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MARKO NEDELJKOV

Abstract. In a number of papers it was shown that there are one-dimensional
systems such that they contain solutions with, so called, overcompressive sin-
gular shock waves besides the usual elementary waves (shock and rarefaction
ones as well as contact discontinuities).

One can see their definition for a general 2 × 2 system with fluxes linear
in one of dependent variables in [8]. This paper is devoted to examining
their interactions with themselves and elementary waves. After a discussion
of systems given in a general form, a complete analysis will be given for the
ion-acoustic system given in [6].

1. Introduction

Consider the system

(f2(u))t + (f3(u)v + f4(u))x = 0

(g1(u)v + g2(u))t + (g3(u)v + g4(u))x = 0.
(1)

where fi, gj , i = 2, ..., 4, j = 1, ..., 4 are polynomials with the maximal degree m,
(u, v) = (u(x, t), v(x, t)) are unknown functions with a physical range Ω, (x, t) ∈
R

2
+ := R × R+. We shall fix the following notation for the rest of the paper:

fi(y) =

m
∑

k=0

ai,ky
k, gj(y) =

m
∑

k=0

bj,ky
k, i = 2, 3, 4, j = 1, 2, 3, 4.

There are cases when there is no classical solution to Riemann problem for the
above system. Sometimes, there is a solution in the form of delta or singular shock
wave. In [8] one can see when a system in evolution form (i.e. when f2 = u, g1 = 1
and g2 = 0) permits a solution in the shape of singular shock wave. With the same
type of reasoning and a more effort, one can give the answer to the same question
in the case system (1).

The aim of this paper is to investigate an interaction of a singular shock wave
with another wave. After a general statement about new initial data taken at
interaction point (of course, true for delta shock waves, too) in Section 3, we shall
present a detailed investigation in the case of the system (so called ion-acoustic
system)

ut + (u2 − v)x = 0

vt + (u3/3 − u)x = 0
(2)

given in [6].
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Definitions and concepts used here are similar to the ones in [8], based on the
notion of approximate solution. They are described in the Section 2. Shortly, a
solution to the above system is given by a net of smooth functions with equality
substituted by a distributional limit.

Few interesting facts observed during the investigations of system (2) are arising
a question about possibilities in a general case. Observed facts are:

(1) The singular shock wave solution to a Riemann problem for (2) always has
an increasing strength of the rate O(t), t → ∞. (The strength of the shock
is a function which multiplies the delta function contained in a solution,
s(t) in (10)). After the interaction, the resulting singular shock wave is
supported by a curve, not necessary straight line as before, and its strength
can be an increasing, but also a constant or a decreasing function with the
respect to the time variable.

(2) When the resulting singular shock wave has a decreasing strength (this can
occurs during an interaction of a admissible singular shock wave with a
rarefaction wave), after some time it can decompose into two shock waves.
This is a quite new phenomenon.

The structure of this paper can be described in the following way.
In the second section we will introduce necessary notation and give basic notions

based on the paper [8].
In the third section, one can find a way how to continue a solution to the general

case of system (1) after an interaction point (Theorem 1). The basic assumption is
that a left-hand side of the first, and the right-hand side of the second wave can be
connected by a new singular shock wave. The conditions for such a possibility are
formulated trough a notion of second delta singular locus, see Definition 5. Explicit
calculations for a geometric description of the locus are possible to some extend in
the case of system (1), but we shall omit them completely.

The results given in these sections are used in the next ones devoted to special
case (2) and that is the main part of the paper.

The first part of the fourth section is devoted to description of a situation which
can occur after a singular shock and a shock wave interact. In the same way one
can do the same for two singular shock waves, as one can at the end of this section.

The final, 5th section, contains the most interesting and important results about
singular shock and rarefaction wave interaction. In that case the decoupling of a
singular shock into a pair of shock waves, already mentioned before, can occur. The
analysis is done when a singular shock wave is on the left-hand side of a rarefaction
wave. But one can easily see that these results can be obtained using the same
procedure when a singular shock is on the other side of a rarefaction wave.

We hope that the present paper give some opportunity for extending the proce-
dure in this paper for arbitrary initial data when a system posses singular or delta
shock wave as a solution.

2. Notation

For a net of smooth functions, Uε : R
2
+ → Ω, ε ∈ (0, 1) is distributionally zero,

Uε ≈ 0, if
∫∫

Uεφdxdt → 0, as ε → 0 for every φ ∈ C∞
0 (R2

+). A maximal positive
real α such that

∫∫

Uεφdxdt = O(εα), as ε → 0 is called the rate of convergence.
Due to the linearity, Uε ≈ Vε if Uε − Vε ≈ 0.
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We say that a smooth function net (uε, vε) is an approximate solution to (1) if
∫∫

(

f2(uε)φt + (f3(uε)vε + f4(uε))φx

)

dxdt → 0

∫∫

(

(g1(uε)vε + g2(uε))φt + (g3(uε)vε + g4(uε))φx

)

dxdt → 0,

as ε→ 0 for every φ ∈ C∞
0 (R2

+). The above means

(f2(uε))t + (f3(uε)vε + f4(uε))x ≈ 0

(g1(uε)vε + g2(uε))t + (g3(uε)vε + g4(uε))x ≈ 0.

A net Gε is said to be of a bounded type if

sup
(x,t)∈R×(0,T )

|Gε(x, t)| = O(1) as ε→ 0,

for every T > 0.
Before the definition of basic building blocks for a solution to Riemann problem

for (1) we give some useful functions.

Definition 1. (a) A net Gε is said to be a step function with value (y0, y1) if
it is of bounded type and

Gε(y) =

{

y0, y < −ε
y1, y > ε

Denote [G] := y1 − y0.
(b) A net Dε is said to be a split delta function (Sδ-function, for short) with

value (α0, α1) if Dε = α0D
−
ε + α1D

+
ε , where α0 + α1 = 1 and

DεGε ≈ (y0α0 + y1α1)δ, (3)

for every step function Gε with value (y0, y1).
(c) Let m be an odd positive integer. A net dε is said to be m′-singular delta

function (m′SD-function, for short) with value (β0, β1) if dε = β0d
−
ε +β1d

+
ε ,

βm−1
0 + βm−1

1 = 1, (d±ε )i ≈ 0, i ∈ {1, . . . ,m− 2,m}, (d±ε )m−1 ≈ δ, and

dm−1
ε Gε ≈ (y0β

m−1
0 + y1β

m−1
1 )δ, (4)

for every step function Gε with value (y0, y1).
(d) Let m be an odd positive integer. A net dε is said to be m-singular delta

function (mSD-function, for short) with value (β0, β1) if dε = β0d
−
ε +β1d

+
ε ,

βm
0 + βm

1 = 1, (d±ε )i ≈ 0, i ∈ {1, . . . ,m− 1}, (d±ε )m ≈ δ, and

dm
ε Gε ≈ (y0β

m
0 + y1β

m
1 )δ, (5)

for every step function Gε with value (y0, y1).

In this paper we shall assume the compatibility condition Dεdε ≈ 0, where Dε is
an Sδ- and dε is an mSD- or m′Sd-function.

Suppose that the initial data are given by

u|t=T =

{

u0, x < X

u1, x > X
v|t=T =

{

v0, x < X

v1, x > X.
(6)

According to our model, the initial data can be regularized to be

u|t=T = Gε and v|t=T = Hε, (7)
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where Gε and Hε are step functions with values (u0, u1) and (v0, v1), respectively.
The classical waves in the net interpretation are given in the following way. (One

can look in [2] or [7] for the definition of the classical waves.)

Definition 2. Approximate shock wave solution to (1) with the initial data (6) is

uε(x, t) = Gε(x−X − c(t− T ))

vε(x, t) = Hε(x−X − c(t− T )),
(8)

where c is a speed of the wave, Gε and Hε are given by (7). The wave is admissible
if it satisfies Lax conditions (with λ2 > λ1)

λ1(u0, v0) > c > λ1(u1, v1) or λ2(u0, v0) > c > λ2(u1, v1)

provided that the appropriate field is genuinely nonlinear.
An i-th approximate rarefaction wave solution to (1) with the initial data (6) is

(uε, vε)(x, t) =















(u0, v0),
x−X
t−T < λi(u0, v0) − ε

(Ri,u, Ri,v)
(

x−X
t−T

)

, λi(u0, v0) + ε < x−X
t−T < λi(u1, v1) − ε

(u1, v1),
x−X
t−T > λi(u1, v1) + ε

(9)

where uε and vε are of the bounded type, while (Ri,u, Ri,v) are self-similar non-
constant solution to (1) (non-constant parts of classical i-th rarefaction wave solu-
tion to the system).

One can prove immediately that (8) is an approximate solution to the given
system if and only if

(u, v)(x, t) =

{

(u0, v0), x−X < c(t− T )

(u1, v1), x−X > c(t− T )

satisfy the usual Rankine-Hugoniot conditions for the system. Also, one can see
directly that (9) is approximate solution, too.

There are no contact discontinuity used in this paper, but one can define its
approximate version in the same way as approximate shock wave.

One will see later that we do not need rarefaction wave to be smooth function
but only continuous one. Thus the above definition of approximate rarefaction wave
can be replaced by the rarefaction wave itself.

Now, we define the non-standard type of the wave used in the present paper.

Definition 3. Singular shock wave (DSSW for short) is an approximate solution
to (2) with the initial data (6) of the form

uε(x, t) = Gε((x −X) − c(t− T ))

+ s̃(t)(α0d
−
ε ((x−X) − c(t− T )) + α1d

+
ε ((x−X) − c(t− T )))

vε(x, t) = Hε((x−X) − c(t− T ))

+ s(t)(β0D
−
ε ((x −X) − c(t− T )) + β1D

+
ε ((x −X) − c(t− T )))

+ ˜̃s(t)(γ0d
−
ε ((x−X) − c(t− T )) + γ1d

+
ε ((x −X) − c(t− T )))

(10)

where

(i) c ∈ R is the speed of the wave,

(ii) s(t), s̃(t) and ˜̃s(t) are smooth functions for t ≥ 0, and equal zero at t = T .
(iii) Gε and Hε are step functions with values (u0, u1) and (v0, v1) respectively,
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(iv) d1
ε = α0d

−
ε + β1d

+
ε and d2

ε = γ0d
−
ε + γ1d

+
ε are mSD- or m′SD-functions,

(v) Dε = α0D
−
ε + α1D

+
ε is an Sδ-function compatible with di, i = 1, 2.

The singular part of the wave is
[

s̃(t)(α0d
−
ε + α1d

+
ε )

s(t)(β0D
−
ε + β1D

+
ε ) + ˜̃s(t)(γ0d

−
ε + γ1d

+
ε )

]

.

The wave is overcompressive if its speed is less or equal to the left- and greater or
equal to the right-hand side characteristics i.e.

λ2(u0, v0) > λ1(u0, v0) ≥ c ≥ λ2(u1, v1) > λ1(u1, v1).

In solving of an interaction problem below, the form of (10) will be changed in
the following way. The values on the left- and/or the right-hand side of a DSSW can
be non-constant functions which would imply that the speed of the DSSW becomes
non-constant, c = c(t). If a DSSW is involved in the interaction, then s(T ) will
equal a strength of incoming DSSWs, not zero as in the case of initial data (6).

Remark 1. (a) In [8] one can find special choice for Sδ- and and d is mSD- or
m′Sd-functions. For example D±

ε are given by the representatives

D±
ε (y) :=

1

ε
φ
(y − (±2ε)

ε

)

,

where φ ∈ C∞
0 is non-negative and even, suppφ ⊂ [−1, 1]. mSD- and m′SD-

functions can be chosen in the same manner, with different shifts of their arguments
and with φ1/m or φ1/(m−1) instead of φ.
(b) Compatibility condition for an Sδ-function D and an mSD- or m′SD-function
d is automatically fulfilled if

supp d+
ε ∩ suppD+

ε = supp d−ε ∩ suppD−
ε = ∅

(c) Idea behind the above definition of products (3), (4) and (5) is the following.
Starting point is that we know nothing about infinitesimal values of the initial data
(carried on by step functions Gε and Hε above) around zero, but only that any such
unmeasurable influence stops at the points ±ε. The above mentioned definitions
are made in order to get uniqueness of all products where step functions, Sδ-, mSD-
and m′SD-functions appear. With an additional information for Gε and Hε around
zero, one can choose Dε and dε much more freely. For example, in Gε and Hε

are monotone functions (which is quite natural assumption), relation (3) can be
substituted by

DεGε ≈ γδ, γ can be any real between min{y0, y1} and max{y0, y1}.
(d) The following result is proved in [6], Theorem 3. Suppose that a solution (uε, vε)
to Dafermos-DiPerna viscosity approximation of (2)

ut + (u2 − v)x = εtuxx

vt + (u3/3 − u)x = εtvxx

(u, v)|t=0 =

{

(u0, v0), x < 0

(u1, v1), x > 0

is unbounded with respect to ε and approaches a constant states as ε → 0 except
the line x = ct. Then (u0, v0) and (u1, v1) can be joined by an overcompressive
DSSW.
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That is a motivation to use overcompressiveness as an admissibility condition
for DSSW. Note that the same condition is used for delta shock waves, too (see [5]
or [10], for example).
(e) The DSSWs are much more peculiar than the delta shock waves. The later can
be viewed as elements of certain measure spaces (see [5] or [9], for example) which
inserted into a system solves it in an appropriate sense. A DSSW viewed as a net
of smooth functions converge to weighted measure spaces defined in [6], but the
obtained limits can not be inserted back into the system. That is the reason why
we use only nets of smooth functions for DSSWs, shock waves and rarefaction ones.

Definition 4. The set of all points (u1, v1) ∈ Ω such that there exists an singular
shock wave solution (called corresponding DSSW) to Cauchy problem (1,6) is called
delta singular locus. We shall write (u1, v1) ∈ DSL(u0, v0). If the corresponding
DSSW is overcompressive, then it is called overcompressive delta singular locus. We
shall write (u1, v1) ∈ DSL∗(u0, v0).

In the sequel, the term “solution” will always denote the approximate one. Also,
we shell drop the subscript ε in the approximate solution. One has to keep in mind
that any function depends on ε.

3. The new initial data

Suppose that system (1) posses a DSSW solution for some initial data. Assume
one of the following.

(i) If an mSD-function is contained in the above DSSW, then assume

deg(g1) < m− 1, deg(g2) < m, deg(f2) < m. (11)

(ii) If an m′SD-function is contained in the above DSSW, then assume

deg(g1) < m− 2, deg(g2) < m− 1, deg(f2) < m− 1. (12)

Take the new initial data

u|t=T =

{

u0, x < X

u1, x > X
, v|t=T =

{

v0, x < X

v1, x > X
+ ζδ(X,T ), (13)

for system (1), where ζ is a non-zero real.

Definition 5. The set of all points (u1, v1) ∈ Ω such that there exists an DSSW
solution (called corresponding DSSW) to Cauchy problem (1,13) for some ζ is called
second delta singular locus of initial strength ζ for (u0, v0). We shall write (u1, v1) ∈
SDSLζ(u0, v0) If the the corresponding DSSW is overcompressive, then it is called
overcompressive second delta singular locus, and write (u1, v1) ∈ SDSL∗

ζ(u0, v0).

Before the main theorem, let us give a useful lemma.

Lemma 1. Suppose that (u1, v1) ∈ DSL(u0, v0). Then (u1, v1) ∈ SDSLζ(u0, v0) if
ζ > 0.

If the corresponding DSSW contains mSD-function, and m is an odd number,
then the statement holds true for every real ζ.

Additionally, βi, i = 1, 2, from Definition 3 for the corresponding DSSW do not
depend on ζ.
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Proof. We shall give the proof for a DSSW containing mSD-function (10). The
other case can be proved in the same way.

Inserting functions u and v from (10) into system (1) with initial data (13) and
taking into account relations (11) or (12), one gets

f2(u) ≈f2(G)

g1(u) ≈g1(G)

g2(u) ≈g2(G)

f3(u) ≈f3(G) + s̃(t)m−1(u1α
m−1
0 (d−)m−1 + u0α

m−1
1 (d+)m−1)ma3,m

+ s̃(t)m(αm
0 (d−)m + αm

1 (d+)m)a3,m

+ s̃(t)m−1(αm−1
0 (d−)m−1 + αm−1

1 (d+)m−1)a3,m−1

f4(u) ≈f4(G) + s̃(t)m−1(u1α
m−1
0 (d−)m−1 + u0α

m−1
1 (d+)m−1)ma4,m

+ s̃(t)m(αm
0 (d−)m + αm

1 (d+)m)a4,m

+ s̃(t)m−1(αm−1
0 (d−)m−1 + αm−1

1 (d+)m−1)a4,m−1

g3(u) ≈g3(G) + s̃(t)m−1(u1α
m−1
0 (d−)m−1 + u0α

m−1
1 (d+)m−1)mb3,m

+ s̃(t)m(αm
0 (d−)m + αm

1 (d+)m)b3,m

+ s̃(t)m−1(αm−1
0 (d−)m−1 + αm−1

1 (d+)m−1)b3,m−1

g4(u) ≈g4(G) + s̃(t)m−1(u1α
m−1
0 (d−)m−1 + u0α

m−1
1 (d+)m−1)mb4,m

+ s̃(t)m(αm
0 (d−)m + αm

1 (d+)m)b4,m

+ s̃(t)m−1(αm−1
0 (d−)m−1 + αm−1

1 (d+)m−1)b4,m−1.

There are two possible cases. Either ˜̃s 6≡ 0 and a3,m = b3,m = 0 (i.e. deg(f3) ≤ m−1

and deg(g3) ≤ m − 1), or ˜̃s ≡ 0. In both the cases, the procedure which follows is

the same, so take ˜̃s 6≡ 0 and a3,m = b3,m = 0. From the first equation of (1) one
gets

(f2(u))t + (f3(u)v + f4(u))x

≈− c([f2(G)] + [f3(G)H + f4(G)])δ

+ s̃(t)m−1 ˜̃s(t)(u1α
m−1
0 γ0 + u0α

m−1
1 γ1)ma3,m−1δ

′

+ (f3(u0)β0 + f3(u1)β1)δ
′ + s̃(t)ma4,mδ

′ ≈ 0.

One immediately gets the speed of DSSW,

c =
[f3(G)H + f4(G)]

[f2(G)]
,

and the relations

κ1s(t) = s̃(t)m−1 ˜̃s(t) and κ2s(t) = s̃(t)m,

for some reals κ1 and κ2. Finally, one gets

κ1(u1α
m−1
0 γ0 + u0α

m−1
1 γ1)ma3,m−1 + f3(u0)β0 + f3(u1)β1 + κ2a4,m = 0. (14)
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Inserting all these relations into the second equation, one gets

(g1(u)v + g2(u))t + (g3(u)v + g4u))x

≈(−c[g1(G)H + g2(G)] + [g3(G)H + g4(G)] + s′(t)(g1(u0β0 + g1(u1)β1))δ

+ s(t)(g1(u0)β0 + g1(u1)β1 + g3(u0)β0 + g3(u1)β1

+ κ1(u1α
m−1
0 γ0 + u0α

m−1
1 γ1)mb3,m−1 + κ2b4,m)δ′ ≈ 0.

The function s must be a linear one, say s′(t) = σ, and the above functional
equation gives the last two equations in R,

−c[g1(G)H + g2(G)] + [g3(G)H + g4(G)] + σ(g1(u0)β0 + g1(u1)β1) = 0 (15)

and

− c((g1(u0) + g3(u0)β0 + (g1(u1) + g3(u1)β1)

+ κ1(u1α
m−1
0 γ0 + u0α

m−1
1 γ1)mb3,m−1 + κ2b4,m = 0.

(16)

In the above equations, only important fact about s is its derivative. Thus one
can safely put s(t) = σt + ζ and if the above system (14-16) has a solution, then

(u1, v1) ∈ SDSLζ(u0, v0) provided that s̃ and ˜̃s can be recovered. Using the fact
that (u1, v1) ∈ DSL(u0, v0), that is certainly the case when ζ > 0. If m is an odd

number, then s̃ = s(t)1/m and ˜̃s = s̃ are always determined.
The second part of the assertion, that βi, i = 1, 2 are independent of ζ is obvious

from the above. �

Remark 2. From the proof of the lemma one can see that it is actually possible for
ζ to take some negative values, i.e. it is enough that ζ ≥ −s(T ), where T is a time
of interaction when new initial data are given.

The following assertion is crucial for the construction of weak solution (a solution
in an associated sense) to (1) after an interaction: At an interaction point of a
DSSW and some other wave one can consider the new initial value problem which
contains delta function.

Suppose that the initial data are given by

u(x, 0) =











u0, x < a

u1, a < x < b

u2, x > b

and v(x, 0) =











v0, x < a

v1, a < x < b

v2, x > b

(17)

such that there exist a DSSW starting from the point x = a and a shock wave (or
another DSSW wave) starting from the point x = b, a < b. They can interact if
c1 > c2, where ci is the speed of the i-th wave, i = 1, 2. For the simplicity we shall
assume that b = 0.

Let (X,T ) be the interaction point of the overcompressive DSSW wave starting
at the point x = a

u1(x, t) =G1(x− c1t− a) + s̃1(t)
(

α1
0d

−(x− c1t− a) + α1
1d

+(x − c1t− a)
)

v1(x, t) =H1(x− c1t− a) + s1(t)
(

β1
0D

−(x− c1t− a) + β1
1D

+(x − c1t− a)
)

+ ˜̃s1(t)
(

γ1
0d

−(x− c1t− a) + γ1
1d

+(x− c1t− a)
)

(18)
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and the admissible (singular) shock wave

u2(x, t) =G2(x− c2t) + s̃2(t)
(

α2
0d

−(x − c2t) + α2
1d

+(x− c2t)
)

v2(x, t) =H2(x− c2t) + s2(t)
(

β2
0D

−(x− c2t) + β2
1D

+(x− c2t)
)

+ ˜̃s2(t)
(

γ2
0d

−(x − c2t− a) + γ2
1d

+(x− c2t− a)
)

(19)

where G1, G2, H1 and H2 are the generalized step functions with values (u0, u1),
(u1, u2), (v0, v1) and (v1, v2), respectively. Also, (αi

0)
m1 + (αi

1)
m1 = (γi

0)
m1 +

(γi
1)

m1 = βi
0 + βi

1 = 1, i = 1, 2. Here, m1 = m if singular part of DSSW is mSD-
function and m1 = m − 1 in the case of m′SD-function. If the second wave is a
shock one, then one can put s2 ≡ s̃2 ≡ ˜̃s2 ≡ 0.

The speed of a DSSW (as well as for a shock wave) can be found using the first
equation in (1) because of assumption (11) or (12). For example, in the case of the
first DSSW (18) we have

(f2(u))t + (f3(u)v + f4(u))x ≈ (f2(G))t + (f3(G)H + f4(G))x + (const s1(t)δ)x

≈(−c1[f2(G)] + [f3(G)H + f4(G)])δ + const s1(t)δ′ ≈ 0,

where the term const s1(t) is determined, but we shall not write the exact value
since it is not needed for the assertion. Missing argument in the above expression
is x− c1t− a.

Let Γ1 = {x = c1t+ a} and Γ2 = {x = c2t}. Then [·]Γi
denotes the jump at the

curve Γi, i = 1, 2. Thus, one can see that the speed of that DSSW has the same
value as in the case of shock wave,

c1 =
[f3(G)H + f4(G)]Γ1

[f2(G)]Γ1

.

Also,

c2 =
[f3(G)H + f4(G)]Γ2

[f2(G)]Γ2

.

Finally, one can see that the waves given by (18) and (19) will interact at the
point (X,T ) if a < 0 and c1 > c2, where

T =
a[f2(G)]Γ1

[f2(G)]Γ2

[f3(G)H + f4(G)]Γ2
[f2(G)]Γ1

− [f3(G)H + f4(G)]Γ1
[f2(G)]Γ2

X =
a[f3(G)H + f4(G)]Γ2

[f2(G)]Γ1

[f3(G)H + f4(G)]Γ2
[f2(G)]Γ1

− [f3(G)H + f4(G)]Γ1
[f2(G)]Γ2

.

Denote by (ũ(x, t), ṽ(x, t)) a solution before interaction time t = T consisting of
waves (18,19).

Remark 3. In the case of system (2) one can easily calculate speeds of the above
shocks and coordinates of the interaction point. The speeds of DSSW and entropy
shock wave are

c1 =
u2

1 − v1 − u2
0 + v0

u1 − u0
and c2 =

u2
2 − v2 − u2

1 + v1
u2 − u1

.

If c1 > c2, then one gets

X =
−ac2
c2 − c1

and T =
a

c2 − c1
.
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for the interaction point (X,T ).

Theorem 1. Let system (1) be given. Suppose that (u2, v2) ∈ SDSLζ(u0, v0),
ζ = (ζ1 + ζ2)/(g1(u0)β0 + g1(u1)β1), where the constants ζi, i = 1, 2, are defined by

g1(u
1)v1 + g2(u

1)|(t=T ) ≈ ζ1δ(X,T )

g1(u
2)v2 + g2(u

2)|(t=T ) ≈ ζ2δ(X,T ).

The corresponding DSSW, (û, v̂)(x, t) is given by

û(x, t) =G(x −X − c(t− T ))

+ s̃(t)
(

α0d
−(x −X − c(t− T )) + α1d

+(x−X − c(t− T ))
)

v̂(x, t) =H(x−X − c(t− T ))

+ s(t)
(

β0D
−(x−X − c(t− T )) + β1D

+(x−X − c(t− T ))
)

+ ˜̃s(t)
(

γ0d
−(x −X − c(t− T )) + γ1d

+(x−X − c(t− T ))
)

(20)

for t > T . By Lemma 1, β0 and β1 are determined independently on ζ, so the
definition of DSSW makes sense.

Then there exist a solution to (1,17) in the association sense such that it equals
(ũ, ṽ)(x, t) for t < T − ε, and it equals (û, v̂)(x, t) for t > T + ε.

Proof. Take a constant t0 such that singular parts of the waves (u1(x, t), v1(x, t))
and (u2(x, t), v2(x, t)) has disjoint supports (i.e. c1t− a− c2t > 4ε, for t < T − t0ε,
if one uses the construction of the Sδ, mSD and m′SD-functions defined above).

Let us denote

∆ε = {(x, t) : |x−X | ≤ t0ε+ ε, |t− T | ≤ t0ε+ ε},
∆̃ε = {(x, t) : |x−X | ≤ t0ε, |t− T | ≤ t0ε},
Aε = {(x, t) : |x−X | ≤ t0ε+ ε, t = T − t0ε− ε},
Bε = {(x, t) : x = X + t0ε+ ε, |t− T | ≤ t0ε+ ε},
Cε = {(x, t) : |x−X | ≤ t0ε+ ε, t = T + t0ε+ ε},
Dε = {(x, t) : x = X − t0ε− ε, |t− T | ≤ t0ε+ ε}.

Define a cut-off function ξε(x, t) which equals zero for (x, t) ∈ ∆ε and 1 for

(x, t) ∈ R
2
+ \ ∆̃ε. Let

(utemp, vtemp)(x, t) =

{

(ũ(x, t), ṽ(x, t)), t < T

(û(x, t), v̂(x, t)), t > T.

We shall prove that

u(x, t) = utemp(x, t)ξε(x, t), and v(x, t) = vtemp(x, t)ξε(x, t), x ∈ R, t ≥ 0 (21)

are approximate solutions to (1).
Denote

F(u, v) =

[

f2(u)
g1(u)v + g2(u)

]

and G(u, v) =

[

f3(u)v + f4(u)
g3(u)v + g4(u)

]

.
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We have
∫∫

R
2
+

F(u, v)Ψt + G(u, v)Ψxdxdt

=

∫∫

∆̃ε

F(u, v)Ψt + G(u, v)Ψxdxdt

=

∫∫

R
2
+
\∆̃ε

F(u, v)Ψt + G(u, v)Ψxdxdt,

for every test function Ψ =

[

ψ1

ψ2

]

∈ C∞
0 (R2

+).

The measure of the set ∆̃ε is O(ε2), as ε→ 0, while

‖F(u, v)Ψt + G(u, v)Ψx‖L∞(R2
+

) ≤ const ε−1+1/m

due to the assumptions in Definition 1. Thus,
∫∫

∆̃ε

F(u, v)Ψt + G(u, v)Ψxdxdt ∼ ε1−1/m → 0, as ε→ 0.

Using the divergence theorem for the second integral one gets
∫∫

R
2
+
\∆̃ε

F(u, v)Ψt + G(u, v)Ψxdxdt

=

∫

∂∆̃ε

F(u, v)Ψνt +

∫

G(u, v)Ψνxds

−
∫∫

R
2
+
\∆̃ε

F(u, v)tΨ + G(u, v)xΨdxdt.

The last integral in the above expression tend to zero as ε → 0 since (u, v) solves

(1) in R
2
+ \ ∆̃ε due to the construction. For the other one we have
∫

∂∆̃ε

F(u, v)Ψνt +

∫

G(u, v)Ψνxds

=

∫

Aε

F(u, v)Ψdx−
∫

Cε

F(u, v)Ψdx+

∫

Dε

G(u, v)Ψdt−
∫

Bε

G(u, v)Ψdt.

Functions u and v are L∞-bounded uniformly in ε on the sides Bε and Dε. Since
their lengths are O(ε), integrals over them tends to zero as ε→ 0.

Using the fact that f2(d) ≈ 0 one gets

lim
ε→0

F (ũ, ṽ)|t=T =

[

0
(ζ1 + ζ2)δ(X,T )

]

,

as well as the construction of Sδ- and m′SD (or mSD)-functions, one gets

lim
ε→0

∫

Aε

F(u, v)dx =

[

0
ζ1 + ζ2

]

· Ψ(X,T ).

Thus

lim
ε→0

∫

Cε

F(u, v)dx = −
[

0
ζ1 + ζ2

]

· Ψ(X,T )

has to be true. This implies f2(û)|(X,T ) ≈ 0 and

g1(û)v̂ + g2(û)|(X,T ) ≈ (ζ1 + ζ2)δ(X,T ). (22)
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Due to conditions (11) or (12) one immediately gets f2(û)|(X,T ) ≈ 0. Put ζ =
(ζ1 + ζ2)/(g1(u0)β0 + g1(u1)β1). Then

g1(û)v̂ + g2(û)|t=T ≈ ĜĤ + Ĝ+ s(T )(g1(u0)β0 + g1(u1)β1)δ(X)

and after another restriction on the point x = X ,

g1(û)v̂ + g2(û)|(X,T ) ≈ (ζ1 + ζ2)δ(X,T ).

That concludes the proof. �

Remark 4. The distributional limit of the result of the interaction is given by

u(x, t) =



























u0, x < c1t− a, t < t

u1, c1t− a < x < c2t, t < T

u2, x > c2t, t < T

u0, x < ct+X, t > T

u2, x > ct+X, t > T

v(x, t) =



























v0, x < c1t− a, t < t

v1, c1t− a < x < c2t, t < T

v2, x > c2t, t < T

v0, x < ct+X, t > T

v2, x > ct+X, t > T



























+ s1(t)δS1
+ s2(t)δS2

+ s(t)δS ,

where S1 = {(x, t) : x = c1t + a, t ∈ [0, T ], S2 = {(x, t) : x = c2t, t ∈ [0, T ] and
S = {(x, t) : x−X = c(t− T ), t ∈ [T,∞). If the second wave (19) is a shock one,
then s2 ≡ 0.

The above solution is continuous in t with values in D′(R). This fact can be used
in the approach similar to [3] and [4], where the variable t is treated separately, i.e.
when system (1) is considered to be in evolution form.

The theorem shows that after an interaction of a DSSW with some shock or
another DSSW the problem reduces to solving system (1) with the new initial data
(13).

Remark 5. (i) The solution to the interaction problem from Theorem 1 is always
associated with a lower association rate than the solution of the original Riemann
problem. For specific system it may be possible to make more sophisticated con-
struction in order to improve the rate.
(ii) It appears that d± are unavoidable correction factors even their distributional
limit equals zero. The conditions (11) and (12) ensures that the new initial data
at intersection point do not depend on mSD- or m′SD-functions in the solution.
We have used them because the real nature of mSD- and m′SD-functions is not so
clear yet.

The above theorem will be used in the rest of the paper for investigation of
interactions between singular shock waves and other types of waves in the special
case of system (2).
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4. Applications

Consider now system (2) which a special case of (1). The authors of [6] defined
and proved existence of DSSW solutions for some Riemann problems of this system.
In the present paper, we will investigate interactions of such solutions with the
other solutions to Riemann problem for (2). In order to familiarize a reader with
the presented results, let us give some basic remarks about such solutions.

For a given Riemann data (u0, v0), (v1, v1), there are three basic solution types:

(a) Shock waves

u(x, t) =

{

u0, x < ct

u1, x > ct
v(x, t) =

{

v0, x < ct

v1, x > ct
(23)

where c = [u2 − v]/[u] and (u1, v1) lies in an admissible part of Hugoniot
locus of the point (u0, v0).

(b) Centered rarefaction waves

u(x, t) =











u0, x < (u0 − 1)t

x/t+ 1, (u0 − 1)t ≤ x ≤ (u1 − 1)t

u1, x > (u1 − 1)t

v(x, t) =











v0, x < (u0 − 1)t

(x/t)2/2 + 2x/t+ C1, (u0 − 1)t ≤ x ≤ (u1 − 1)t

v1, x > (u1 − 1)t

(24)

(1-rarefaction wave), where C1 = v0 − u2
0/2 − u0 − 1/2, and (u1, v1) lies in

an 1-rarefaction curve starting at the point (u0, v0). Or

u(x, t) =











u0, x < (u0 + 1)t

x/t− 1, (u0 + 1)t ≤ x ≤ (u1 + 1)t

u1, x > (u1 + 1)t

v(x, t) =











v0, x < (u0 + 1)t

(x/t)2/2 − 2x/t+ C2, (u0 + 1)t ≤ x ≤ (u1 + 1)t

v1, x > (u1 + 1)t

(25)

(2-rarefaction wave), where C2 = v0 − u2
0/2 + u0 − 1/2, and (u1, v1) lies in

an 2-rarefaction curve starting at the point (u0, v0).
(c) Singular shock waves (see Definition 10) of 3′SD-type,

u(x, t) =

{

u0, x < ct

u1, x > ct

}

+ s̃(t)(α0d
−
ε (x− ct) + α1d

+
ε (x− ct))

v(x, t) =

{

v0, x < ct

v1, x > ct

}

+ s(t)(β0D
−
ε (x− ct) + β1D

+
ε (x− ct)),

(26)

where c = [u2 − v]/[u], and all other terms are as in that definition. That
means

Dε ≈ δ, (d±ε )i ≈ 0, i = 1, 3, (d±ε )2 ≈ δ, (27)

while (u1, v1) lies in a region denoted by Q7 in [6] of the point (u0, v0) (see
Figure 1).
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For an arbitrary Riemann problem to (2) one can construct a solution by the means
of these waves or their combinations ([6]).

While interactions of the first two types can be handled in a usual way, interac-
tions involving DSSW are quite different and far more interesting, so they become
a topic of this paper.

The procedure for the DSSW interactions can be also used for systems (1). But
a complete after-interaction solution highly depends on a particular system. That
is the reason why we treat system (2) only.

In order to simplify notation, we shall substitute the point (X,T ) in (13) by
(0, 0) and then solve the Cauchy problem (2,13).

There are no multiplication of v with u in system (2), so in the sequel it will be
enough to take D− = D+, α0(t) := α0s̃(t), α1(t) := α1s̃(t) and β(t) := s(t), i.e. to
look for a solution of the form

u = G(x− ct) + (α0(t)d
−(x− ct) + α1(t)d

+(x− ct))

v = H(x− ct) + β(t)D(x − ct),
(28)

where G and H are generalized step functions, while d is 3′SD- and D is Sδ-function
and c ∈ R.

Let us determine SDSL of (2) for some (u0, v0) ∈ R
2.

Substitution of (28) into the first equation of the system gives

c =
u2

1 − v1 − u2
0 + v0

u1 − u0

α2
0(t) + α2

1(t) = β(t),

(29)

where c is the speed of the wave. After neglecting all terms converging to zero as
ε→ 0, the second equation becomes

∂tHε(x− ct) + β′(t)δ(x − ct) − cβ(t)δ′(x− ct) + ∂x(
1

3
G3

ε −G)

+ (u1α
2
0(t) + u0α

2
1(t))δ

′(x− ct) = 0.

Thus, the following relations has to hold.

β′(t) = c(v1 − v0) −
(1

3
u3

0 − u0 −
1

3
u3

1 + u1

)

=: k, (30)

i.e.
β(t) = kt+ ζ, since β(0) = ζ

and
u1α

2
0(t) + u0α

2
1(t) = cβ(t). (31)

Like in [6] one can see that the overcompressiveness means

u0 − 1 ≥ c ≥ u1 + 1,

i.e., v1 lies between the curves

D = {(u, v) : v = v0 + u2 + u− u0u− u0}
E = {(u, v) : v = v0 − u+ u0u− u2

0 + u0},
and u0 − u1 ≥ 2.

Denote by J1 the union of the parts of admissible Hugoniot locus

S1 =
{

(u, v) : v − v0 = (u − u0)
(u0 + u

2
+

√

1 − (u0 − u)2

12

)}

,
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D

E

R
2

R
1

S
2

S
1

J
1

J
2

J
0

Q
7

Figure 1

and

S2 = {(u1, v1) : v − v0 = (u − u0)
(u0 + u

2
−

√

1 − (u0 − u)2

12

)}

,

for u ∈ [u0 −
√

12, u0 − 3]. Note that Si is not an ith shock curve but only a label.
The points between the curves D and E, and on the left-hand side of J1 defines

the area denoted by Q7 in [6]. Here, this area is called delta singular locus.
One can easily check that system (29,31) has a solution if and only if β(t) > 0.

Depending on k, defined in (30), there are three possibilities for a resulting wave:

(i) If k > 0, then β̃′(t) > 0 and (u1, v1) ∈ Q7. The resulting DSSW has the same
properties as before, i.e. its strength increases with the time.

(ii) If k = 0, then β̃ ≡ const = ζ > 0 and the corresponding part of a singular
overcompressive locus is J1. The result of the interaction is a new kind of DSSW,
its strength is a constant with respect to the time.

(iii) If k < 0 (this means that the point (u1, v1) is on the left-hand side of J1),
then the resulting DSSW has much more differences from the usual one (with an
increasing strength). Its initial strength equals ζ, β(0) = ζ > 0, but linearly
decreases in time. At some point T0 the strength of the DSSW equals zero and
the singular shock wave does not exist after that. In the rest of the paper we shall
see some cases when this happens. The new initial data for time t = T0 are the
Riemann ones, and the solution after that time can be find in the usual way, by
using the results in [6].

All the above facts are collected in the following theorem.
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Theorem 2. The SDSLζ, ζ > 0, for (2,13) is the area bounded by the curves D, E,
S2 \J1 and S1 \J1. (The area Q7 is a subset of this one, as known from Lemma 1.)
The overcompressive SDSLζ, ζ > 0, is a part of the SDSL bounded by the curves D
and E such that u1 ≤ u0 − 2.

4.1. Interaction of a DSSW and an admissible shock wave. Suppose that
a DSSW with a speed c1 and a left- and right-hand values U0 = (u0, v0) and
U1 = (u1, v1), respectively, interact with an admissible shock wave with a speed
c2 < c1 having left-hand and right-hand values U1 = (u1, v1) and U2 = (u2, v2),
respectively, at a point (X,T ).

Lemma 2. If the above DSSW and shock wave are admissible, (u2, v2) lies between
the lines D and E. Thus, the solution after the interaction is a single overcompres-
sive DSSW.

Proof. Since u0 ≥ u1 + 3 and u1 > u2 (because of the admissibility conditions for
singular and shock wave), we have u0 > u2 +3. The point (u2, v2) lies on the curve
S1 or S2 with the origin at the point (u1, v1). Thus

v2 = v1 + (u2 − u1)
(u1 + u2

2
±

√

1 − (u1 − u2)2

12

)

.

The point (u1, v1) lies in the area denoted by Q7, thus bellow or at the curve D
with the origin at (u0, v0). Therefore

v1 ≤ v0 + u2
1 + u1 − u0u1 − u0.

Let the point (u0, v0) be the origin. The point (u2, v2) will be bellow the curve D
if

v0 + u2
1 + u1 − u0u1 − u0 + (u2 − u1)

(u1 + u2

2
±

√

1 − (u1 − u2)2

12

)

≤v0 + u2
2 + u2 − u0u2 − u0.

Non-positivity of u1 − u2 gives

±
√

1 − (u1 − u2)2

12
≤ 1

2
(u0 − u1) +

1

2
(u0 − u2) − 1.

The left-hand side of the above inequality is less than 2, while the right-hand side
is greater that 2. Thus, the point (u2, v2) really lies bellow the curve D.

In the same way one can prove that the point (u2, v2) lies above the curve E. �

Remark 6. In the same manner as above, one can prove that the situation is the
same when DSSW and shock wave change sides. That is, when an admissible DSSW
interacts with an admissible shock wave from the right-hand side, then the solution
is again a single admissible DSSW.

4.2. Double DSSW wave interaction. Suppose that an admissible DSSW with
a speed c1 and left- and right-hand side values U0 = (u0, v0) and U1 = (u1, v1),
respectively, interacts with an another DSSW with a speed c2 < c1 and left-hand
(right-hand) side values U1 = (u1, v1) (U2 = (u2, v2)) at the point (X,T ). Since the
conditions for the existence of DSSW include u0 − u1 ≥ 3 and u1 − u2 ≥ 3, then
u0 − u2 ≥ 6, i.e. the point (u2, v2) is on the left-hand side of the line u = u0 −

√
12.

Concerning the position of the point (u2, v2) in the plane of wave regions with the
origin at (u0, v0) there are three possibilities:
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(i) The point (u2, v2) is between or at the curves D and E. The result of the
interaction is a single DSSW (with increasing strength).
(ii) The point (u2, v2) is above the curve D. The result of the interaction is an
1-rarefaction wave followed with a DSSW.
(iii) The point (u2, v2) is bellow the curve E. The result of the interaction is a
DSSW followed by a 2-rarefaction wave.

SDSL’s always have increasing strength in these three cases.

5. Interaction of a DSSW and a rarefaction wave

The last possibility of DSSW interaction is with a rarefaction wave. That possi-
bility is omitted from a considerations of the general system (1) due to a richness
of possible behaviors. Nevertheless, the most of specific Riemann problems can be
treated similarly as system (2) was here, at least up to some point.

For a given point (u0, v0), the rarefaction curves are given by (see [6])

R1 =
{

(u, v) : v = v0 −
1

2
u2

0 +
1

2
u2 + u− u0

}

.

R2 =
{

(u, v) : v = v0 −
1

2
u2

0 +
1

2
u2 − u+ u0

}

Suppose that a DSSW coming from the left-hand side with left- and right-hand
side values U0 = (u0, v0) and U1 = (u1, v1), interacts with a rarefaction wave at
some point (X,T ). If the rarefaction wave is approximated with a number of small
amplitude (non-admissible) shock waves like in wave front tracking algorithm (see
[1] for example), intuition given in Theorem 1, indicates that the first task should
be to look at the DSSW and the interaction of DSSW and non-admissible shock
wave. It is possible to extend Theorem 1 for such a case, providing that a non-
admissible shock wave has amplitude small enough (of the rate ε2, say). Denote by
(ur, vr) the end-point in a rarefaction curve. Let us note that the starting point of
the curve (u1, v1) is in Q7.

In what follows, we shall abuse the notation and denote by (u1, v1) ∈ Q7 the
left-hand side and by (u2, v2) the right-hand side value of a part from the rar-
efaction curve. These values will represent constant states in an approximated
non-admissible shock wave, too. If (u2, v2) ∈ Q7, then the result of the interaction
is a single DSSW, with the left-hand side value equals (u0, v0). The speed depends
on initial values as in (29). So, one can continue the procedure taking approximate
points from the rarefaction curve as the right-hand values of the non-admissible
shock wave until it reaches the border of Q7.

After looking at the above discrete model we are back in a real situation.
Let us denote by (c(t), t), t belonging to some interval, a path of the resulting

DSSW trough Q7. It is possible to explicitly calculate the above path. For example
if a DSSW interacts with a centered 1-rarefaction waves, substituting

u(x, t) =

{

u1, x < c(t)

φ1(x/t), x > c(t)

}

+ α0(t)d
−(x − c(t)) + α1(t)d

+(x− c(t))

v(x, t) =

{

v1, x < c(t)

φ2(x/t), x > c(t)

}

+ β(t)D(x − c(t))
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in system (2), one obtains

α̃0
2(t) + α̃2

1(t) = β̃(t)

c(t) =
(

t(1 − 2(u1 − v0 + v1 + u2
0 − u2

1))

+ T (1 − 2(u0 − v1 − u0u1 + u2
0 − u2

1))
)

/(2(u0 − 1))

β̃′(t) = c′(t)
(1

2

(c(t)

t
+ 1

)

+
(c(t)

t
+ 1

)

+ v1 −
1

2
u2

1 − u1 − v0

)

−
(1

3

(c(t)

t
+ 1

)3

−
(c(t)

t
+ 1

)

− 1

3
u3

0 + u0

)

,

where the initial data for β at the point t = T is the initial strength of the DSSW
β(T ). The above calculations means that a form of the resulting singular shock
curve and its strength are uniquely determined trough the areaQ7. If (ur, vr) ∈ Q7,
then the analysis is finished. Suppose that this is not true. The main problem is
to analyze situation when rarefaction curve intersects the boundary of Q7. Let us
try to find out what is happening by using a discrete model.

Thus, the first real problem is to find a form of solution when the points from
the rarefaction curve satisfy: (u1, v1) ∈ Q7 and (u2, v2) 6∈ Q7.

Denote by D̃ and G̃ the intersection points of the curve J1 (or the line u = u0−3)
with the curves E and D, respectively (see Figure 2).

5.1. The first critical case. Denote by J the 1-rarefaction curve starting from
the point G̃ and by J2 the 2-rarefaction curve starting from the point D̃ The region
where (u2, v2) can lie consist of five subregions:
(i) The rarefaction curve which starts at (u1, v1) intersects the curve D out of point

G̃. The point (u2, v2) lies in the region above the curve D and left of the line
u = u0 − 3. The final result of the interaction is a 1-rarefaction wave (R1) followed
by a DSSW with increasing strength.
(ii) The rarefaction curve which starts at (u1, v1) intersects the curve E out of point

D̃. The point (u2, v2) lies in the region below the curve E and on the left-hand
side of the line u = u0 − 3. The result of the interaction is a DSSW with increasing
strength followed by a 2-rarefaction wave (R2).
(iii) The rarefaction curve which starts at (u1, v1) intersects the curve J1 out of

points D̃ and G̃. Since an amplitude of a non-admissible shock wave can be as
small as necessary, one can assume that the point (u2, v2) lies in the second delta
singular locus and the resulting DSSW has a negative strength. The strength-
function β̃(t) = ζ + k(t − T0) of the resulting DSSW is decreasing, so, there could

exists a point T1 = T−ζ/k such that β̃(T1) = α0 = α1 = 0. LetX1 = cT1+(X−T ),
where c is the speed of the resulting DSSW (space coordinate of the point where
strength reaches zero). Therefore, in the time t = T1, we have to solve new Riemann
problem

u|t=T1
=

{

u0, x < X1

u2, x > X1

, v|t=T1
=

{

v0, x < X1

v2, x > X1

.

This problem has a unique entropy solution consists from two shock waves, since
the point (u2, v2) is between the curves S1 and S2, with respect to the origin at
the point (u0, v0). This means that the singular shock wave decouples into a pair
of admissible shock waves. If the decoupling starts before u reaches the value
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min{ur, u0−2}, then the result of the interaction will be known after solving shock
– rarefaction wave interactions. In any case there are no DSSWs in the solution
after time t = T1. If ur ≤ u0−2 and the decoupling does not start before u reaches
the value ur, this pair of the shock waves are the final solution. The case when
ur > u0 − 2 belongs to the following subsection, i.e. the second critical case.
(iv) The rarefaction curve Rj, j = 1 or 2, which starts at (u1, v1) intersects the

curve J1 in the point G̃. We can take G̃ = (u2, v2) for convenience. The set of such
points (u1, v1) lies on the inverse rarefaction curve (it starts from the right-hand
side values),

R̃1 = {(u, v) : v = v0 + (u2
0 − u2)/2 + u0 − u}

and

R̃2 = {(u, v) : v = v0 + (u2
0 − u2)/2 − u0 + u}.

A straightforward calculation shows that this curve lies in the region Q7, thus this
situation is possible, as one can see using the inverse rarefaction curves R̃1 and R̃2

given above.
If j = 1, then the point (u2, v2) belongs to J and the solution after the interaction

is an R1-wave followed by a DSSW wave with a constant strength.
If j = 2, then the point (u2, v2) lies in the area bellow the curve J . This can

be verified by direct calculation, taking into account that the amplitude of a non-
admissible shock is small enough, u2 < u0 − 2. The solution after the interaction
is an admissible DSSW with a decreasing strength. Further explanations of a such
DSSW is given in the following subsection.
(v) The rarefaction curve Rj which starts at (u1, v1) intersects the curve J1 in the

point D̃. Again, let D̃ = (u2, v2). Simple calculation, as in the case (iv), shows
that this situation is also possible since the inverse rarefaction curves starting from
D̃ stay in Q7. If j = 2, the point (u2, v2) belongs to J2, and then the solution after
the interaction is DSSW with a constant strength followed by an R2-wave.

If j = 1, then use of the same arguments as above gives that the point (u2, v2)
lies in the area above the curve J2 and the result of the interaction is an admissible
DSSW with a decreasing strength. Again, one can see the following subsection for
the further analysis.

5.2. The second critical case. Now we are dealing with the problem when the
rarefaction wave passes trough the curves D or E, after passing through J1. One
can see that this is the continuation of the cases (iii)-(v) from the previous part.

(a) Denote by D̂ the area above the curve D, bellow S1 and on the left-hand side

of the line u = u0−2. Also denote by
ˆ̂
D the area above the curve E, bellow S1 and

on the right-hand side of the line u = u0 − 2. If (u2, v2) lies in one of these regions,
the solution is combination of a rarefaction wave R1 and an overcompressive DSSW
with a decreasing or constant strength.
(b) Denote by Ê the area bellow the curve E, above S2 and on the left-hand side

of the line u = u0−2. Also denote by
ˆ̂
E the area bellow the curve D, above S2 and

on the right-hand side of the line u = u0 − 2. If (u2, v2) lies in one of these regions,
the solution is then a combination of an overcompressive DSSW with a decreasing
or constant strength and a rarefaction wave R2. Denote by D0 the area bounded
by the curves D, E, S1 and S2 such that u < u0 − 2 in D0.
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One can see that a rarefaction curve cannot enter into D0 since it has to pass
trough the intersection point (u0 − 2,−2u0 + v0 + 2) of D and E, but

2u− 2u0 − uu0 + u2/2 + u2
0/2 + 2 > 0 (ie. R1 is above the curve E)

2u0 − 2u+ uu0 − u2/2 − u2
0/2 − 2 < 0 (ie. R2 is bellow the curve D).

Therefore, a rarefaction curve which passes trough the point D∩E goes either into
ˆ̂
D or

ˆ̂
E, and these cases are analyzed above.

Thus, we have described all important points of the interactions between DSSW
and rarefaction waves. When a result of a single interaction is known, the question
about further singular shock path could be answered by a successive use of the
above procedures.

Remark 7. One can use the similar analysis of all possible cases when a rarefaction
wave which interacts with a DSSW is on the left-hand side of it. Instead of direct
rarefaction and singular shock curves, the inverse ones should be used, i.e. (u2, v2)
is a starting point and one is able to calculate v0 from formulas of E ,D, S1, S2,
R1 and R2.

Remark 8. In the contrast with the case in [9], where interaction can generate some
“strange” solution containing unbounded L1

loc function, in the presented system one
can find only bounded functions and DSSWs as a result on an interaction.

For a system (1) with g1 6≡ const, or g2 6≡ 0, interaction of DSSW and rarefaction
waves cannot be treated as easy as here.

Thus, we have proved the following assertion for the interaction in the case of
system (2).
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Theorem 3. Suppose that a DSSW interacts with a rarefaction wave at the time
T . For some time period T < t < T1 the solution is represented by a DSSW wave
supported by a uniquely defined curve (not a line) followed by a new rarefaction
wave. Depending on the right-hand value of the primary rarefaction wave, one has
the following possible cases for a solution after t > T1.

(a) Single DSSW (supported by a line) with an increasing strength.
(b) 1-rarefaction wave followed by DSSW with an increasing strength.
(c) Singular shock wave with an increasing strength followed by 2-rarefaction

wave.
(d) Singular shock wave with a decreasing strength prolonged by either a single

DSSW with an increasing strength, or a pair of admissible shock waves.
(e) 1-rarefaction wave followed by DSSW with a constant strength.
(f) Singular shock wave with a constant strength followed by 2-rarefaction wave.
(g) Singular shock wave with a decreasing strength prolonged by either 1-rare-

faction wave followed by DSSW with decreasing or constant strength, or
DSSW with decreasing or constant strength followed by 2-rarefaction wave.

“Prolonged” is the state after strength of DSSW becomes zero. Such wave can also
stop with non-zero strength, and then there is obviously no prolongation described
above.
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