = g;(G(x — ct)) + bjms* (t)d™ (x — ct), j =1,2.

Compeatibility of d and D implies

f1(U(x,t)) - s2(t)D(x — ct) = s2(t)(f1(uo)ao + f1(u1)ar)d(z — ct)
91(U(x, 1)) - s2(t)D(x — ct) = s2(t)(g1(uwo)ao + g1(u1)aq)d(z — ct).
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Therefore, substitution of U and V' into (9) gives
AU (z,8) + 0y (f1 (U (z, )V (2, t) + fo(U(z, 1))
~OGlx = ct) + 0, (f1 Gz = ) H(z — ct) + ar,ms? (1) (00 + v 573 (x — ct)
+ 52(8) (1 (wo) o + fi(u1)a1)d(z — ct) + fo(G(x — ct)) + az.msT (£)3(z — ct))
~o( = elur = uo) + fi(un)vr + fo(w) = fi(uo)vo — fo(uo) (= ct)
+ (al,mSX"(t)(voﬁén +01B81") + s2(t) (f1(uo)ao + fi(u1)an)
+ a2,msgn(t))5'(x —ct) ~0
So, the speed c is determinated by

_ fi(ur)vi + fa(ur) — fi(uo)vo — fa(uo)

U — Uo

and

(26)  a1,msi"(H)(voBy" +v1B7") + s2(t)(f1(uo)ao + fi(ui)an) + az,msi"(t) =0

has to be true.
Substitution of U and V into (10) gives

OV (x,1) + 0x (91 (U (2, 1))V (2, 1) + g2(U (2, 1)))
~O H (x — ct) + sh(t)D(z — ct) + s2(t)0y D(x — ct)

+ 0, (91(Glw = ct) H(w = ct) + 2(8) (g1 (oo + g1 (ur)a)o(x — et)

by (1) (00 B+ 01 B7)3( = ) + g2(G (@ = b)) + ba s} (1)0( — ct) )
%( —c(v1 — o) + s5(t) + g1 (w1)v1 + ga(ur) — g1 (uo)vo — 92(140))5(35 —ct)

+ (s2(0(=c+ g1 (un)ao + g1 (w)ar)

87 (1) (b1, (005" + 01BT") + ba,m) )8'( = ct) 2 0.

From the first term we have

!

s5(t) = c(v1 —vo) + g1 (u1)v1 + g2(u1) — g1(uo)vo — g2(uo) = @,
i.e. s2(t) = at, because s3(0) = 0. Now, from the second term we have

(27) 51 = (ot)t/™
(28) o (b1,m(vofy" +v1B1") + ba,m) = alc — gi(uo)ao — gi(ur)ar).

Using (27), equation (26) is now

(29) a(fi(uo)ao + fi(ur)ar) + o(a1,m(veBy" +vif1") + az,m) = 0.
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Since ap + a3 =1 and S§" + 7" = 1, equations (28) and (29) become

(30)

a(g1(u1) — g1(uo))ao + b1, m(v1 — v0)By" = (b1,mv1 + ba,m) — alc — g1(u1))
(31)

a(fi(ur) — fi(uo))ao + oar m(vi — vo)By" = afi(ur) + o(az,m + a1,mv1).

If m is an even number then a singular shock wave solution connecting initial
states (ug, vo) and (ug,vy) exists if system (30-31) has a solution (g, 37") € Rx R*
for some o > 0.

If m is an odd number then a singular shock wave solution connecting initial
states (ug,vo) and (u1,v1) exists if system (30-31) has a solution (ap, 35*) € R? for
some 0 # 0. (¢ = 0 means that (uy,v1) belongs to the classical Hugoniot locus.)

(ii) Without a loss in generality, we can take 83" + 8" ! = 1, Using the same
arguments as in (i), Lemma 5 and substituting U and V into (9), we have

U (z,t) + 0 (/1(U(z,1))V (z,1) + fo(Ul(z,1)))
~0,G(z — ct) Bz( G(z — ct) +a1m,1s{”_1(t)dm*1(a:—ct)

+may sy () (wo B (d)™ T (@ — ) + w BT H(AT) T (& — et)))
(H(x — ct) + s2(t)D(z — ct)) + fo(G(x — ct))
+ ag,m—187 " ()d™H(x — ct)

)
+ may, sy (t)(uoﬂ Y B Hydm (o — ct))
“( = c(ur — o) + fi(ur)vy + four) — fi(uo)vo — f2(U0))5(:U —ct)

+ (STfl(t)(al,mq(Uoﬂénfl +v1 B + mag m (uove By + v )
+ az,m—1 + mas,m (uoByt + Ulﬂ{nfl))
+ s2(t) (f1(u1)ao + f1 (Uo)al))‘sl(@“ —ct) = 0.

The speed of the wave is determinated from the term multiplied by 6,

_ filw)vr + fa(ur) = fi(uo)vo — f2(uo)

Uy — Ug

From the one multiplied by ¢’, we have

(32)

ST () (a1,m—1(voBg" ™" + 0187 ™) + mar m (uovoBg " + urvi 7Y
+az,m—1 + magm (oY +ui 1)) + s2(t) (fi(uo)ao + fi(ur)ar) =0.
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Substitution of U and V into (10) gives
OV (,8) + B (g1 (U, )V (,8) + ga(U (1))
~OH(x — ct) + sh(t)D(z — ct) + s2(t)0y D(x — ct)
+0, ((91(G @ = ) + b 1577 (A" (2 = ct)
+mbymsy ™ () (o BT (67)" T @ — o) +un TN (6) T (@ — ct))
(H(x — ct) + s2(t)D(z — ct)) + g2(G(z — ct)) + bom 157 H(t)d™ ! (z — ct)
o+ b (1) (wo B+ A (@ - et))
~o(( = (o1 = v0) + s5(8) + g1 (w)or + ga(u1) = g1 (o) — g2 () )8 = ct)
+ (Sin_l(t)(bLm—l(UoBSn_l + 01 A7)+ mbi m (uovo g + uivi B07)
+ bam—1 4+ mbam (o5 + w7V ))

+ s2(t)(—c + g1 (uo)vo + 91 (ul)al))é’(m —ct) = 0.
Then,
s5(t) = c(v1 — vo) — g1(u1)vr — ga(u1) + g1(uo)vo + g2(uo) = a,

i.e. s2(t) = at. Immediately, one can see that this gives s;(t) = (ot)'/(m=1 | for
some o > 0, and consequently
(33)

o (br,m—1(voBy" " + 1B ) + mbym (uovo Byt + wrvi1 B

+ a1+ mbym (uoBy" ™ +ui ) + al—c + g1 (uo)ao + g1 (ur)an) = 0.
Using this and ag + a1 =1, 66”_1 + 8"~ =1, one gets

(34) a(fi(ur) — fi(uo))oo + U(al,mfl(vl — )
+ mar,m(u1vr — Uovo) + mas (U1 — ug)) By "

=afi(u1) + o(a1,m—1v1 + Ma1 mU1V1 + A2,m—1 + MA2 mU1)
instead of (32), and

(35) (g1 (u1) — g1 (uo))ao + U(b1,m—1(v1 —vp) + mb1,m(u1 — up)

+mb2’m(u1 — U[))) Sn_l

=a(gi(u1) —¢) + U(bLm—lvl + mbi muiv1 + by -1 + mb27mu1)

instead of (33).

Since m — 1 is an even number, one will obtain the solution in the form of
singular shock wave connecting states (ug, vo) and (uy,vy) if the system (34-35) has
a solution (ag, Bg" 1) for some o > 0. This concludes the proof. A

In the following corollary, one will see that the singular shock wave solution to
system (4) constructed in [9] is recovered by the procedure from this paper.
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Corollary 1. In all cases given in [9] when a singular shock wave solution to the
Riemann problem (4),(3) exists, the same type of solution can be constructed by the
mean of Theorem 2.

Proof. Let (ug,v9) be a given point. The set of all points (u1,v;) which can be
joined with (ug, v) by a singular shock wave is denoted by @7 in [9]. This area lies
below the line D = {(u,v) : v = vy +u? + (1 — ug)u — up, u < ug — 3}, above the
line E = {(u,v) : v=1v9+ (u—ug)(up — 1), u < up — 3} and on the left-hand side
of Hugoniot locus.

If fi =5 € R\ {0}, g1 =12 € R, then system (25) becomes

omaz,m[Glyo = o(mas mur + azm-1) +an

amb27m[G]y0 = U(me,mul + b2,m,1) + O[(’)Q — C).
Therefore, the condition for the existence of a singular shock wave solution is

(¢ —y2)(mag mur + az2.m—1) + y1(Mba,mu1 + b2 m—_1)
(y1mba m + (¢ — y2)maz m)[G]

Yo = € [0,1].

Substituting values m =3, 4 = =1, 72 =0, a2,;m-1 =1, a2, =0, b2 1 =0
and bz, = 1/3 given in (4), we obtain

a=0c>0
V1 — U
Cc=1Ug+u — L 0
U1 — Up
Uy — ¢
yo=——€[0,1].
U1 — Ug

The last condition is equivalent to
v1 > Vg + Uy — ug and v < vy —uguy + uf
With u; < ug — 3 these inequalities are
Vo + UoUy —ugc < wo+ (u—ug)(up — 1) and vo —uguy +u? > vo+u*+ (1 —uo)u — up.

Therefore, each point in Q7 is contained in delta singular locus, given in Theorem
2.

The points in the complement of Q7 are not valid right-hand sides in Riemann
data since the singular shock wave is not overcompressive. A

Remark. In [9] the singular parts of functions U and V' have nonempty intersec-
tion (i.e. d> = D. =~ §). This is possible because in the system (4) there are no
multiplication of d. and D¢, i.e. fi = —1, g; = 0 are the constants.

5. DiscusioN

There are three main obstacles for using of delta or singular delta locus.

1) The general assumption used herre is that all values for U and V are possible.
But, often this is not a case in a particular system. If there exists a set S C R?
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where (U,V) has to belong, and if D is a delta (singular) locus, a real locus is
actually S N'D, provided that the range of (U,V) lies in S.

2) The type of system (1-2) is not relevant for the constructions of solutions in
the paper. For hyperbolic systems one can state that admissible part of the delta
or singular delta locus is the set of all points (uq,v1) such that A (ug,v;) < ¢ <
A2(up, vp) where Aj, A2 are the eigenvalues of (1-2) and c is the speed of the wave
connecting initial states (ug,vo) and (u1,v1). For example, this condition is used
in papers [6], [9] and [17]. With the above condition, the admissible part of the
delta locus is just a part of a curve, while singular delta locus is a part of an area.
Except for the above particular cases, there is no any kind of uniqueness result for
delta or singular shock wave solutions.

3) If one wants to use a delta locus (a curve in general) for connecting different
states in a usual way like for Hugoniot locus or rarefaction curve, the problems may
occur. The only two possibilities of connecting delta shock are rarefaction waves
(RW; from the left, and RW, from the right-hand side of the delta shock) and it is
necessary that the speed ¢ of the delta shock equals A\ (ug,v9) or Ao(u1,v1). This
means that a part of a delta locus where the points which can be joined with some
other states is a discrete set, in general. An attempt of giving some possibilities to
overcome this problem will be given in [14] by investigating delta shock and shock
wave interactions.

For a delta singular locus (or in a ”degenerate” case of delta locus when it has
non-zero Lebesge measure) the general situation is quite different. An intersection
of admissible part of the delta singular locus (or delta locus) with the curve obtained
by solving equation ¢ = A;(ug,vp) and equation ¢ = A(uq,v1) is now a curve in a
general case. Therefore, there is a possibility to connect singular delta shock wave
with a rarefaction wave, as it was done in [6] or [17].

Some of the above remarks will be treated in the following example - presureless
gas dynamic model.

Example 1. The Rieman problem for presureless gas dynamic model is given by the
system

(36) ug + (uv), =0
(37) (uv); + (wv?), =0

and the initial data (3), where u is a density and v is a velocity. Two eigenvalues
of the system are the same, A\; = Ay = v, thus the system is weakly hyperbolic.

In the case vg < v;. the problem has a classical weak entropy solution consisting
of combinations of contact discontinuities and vacuum states (when u = 0), see
[18]. So, we shall suppose that vy > v;.

The fact that the system is not in the evolutive form makes no problem with
applying procedures described in the proof of Theorem 2. One can substitute the
generalized functions

G(l‘ - Ct) + Sl(t)(OéoD7 + a1D+) + S2(t)(ﬂ0d7 + ﬂ1d+), ap +ap = 1
H(z —ct) + s3(t)(yod~ +md"),

Ul(z,t)
Vix,t)

where ap + a1 = 1, D and d, d®> ~ 6, are compatible S§- and 3SD-functions,
respectively. Due to physical reasons, G and D has to be nonnegative generalized
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functions. This imply that U is pointwisely or distributionally non-negative. But,
as one will see during calculation procedure, the representative of U, U,, is non
non-negative. In fact U is non non-negative in all generalized points (see [11]) for
this notion.

By the exactly same procedure and arguments as in the proof of Theorem 2,
(36) and association procedure gives

— [G)d(x — ct) + s1(t)0(z — ct) — s ()0 (z — et
+ [GH]d(x — ct) + s1(t)(aovo + a1v1)d' (x — ct) = 0,

where we have used the compatibility condition for d and D, and the fact that
(d*)? ~ 0. The above equation yields

(38) s1(t) = o1t, 01 = ¢[G] — [GH], o1 > 0 (physical condition)
o v —C - Cc— Vo
(39) Oéo—vl_vo,al—vl_vo.

Similarly, from (37), we have

— [GH)6(x — ct) + s (t)(aovo + a1v1)d(x — ct)
— cs' () (oo + ayv1)d' (z — ct) + [GH?6(x — ct)
+ 51(t) (Vg + a1v})d' (x — ct) + s2(t)s2 () (w0 foyg + u1Bi71)d (z — et) = 0.

From the above equation we have

(40) g1 (OéoU() + alvl) g1C = C[GH] - [GH2]
(41) — s3(t)s3(t) = s1(t )
(42) ap(vg — cvg) + a1 (v} — cvr) = upBovg + ui B}

Equations (38) and (40) imply

(41) (uy — up)e® — 2(uvy — ugvo)e + (urvi — upvy) = 0.
Obviously, (42) can be exchanged with

(427 ao(vi — cvg) + a1 (v —cvy) >0

and one can take
s2(t) = —(o1t)'/?, s3(t) = (out)"/?

without a loss in generality.
Thus, there are two possibilities

(i) wo = uy1. Then

Inequality (42’) is now
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obviously true. Since A\; = vg > ¢ > v; = A, the wave is overcompressive.
(ii) up # uy. Then
U101 — UpVo + (’U() — vl)‘/uoul

44 =
(44) c p—

and (42’) is equivalent to
(vo — ¢)(c —wv1)(vg —v1) >0,
which is a condition to wave be overcompressive, in fact. One can easily check that

u1v1 — upuo + (Vo — v1)/UoU1
Vg > Cc= >
Uy — U

(we had to take + sign in (44)).

Now
o1 = (vo — v1)v/upus > 0,

i.e. the strenght of the singular shock wave at time ¢ is o1 = (v — v1)\/wouit in
both cases. Thus,

ug, T <ct

Uz, t) ~ { + (vo — v1)/upurtd(x — ct),

uy, T>ct
(45) '
vo, x<ct

Vix,t) = {

v, X >ct,

where
N [GH] — [H],/U,()Ul . vy + U1 . _
= @& ore=—p— if [G] = 0.

Remark. Let us note that (45) is in fact the solution to (5°) (with u and v inter-
changed, and f(u) = u) given in [18,(3,13),(3.21)]
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