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Abstract.

1. Introduction

It has been observed that Riemann problem for certain conservation laws cannot be solved with combi-
nations of piecewise constant initial states, shock waves, rarefaction waves and contact discontinuities only.
For that reason, the notion of a delta shock wave are introduced starting from the early 90s (even some
numerical results from 70s showed such behaviour ([16]). The main examples come from gas dynamics,
magnetohydrodynamics, chromatography, nonlinear elasticity and so on. It was shown that a large class of
Riemann problems can be solved globally with these additional building blocks. Let us mention just few
pioneering papers, [17] and [30].

The aim of this paper is to describe one attempt in modeling delta shocks is called sided delta shocks
(SDS for short). These objects are introduced in [24] (one can find an early version of these in [20]). The
main mathematical idea behind their definition was to use measure spaces defined over closed domain to
catch delta function that was empirically found in some systems. Both of these closed domains contain a
shock curve, each of them lies on one side of the curve and the system is satisfied in a classical sense in their
interiors.

Before defining SDS solutions, let us just briefly mention some different approaches.
We start ”usual” method for catching delta function contains a step of prescribing a value at a shock

curve for an L∞-function. That is

u(x, t) =























u0, x < ct

uδ, x = ct

u1, x > ct

, v(x, t) =















v0, x < ct

v1, x > ct
+ wδ(t)δx−ct.
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Using such definition, a sets of Lebesgue measure zero becomes important (δ is understood as a Borel
measure, for example). One can look at [32] for such type of definitions. There are a lot of other papers
using such a way of dealing with delta problem. The main success of this approach was maybe a solution of
pressureless gas dynamics system. But there are few problematic points. The first one is a proper definition
of a measure space used for solving conservation law systems. One has to be very careful to make a proper
definition. We point out the paper [1]. The second one is that the initial data are now

u(x, 0) =























u0, x < 0

uδ, x = 0

u1, x > 0,

so it means that one use special initial data at zero measure set that is not given in advance. That was one of
the reasons why SDS are defined on non-zero measure sets. But, on the other hand, one cannot find an SDS
solution to the very important example – pressureless gas dynamics. One will find a way to accomplish
them at the end of the paper by using so called shadow waves (see [23]).

A distributional version of the above simple idea one can find in [9], [10]. In the similar manner one can
define also so called δ′-shocks, see [26].

We have already said that the pressureless model is very important, and one can look at the following
papers where it is solved (independently): Using so called variational method in [11] and using so called
sticky particles method in [3]. For the generalized pressureless-type system one can look in [14].

Let us mention the paper [15] where one can find even more peculiar type of waves – singular shocks.

Their main feature that besides δ function they contains some strange objects that can be described as
√
δ.

Let us just mention that they can be also understood as a special type of shadow waves.

At the end of this introduction, we point out on the paper [18] where one can find a real model from
chromatography theory with the proof that there are essential reasons to use delta shock with distinguished
left- and right-hand side. That was a kind of practical recognition of the whole idea of splitting delta into
two parts.

2. The definition of split delta shocks

Let us now briefly describe what we mean by a solution in the form of a delta shock wave.

Suppose R2
+ is divided into finitely disjoint open setsΩi , ∅, i = 1, ...,n with piecewise smooth boundary

curves Γi, i = 1, ...,m, that is Ωi ∩Ω j = ∅,
⋃n

i=1Ωi = R2
+ where Ωi denotes the closure of Ωi. Let C(Ωi) be the

space of bounded and continuous real-valued functions onΩi, equipped with the L∞-norm. LetM(Ωi), be

the space of measures on Ωi.

We consider the spaces

CΓ =
n

∏

i=1

C(Ωi), MΓ =

n
∏

i=1

M(Ωi).

The product of an element G = (G1, ...,Gn) ∈ CΓ and D = (D1, ...,Dn) ∈ MΓ is defined as an element
D · G = (D1G1, ...,DnGn) ∈ MΓ, where each component is defined as the usual product of a continuous
function and a measure.

Every measure on Ωi can be viewed as a measure on R2
+ with support in Ωi. This way we obtain a

mapping

m :MΓ →M(R2
+)

m(D) = D1 +D2 + ... +Dn.



M. Nedeljkov / FAAC xx (yyyy), zzz–zzz 3

A typical example is obtained when R2
+ is divided into two regions Ω1, Ω2 by a piecewise smooth curve

x = γ(t). The delta function δ(x− γ(t)) ∈ M(R2
+) along the line x = γ(t) can be split in a non unique way into

a left-hand side D− ∈ M(Ω1) and the right-hand component D+ ∈ M(Ω2) such that

δ(x − γ(t)) = α0(t)D− + α1(t)D+

= m(α0(t)D− + α1(t)D+)

with α0(t) + α1(t) = 1. The solution concept which allows to incorporate such two sided delta functions
as well as shock waves is modeled along the lines of the classical weak solution concept and proceeds as
follows:
Step 1: Perform all nonlinear operations of functions in the space CΓ.
Step 2: Perform multiplications with measures in the spaceMΓ.

Step 3: Map the spaceMΓ intoM(R2
+) by means of the map m and embed it into the space of distributions.

Step 4: Perform the differentiation in the sense of distributions and require that the equation is satisfied in
this sense.

Note that in the case of absence of a measure part (Step 2), this is the precisely the concept of a weak
solution to equations in divergence form.

Following the usual reasoning, delta shocks are required to satisfy the condition of over-compressibility,
meaning that all characteristic curves run into the delta shock curve from both sides. It may happen that at
a certain point on a delta shock curve, over-compressibility is lost. In this case we replace the delta shock
by a new type of solution which we call a delta contact discontinuity. This new concept is introduced in
Lemma 1 and Definition 1 below.

3. Simplified magnetohydrodynamics model

We start our investigation of different models from the literature that contains solutions with SDSs. The
first model equation in the paper [24] is

ut + (u2/2)x = 0

vt + ((u − 1)v)x = 0
(1)

initiated in [13]. This system is derived from a simplified model of magnetohydrodynamics. The eigen-
values of the above system are λ1(u, v) = u − 1, λ2(u, v) = u, and the right-hand side eigenvectors are
r1(u, v) = (0, 1)T, r2(u, v) = (1, v)T. The first characteristic field is linearly degenerate and the second is
genuinely nonlinear. Thus, there are three types of solution for the Riemann data

(u, v)(x, 0) =















(u0, v0), x < 0

(u1, v1), x > 0

(i) When u1 > u0 the solution is a contact discontinuity followed by a rarefaction wave,

u(x, t) =























u0, x ≤ u0t
x
t , u0t < x < u1t

u1, x ≥ u1t

v(x, t) =































v0, x ≤ (u0 − 1)t

v1 exp(u0 − u1), (u0 − 1)t < x < u0t

v1 exp( x
t − u1), u0t ≤ x ≤ u1t

v1, x > u1t.
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(ii) If u1 < u0 < u1 + 2, the solution is given in the form of contact discontinuity followed by a shock wave,

u(x, t) =















u0, x ≤ ct

u1, x > ct

v(x, t) =























v0, x ≤ (u0 − 1)t

v∗, (u0 − 1)t < x < ct

v1, x ≥ ct,

where v∗ = v1
2 − u0 − u1

2 + u1 − u0
.

(iii) If u0 ≥ u1 + 2 the solution is given in the form of delta shock wave,

u(x, t) =















u0, x ≤ ct

u1, x > ct

v(x, t) =















v0, x ≤ ct

v1, x > ct
+ α0(t)D− + α1(t)D+,

(2)

where D− and D+ are the left- and right-hand side delta functions with the support on the line x = ct (see
below), c = (u0 + u1)/2,

α0(t) =
st(c − (u1 − 1))

u0 − u1
, α1(t) =

st(c − (u0 − 1))

u0 − u1
,

α(t) := α0(t) + α1(t) is called the strength of the delta shock wave, and

s := c(v1 − v0) − ((u1 − 1)v1 − (u0 − 1)v0)

is called the Rankine-Hugoniot deficit (see [15]).

We will prove only the third part of the assertion. The first two parts can be proved in the usual way
(see [8] or [4] for example).

Let us substitute a wave of the form (2) into the first equation:

− 〈

u, ∂tϕ
〉

= −
∫ ∞

0

(∫ ct

−∞
u0∂tϕ (x, t) dx +

∫ ∞

ct

u1∂tϕ (x, t) dx

)

dt

= −c

∫ ∞

0

(u1 − u0)ϕ (ct, t) dt =
〈

[u] δ (x − ct) , ϕ
〉

−
〈

1

2
u2, ∂xϕ

〉

=

〈

1

2

[

u2
]

δ (x − ct) , ϕ
〉

and the second

− 〈

v, ∂tϕ
〉

= −
∫ ∞

0

(∫ ct

−∞
v0∂tϕ (x, t) dx +

∫ ∞

ct

v1∂tϕ (x, t) dx

)

dt

+
〈

α′0 (t) δ (x − ct) , ϕ
〉

− c
〈

α0 (t) δ′ (x − ct) , ϕ
〉

+
〈

α′1 (t) δ (x − ct) , ϕ
〉

− c
〈

α1 (t) δ′ (x − ct) , ϕ
〉

− c
〈

[υ] −
(

α′0 (t) + α′1 (t)
)〉

δ (x − ct)

− c 〈(α0 (t) + α1 (t))〉 δ′ (x − ct)

〈v (

u − 1), ϕx
)

=
〈

[v (u − 1)] δ (x − ct) , ϕ
〉

〈

(v0 (u0 − 1)α0 (t) + v1 (u1 − 1)α1 (t)) δ′ (x − ct) , ϕ
〉
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Thus, the system would be satisfied if the following equations are satisfied. For the first equation the delta
terms imply

[u] c − 1

2

[

u2
]

= 0

and there are no delta derivative terms,
From the second equation we have the following equations

− [v] c + [v (u − 1)] +
(

α′0 (t) + α′1 (t)
)

= 0

(v0 (u0 − 1)α0 (t) + v1 (u1 − 1)α1 (t)) = c (α0 (t) + α1 (t)) .
(3)

One can immediately see that

α′0 (t) + α′1 (t) = k1 := c [v] − [v (u − 1)] .

Using that and the second equation above we have the following system

α0 (t) + α1 (t) = k1t

(v0 (u0 − 1) − c)α0 (t) + (v1 (u1 − 1) − c)α1 (t) = 0
(4)

(we have used that αi(0) = 0, i = 0, 1,’since there is no delta function in the initial data) with the solution

α0 (t) =
k1 (v1 (u1 − 1) − c) t

(v1 (u1 − 1) − v0 (u0 − 1))

α1 (t) =
k1 (c − v0 (u0 − 1)) t

(v1 (u1 − 1) − v0 (u0 − 1))

Let us check the over-compressibility condition:

λ1 (u0, v0) = u0 − 1 ≥ c =
u0 + u1

2
≥ λ2 (u1, v1) = u1.

Obviously, it is satisfied if u0 − 2 ≥ u1 That proves the assertion.

3.1. Delta initial data problem

If there is an interaction of two waves among these is at least one split delta shock we have to solve a
new initial problem at the interaction time. In that case, the initial data contains the δ-function. With no
loss in generality, we shall translate the interaction time to zero, so we have to solve system (1) with the
initial data

(u, v)(x, 0) =















(u0, v0), x < 0

(u1, v1), x > 0
+ γδ(x, 0)

solved in a simple way as above and the result is a single over-compressive delta shock wave. But, when
this is not a case, the types of admissible solution known so far are not enough to obtain a solution. Let us
first look at the case u0 ≥ u1 + 2. It simply means that we have to solve ODE system (3) with the initial data
α0(0) + α1(0) = γ. Then, we have

α0 (t) + α1 (t) = k1t + γ

(v0 (u0 − 1) − c)α0 (t) + (v1 (u1 − 1) − c)α1 (t) = 0

instead of (4). Now we have

a0 = −
((u1 − 1)v1 − c)k1t + ((u1 − 1)v1 − c)γ

(u0 − 1)v0 − (u1 − 1)v1
,

a1 =
((u0 − 1)v0 − c)k1t + ((u0 − 1)v0 − c)γ

(u0 − 1)v0 − (u1 − 1)v1
.
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The speed of the delta shock stays the same, since it is completely determined by the first equation. Like in
the case of the Riemann data, the wave is over-compressive.

Let u0 < u1 + 2 now. We will have a new type of admissible solution, called delta contact discontinuity,
defined below. Its existence is justified by two facts. First, a contact discontinuity emerges in the case when
one of the characteristic fields is linearly degenerate. Second, if a linear equation has a delta function as
initial data, it propagates along the characteristic lines. These two facts inspired the following lemma and
the definition of this new type of elementary waves.

Lemma 3.1. Let the initial data for system (1) given by

u|t=0 =















u0, x < 0

u1, x > 0
, v|t=0 =















v0, x < 0

v1, x > 0
+ γδ(0,0),

where u0 > u1, but u0 < u1 + 2. Then, the function

u =















u0, x < ct

u1, x > ct
v =























v0, x < (u0 − 1)t

v∗, (u0 − 1)t < x < ct

v1, x > ct

+ γδx=(u0−1)t,

where c = (u0 + u1)/2 weakly solves the Riemann problem for (1).

Proof. For every ϕ ∈ C∞0 , suppϕ ∩ {(x, t) : x = (u0 − 1)t, t > 0} = ∅, it holds that

〈ut, ϕ〉 +
1

2
〈(u2)x, ϕ〉 = 0

〈vt, ϕ〉 + 〈((u − 1)v)x, ϕ〉 = 0.

Our aim is to show that this still holds true when it is allowed that suppϕ intersects the supports of D− and
D+, i.e. the line x = (u0 − 1)t. Let us note that the condition u0 < u1 + 2 means that (u0 + u1)/2 > u0 − 1 so the
line x = (u0 − 1)t is on the left-hand side of the shock line x = (u0 + u1)t/2.

The first equation in (1) does not contain v, so it is still satisfied. From the second equation we have that

vt + ((u0 − 1)v)x = −(u0 − 1)(v∗ − v0)δ − γδ′

+ (u0 − 1)(v∗ − v0)δ + (u0 − 1)γδ′ = 0

near the line x = (u0 − 1)t.

One can find a detailed analysis of all interaction cases where this lemma is useful in [24].

4. Transport equations

We shall now give another example from literature when split delta shocks can be used – the results are
taken from [29]. Let us look at the transport equations in the following form

ρt +
(

ρu
)

x =0

ut +

(

u2

2

)

x

=0.
(5)

Let us note that that system is essentially the same as the one in [16]

ut +

(

u2

2

)

x

=0

vt +

(

uv

2

)

x
=0
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where delta shocks are observed first (numerically).

System (5) is weakly hyperbolic with one eigenvalue λ = u (and linearly degenerate field). For u0 ≤ u1,
a solution to the Riemann problem

(ρ,u)(x, 0) =















(ρ0,u0), x < 0

(ρ1,u1), x > 0

consists of two contact discontinuities connected with the vacuum state

ρ(x, t) =























ρ0, x ≤ u0t

0, u0t < x < u1t

ρ1, u1t ≤ x,

u(x, t) =























u0, x ≤ u0t
x
t , u0t < x < u1t

u1, x ≥ u1t.

In the case u0 > u1 we expect the SDS like in the previous case. Substitution of (2) into system (5) gives
c = 1

2 (u0 + u1) from the second and

− [

ρ
]

c +
[

ρu
]

+
(

α′0 (t) + α′1 (t)
)

= 0
(

ρ0u0α0 (t) + ρ1u1α1 (t)
)

= c (α0 (t) + α1 (t))

from the first equation in the system (similarly as (3) before). We can put αi(t) = αit, i = 0, 1 as above, so we
have to solve the system

α0 + α1 =k1 :=
[

ρ
]

c − [

ρu
]

(u0 − c)α0 + (u1 − c)α1 =0.

The solution is now given by

α0 =
(c − u1)k1

u0 − u1
, α1 = −

(c − u0)k1

u0 − u1
.

The over-compressibility condition holds whenever u0 > u1, since c = 1
2 (u0 + u1).

Note that one can treat the case with delta in initial data similarly to the previous case. We shall omit
the these.

5. Nonlinear chromatography equations

Nest example is from the paper [12] about a model in non-linear chromatography

ut +

((

1 +
1

1 − u + v

)

u
)

x
=0

vt +

((

1 +
1

1 − u + v

)

v
)

x
=0.

(6)

Physical domain for solutions is defined by 1 − u + v >, or v − u > −1 The system has

λi =
1

1 − u + v
, λ j =

1

(1 − u + v)2
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as eigenvalues. Here, i = 1, j = 2 if −1 < v − u < 1, and i = 2, j = 1 if v − u ≥ 1. The system is strictly
hyperbolic if u , v with i-th field being linearly degenerate and j-th field being genuinely nonlinear. One
can look in [12] for a complete solution to Riemann problem

(u, v)(x, 0) =















(u0, v0) x < 0

(u1, v1), x > 0
.

We can give here only the case v0 − u0 < 0, v1 − u1 > 0 when there are no elementary wave solutions. In that
case, we try with the SDS solution

u(x, t) =















u0, x ≤ ct

u1, x > ct
+ α0(t)D− + α1(t)D+

v(x, t) =















v0, x ≤ ct

v1, x > ct
+ β0(t)D− + β1(t)D+.

(7)

A split delta function can be multiplied only with continuous function on the domains {(x, t) : x ≤ ct} and
{(x, t) : x ≥ ct}. That is, 1

1−u+v has to be continuous on these sets. That is possible if delta parts in 1 − u + v
cancel each other, i.e. when

α0 + α1 = β0 + β1. (8)

A substitution of (7) into system (6) gives the following two relations. The first equation is satisfied if the
following relation is true

(

−c [u] + α0 + α1 +

[(

1 +
1

1 − u + v

)

u
])

δ (x − ct)

+

(

−c (α0 + α1) t +
((

1 +
1

1 − u0 + v0

)

u0α0 +

(

1 +
1

1 − u1 + v1

)

u1α1

)

t
)

δ′ (x − ct) = 0

while the second one holds if
(

−c [v] + β0 + β1 +

[(

1 +
1

1 − u + v

)

v
])

δ (x − ct)

+

(

−c
(

β0 + β1
)

t +
((

1 +
1

1 − u0 + v0

)

v0β0 +

(

1 +
1

1 − u1 + v1

)

v1β1

)

t
)

δ′ (x − ct) = 0

These relations produce four equations

α0 + α1 = k1 := c [u] −
[(

1 +
1

1 − u + v

)

u
]

(9)

((

1 +
1

1 − u0 + v0

)

u0 − c
)

α0 +

((

1 +
1

1 − u1 + v1

)

u1 − c
)

α1 = 0 (10)

β0 + β1 = k2 := c [v] −
[(

1 +
1

1 − u + v

)

v
]

(11)

((

1 +
1

1 − u0 + v0

)

v0 − c
)

β0 +

((

1 +
1

1 − u1 + v1

)

v1 − c
)

β1 = 0. (12)

The condition α0 + α1 = β0 + β1 imply k1 = k2, and that condition determines the speed by

c [u] −
[(

1 +
1

1 − u + v

)

u
]

= c [v] −
[(

1 +
1

1 − u + v

)

v
]
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i.e.

c = 1 +
1

(1 − u0 + v0) (1 − u1 + v1)
.

Finally, we can find unique values of α0, α1, β0 and β1 that satisfies the following two systems (9-10) and
(11,12).

The condition −1 ≤ v0 − u0 ≤ 0 and v1 − u1 ≥ 0 ensures that the wave is over-compressible.

6. Systems linear in one variable

Let us try to find a solution in the SDS-form of a fairy general case

ut +
(

f1 (u) v + f2 (u)
)

x = 0

vt +
(

11 (u) v + 12 (u)
)

x = 0
(13)

with the Riemann initial data. Like in all previous cases, let us substitute a wave in SDS-form into the
system.

Taking care about coefficients in front of δ and δ′, we get

(−c [u] +
[

f1 (u) v + f2 (u)
])

δ +
(

f1 (u0)α0 + f1 (u1)α1
)

δ′ = 0.

From that relation, we get the wave speed:

c =

[

f1 (u) v + f2 (u)
]

[u]
(14)

and the first equation for αs:

f1 (u0)α0 + f1 (u1)α1 = 0 (15)

Substitution into the second equation gives

(−c[v] + (α0 + α1) − [11(u)v + 12(u)])δ

+ (−c(α0 + α1)t + (11(u0)α0 + 11(u1)α1)t)δ′ = 0

That will be true if the following equations are satisfied:

α0 + α1 = k1 := c [v] − [

11 (u) v + 12 (u)
]

(16)

(

11 (u0) − c
)

α0 + (11 (u1) − c)α1 = 0 (17)

In order to obtain α0 and α1, (15) and (17) has to be linearly dependent, i.e.

11 (u0) − c

f1 (u0)
=
11 (u1) − c

f1 (u1)

or

c =
f1 (u1) 11 (u0) − f1 (u0) 11 (u1)

f1 (u1) − f (u0)
.

Together with (14) we obtained the following condition on left- and right-hand states:

[

f1 (u) v + f2 (u)
]

[u]
=

f1 (u1) 11 (u0) − f1 (u0) 11 (u1)
[

f1 (u)
]

A set of all right-hand states (u1, v1) that satisfy it is called the Delta Locus. In general, for a fixed left-hand
side it is a curve v1 = v1 (u1) in (u, v)-plane passing trough that point. With that condition satisfied, one
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can solve (16), (17) to get α0, α1. The fact that the Locus is just a curve and that an admissible SDS should
be over-compressive restricts a use of such solutions. Contrary to Hugoniot locus or rarefaction curve, a
point at the locus can be joined only with rarefaction wave and only if a speed of an SDS obtained in such
a way equals one of the eigenvalues – left for R1 and right one for R2. A set of such point is a discrete set in
general.

Now we shall give a case when this restrictive fact does not hold.

ut + f (u)x = 0

vt +
(

11 (u) v + 12 (u)
)

x = 0

Immediately, one sees that

c =

[

f (u)
]

[u]
.

From the second equation we have

α0 + α1 = k1 := c [v] − [

11 (u) v + 12 (u)
]

− c (α0 + α1) + 11 (u0)α0 + 12 (u1)α1 = 0.

Thus, we have

α0 =
11 (u1) − c

11 (u1) − 11 (u0)
, α1 =

c − 11 (u0)

11 (u1) − 11 (u0)
.

So, one can find a SDS solution for almost any initial data. Let us now check the admissibility condition,
i.e. when the wave is over-compressive: Eigenvalues are given by

λi (u, v) = f ′ (u) , λ j = 11 (u) , i, j ∈ {1, 2} .

We have to check when
λi (u0, v0) ≥ c ≥ λi (u1, v1) , i = 1, 2.

That means the following

f ′ (u0) ≥ f (u1) − f (u0)

u1 − u0
≥ f ′ (u1)

′
11 (u0) ≥ f (u1) − f (u0)

u1 − u0
≥ 11 (u1) .

Comparing with the general case above, one can see that a Delta locus is an area now, and there is much
more chance to find an SDS solution and connect it with some rarefaction wave.

7. Shadow waves

One of the major obstacles in use of split delta shocks is a missing solution for pressureless gas dynamics
system. It was one of the first systems where one could expect delta function in solution. There are at least
two valid physical models, see [3] and [11], for example. Also, there is a mathematical evidence of delta
shock formation, see [5] (one can also check [19] where it is shown that pressureless system is not isolated
case).

Her we shall present a method of Shadow waves that is found to be very efficient.

Consider a following conservation law system

∂t f (U) + ∂x1(U) = 0, U : R2
+ → Ω ⊂ Rn, (18)
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where f = ( f 1, . . . , f n) and 1 = (11, . . . , 1n) are continuous mapping from Ω in Rn. A name of f is density
function, while 1 is called flux function. The functions f and 1 are continuous mappings from a physical
domain Ω ⊂ Rn into Rn.

The following notation will be used trough the section. A parameter εwill be taken as small as needed.

In the sequel, relations ∼, ≈, a “growth order”, Landau symbols O(·) and o(·) will always be used
assuming ε→ 0. The half-space {(x, t) ∈ R ×R+} is denoted by R2

+.

All calculations in the paper are based on exploitation of the Rankine-Hugoniot conditions. We will
obtain all results by the following basic lemma.

Lemma 7.1. [23] Let f , 1 ∈ C(Ω : Rn) and U : R2
+ → Ω ⊂ Rn be a piecewise constant function given by

Uε(x, t) =































U0, x < ct − εt − x1,ε

U1,ε, ct − εt − x1,ε < x < ct

U2,ε, ct < x < ct + εt + x2,ε

U1, x > ct + εt + x2,ε

. (19)

Here x1,ε, x2,ε ∼ ε. Assume

max
i=1,2
{‖ f (Ui,ε)‖L∞ , ‖1(Ui,ε)‖L∞} = O(ε−1). (20)

Then

∂t f (Uε) ≈ − c( f (U1) − f (U0))δ − c(ε f (U1,ε) + ε f (U2,ε))tδ
′

+ (ε f (U1,ε) + ε f (U2,ε))δ

∂x1(Uε) ≈(1(U1) − 1(U0))δ + (ε1(U1,ε) + ε1(U2,ε))tδ
′.

(21)

The support of δ (and δ′ consequently) is the line x = ct.

Remark 7.2. The constants xi,ε, i = 1, 2 are useful when initial data contains delta function: If σ := limε→0 x1,εU1,ε+

x2,εU2,ε ∈ Rn exists, then the function U from (19) satisfies

U|t=0 =















U0, x < 0,

U1, x > 0
+ σδ(0,0).

Proof. We shall use the Taylor expansion formula for a test function and neglect all terms with growth order
greater than one. Thus,

φ(ct − εt − x1,ε, t) ≈ φ(ct, t) + ∂xφ(ct, t)

φ(ct + εt + x2,ε, t) ≈ φ(ct, t) + ∂xφ(ct, t)
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Using the standard Rankine–Hugoniot shock calculations and the above approximations we have

〈∂t f (Uε), φ〉 ≈ −
∫ ∞

0

(c − ε) ( f (U1,ε) − f (U0))φ(ct − εt − x1,ε, t) dt,

−
∫ ∞

0

c ( f (U2,ε) − f (U1,ε))φ(ct, t) dt

−
∫ ∞

0

(c + ε) ( f (U1) − f (U2,ε))φ(ct + εt + x2,ε, t) dt

≈ − ( f (U1,ε) − f (U0))

∫ ∞

0

(c − ε)
(

φ(ct, t) − ∂xφ(ct, t)

· (εt + x1,ε)
)

dt

− ( f (U2,ε) − f (U1,ε))

∫ ∞

0

cφ(ct, t) dt

− ( f (U1) − f (U2,ε))

∫ ∞

0

(c + ε)
(

φ(ct, t) + ∂xφ(ct, t)

· (εt + x2,ε)
)

dt.

The assumptions from Lemma 7.1 imply

〈∂t f (Uε), φ〉 ≈ − ( f (U1) − f (U0))

∫ ∞

0

cφ(ct, t) dt

+

∫ ∞

0

(

ε f (U1,ε) + ε f (U2,ε)
)

φ(ct, t) dt

+

∫ ∞

0

c
(

(εt + x1,ε) f (U1,ε) + (εt + x2,ε) f (U2,ε)
)

· ∂xφ(ct, t)dt

≈
〈(

− c( f (U1) − f (U0)) + ε f (U1,ε) + ε f (U2,ε)
)

· δ(x − ct), φ(x, t)
〉

〈

− c
(

(εt + x1,ε) f (U1,ε) + (εt + x2,ε) f (U2,ε)
)

· δ′(x − ct), φ(x, t)
〉

.
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With the same type of reasoning, one sees that the space derivative is given by

〈∂x1(Uε), φ〉 ≈(1(U1,ε) − 1(U0))

∫ ∞

0

φ(ct, t) − ∂xφ(ct, t) (εt + x1,ε) dt

+ (1(U2,ε) − 1(U1,ε))

∫ ∞

0

φ(ct, t) dt

+ (1(U1) − 1(U2,ε))

∫ ∞

0

φ(ct, t) + ∂xφ(ct, t) (εt + x2,ε) dt

≈(1(U1) − 1(U0))

∫ ∞

0

φ(ct, t) dt

−
∫ ∞

0

(

(ε + x1,ε)1(U1,ε) + (ε + x2,ε)1(U2,ε)
)

∂xφ(ct, t) dt

≈
〈(

1(U1) − 1(U0)
)

δ(x − ct), φ(x, t)
〉

+
〈(

(εt + x1,ε)1(U1,ε) + (εt + x2,ε)1(U2,ε)
)

· δ′(x − ct), φ(x, t)
〉

.

Remark 7.3. We used only constant mean-states U1,ε, U2,ε and constant central SDW speed curve (ct, t)t≥0 in (19).
Such SDWs are not good enough for solving an SDW interaction problems in general. The problem can be solved by
introducing variable mean-states U1,ε(t) and U2,ε(t) and variable speed c = c(t).

Definition 7.4. Functions of the form (19) are called constant shadow waves or constant SDW for short. We shall
drop the word “constant” in the sequel if there is no chance for confusion. The value

σε(t) := (εt + x1,ε)U1,ε + (εt + x2,ε)U2,ε

is called the strength and c is called the speed of the shadow wave. We assume that limε→0 σε(t) = σ(t) ∈ Rn exists
for every t ≥ 0 and

lim
ε→0

∫

Uε(x, t)φ(x, t) dx dt =〈σ(t)δ(x − ct) +U0 + [U]θ(x − ct), φ(x, t)〉

=

∫

σ(t)φ(ct, t)dt +

∫

(U0 + [U]θ(x − ct)φ(x, t)dx dt,

where θ is the Heaviside function and [U] := U1 −U0. The SDW front is given by x = c(t).

A way to find a shadow wave solutions to a system of conservation laws (18) directly follows from
Lemma 7.1. We use the following assumption to keep our discussion on a general level. An actual
construction of SDW solution highly depends on a particular choice of f and 1without it.

Assumption 7.5. All the components Ui
ε, i = 1, . . . ,n of an SDW (19) satisfy

‖Ui
ε‖L∞ = O(ε−1), if f and 1 are at most linear with respect to i-th variable

or

‖Ui
ε‖L∞ has a growth order small enough for (20) to hold, otherwise.

Definition 7.6. Components satisfying the first criteria are called the major components or ε−1-components, while
all other are called the minor ones.

A delta shock is a SDW associated with a δ distribution with all minor components having finite limits as ε→ 0.
If some of them are unbounded as ε→ 0, then the wave is called singular shock.
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The following definition contains an analogous notion to Hugoniot locus for shocks.

Definition 7.7. Let U0 be fixed. The set of all U1 ∈ Ω such that there exists an SDW solution to (18) with the initial
data

U|t=0 =















U0, x < 0

U1, x > 0

is called the shadow locus. Points for which the above wave is admissible constitutes the it admissible locus. The
admissibility will be defined trough entropy conditions given bellow. In the case when the SDW is delta (singular)
shock, the above set is called delta (singular delta) locus.

Let us start a search for SDW solutions of 18. Substitution of the function U from (19) into the i-th
equation in (18) yields

(

− c( f i(U1) − f i(U0)) + ε f i(U1,ε) + ε f i(U2,ε)
)

δ(x − ct)

− ct
(

ε f i(U1,ε) + ε f i(U2,ε)
)

δ′(x − ct) +
(

1
i(U1) − 1i(U0)

)

δ(x − ct)

+ t
(

ε1i(U1,ε) + ε1
i(U2,ε)

)

δ′(x − ct) ≈ 0.

That implies

−c( f i(U1) − f i(U0)) + ε f i(U1,ε) + ε f i(U2,ε) + 1
i(U1) − 1i(U0) ≈ 0

−c(ε f i(U1,ε) + ε f i(U2,ε)) + ε1
i(U1,ε) + ε1

i(U2,ε) ≈ 0,

i = 1, . . . ,n.

(22)

Define

κi := c( f i(U1) − f i(U0) − (1i(U1) − 1i(U0))

to be so called Rankine-Hugoniot deficit (RH deficit for short) in the i-th equation. Now (22) reads as

ε f i(U1,ε) + ε f i(U2,ε) ≈ κi

ε1i(U1,ε) + ε1
i(U2,ε) ≈ cκi, i = 1, . . . ,n.

(23)

That was the most general case with Assumption 7.5. Let us take the above to be given in evolutionary
form.

If the system of conservation laws (18) is given in the evolutionary form f i(y) ≡ yi, i = 1, . . . ,n, then the
system (22) reduces to

−c(Ui
1 −Ui

0) + εUi
1,ε + εU

i
2,ε + 1

i(U1) − 1i(U0) ≈ 0

−c(εUi
1,ε + εU

i
2,ε) + ε1

i(U1,ε) + ε1
i(U2,ε) ≈ 0, i = 1, . . . ,n.

(24)

and the system (23) has now a simpler form

εUi
1,ε + εU

i
2,ε ≈ κi

ε1i(U1,ε) + ε1
i(U2,ε) ≈ cκi, i = 1, . . . ,n.

(25)
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7.1. Entropy conditions

Let η(U) be a (strictly) convex or semi-convex entropy function for (18), with entropy-flux function q(U).
We shall use entropy condition in the following form. A solution Uε to the system (18) with initial data
U|t=0 = U0,ε is admissible if for every T > 0 we have

limε→0

∫

R

∫ T

0

η(Uε)∂tφ + q(Uε)∂xφ dt dx +

∫

R

η(U0,ε(x, 0))φ(x, 0) dx ≥ 0, (26)

for all non-negative test functions φ ∈ C∞0 (R × (−∞,T)).

Take a simple SDW Uε from (19) and use from Lemma 7.1 with f substituted by η and 1 by q. As the
delta function is a non-negative distribution, the first condition becomes

limε→0 − c(η(U1) − η(U0)) + εη(U1,ε) + εη(U2,ε) + q(U1) − q(U0) ≤ 0 (27)

But a derivative of the delta function has no constant sign and the second condition becomes

lim
ε→0
−c(εη(U1,ε) + εη(U2,ε)) + εq(U1,ε) + εq(U2,ε) = 0. (28)

Here, U0, U1, U1,ε and U2,ε are constants.

The entropy condition is connected with a problem of uniqueness for a weak solution of a conservation
law system. We give a definition of weak (distributional) uniqueness and some results about it afterward.

Definition 7.8. An SDW solution is called weakly unique if its distributional image is the unique. More precisely,
a speed c of the wave has to be unique as well as the limit

lim
ε→0
εU1,ε + εU2,ε.

Let i ∈ {1, . . . ,n}. If a limit lim
ε→0
εUi

1,ε + εU
i
2,ε is unique, then we say that the i-th component is unique.

Note that all minor components of Uε are unique by the above definition. The following proposition is
a direct consequence of the SDW definition.

Proposition 7.9. Suppose that (18) has an SDW solution.

(a) If there exists an equation of the system, say i-th one, such that a density function f i(U) is independent of major
components of U, then a speed of the SDW is uniquely determined by the equation

−c[ f i(U)] + [1i(U)] = 0.

(b) If there is an equation in the system, say i-th one, such that f i(U) = U j, where U j is a major component, then
it is uniquely determined by

εU
j

1,ε
+ εU

j

2,ε = κi ∈ R.

Consequently, if (a) holds and (b) holds for all major components, then a distributional limit of an SDW solution to
(18) is unique. Specially, that is the case for a system given in evolutionary form.

Definition 7.10. We say that a solution to (18) is weakly unique if it consists from a unique combination of standard
admissible elementary waves (shocks, rarefactions and contact discontinuities) and admissible SDW.
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7.2. Systems linear in one variable

When a given system (18) is linear in one component (say U1 in the sequel), then we are in position to
get additional results concerning the existence of shadow wave solutions to a Riemann problem as it was
done for split delta shocks above.

Let the system (18) be linear in U1. Then the i-th equation of the system is

∂t

(

f i
1(U)U1 + f i

2(U)
)

+ ∂x

(

1
i
1(U)U1 + 1i

2(U)
)

= 0, (29)

where fi, 1i, i = 1, 2 are continuous functions with U := (U2, . . . ,Un). Set U1,ε and U2,ε as follows.

Ui,ε := Us,i ∈ R
n−1, i = 1, 2, lim

ε→0
εU1

1,ε = ξ1, lim
ε→0
εU1

2,ε = ξ2,

where Us,i and ξi, i = 1, 2 will be determined later. For an SDW Uε given by (19) the difference f (U1)− f (U0)
is denoted by [ f (Uε)].

From (29) one derives the following system of equations with respect to ξ1 and ξ2 for each i = 1, . . . ,n:

f i
1(Us,1)ξ1 + f i

1(Us,2)ξ2 = κi

1
i
1(Us,1)ξ1 + 1

i
1(Us,2)ξ2 = cκi.

(30)

Here κi := c[ f i
1
(U)U1 + f i

2
(U)] − [1i

1
(U)U1 + 1i

2
(U)] as before.

The following theorem is proved in [23].

Theorem 7.11. Assume that the density function f does not depend on U1 in k equations of the system (29) (i.e.
f i
1
≡ 0, i = i1, . . . , ik). Then the shadow locus is a subset of n − k + 1-dimensional manifold intersected by Ω.

Proof. Suppose f n−k+1
1

= . . . = f n
1
= 0. From the first equation in (30) it followsκi = 0 for each i = n−k+1, . . . ,n.

Assume for a moment that Us,1 and Us,2 are known. If the left-hand side state U0 is fixed, then the speed c

and U1 = (U1
1
, . . . ,Un

1
) has to satisfy the following system

c =
[1i

1
(U)U1 + 1i

2
(U)]

[ f i
2
(U)]

, i = n − k + 1, . . . ,n. (31)

There are k equations and n + 1 scalar variables: c,U1
1
, . . . ,Un

1
, so we are free to chose n − k + 1 of them

provided that Us,1 and Us,2 are chosen in a good way.
Thus, the set of all possible values U1 such that (31) is satisfied lies in an n− k+ 1-dimensional manifold

(if the speed c was excluded from the above free choice).
Now we turn our attention to Us,1 and Us,2 and the first n− k systems given by (30). Let i ∈ {1, . . . ,n− k}.

Assuming

Di
s(Us,1,Us,2) :=

∣

∣

∣

∣

∣

∣

f i
1
(Us,1) f i

1
(Us,2)

1i
1
(Us,1) 1i

1
(Us,2)

∣

∣

∣

∣

∣

∣

, 0,

the solution (ξ1, ξ2) for each system (30) is given by

ξi
1(Us,1,Us,2) =

κi(1
i
1
(Us,2) − c f i

1
(Us,2))

Di
s

,

ξi
2(Us,1,Us,2) =

κi(1
i
1
(Us,1) − c f i

1
(Us,1))

Di
s

.

(32)

A consistency for ξ1 and ξ2 found from each system produces the new one

ξ1
1(Us,1,Us,2) = . . . = ξn−k

1 (Us,1,Us,2)

ξ1
2(Us,1,Us,2) = . . . = ξn−k

2 (Us,1,Us,2)
(33)
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of 2(n − k − 1) equations.
Let i ∈ {n − k + 1, . . . ,n}. We already know that f i

1
≡ 0, and substitution of ξ1

1
and ξ1

2
into the second

equation in (30) for such i gives the following

1
i
1(Us,1)ξ1

1(Us,1,Us,1) + 1i
1(Us,2)ξ1

2(Us,1,Us,1) = 0. (34)

So, there are k such equations, and the final conclusion is that the shadow locus is defined by (31) provided
that there exist a solution U2

s,1, . . . ,U
n
s,1,U

2
s,2, . . . ,U

n
s,2 to (33, 34) of 2n− k− 2 equations. Since there are 2n− 2

variables there is a chance for solving the system, and obtain a maximal dimension n − k + 1 of shadow
locus.

Roughly speaking, each additional density function independent of U1 reduces the dimension of the
locus by 1.

The extreme case is when none of f1 components vanishes (i.e. all density functions depend on U1). We
then solve (30) with respect to ξ1 and ξ2. For each i = 1, . . . ,n all the solutions is given by (32) have to be
the same, so we get the system

ξ1
1 = ξ

2
1 = . . . = ξ

n
1

ξ1
2 = ξ

2
2 = . . . = ξ

n
2

of 2(n−1) equations with 2n−1 unknowns: c, Ui
s, j, i = 2, . . . ,n, j = 1, 2. Also, the condition Di

s , 0, i = 1, . . . ,n

is assumed as above. There are no conditions on a speed c and right-hand values U1 with fixed U0. If the
solution of the above really exists, then the shadow locus is whole Ω.

In the other extreme case, f i
1
≡ 0, i = 2, . . . ,n the dimension of a shadow locus is at most 2.

Remark 7.12. One could see that a dimension of a delta locus for 2 × 2 system linear in one variable was expected
to be one for SDS. A delta locus obtained by using SDWs usually has a dimension equal two in such a case. Thus, a
SDW delta locus form the present paper is much richer than delta locus. That is the answer to the problem of relatively
small delta locus in general case for 2 × 2 system and problems with a construction of solution to arbitrary Riemann
data posed in [21].
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