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Abstract

This article addresses the Cauchy problem for the defocusing cubic
Schrödinger equation in 2D and 3D and the equation with a delta well
potential in 3D. Solutions belong to the Colombeau algebra of generalized
functions GC1,H2 (see [15]). The physically significant homogeneous prob-
lem in 2D and 3D has not yet been treated in this framework, whereas
no classical results exist on the equation with delta potential. The paper
contains the construction of unique generalized solutions for both of these
problems. One could also find two assertions about compatibility with
classical solutions, again for both equations.
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1 Introduction

The subject of this paper are the following defocusing cubic Schrödinger equa-
tions

i∂tu+4u = u|u|2 on Rn × (0,∞)

u(x, 0) = a(x), (1)

n ∈ {2, 3} and

i∂tu+4u = u|u|2 + δu, on R3 × (0, T )

u(0, x) = a(x), (2)

where δ is the Dirac delta distribution and the initial data a are generalized
functions.

The nonlinear Schrödinger equation (NLS) represents a universal model at
the root of a wide range of physical and other natural phenomena and applica-
tions. For example, (1) is a model for the propagation of short temporal pulses
in optical fibers. Because of its importance in quantum physics, it is natural to

∗The work is partially supported by the projects OI174024, III44006 (Ministry of Science,
RS), 142-451-3652 (Provincial secretariat for science APV).
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consider singular initial data, such as the delta function (representing an ini-
tially localized particle). It was shown in [14] that the one-dimensional cubic
Schrdinger equation with the delta function as initial data is ill-posed in the
class L∞([0,∞),S ′(R)). Contrary to this result, we obtain a unique solution
to the corresponding problem in 2D and 3D in the setting of the Colombeau
algebra. The critical regularity for global existence of solutions of (1) in 3D
is in Hs for s > 4

5 , as is shown in [7]. Our result extends this to the space
of distributions, embedded in the Colombeau algebra. Algebras of generalized
functions allow performing multiplication and some other nonlinear operations
within the space. This is another reason to use the setting, since the solution
is expected to be as singular as the initial data and consequently, (1) an (2)
involve a product of distributions.

Classical solutions of the equation (1) have been studied extensively in the
framework of Hs spaces, where s is at least 0. For a summary of these results
see [3]. On the other hand, there are no classical results for the equation (2), but
its significance as a model for Bose-Einstein condensates with a well potential
is reflected in the large amount of papers regarding solitons, bound states and
exact solutions of (2), see for example [8], [9] and [11].

We will employ L2-based Colombeau algebras GC1,H2 , which we define below.
A representative of a generalized function is then a net of smooth functions which
permits the use of the classical estimates on each element of the net. This was
the main idea used in the paper.

Up to our knowledge, there are three papers dealing with the Schrödinger
equation in the setting of the Colombeau algebra of generalized functions. In
[12], Hörmann solved the Cauchy problem in Rn for the linear Schrödinger
equation with variable coefficients, provided the coefficients and initial data are
generalized functions. In [13], the convergence properties of regularized solutions
to the linear equation were studied. In [4], Bu showed that the cubic one-
dimensional Schrdinger equation has a unique generalized solution. The next
logical step is studying the limiting case. In this regard, we obtain a positive
result for (1) and we leave open the question of convergence of regularized
solutions of (2).

This paper is organized as follows.
In Section 2, the required results for (1) are recalled regarding the existence

of strong local and global solutions and estimates of Hs norm of solutions. The
main point needed for our setting is that for each s > 0, ‖u(t)‖Hs is bounded
uniformly in t both in 2D and 3D, but the bound in 2D is linear in ‖a‖Hs and the
bound in 3D is exponential in ‖a‖Hs . Further, the existence of a global solution
of (1) in GC1, H2 is proved. Uniqueness asks for new estimates of the solution
of the regularized equation. Since we do this work in a more general setting for
equation (2), we prove uniqueness using estimates from Section 3. Finally, we
show that for any strong solution u ∈ H2 of (1) with initial data in H2 there
is a net of solutions converging to u. Here, the initial data are regularized by
aε = a ∗ φε, where φε is an appropriate mollifier. In Section 3, we study a
regularized version of (2). Bounds for second order derivatives of the solution
are obtained. We have used the operator T (t), which is a solution operator for
the linear homogeneous equation. For NLS, Duhamel’s formula holds and also
a fundamental estimate for T (t). Once the estimates were derived, existence
and uniqueness of a generalized solution followed.

The notation we use is as in [15]. Let Hm,p(Rn), n ∈ {2, 3} denote the usual
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Sobolev space, Hm,2(Rn) = Hm(Rn). Then EC1,H2([0, T )× Rn) (respectively
NC1,H2([0, T )× Rn)), T > 0 is the vector space of nets (uε)ε of functions

uε ∈ C([0, T ), H2(Rn)) ∩ C1([0, T ), L2(Rn)), ε ∈ (0, 1),

with the property that there exists N ∈ N (respectively, for every M ∈ N) such
that

max{ sup
t∈[0,T )

‖uε(t)‖H2 , sup
t∈[0,T )

‖∂tuε(t)‖L2} = O(ε−N ),

max{ sup
t∈[0,T )

‖uε(t)‖H2 , sup
t∈[0,T )

‖∂tuε(t)‖L2} = O(εM ), respectively.

The quotient space

GC1,H2([0, T )× Rn) = EC1,H2([0, T )× Rn)/NC1,H2([0, T )× Rn)

is a Colombeau type vector space. For n ≤ 3 this is a multiplicative algebra,
since H2(Rn) itself is an algebra for n ≤ 3.

Space GH2(Rn) is defined in a similar way, but with representatives indepen-
dent in the time variable t. This space is also an algebra in the case n ≤ 3. H2

spaces are chosen for simplicity, especially in the case of delta potential.
Throughout the paper we use ‖ · ‖p to denote the Lp(Rn) norm. By Dk

x,
we denote any partial derivative w.r.t. x1, ..., xn of the form Dα1

x1
...Dαn

xn with
multindex α = (α1, ..., αn) ∈ Nn0 of order |α| = k.

We will use the following lemmas in the sequel:

Lemma 1.1 (Gronwall’s inequality). Let A(t) be continuous and nonnegative
on [0, T ] and satisfy

A(t) ≤ E(t) +

∫ t

0

r(s)A(s)ds, 0 ≤ t ≤ T,

where r(t) is a nonnegative integrable function on [0, T ] with E(t) bounded on
[0, T ]. Then

A(t) ≤ |E(t)| exp

(∫ t

0

r(s)ds

)
, 0 ≤ t ≤ T.

Lemma 1.2 (Gagliardo-Nirenberg [5]). let 1 ≤ p, q, r ≤ ∞ and let j,m be two
integers such that 0 ≤ j < m. If

1

p
=
j

n
+ b

(
1

r
− m

n

)
+

1− b
q

,

for some b ∈ [j/m, 1] (b < 1 if r > 1 and m − j − n
r = 0) then there exists

C = C(n,m, j, q, r) so that∑
|α|=j

‖Dαu(t)‖p ≤ C
( ∑
|α|=m

‖Dαu(t)‖r
)b
‖u(t)‖1−bq ∀u ∈ D(Rn) (3)
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2 The cubic Schrödinger equation

2.1 Estimates

Let s0 = n−2
2 and s ≥ s0, where s0 ≥ 0 for n ∈ {2, 3}. For a ∈ Hs, the Cauchy

problem (1) is well posed in [0, T ∗] for some T ∗ and

u ∈ C([0, T ], Hs), T < T ∗

i.e. u is a local solution. It can be extended to a global solution if a ∈ H1. Also,
|x|ma ∈ L2 for every m ∈ N implies that the solution is smooth in x and t (see
[10]). Standard energy equalities hold for (1):

‖u(t)‖L2 = ‖a‖L2 and H(u(t)) = H(a)

where H(u(t)) := 1
2

∫
Rn |∇u|

2dx + 1
4

∫
Rn |u|

4dx denotes the Hamiltonian. The
energy equalities imply that the global solution satisfies

sup
t∈[0,∞)

‖u(t)‖H1 <∞.

In one dimension, for every s ≥ 0 the norm ‖u(t, ·)‖Hs is uniformly bounded
w.r.t. t ∈ R. In two and three dimensions u(t) ∈ Hs holds for every t and there
exists T = T (‖a‖Hs) such that

‖u(t)‖Hs ≤ C‖a‖Hs , t ∈ [0, T ].

In [2], it was shown that in 3D there is scattering and a uniform bound

‖u(t)‖Hs ≤ C exp(‖a‖Hs), for all t ≥ 0, s ≥ 1. (4)

In [6] (inequality (3.25)), it was shown by a similar argument that global in time
solutions in 2D also satisfy a uniform bound

‖u(t)‖Hs ≤ c‖a‖Hs , for all t ≥ 0, s ≥ 1. (5)

2.2 Existence and uniqueness

We say that u ∈ GC1,H2([0, T )×Rn) is a solution to (1) if there is its represen-
tative uε satisfying

i∂tuε +4uε − |uε|2uε = Nε

uε(x, 0) = aε(x) + nε(x),
(6)

where (Nε)ε ∈ NC1,H2([0, T ) × Rn) and (nε)ε ∈ NH2(Rn). The initial data
a ∈ GH2(Rn) is represented by aε.

Theorem 2.1. Let n ∈ {2, 3}, T > 0, a ∈ GH2(Rn) and

‖aε‖H2 ≤ hε (7)

where hε ∼ ε−N for n = 2 and hε ∼ N ln ε−1 for n = 3, for some N ∈ N.
Then there exists a solution u ∈ GC1,H2([0, T ) × Rn) of (1). If, additionally

hε ∼ (ln(ln ε−1))1/6 and a ∈ GH3(Rn), ‖aε‖H3 ∼ (ln ε−1)1/14, the solution is
unique in GC1,H2([0, T )× Rn).
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Proof. Existence. Let us take the equation (1) written in the form of represen-
tatives

i∂tuε +4uε − |uε|2uε = 0

uε(x, 0) = aε(x)
(8)

There exists a unique solution uε ∈ C1([0, T ], H2(Rn) for every T > 0 and ε
(see [2] and [6]). Estimates (4) and (5) together with assumption (7) imply

sup
t≥0
‖Dα

xuε(t)‖L2(Rn) = O(ε−N ), ε→ 0,

for |α| ≤ 2. From the Gagliardo-Nirenberg inequality it follows that

‖|uε(t)|2uε(t)‖2 ≤ ‖∇uε(t)‖32,

so boundedness of ‖∂tuε(t)‖2 follows easily from (8). We can conclude that u,
represented by the net of functions (uε)ε belongs to the space GC1,H2([0, T )×Rn)
that solves the problem (1) in the above sense.

Uniqueness. Let u, v ∈ GC1,H2([0, T ) × Rn), n ∈ {2, 3} be two solutions of (1)
with representatives uε and vε satisfying (6). To obtain uniqueness we need to
show that (uε − vε)ε ∈ NC1,H2([0, T )×Rn). Let wε = uε − vε. Then wε solves:

i(wε)t +4wε − (|uε|2uε − |uε − wε|2(uε − wε)) +Nε = 0,

wε(x, 0) = nε(x),
(9)

where (nε)ε ∈ NH3(Rn), (Nε)ε ∈ NC1,H2([0, T ) × Rn). The first equation is
simplified to

i(wε)t +4wε − |uε|2uε + (uε − wε)(|uε|2 − uεwε − uεwε + |wε|2) +Nε = 0,

i(wε)t +4wε = u2εwε + 2wε|uε|2 − 2uε|wε|2 − w2
εuε + wε|wε|2 −Nε

If we multiply (9) by wε, integrate over Rn and take the imaginary part (using
the fact that wε(x, t)→ 0 fast enough as ‖x‖ → ∞ for any t).

1

2

d

dt

∫
Rn
|wε|2dx = Im

∫
Rn

(
2Re(uεwε)uεwε − |wε|2uεwε −Nεwε

)
dx

≤
∫
Rn

(
2|uεwε|2 + |uε||wε|3 + |Nεwε|

)
dx. (10)

Integration with respect to t gives

‖wε(t)‖22 ≤‖nε‖22 +

∫ t

0

(
2‖uε(t)‖2∞‖wε(t)‖22 + ‖uε(t)‖∞‖wε(t)‖∞‖wε(t)‖22

+ ‖Nε‖2‖wε(t)‖2
)
dτ

sup
[0,T )

‖wε(t)‖22 ≤‖nε‖22 + 2 sup
[0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞

) ∫ T

0

‖wε(t)‖22dτ

+ sup
[0,T )

‖wε(t)‖2‖Nε‖2,

sup
[0,T )

‖wε(t)‖22 ≤εM exp(sup
[0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞

)
), (11)

5



for arbitrary M ∈ N. Due to the construction above, the Sobolev inequality
‖uε(t)‖∞ ≤ ‖uε(t)‖H2 holds. We will use the following two facts that will be
proved in Section 3.

• Condition (7) and ‖aε‖H3 ∼ (ln ε−1)1/14 imply ‖uε(t)‖H2 ∼
√

ln ε−1 (the
relation (36)).

• Estimates (4) and (5) can not be directly used bellow, since equation (6)
is not homogeneous. These bounds are derived in the uniqueness proof of
Theorem 3.4 (relation (35)).

Applying Gronwall’s inequality, Lemma 1.1 to (11) we obtain

sup
0≤t≤T

‖wε(t)‖2 = O(εM ), ε→ 0, for any M ∈ N. (12)

To obtain a bound on the first derivative in x, differentiate (9) in x, multiply
by Dxwε, integrate over Rn and take the imaginary part. Similarly as before,
this results in the following

sup
[0,T )

‖Dxwε(t)‖22 ≤ sup
[0,T )

(‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞ + ‖wε(t)‖2∞)

·
∫ T

0

‖Dxwε(t)‖22dτ + ‖Dxnε‖22 + T sup
[0,T )

(‖DxNε(t)‖2‖Dxwε(t)‖2)

+ sup
[0,T )

(‖uε(t)‖∞ + ‖wε(t)‖∞)

∫ T

0

‖wε(t)‖2‖Dxwε(t)Dxuε(t)‖2dτ

≤ ln ε−1
∫ T

0

‖Dxwε(t)‖22dτ + εM + T (εMε−N +
√

ln ε−1ε−NεM ).

The last inequality follows from (12) and

‖Dxwε(t)Dxuε(t)‖2 ≤ ‖Dxwε(t)‖4‖Dxuε(t)‖4

≤
( ∑
|α|=2

‖D2
xwε(t)‖2

)b
‖wε(t)‖1−b2

( ∑
|α|=2

‖D2
xuε(t)‖2

)b
‖uε(t)‖1−b2 ≤ ε−N , (13)

where b = 3
4 for n = 2 and b = 7

8 for n = 3, in both cases p = 4, r = q = 2, j =
1,m = 2. Here, the Hölder inequality and the Gagliardo- Nirenberg inequality
were used. Applying Gronwall’s lemma we obtain

sup
0≤t≤T

‖Dxwε(t)‖2 = O(εM ), ε→ 0. (14)

By differentiation of (9) it further follows that

d

dt

∫
Rn
|D2

xwε|2dx ≤
∫
Rn
|(uε + wε)DxuεDxwεD

2
xwε + wε(Dxuε)

2D2
xwε

+ (uεwε + w2
ε)D

2
xuεD

2
xwε + (uε + wε)(Dxwε)

2D2
xwε|dx

+

∫
Rn
|u2ε + uεwε + w2

ε ||D2
xwε|2dx+

∫
Rn
|D2

xNε||D2
xwε|dx.
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For the first term on the right hand side we have

‖(uε(t)+wε(t))Dxuε(t)Dxwε(t)D
2
xwε(t)‖1 ≤ (‖uε(t)‖∞+‖wε(t)‖∞)‖D2

xwε(t)‖2

·
( ∑
|α|=2

‖Dα
xuε(t)‖2

) 7
8
( ∑
|α|=2

‖Dα
xwε(t)‖2

) 7
8 (‖uε(t)‖2‖wε(t)‖2)

1
8 .

(15)

Further on

‖wε(t)(Dxuε(t))
2D2

xwε(t)‖1 ≤ ‖D2
xwε(t)‖2‖wε(t)(Dxuε(t))

2‖2
≤‖D2

xwε(t)‖2
∑
|α|=1

‖Dxwε(t)‖2
( ∑
|α|=2

‖Dα
xuε(t)‖2

)2
. (16)

The fourth term can be bounded in the following way

‖(uε(t) + wε(t))(Dxwε(t))
2D2

xwε(t)‖1
≤‖uε(t) + wε(t)‖∞‖D2

xwε(t)‖2‖Dxwε(t)‖24

≤‖uε(t) + wε(t)‖∞‖D2
xwε(t)‖2

( ∑
|α|=2

‖Dα
xwε(t)‖2

) 7
4 ‖wε(t)‖

1
4
2 (17)

Also,

‖(uε(t)wε(t) + w2
ε(t))D

2
xuε(t)D

2
xwε(t)‖1

≤‖uε(t) + wε(t)‖∞‖wε(t)‖∞‖D2
xuε(t)‖2‖D2

xwε(t)‖2
≤‖uε(t) + wε(t)‖∞(‖wε(t)‖2 + ‖Dxwε(t)‖2)‖D2

xuε(t)‖2‖D2
xwε(t)‖2

+ ‖D2
xwε(t)‖22‖D2

xuε(t)‖2‖uε(t) + wε(t)‖∞. (18)

The last inequality was obtained using Sobolev inequality and (15) − (17) fol-
lowed from the Gagliardo–Nirenberg inequality. All factors except the one for
‖D2

xwε(t)‖22‖D2
xuε(t)‖2‖uε(t)+wε(t)‖∞ can be bounded by εM because of (12),

(14) and again the fact that ‖uε(t)‖∞ ≤ c‖uε(t)‖H2 ∼
√

ln ε−1. Integrating in
t,

‖D2
xwε(t)‖22

≤(‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞ + ‖wε(t)‖2∞ + ‖D2
xuε(t)‖2‖uε + wε(t)‖∞)

·
∫ t

0

‖D2
xwε(t)‖22dτ + εM ,

Gronwall’s lemma again implies that sup0≤t≤T ‖D2
xwε(t)‖2 = O(εM ), ε → 0,

for any M ∈ N.
Directly from equation (9), it follows that ‖∂twε(t)‖2 = O(εM ), ε → 0,

for any M ∈ N. Thus, (wε)ε ∈ NC1,H2([0, T )× Rn) and the solution to (1) is
unique.

Remark 2.2. Note that we have used the initial data a ∈ GH3(Rn) for the
uniqueness proof. The condition GH2(Rn) suffices for the existence proof. That
will be the case for the equation with a delta potential bellow, too.
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2.3 Compatibility with the classical solution

Let φ ∈ C∞0 (Rn) such that
∫
Rn φ dx = 1 and φ ≥ 0. Define φε(x) = ε−nφ(xε ).

The following holds

Theorem 2.3. Let u be the classical H2 solution of the cubic Schrdinger equa-
tion in n ∈ {2, 3} dimensions:

i∂tu+4u− |u|2u = 0 on Rn × (0,∞)

u(x, 0) = a(x),

for a ∈ H3(Rn). Let T > 0. The solution uε to the equation (8) with initial
data aε = a ∗ φε converges to u in H2(Rn)–norm for every t < T .

Proof. Since

‖Dα
x (a ∗ φε)‖2 = ‖Dα

xa ∗ φε‖2 ≤ ‖Dα
xa‖2‖φε‖1 = ‖Dα

xa‖2

for |α| ≤ 3, uniformly with respect to ε, we obtain condition (7). It follows
that the regularized initial data give rise to a unique solution in the space
GC1,H2([0, T )× Rn).

We put vε = u − uε now. Then u ∈ H2 implies that ‖u(t)‖∞ is finite, and
uε ∈ H2 for each ε > 0 gives, based on (4),

‖vε(t)‖∞ ≤ ‖u(t)‖∞ + ‖uε(t)‖∞ ≤ c1 + ‖uε(t)‖H2

≤ c1 + exp(‖a ∗ φε‖H2) ≤ c1 + c2,

Also,

‖Dγ
xvε(t)‖2 ≤ ‖Dγ

xu(t)‖2 + ‖Dγ
xuε(t)‖2 ≤ c, |γ| ≤ 2

Further, vε satisfies

i∂tvε +4vε − (|u|2u− |u− vε|2(u− vε)) = 0,

vε(x, 0) = a(x)− a ∗ φε(x).

Like in the uniqueness proof, one can see that

‖vε(t)‖22 ≤ ‖a− a ∗ φε‖22 exp((‖u(t)‖2∞ + ‖u(t)‖∞‖vε(t)‖∞)T ).

Therefore,
‖vε(t)‖22 ≤ C‖a− a ∗ φε‖22 → 0, ε→ 0.

In the same way,

‖Dxvε(t)‖22 ≤ T ‖Dx(a− a ∗ φε)‖22 (6‖u(t)‖∞‖vε(t)‖∞
+ 3‖vε(t)‖2∞) ‖Dxu(t)‖2‖Dxvε(t)‖2·
· exp(3‖u(t)‖2∞ + 6‖u(t)‖∞‖vε(t)‖∞ + 2‖vε(t)‖∞)T → 0, ε→ 0,

because all terms are bounded with respect to ε and ‖Dx(a−a∗φε)‖2 → 0, ε→
0. The second order derivatives can be bounded in the following way

d

dt
‖D2

xvε(t)‖22 ≤
∫
Rn

(
|D2

xvε|2|u2 + uvε + v2ε |

+ |uDxuDxvεD
2
xvε|+ |vε(Dxu)2D2

xvε|+ |u(Dxvε)
2D2

xvε|

+ |uD2
xuvεD

2
xvε|+ |v2εD2

xuD
2
xvε|

)
dx
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Integrating in t we obtain

‖D2
xvε(t)‖22 ≤ ‖D2

x(a− a ∗ φε)‖22

+ (‖u(t)‖2∞ + ‖u(t)‖∞‖vε(t)‖∞ + ‖vε(t)‖2∞)

∫ t

0

‖D2
xvε(t)‖22dτ

+ ‖u(t)‖∞‖D2
xvε(t)‖2‖Dxu(t)Dxvε(t)‖2 + ‖vε(t)‖∞‖D2

xvε(t)‖2‖(Dxu(t))2‖2
+ ‖u(t)‖∞‖D2

xvε(t)‖2‖(Dxvε(t))
2‖2

+ (‖u(t)‖∞‖vε(t)‖∞ + ‖vε(t)‖2∞)‖D2
xu(t)‖2‖D2

xvε(t)‖2 (19)

Using the Hölder inequality,

‖Dxu(t)Dxvε(t)‖2 ≤ ‖Dxu(t)‖4‖Dxvε(t)‖4

≤
( ∑
|α|=2

‖D2
xu(t)‖2

)b
‖u(t)‖1−b2 ·

( ∑
|α|=2

‖D2
xvε(t)‖2

)b
‖vε(t)‖1−b2 ≤ C,

where the Gagliardo-Nirenberg inequality was also used with b = 3
4 for n = 2

and b = 7
8 for n = 3. Terms ‖(Dxu(t))2‖2 and ‖(Dxvε(t))

2‖2 can be estimated in
the same way. Convergence of ‖D2

xvε(t)‖2 to zero as ε→ 0 follows by applying
Gronwall’s inequality to (19). This completes the proof.

3 The delta potential

Consider now the equation with the delta potential

i∂tu+4u = u|u|2 + δu,

u(0, x) = a(x), a ∈ GH2(R3).
(20)

A representative of δ is chosen such that the regularized version of (20) is

i∂tuε +4uε = uε|uε|2 + φhεuε,

uε(0, x) = aε(x),
(21)

where φhε(x) = h3εφ(hεx) and φ is a non-negative mollifier as before. Later on,
one will see that we have to take hε ∼ (ln ε−1)5/19. Let ε > 0. Multiplying by
uε, integrating over R3 and taking the imaginary part, we again get conservation
of energy

‖uε(t)‖L2(R3) = ‖aε‖L2(R3).

Multiplying by (uε)t, integrating over R3 and taking the real part , we have

1

2

∫
R3

|∇uε|2dx+
1

4

∫
R3

|uε|4dx+
1

2

∫
R3

φhε |uε|2dx = H(aε),

where H(aε) :=
1

2

∫
R3

|∇aε|2dx+
1

4

∫
R3

|aε|4dx+
1

2

∫
R3

φhε |aε|2dx. Then

H(uε(t)) = H(aε) ≥
1

2

∫
R3

|∇uε|2dx

9



and

‖uε(t)‖H1 ≤H(aε) + ‖aε‖2

≤1

2

∫
R3

|∇aε|2dx+
1

4
· ‖aε‖2

( ∑
|α|=1

‖Dα
xaε‖2

)3
+

1

2
‖aε‖2∞

≤‖aε‖2H2 + ‖aε‖4H2 . (22)

We have used inequality (3) with j = 0, m = 1, a = 3
4 , p = 4, and r = q = 2.

3.1 Solution for a fixed ε > 0

The first step is to find a local solution in H1(R3) to

i∂tuε +4uε + g1(uε) + g2(uε) = 0,

uε(0, x) = aε(x), (23)

where g1(uε) = −φεu, g2(uε) = −uε|uε|2, φ ∈ C∞0 (R3).

Theorem 3.1. (Theorem 4.3.1 in [5]) Let g1 and g2 satisfy the following
assumptions:

gj = G′j , for some Gj ∈ C1(H1(R3),R), j ∈ {1, 2}.

In particular, gj ∈ C(H1(R3), H−1(R3)). We assume that there exist rj , ρj ∈
[2, 6) such that gj ∈ C(H1(R3), Lρ

′
j (R3)) and such that for every M <∞ there

exists C(M) <∞ such that

‖gj(u)− gj(v)‖
L
ρ′
j
≤ C(M)‖u− v‖Lrj

for all u, v ∈ H1(R3) such that ‖u(t)‖H1 + ‖v‖H1 ≤ M . Finally, we assume
that, for every u ∈ H1(R3),

Im(gj(u)u) = 0, a.e. in R3.

Let G(u) = G1(u) +G2(u) and define the energy H by

H(u) =
1

2

∫
|∇u|2dx−G(u)

for u ∈ H1(R3). Under these assumptions, the initial value problem is locally
well posed in H1(R3). Furthermore, the energy is conserved,

‖u(t)‖L2 = ‖a‖L2 , H(u(t)) = H(a)

for all t ∈ (−Tmin, Tmax).

The functions g1(u) = −φhεu and g2(u) = −u|u|2 satisfy the conditions of
the theorem:

• Example 3.2.1 and Proposition 3.2.2 for g1,

• Proposition 3.2.5 and Remark 3.2.6 for g2,
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• and Remark 3.3.4 for both functions, with

• G1(u) = − 1
2

∫
φ|u|2, G2(u) = − 1

4

∫
|u|4.

Using (22), one can see that there exists a unique local solution satisfying

‖uε(t)‖L2 = ‖aε‖L2 , and H(uε(t)) = H(aε), t < Tε. (24)

The bounds (24) enable us to prolong a solution to any T using the same time
steps Tε. Thus, there exists a global solution in H1(R3) to (23).

Even more, there exists a solution in C1([0, T ), H2(R3)) when the initial
data belongs to H2(R3) The proof is based on the analysis from Section 5 in
[5]: The right–hand side of (10) satisfies all assumptions in Theorem 5.3.1, so a
H2–solution solution exist in the same interval [0, T ) where we already have the
H1–solution determined above. The proofs of the theorems is based on the fact
that for more regular initial data local solution in H2 does not blow up before
t = T , where T is a life–span of H1 solution.

3.2 Generalized solution

Let T (t) = eit4 denote the Schrdinger evolution operator (propagator) defined
in the following way (see [16]). Take the equation

i∂tu+4u = 0, u(0, x) = u0(x), (25)

for u0 in the Schwartz space S(Rn). Then,

û(t)t(ξ) = −i|ξ|2û(t)(ξ) and

û(t)(ξ) = e−it|ξ|
2

û0(ξ).

It follows that

eit4u0(x) =

∫
Rn
e−it|ξ|

2+ix·ξû0(ξ)dξ

is a solution of (25). This operator is defined initially for Schwartz functions,
but can be extended by standard density arguments to other spaces. T (t) is
unitary on L2(Rn) and Hs(Rn). It is also a Fourier multiplier and as such,
commutes with other Fourier multipliers, including constant coefficient differ-
ential operators. We use this fact in the proof of Theorem 3.4, along with the
following theorems

Theorem 3.2. (Proposition 2.2.3 in [5]) Let p ∈ [2,∞], 1/p+ 1/p′ = 1 and
t > 0. Then T (t) maps Lp

′
(Rn) continuously to Lp(Rn) and

‖T (t)φ‖p ≤ (4π|t|)−n(
1
2−

1
p )‖φ‖p′ , for all φ ∈ Lp

′
(26)

Theorem 3.3. (Duhamel’s formula) The function u ∈ C(I,H3(R3)) is so-
lution of (23) if and only if:

u(t) = T (t)a+ i

∫ t

0

T (t− s)(−u(s)|u(s)|2 − φu(s))ds for all t ∈ I, (27)

where I is an interval in R such that 0 ∈ I.

11



We can now state the theorem

Theorem 3.4. Let

‖aε‖H3 = O(ε−N ), and ‖aε‖H2 = O(hε) for some N ∈ N, (28)

where hε ∼ (ln ε−1)
5
19 . Then for any T > 0 there exists a generalized solu-

tion u ∈ GC1,H2([0, T ) × R3) of (20). Additionally, if hε ∼ (ln(ln ε−1)
1
14 )

1
6 ∼

(ln(ln ε−1))
1
6 and a ∈ GH3(R3), ‖aε‖H3 ∼ (ln ε−1)

1
14 , the solution is unique in

GC1,H2([0, T )× R3).

Proof. Existence. The following inequalities∑
|α|=1

‖Dα
xuε(t)‖2 ≤ c

√
H(aε),

H(aε) ≤ ‖aε‖2H1 +
( ∑
|α|=1

‖Dαaε‖2
)3 · ‖aε‖2 + ‖aε‖∞

≤ c(‖aε‖2H2 + ‖aε‖4H2)

hold as above. ThenH(aε) ≤ c(ln ε−1)
20
19 as ε→ 0, from (28). We have seen that

for each ε > 0 there exists a unique solution uε ∈ C1([0, T ), H3(R3)) to (21).
Differentiating Duhamel’s formula (27) twice in x and using (26) we obtain

‖D2
xuε(t)‖2 ≤‖D2

xaε‖2 + c

∫ t

0

‖u2ε(t)D2
xuε(t) + uε(t)|Dxuε(t)|2‖2ds

+

∫ t

0

‖uε(t)D2
xφhε +DxφhεDxuε(t) + φhε(t)D

2
xuε(t)‖2ds. (29)

There holds

‖u2εD2
xuε(t)‖2 ≤‖D2

xuε(t)‖ 10
3
‖uε(t)‖210

≤‖D2
xuε(t)‖ 10

3

( ∑
|α|=1

‖Dα
xuε(t)‖ 10

3

) 3
2 ‖u(t)‖

1
2
2 .

Here we used the Hölder inequality and the Gagliardo–Nirenberg inequality for
j = 0, m = 1, p = 10, r = 10

3 , q = 2, b = 3
4 . Similarly,

‖uε(t)|Dxu(t)|2‖2 ≤‖uε(t)‖6‖Dxuε(t)‖26

≤
( ∑
|α|=1

‖Dα
xuε(t)‖2

)( ∑
|α|=2

‖Dα
xuε(t)‖ 10

3

) 20
13 ‖uε(t)‖

6
13
2 ,

where j = 1, m = 2, p = 6, r = 10
3 , q = 2, b = 10

13 in the Gagliardo–Nirenberg
inequality. Finally,

‖uεD2
xφhε‖2 ≤ ‖D2

xφhε‖∞‖uε(t)‖2, ‖DxuεDxφhε‖2 ≤ ‖Dxφhε‖∞‖Dxuε(t)‖2,
‖φhεD2

xuε(t)‖2 ≤ ‖D2
xuε(t)‖10/3‖φhε‖5.

The norms ‖Dα
xφhε‖p are controlled by hmε for some m. It remains to obtain

bounds for ‖Dxuε(t)‖ 10
3

and ‖D2
xuε(t)‖ 10

3
. Again we use Duhamel’s formula

12



(27), estimate (26) for p = 10
3 , p

′ = 10
7 and the fact that T (t) commutes with

Dx

‖Dxuε(t)‖ 10
3
≤ ‖Dx(T (t)aε)‖ 10

3

+ c

∫ t

0

1

(t− s) 3
5

‖Dx(uε(s)|uε(s)|2 + φhεuε)(s)‖ 10
7
ds,

‖Dx(T (t)aε)‖ 10
3
≤
( ∑
|α|=2

‖Dα
x (T (t)aε)‖2

) 4
5 ‖T (t)aε‖

1
5
2 ≤ ‖aε‖H2

where the Gagliardo-Nirenberg inequality (3) was used, j = 1, m = 2, p =
10/3, q = r = 2, b = 4/5. Applying the Hölder inequality and (3) again with
j = 0, m = 1, p = 5, r = q = 2, b = 9

10 , we derive the following inequalities

‖Dxφhεuε(t)‖ 10
7
≤‖aε‖2‖Dxφhε‖5,

‖φhεDxuε(t)‖ 10
7
≤‖Dxuε(t)‖2‖φhε‖5 ≤ H(aε)

1
2 ‖φhε‖5, and

‖Dxuε(t)|uε(t)|2‖ 10
7
≤‖Dxuε(t)‖ 10

3
‖uε(t)‖25

≤‖Dxuε(t)‖ 10
3

( ∑
|α|=1

‖Dα
xuε(t)‖2

) 9
5 ‖uε(t)‖

1
5
2

≤‖Dxuε(t)‖ 10
3
H(aε)

9
10 ‖aε‖

1
5
2 .

Gronwall’s inequality implies

sup
[0,T )

‖Dxuε(t)‖ 10
3
≤
(
‖aε‖H2 + T

2
5 (‖aε‖2‖Dxφhε‖5 +H(aε)

1
2 ‖φhε‖5)

)
· exp

(
T

2
5H(aε)

9
10 ‖aε‖

1
5
2

)
(30)

Denote by fε the expression on the right hand side. It follows

fε ≤ (ln ε−1)m exp(T
2
5 (ln ε−1)p),

for some m > 0 and p = 20
19 ·

9
10 + 5

19 ·
1
5 = 1. Finally,

sup
[0,T )

‖Dxuε(t)‖ 10
3
≤ cε−N , ε→ 0, for some N.

Similarly

‖D2
xuε(t)‖ 10

3
≤ ‖D2

x(T (t)aε)‖ 10
3

+ c

∫ t

0

1

(t− s) 3
5

‖D2
x(uε(s)|uε(s)|2 + φhεuε(s))‖ 10

7
ds,

‖D2
x(T (t)aε)‖ 10

3
≤
( ∑
|α|=3

‖Dα(T (t)aε)‖2
) 13

15 ‖T (t)aε‖
2
15
2 ≤ ‖aε‖H3 ,

‖D2
xuε(t)‖ 10

3
≤
(
‖aε‖H3 + T

2
5

(
‖aε‖2‖D2

xφhε‖5 +H(aε)
1
2 ‖Dxφhε‖5

+ ‖aε‖2/32

( ∑
|α|=1

‖Dxuε(t)‖ 10
3

) 7
3
))

exp
(
T

2
5 (‖φhε‖ 5

2
+H(aε)

9
10 ‖aε‖

1
5
2 )
)

(31)
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Denote by gε the expression on the right hand side. It follows that gε ≤ cε−N

for ε→ 0 and for some N , since

‖φhε‖ 5
2
≤ ch

9
5
ε ∼ ((ln ε−1)

5
19 )

9
5 ≤ ((ln ε−1)

5
9 )

9
5 = ln ε−1, ε→ 0.

Note that ‖Dxuε(t)‖ 10
3

and ‖D2
xuε(t)‖ 10

3
are bounded on [0, T ) (an assumption

needed for Gronwall’s inequality), since the Gagliardo–Nirenberg inequality im-
plies

‖D2
xuε(t)‖ 10

3
≤
( ∑
|α|=3

‖Dα
xuε(t)‖2

) 13
15 ‖uε(t)‖

2
15
2 <∞ for each t ∈ [0, T ).

One can bound ‖Dxuε(t)‖ 10
3

similarly. Returning to (29) we see that

sup
[0,T )

‖D2
xuε(t)‖2 ≤‖aε‖H2 + gεf

3
2
ε ‖aε‖

1
2
2 +H(aε)

1
2 g

20
13
ε ‖aε‖

6
13
2

+ ‖D2
xφhε‖∞‖aε‖2 +H(aε)

1
2 ‖Dxφhε‖∞ + gε‖φhε‖5,

sup
[0,T )

‖D2
xuε(t)‖2 =O(ε−N ), for some N.

Moderateness of sup[0,T ) ‖∂tuε(t)‖2 follows easily from (21), moreover

uε ∈ C([0, T ), H2(Rn)) ∩ C1([0, T ), L2(Rn)), ε ∈ (0, 1).

Uniqueness. Let u, v ∈ GH2 be two solutions with representatives uε, vε and let
wε = uε − vε. Also, let now hε = (ln(ln ε−1)1/14)1/6 ∼ (ln(ln ε−1))1/6. Then wε
solves

i(wε)t +4wε =uε|uε|2 − (uε−wε)(|uε|2−uεwε−wεuε+|wε|2) + φhεwε +Nε

wε(0, x) = nε(x), (32)

where (nε)ε ∈ NH3(Rn), (Nε)ε ∈ NC1,H2([0, T ) × Rn). Multiplying by wε,
integrating on R3 and taking the imaginary part we obtain again equation (10),
since φhε |wε|2 is real. Furthermore, for arbitrary M ∈ N

sup
[0,T )

‖wε(t)‖22 ≤‖nε(x)‖22 + sup
[0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞

) ∫ T

0

‖wε(t)‖22dτ

+ sup
[0,T )

‖wε(t)‖2‖Nε(t)‖2,

sup
[0,T )

‖wε(t)‖22 ≤εM exp
(

sup
[0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞

) )
. (33)

The following estimates are needed for completing the proof of Theorem 2.1
above. We know that uε and vε satisfy

i∂tuε +4uε = uε|uε|2 + φhεuε +Nε,

uε(0, x) = aε(x) + nε(x)
(34)

where Nε ∈ NC1,H2([0, T )× Rn) and nε ∈ NH3(Rn).
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Using the same procedure as in the existence proof we obtain

sup
[0,T )

‖D2
xuε(t)‖2 ≤ ‖aε‖H2 + gεf

3
2
ε ‖aε‖

1
2
2 +H(aε)

1
2 g

20
13
ε ‖aε‖

6
13
2 + c(‖aε‖H2)‖nε‖H2

+ ‖D2
xφhε‖∞‖aε‖2 +H(aε)

1
2 ‖Dxφhε‖∞ + gε‖φhε‖5 + T sup

[0,T )

‖D2
xNε(t)‖2,

(35)

We can now use the fact that ‖uε(t)‖2∞ ≤ ‖uε(t)‖2H2 . Recall that

‖aε‖H2 ∼ hε, H(aε) ∼ h4ε, ‖φε‖ 5
2
∼ h

9
5
ε , ‖φε‖5 ∼ h

12
5
ε ,

‖Dxφε‖∞ ∼ h4ε, ‖D2
xφε‖∞ ∼ h5ε, ‖D2

xφε‖5 ∼ h
22
5
ε , ‖Dxφε‖5 ∼ h

17
5
ε .

From (30) and (31) we derive

fε ∼ (ln ε−1)
2
14 , gε ∼ (ln ε−1)

3
14 .

Using the fact that lns lnq ε−1 ≤ lnq ε−1, ε→ 0 for s ≤ 1 we see that each factor
in (35) can be estimated by

√
ln ε−1. Thus,

‖uε(t)‖H2 ∼
√

ln ε−1. (36)

Returning to (33), it follows that for any M ∈ N ‖wε(t)‖22 ≤ εM .
A similar procedure leads to

sup
[0,T )

‖Dxwε(t)‖22

≤‖Dxnε(x)‖22 + sup
(0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞ + ‖wε(t)‖2∞

)
·
∫ T

0

‖Dxwε(t)‖22ds+ T sup
(0,T )

(
(‖uε + wε(t)‖∞‖wε(t)‖2‖DxuεDxwε(t)‖2

+ ‖wε(t)‖2‖Dxφhε‖∞‖Dxwε(t)‖2 + ‖Dxwε(t)‖2‖DxNε‖2
)

and as in the homogeneous case (equation (13)), sup[0,T ) ‖Dxuε(t)Dxwε(t)‖2
can be bounded by ε−N . It follows that sup

[0,T )

‖Dxwε(t)‖22 ≤ εM for any M ∈ N.

Also,

‖D2
xwε(t)‖22 ≤ ‖D2

xnε(x)‖22 + T sup
(0,T )

(
‖Dxφhε‖∞‖Dxwε(t)‖2‖D2

xwε(t)‖2

+ ‖D2
xφhε‖∞‖wε(t)‖2‖D2

xwε(t)‖2
)

+ sup
[0,T )

(
‖uε(t)‖∞‖wε(t)‖∞ + ‖uε(t)‖2∞

+ ‖wε(t)‖2∞ + ‖D2
xuε(t)‖2

)∫ T

0

‖D2
xwε(t)‖22ds+ εM ,

where εM was obtained in the same way as in the homogeneous case (equations
(15) − (18)). The remaining factors can also be bounded by εM . Applying
Gronwall’s lemma ‖D2

xwε(t)‖22 ≤ ε−NεM , for some N and any M ∈ N.
Once again, ‖(wε)t‖2 = O(εM ), ε → 0, ∀M ∈ N follows directly from (32)

and this completes the proof.
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