Generalized function algebras and PDEs with singularities – A survey

Marko Nedeljkov, Stevan Pilipović
Contents

Introduction 5

Chapter 1. Basic definitions 9
 1. Different spaces of generalized functions 9
 2. Generalized semigroups 15

Chapter 2. Second order equations 19
 1. Linear Elliptic PDEs 19
 2. Quasilinear elliptic PDE 31
 3. Hyperbolic PDE 34
 4. Semilinear parabolic PDE [40] 37

Chapter 3. Hyperbolic systems 43
 1. Semilinear hyperbolic systems 43
 2. Systems of conservation laws 44

Bibliography 63
Introduction

The aim of this survey article is to explain a general concept of generalized function algebras (Chapter 1), to illustrate their use in analysis of second order PDEs with singularities (Chapter 2), and first order hyperbolic systems (Chapter 3).

Chapter I contains the basic definitions of Colombeau type spaces and algebras. One can find a general concept for extending of locally convex spaces and algebras into the corresponding Colombeau type spaces and algebras. Since we are mainly interested in PDEs, we give several constructions which correspond to Sobolev and Hölder spaces of functions (see [18] or [63], for example). Also, for the sake of a class of stochastic PDEs ([23], [24], [31], [42]), we give the definition of a generalized stochastic process. Main goal of this chapter is the introduction of generalized semigroups of operators (we refer to [48] for the classical theory) which will be used in the analysis of a semilinear heat equation with singularities ([40]).

One can find the main statements and results of authors’ previous investigations in Chapters 2 and 3. Additionally, we give complete proofs for solving elliptic linear PDEs with singular coefficients and singular boundary data. In this way our approach to differential equations can be better understood. We refer to the literature for more informations about any of quoted classes of equations. The classical literature is partially mentioned (for example, [18], [56], [57], [61] and [62]).

Colombeau had constructed his well-known algebras by purely algebraic methods ([7], [8]). Since then, algebras of Colombeau generalized numbers and functions became a very useful framework for linear problems with singularities and especially for nonlinear problems.

In Chapter 2 we present our method in solving various classes of second order equations with strong singularities in the framework of generalized function algebras.

First, we investigate a class of elliptic linear differential equations with singular coefficients and data. This is an original contribution with complete proofs, while the other results presented in the article are already proved in separate papers. In that section, one can find a practical implementation of two main concepts for solving problems using generalized functions, described below.
Generalized functions are well adopted for fine approximation of classical functions what permits us to construct approximate solution(s) to a given problem (see Theorem 2.2).

Their algebraic properties allow us to extend a lot of classical theorems from functional analysis (see Theorem 2.5).

In the rest of that chapter one can find results concerning quasilinear elliptic equation with Dirichlet’s boundary conditions, ([54]), semilinear wave ([37]) and semilinear heat ([40]) equations with Cauchy data. Let us give some details about these equations.

Let be given a quasilinear Dirichlet problem for uniformly elliptic equations with singular boundary conditions whose coefficients do not satisfy usual regularity assumptions. The single equation \(\text{div } A(Du) = 0 \) is replaced by a net of equations with regular coefficients, while the singular boundary condition are replaced with an appropriate regularized net of boundary conditions. Then one can use the classical theory for elliptic operators for the analysis of solution nets representing generalized functions.

The next topic is a semilinear wave equations in space dimension \(n \leq 9 \) with singular data and various types of nonlinearities. In general, a nonlinear term is regularized with respect to a small parameter \(\varepsilon \) such that it becomes globally Lipschitz for each \(\varepsilon \). A net of solutions to a net of Cauchy problems obtained in this way determines a generalized solution. For certain growth conditions on a nonlinear term the equation is uniquely solved without regularizations. There are cases when a solution to the regularized equation is also a solution to the non-regularized one. At the end, some classes of wave equations with stochastic perturbations as singularities are presented. One can find a brief definition of Colombeau generalized processes (see [46], for example).

In order to study a class of heat equations with singularities, we extend the use of semigroups to some classes of PDE’s with singular coefficients. The general idea is simple and it lies in the core of a construction of generalized functions. Regularized PDE, represented by a net of PDEs with nice properties, is solved with an appropriate net of semigroups. The solution obtained in this way will represent a generalized function. This was the reason for using different variants of Colombeau-like generalized function algebras. Generalized semigroups related to the Schrödinger operator \(\Delta - V \) concerning the semilinear heat equation with singular Cauchy data are presented at the end of Chapter 2.

Local and global existence theorems for semilinear first order hyperbolic system with irregular data from the papers [38] and [39] are presented in the first part of Chapter 3.

The second part of Chapter 3 is devoted to a class of Riemann problems to one-dimensional \(2 \times 2 \) conservation law systems which do not always admit a classical entropy solution. Two new solution types, delta and singular
shock waves, could appear in such a situation. We shall use two solutions concepts for describing them.

Also, we shall briefly describe what might happen when such a wave interacts with the same type of the wave or with some other elementary wave.
CHAPTER 1

Basic definitions

1. Different spaces of generalized functions

The present section contains special constructions of Colombeau type algebras. One can find a more abstract general approach in [21] as well as in the Appendix.

1.1. Extensions over locally convex spaces and algebras. The basics facts are used from [53], [54] and [58]. Let E be a vector space on C with an increasing sequence of seminorms μ_n, $n \in \mathbb{N}$. The space of moderate nets of E_M, respectively, of null nets of N, is constituted by nets $(r_{\varepsilon})_{\varepsilon \in (0,1]} \in E^{(0,1]}$ with the properties

$$(\forall n \in \mathbb{N}) \ (\exists a \in \mathbb{R}) \ (\mu_n(r_{\varepsilon}) = O(\varepsilon^a)), $$

respectively, $$(\forall n \in \mathbb{N}) \ (\forall b \in \mathbb{R}) \ (\mu_n(r_{\varepsilon}) = O(\varepsilon^b)).$$

(O is the Landau symbol.) The quotient space $G(E) = E_M/N$ with elements $[f_{\varepsilon}], [g_{\varepsilon}], ...$, (equivalence classes are denoted by $[\cdot]$) is called the Colombeau extension of E. Putting $v_n(r_{\varepsilon}) = \sup \{a; \mu_n(r_{\varepsilon}) = O(\varepsilon^a)\}$ and $e_n((r_{\varepsilon}, (s_{\varepsilon})) = \exp(-v_n(r_{\varepsilon} - s_{\varepsilon})), n \in \mathbb{N}$, we obtain that $(e_n)_{\varepsilon}$ is a sequence of ultra-pseudometrics defining the ultra-metric topology (sharp topology) on $G(E)$.

If $E = \mathbb{C}$ (or $E = \mathbb{R}$) and the seminorms are equal to the absolute value, then the corresponding spaces are E_0, N_0; E_0 is an algebra and N_0 is an ideal and, as a quotient, one obtains Colombeau algebra of generalized complex numbers $\bar{\mathbb{C}} = E_0/N_0$ (or $\bar{\mathbb{R}}$). These algebras are not fields as expected at the first sight, but rings. If a set O is open in \mathbb{R}^n and $E = C^\infty(O)$ is endowed with the usual sequence of seminorms (this is Schwartz space $E(O)$),

$$\mu_{K_{\nu}}(\phi) = \sup_{x \in K_{\nu}, |a| \leq \nu} |\phi^{(a)}(x)|, \nu \in \mathbb{N},$$

where $(K_{\nu})_{\nu}$ is an increasing sequence of compact sets that excaust O, then the above definition gives Colombeau simplified algebra $G(O) = E_M(O)/N(O)$ ([7], [44]). Its elements are called generalized functions and we keep this name for elements of any spaces or algebras constructed as extensions of some functional space E.

Then the embedding of compactly supported Schwartz distributions (elements of $E'(O)$) is made through the convolution with a net of mollifiers $h_{\varepsilon} = \varepsilon^{-n} h(\cdot/\varepsilon)$ constructed by a rapidly decreasing function $h \in \mathcal{S}(\mathbb{R}^n)$.
with the properties \(\int h(t) dt = 1, \int t^m h(t) dt = 0, m \in \mathbb{N} \). The embedding is given by

\[
f \mapsto [(f * h_\varepsilon |_O) \varepsilon].
\]

By the sheaf properties of \(\mathcal{D}'(O) \) and \(\mathcal{G}(O) \), this embedding is extended to \(\mathcal{D}'(O) \).

The restriction of a generalized function is defined by the restriction of a representative. The support of \(G \in \mathcal{G}(\Omega) \) is the complement of the largest open subset of \(\Omega \) where \(G \) is the zero generalized function. The space of all compactly supported generalized functions is denoted by \(\mathcal{G}_c(\Omega) \). It is naturally embedded into \(\mathcal{G}(\Omega) \).

1.2. Colombeau generalized functions with uniform bounds.

Let us recall some of the facts from [5], [40], [44] and [47].

In general, for an open set \(O \subset \mathbb{R}^n \), denote by \(C_b^\infty(O) \) the algebra of smooth functions on \(O \) bounded together with all their derivatives.

We shall briefly repeat some definitions of Colombeau algebra given in [47]. Denote \(\mathbb{R}_+^2 := \mathbb{R} \times (0, \infty), \mathbb{R}_+^2 := \mathbb{R} \times [0, \infty) \). Let \(C_b^\infty(\mathbb{R}_+^2) \) be a set of all functions \(u \in C^\infty(\mathbb{R}_+^2) \) satisfying \(u|_{\mathbb{R} \times (0,T)} \in C_b^\infty(\mathbb{R} \times (0,T)) \) for every \(T > 0 \). Let us remark that every element of \(C_b^\infty(\mathbb{R}_+^2) \) has a smooth extension up to the line \(\{t = 0\} \), i.e. \(C_b^\infty(\mathbb{R}_+^2) = C_b^\infty(\mathbb{R}_+^2) \). This is also true for \(C_b^\infty(\mathbb{R}_+^2) \).

We will give explicit definitions an one can easily make the description of these spaces and algebras as in Subsection 1.1. \(\mathcal{E}_{M,g}(\mathbb{R}_+^2) \) is the set of all maps \(G : (0,1) \times \mathbb{R}_+^2 \to \mathbb{R}, (\varepsilon, x, t) \mapsto G_\varepsilon(x,t), G_\varepsilon \in C_b^\infty(\mathbb{R}_+^2) \) for every \(\varepsilon \in (0,1) \) satisfying:

For every \((a, b) \in \mathbb{R}_+^2 \) and \(T > 0 \), there exists \(N \in \mathbb{N} \) such that

\[
\sup_{(x,t) \in \mathbb{R} \times (0,T)} |\partial^\alpha_x \partial^\beta_t G_\varepsilon(x,t)| = O(\varepsilon^{-N}), \text{ as } \varepsilon \to 0.
\]

\(\mathcal{N}_g(\mathbb{R}_+^2) \) is the set of all \(G_\varepsilon \in \mathcal{E}_{M,g}(\mathbb{R}_+^2) \) satisfying:

For every \((a, b) \in \mathbb{R}_+^2 \), \(a \in \mathbb{R} \) and \(T > 0 \)

\[
\sup_{(x,t) \in \mathbb{R} \times (0,T)} |\partial^\alpha_x \partial^\beta_t G_\varepsilon(x,t)| = O(\varepsilon^a), \text{ as } \varepsilon \to 0.
\]

Clearly, \(\mathcal{N}_g(\mathbb{R}_+^2) \) is an ideal of the multiplicative differential algebra \(\mathcal{E}_{M,g}(\mathbb{R}_+^2) \). Thus one defines the multiplicative differential algebra \(\mathcal{G}_g(\mathbb{R}_+^2) \) of generalized functions by \(\mathcal{G}_g(\mathbb{R}_+^2) = \mathcal{E}_{M,g}(\mathbb{R}_+^2)/\mathcal{N}_g(\mathbb{R}_+^2) \). All operations in \(\mathcal{G}_g(\mathbb{R}_+^2) \) are defined by the corresponding ones in \(\mathcal{E}_{M,g}(\mathbb{R}_+^2) \).

If one uses \(C_b^\infty(\mathbb{R}) \) instead of \(C_b^\infty(\mathbb{R}_+^2) \), for an open connected set \(O \subset \mathbb{R}^n \), one obtains \(\mathcal{E}_{M,g}(O), \mathcal{N}_g(O) \) and consequently, the space of generalized functions on a real line, \(\mathcal{G}_g(O) \).

Additionally, if functions from \(\mathcal{E}_{M,g}(\mathbb{R}) \) and \(\mathcal{N}_g(\mathbb{R}) \) are substituted with reals, one obtains the ring \(\mathcal{E}_{M,0} \) and it ideal \(\mathcal{N}_0 \), respectively. Thus, the ring of generalized real numbers is defined by \(\mathbb{R} = \mathcal{E}_{M,0}/\mathcal{N}_0 \).

In the sequel, \(G \) denotes an element (equivalence class) in \(\mathcal{G}_g(O) \) defined by \(G_\varepsilon \in \mathcal{E}_{M,g}(O) \).
Since $C^\infty_b(\mathbb{R}^2_+) = C^\infty_b(\mathbb{R}^2_0)$, a restriction of a generalized function to \{t = 0\} is defined in the following way. For given $G \in \mathcal{G}_d(\mathbb{R}^2_+)$, its restriction $G|_{t=0} \in \mathcal{G}_d(\mathbb{R})$ is the class determined by a function $G(x, 0) \in \mathcal{E}_{M,g}(\mathbb{R})$. In the same way as above, $G(x - ct) \in \mathcal{G}_d(\mathbb{R})$ is defined by $G(x - ct) \in \mathcal{E}_{M,g}(\mathbb{R})$.

If $G \in \mathcal{G}_d$ and f is a smooth function polynomially bounded together with all its derivatives, then one can easily show that the composition $f(G)$, defined by a representative $f(G_\varepsilon)$, $G \in \mathcal{G}_d$ makes sense. It means that $f(G_\varepsilon) \in \mathcal{E}_{M,g}$ if $G_\varepsilon \in \mathcal{E}_{M,g}$, and $f(G_\varepsilon) - f(H_\varepsilon) \in \mathcal{N}_g$ if $G_\varepsilon - H_\varepsilon \in \mathcal{N}_g$.

The equality in the space of the generalized functions \mathcal{G}_d is not appropriate for conservation laws as one can see in [44]. A generalized function $G \in \mathcal{G}_d(O)$ is said to be associated with $u \in \mathcal{D}'(O)$, $G \approx u$, if for some (and hence every) representative G_ε of G, $G_\varepsilon \rightarrow u$ in $\mathcal{D}'(O)$ as $\varepsilon \rightarrow 0$. Two generalized functions G and H are said to be associated, $G \approx H$, if $G - H \approx 0$. One can easily verify that the association is linear and an equivalence relation.

A generalized function $G \in \mathcal{G}_d(O)$ is pointwisely non-negative if for every $x \in O$, $G(x) \geq 0$, i.e., there exists a representative $G_\varepsilon \in \mathcal{N}_0$ such that $G_\varepsilon(x) \geq 0$, for ε small enough.

A generalized function $G \in \mathcal{G}_d(O)$ is distributionally non-negative if for every $\psi \in C^\infty(O)$, $\int_O G_\varepsilon(x)\psi(x) \geq 0$, for ε small enough.

Let $u \in \mathcal{D}'_{L,\infty}(\mathbb{R})$. We will use in our analysis of differential equations the following mapping from $\mathcal{D}'_{L,\infty}(\mathbb{R})$ into $\mathcal{G}(\mathbb{R})$ and more generally, of $\mathcal{D}'(\mathbb{R}^n)$ into $\mathcal{G}(\mathbb{R}^n)$ (also with Ω instead of \mathbb{R}^n). Let \mathcal{A}_0 be the set of all functions $\phi \in \mathcal{D}(\mathbb{R})$ satisfying $\phi(x) \geq 0$, $x \in \mathbb{R}$, $\int \phi(x)dx = 1$ and $\text{supp} \, \phi \subset [-1, 1]$. Let $\phi_\varepsilon(x) = \varepsilon^{-1}\phi(x/\varepsilon)$, $x \in \mathbb{R}$. Then, we define

$$(\iota_\phi : u \mapsto \text{class of } u * \phi_\varepsilon).$$

This is different from the embedding given in the previous section. It defines a mapping of $\mathcal{D}'_{L,\infty}(\mathbb{R})$ into $\mathcal{G}_d(\mathbb{R})$. It is clear that ι_ϕ commutes with the derivation. Also, $\iota_\phi(\delta)$ is a class defined by a delta net ϕ_ε.

1.3. Generalized function algebras over Hölder spaces

Let O be a bounded open set in \mathbb{R}^n and $\alpha \in (-1, 1)$. Recall ([18], p. 94), a domain O and its boundary are of $C^{k,\alpha}$ class $0 \leq \alpha \leq 1$, if at each point $x_0 \in \partial O$ there is a ball $B = B_{x_0}$ and a bijection $\psi : B \rightarrow D$ such that $\psi(B \cap O) \subset \mathbb{R}^n_+$, $\psi(B \cap \partial O) \subset \partial \mathbb{R}^n_+$, and $\psi \in C^{k,\alpha}(B)$, $\psi^{-1} \in C^{k,\alpha}(D)$. A domain O has a boundary portion $T \in \partial O$ of $C^{k,\alpha}$ class if at each point $x_0 \in T$ there is a ball B_{x_0} in which the above conditions are satisfied and $B \cap \partial O \subset T$.

We will consider the Colombeau extensions in cases $E = C^{k,\alpha}(O), k \in \mathbb{N}$ and $E = C^\infty(\bar{O})$. We will use the norms

$$|\phi|_{k,O} = \sup\{|f^{[p]}(x)|; |p| \leq k, x \in O\},$$

$$|f|_{k,\alpha,O} = |f|_{k,O} + |f|_{k,\alpha,O}, \, k \in \mathbb{N}_0,$$
where, for \(\phi \in C^\infty(\bar{O}) \), \(k \in \mathbb{N}_0 \),

\[
[f]_{k,\alpha,O} = \sup \left\{ \frac{|f(p)(x) - f(p)(y)|}{|x - y|^\alpha} \right\}; \ (x, y) \in O, \ x \neq y, \ |p| = k \}.
\]

The completion of \(C^\infty(\bar{O}) \) with respect to the norm \(\cdot \) \(k,\alpha,O \) defines \(E_k = C^{k,\alpha}(\bar{O}) \), \(k \in \mathbb{N} \). Recall, if \(k + \alpha < k' + \alpha' \), then the embedding of \(C^{k,\alpha}(\bar{O}) \) into \(C^{k',\alpha'}(\bar{O}) \) is a compact linear operator.

Note that the sequences of norms \(|| \cdot ||_{k,\alpha} \), \(k \in \mathbb{N} \) and \(|| \cdot ||_k \), \(k \in \mathbb{N} \) define the same uniform structure on \(C^\infty(\bar{O}) \) as the usual one.

In case \(E = C^\infty(\bar{O}) \), we need one more construction. Let \((g_\varepsilon)_\varepsilon\) \(\varepsilon \) be a net in \(C^{0,\alpha}(\bar{O}) \) such that

\[g_\varepsilon \in C^{k,\alpha}(\bar{O}), \varepsilon < \varepsilon_k, k \in \mathbb{N}, \]

where \((\varepsilon_k)_k \in (0, 1)^\mathbb{N}\) strictly decreases to zero \((|\varepsilon_k|_k \downarrow 0)\).

Two such nets are in relation, \((g_\varepsilon)_\varepsilon \sim (r_\varepsilon)_\varepsilon\), if

\[g_\varepsilon = r_\varepsilon, \varepsilon < \varepsilon_0, \text{ for some } \varepsilon_0 \in (0, 1). \]

This is an equivalence relation and with the corresponding classes, elements in \(C^{0,\alpha}(\bar{O})/\sim \), we define spaces \(\mathcal{E}_M[E], \mathcal{N}[E] \). Then we define the corresponding Colombeau type space \(\mathcal{G}[E] = \mathcal{E}_M[E]/\mathcal{N}[E] \). Note that there exists a canonical isomorphism of \(\mathcal{G}[E] \) onto \(\mathcal{G}(E) \) if \(E = C^\infty(\bar{O}) \). In case \(E = C^{k,\alpha}(\bar{O}) \), we have \(\mathcal{G}(E) = \mathcal{G}[E] \).

1.4. Colombeau-Sobolev type spaces and algebras. Although we have introduced two general concepts of constructions of generalized function algebras, still the flexibility of Colombeau main ideas enable us to construct some other types of spaces and algebras useful in the analysis of problems with singularities. The text below is based on [5], [37] and [40].

Let \(O \) be an open, connected subset of \(\mathbb{R}^n \) with a smooth boundary. Let \(H^{r,s}(O) \) be Sobolev space of functions in \(L^s(O) \) with all distributional derivatives of order \(|\alpha| \leq r\) belonging to \(L^s(O) \), equipped with the usual norm. In case \(s = 2 \), we simply write \(H^r(O) \). We refer to [5] and [37] for the Colombeau type algebras \(\mathcal{G}_{L^r,L^2} \). We shall describe the special case of the last one, \(\mathcal{G}_{L^2,L^2} \) space, denoted by \(\mathcal{G}_{2,2} \) in the present paper.

\(\mathcal{E}_{2,2}([0, T) \times \mathbb{R}^n) \) is the algebra of all \(G_\varepsilon \in \mathcal{E}([0, T) \times \mathbb{R}^n) \) with the property that for all \(T > 0 \) and \(\alpha \in \mathbb{N}_0^n \) there exists \(N \in \mathbb{N} \) such that

\[\| \partial^\alpha G_\varepsilon \|_{L^2([0, T) \times \mathbb{R}^n)} = \mathcal{O}(\varepsilon^{-N}). \]

We say that \(\| \partial^\alpha G_\varepsilon \|_{L^2} \) is moderate or that it has a moderate bound.

\(\mathcal{N}_{2,2}([0, T) \times \mathbb{R}^n) \) is the algebra of all \(G_\varepsilon \in \mathcal{E}([0, T) \times \mathbb{R}^n) \) with the property that for all \(T > 0 \), \(\alpha \in \mathbb{N}_0^n \) and \(a \in \mathbb{R} \)

\[\| \partial^\alpha G_\varepsilon \|_{L^2([0, T) \times \mathbb{R}^n)} = \mathcal{O}(\varepsilon^a). \]

We say that \(\| \partial^\alpha G_\varepsilon \|_{L^2} \) is negligible.

As above, we define \(\mathcal{G}_{2,2}([0, T) \times \mathbb{R}^n) = \mathcal{E}_{2,2}([0, T) \times \mathbb{R}^n)/\mathcal{N}_{2,2}([0, T) \times \mathbb{R}^n) \).
One can similarly define spaces $\mathcal{E}_{2,2}(\mathbb{R}^n)$, $\mathcal{N}_{2,2}(\mathbb{R}^n)$ and $\mathcal{G}_{2,2}(\mathbb{R}^n)$ but independently of time variable t. Let Q denote $[0,T) \times O$ or O. The proof that $\mathcal{N}_{2,2}(Q)$ is an ideal of $\mathcal{E}_{2,2}(Q)$ is given in paper [5]. Sobolev embedding theorems give that $\mathcal{E}_{2,2}(Q) \subset \mathcal{E}_g(Q)$ and $\mathcal{N}_{2,2}(Q) \subset \mathcal{N}_g(Q)$. Thus there exists a canonical mapping $\mathcal{G}_{2,2}(Q) \rightarrow \mathcal{G}_g(Q)$. Also, this means that in $\mathcal{G}_{2,2}(Q)$ instead of L^2-norm on the strip $[0,T) \times \mathbb{R}^n$ one can use L^∞-norm on $[0,T)$ and L^2-norm on \mathbb{R}^n and vice versa.

1.5. Generalized stochastic processes. This subsection contains a short survey about generalized stochastic processes. One can look in [31], [42] or [46] for more material.

At the beginning we recall some basic facts from classical stochastic analysis.

Let (Ω, Σ, μ) be a probability space. A weakly measurable mapping $X : \Omega \rightarrow D'(\mathbb{R}^d)$ is called a generalized stochastic process on \mathbb{R}^d.

For each fixed function $\varphi \in D(\mathbb{R}^d)$, the mapping $\Omega \rightarrow \mathbb{R}$ defined by

$$\omega \rightarrow \langle X(\omega), \varphi \rangle$$

is a random variable.

The space of generalized stochastic processes will be denoted by $D'_g(\Omega)$. The characteristic functional of a process X is

$$C_X(\varphi) = \int e^{i \langle X(\omega), \varphi \rangle} d\mu(\omega), \quad \varphi \in D(\mathbb{R}^d).$$

Take probability space to be the space of tempered distributions $\Omega = S'(\mathbb{R}^d)$ and Σ to be the Borel σ-algebra generated by the weak topology. Then there is a unique probability measure μ on (Ω, Σ) such that

$$\int e^{i \langle X(\omega), \varphi \rangle} d\mu(\omega) = e^{-\frac{1}{2} \|\varphi\|^2_{L^2(\mathbb{R}^d)}}, \quad \varphi \in S(\mathbb{R}^d).$$

It is a well known result following from the Bochner-Minlos theorem (we refer to [23] or [24]). White noise process $\hat{W} : \Omega \rightarrow D'(\mathbb{R}^d)$ is the identity mapping

$$\langle \hat{W}(\omega), \varphi \rangle = \langle \omega, \varphi \rangle, \quad \varphi \in D(\mathbb{R}^d).$$

It is a generalized Gaussian process with mean zero and variance

$$D(\hat{W}(\varphi)) = E(\hat{W}(\varphi)^2) = \|\varphi\|^2_{L^2(\mathbb{R}^d)},$$

where E denotes expectation.

Definition 1.1. \mathcal{G}_g-Colombeau random generalized function on a probability space (Ω, Σ, μ) is a mapping $U : \Omega \rightarrow \mathcal{G}_g(Q)$ such that there exists a function $U : (0,1) \times Q \times \Omega \rightarrow \mathbb{R}$ with the following properties:

1) For fixed $\varepsilon \in (0,1)$, $(x, \omega) \rightarrow U(\varepsilon, x, \omega)$ is jointly measurable in $Q \times \Omega$.

{ubacena def-0}
2) \(\varepsilon \to U(\varepsilon, \omega) \) belongs to \(\mathcal{E}_g(Q) \) almost surely in \(\omega \in \Omega \), and it is a representative of \(U(\omega) \).

By \(G^\varepsilon_2(Q) \) we denote the algebra of \(G^\varepsilon \)-Colombeau random generalized functions on \(\Omega \). A family of \(G^\varepsilon \)-Colombeau random generalized functions is called \(G^\varepsilon \)-Colombeau generalized stochastic process.

Definition 1.2. \(G_{2,2} \)-Colombeau random generalized function on a probability space \((\Omega, \Sigma, \mu) \) is a mapping \(U : \Omega \to G_{2,2}(Q) \) such that there exists a function \(U : (0, 1) \times Q \times \Omega \to \mathbb{R} \) with the following properties:

1) For fixed \(\varepsilon \in (0, 1) \), \((x, \omega) \to U(\varepsilon, x, \omega) \) is jointly measurable in \(Q \times \Omega \).
2) \(\varepsilon \to U(\varepsilon, \omega) \) belongs to \(\mathcal{E}_{2,2}(Q) \) almost surely in \(\omega \in \Omega \), and it is a representative of \(U(\omega) \).

By \(G^\varepsilon_{2,2}(Q) \) we denote the algebra of \(G_{2,2} \)-Colombeau random generalized functions on \(\Omega \). A family of \(G_{2,2} \)-Colombeau random generalized functions is called \(G_{2,2} \)-Colombeau generalized stochastic process.

In the sequel \(\varepsilon \) will be written as a subindex, as usual.

1.6. Vector valued Colombeau-type spaces

We will make some necessary modifications to define and use generalized semigroups like in [40]. The main difference comparing with the previous section is that one does not need all derivatives of a representative. This will give more possibilities for applications, but also make a work with them harder (spaces of such generalized functions are not algebras in general).

Definition 1.3. \(\mathcal{E}_{C^1, H^2}([0, T] : \mathbb{R}^n) \) (respectively \(\mathcal{N}_{C^1, H^2}([0, T] : \mathbb{R}^n) \)),

\(T > 0 \), is the vector space of nets \((G_\varepsilon)_\varepsilon \) of functions

\[
G_\varepsilon \in C^0 \left([0, T] : H^2(\mathbb{R}^n) \right) \cap C^1 \left((0, T) : L^2(\mathbb{R}^n) \right), \ \varepsilon \in (0, 1)
\]

with the property: for every \(T_1 \in (0, T) \) there exists \(a \in \mathbb{R} \), (respectively, for every \(a \in \mathbb{R} \)) such that

\[
(1) \quad \max \left\{ \sup_{t \in [0, T]} \|G_\varepsilon(t)\|_{H^2}, \sup_{t \in [T_1, T]} \|\partial_t G_\varepsilon(t)\|_{L^2} \right\} = O(\varepsilon^a), \text{ as } \varepsilon \to 0.
\]

The quotient space

\[
\mathcal{G}_{C^1, H^2}([0, T] : \mathbb{R}^n) = \frac{\mathcal{E}_{C^1, H^2}([0, T] : \mathbb{R}^n)}{\mathcal{N}_{C^1, H^2}([0, T] : \mathbb{R}^n)}
\]

is a Colombeau type vector space.

Dropping the conditions on \(\partial_t G_\varepsilon \) in (1) we obtain spaces \(\mathcal{E}_{C^0, H^2}([0, T] : \mathbb{R}^n) \), \(\mathcal{N}_{C^0, H^2}([0, T] : \mathbb{R}^n) \) and \(\mathcal{G}_{C^0, H^2}([0, T] : \mathbb{R}^n) \).

By Sobolev lemma we have

Lemma 1.1. If \(n \leq 3 \), then \(\mathcal{E}_{C^1, H^2}([0, T] : \mathbb{R}^n) \) is an algebra with the multiplication and \(\mathcal{N}_{C^1, H^2}([0, T] : \mathbb{R}^n) \) is an ideal of \(\mathcal{E}_{C^1, H^2}([0, T] : \mathbb{R}^n) \). Therefore, \(\mathcal{G}_{C^1, H^2}([0, T] : \mathbb{R}^n) \) is an algebra with the multiplication. The same holds for

\(\mathcal{E}_{C^0, H^2}([0, T] : \mathbb{R}^n) \), \(\mathcal{N}_{C^0, H^2}([0, T] : \mathbb{R}^n) \) and \(\mathcal{G}_{C^0, H^2}([0, T] : \mathbb{R}^n) \).
Substituting H^2-norm with L^2-norm in (1) we obtain vector spaces

\[\mathcal{E}_{C^1,L^2}([0,T) : \mathbb{R}^n), \mathcal{N}_{C^1,L^2}([0,T) : \mathbb{R}^n) \text{ and } \mathcal{G}_{C^1,L^2}([0,T) : \mathbb{R}^n). \]

Canonical mapping \(\iota_{L^2} : \mathcal{G}_{C^1,H^2}([0,T) : \mathbb{R}^n) \to \mathcal{G}_{C^1,L^2}([0,T) : \mathbb{R}^n) \) is defined by \(\iota_{L^2}(G) = H, \) where \(H = [G_\varepsilon] \) and \((G_\varepsilon)_\varepsilon \) is a representative of \(G. \)

Space \(\mathcal{G}_{H^2}(\mathbb{R}^n) \) is defined in a similar way as \(\mathcal{G}_{C^1,H^2}(\mathbb{R}^n), \) but with representatives independent of time variable \(t. \) This space is also an algebra in case \(n \leq 3. \)

Let us give more details for space \(\mathcal{G}_{H^2}\infty([0,T) : \mathbb{R}^n), \) \((\text{respectively, for every } \varepsilon > 0, \text{as } \varepsilon \to 0). \)

Both spaces are algebras with the usual multiplication and \(\mathcal{N}_{H^2}\infty(\mathbb{R}^n) \) is an ideal. Colombeau type algebra is defined by

\[\mathcal{G}_{H^2}\infty(\mathbb{R}^n) = \frac{\mathcal{E}_{H^2}\infty(\mathbb{R}^n)}{\mathcal{N}_{H^2}\infty(\mathbb{R}^n)}. \]

2. Generalized semigroups

The following section contains notions and assertions from [40]. Let \((E, \| \cdot \|) \) be a Banach space and let \(\mathcal{L}(E) \) be the space of all linear continuous mappings \(E \to E. \)

Definition 1.4. \(SE_M([0,\infty) : \mathcal{L}(E)) \) is the space of nets \((S_\varepsilon)_\varepsilon \) of continuous mappings \(S_\varepsilon : [0,\infty) \to \mathcal{L}(E), \varepsilon \in (0,1), \) with the properties \(S_\varepsilon(0) = I, \varepsilon \in (0,1), \) and that for every \(T > 0 \) there exists \(a \in \mathbb{R} \) such that

\[\sup_{t \in [0,T)} \|S_\varepsilon(t)\| = O(\varepsilon^a), \text{ as } \varepsilon \to 0. \]

SN ([0, \infty) : \mathcal{L}(E)) is the space of nets \((N_\varepsilon)_\varepsilon \) of continuous mappings \(N_\varepsilon : [0, \infty) \to \mathcal{L}(E), \varepsilon \in (0,1), \) with the properties:

(a) For every \(b \in \mathbb{R} \) and \(T > 0 \)

\[\sup_{t \in [0,T)} \|N_\varepsilon(t)\| = O(\varepsilon^b), \text{ as } \varepsilon \to 0. \]

(b) There exists a net \((H_\varepsilon)_\varepsilon \) in \(\mathcal{L}(E) \) such that

\[\lim_{t \to 0} \frac{N_\varepsilon(t)}{t} x = H_\varepsilon x, \]

for every \(x \in E \) and \(\varepsilon \) small enough, and, for every \(b > 0, \)

\[\|H_\varepsilon\| = O(\varepsilon^b), \text{ as } \varepsilon \to 0. \]

Proposition 1.1. \(SE_M([0, \infty) : \mathcal{L}(E)) \) is an algebra with respect to composition and \(SN ([0, \infty) : \mathcal{L}(E)) \) is an ideal of \(SE_M([0, \infty) : \mathcal{L}(E)). \)
Now we define Colombeau type algebra as the factor algebra
\[SG([0, \infty) : \mathcal{L}(E)) = \frac{SE_M([0, \infty) : \mathcal{L}(E))}{SN([0, \infty) : \mathcal{L}(E))}. \]

Elements of \(SG([0, \infty) : \mathcal{L}(E)) \) will be denoted by \(S = [S_\varepsilon] \), where \((S_\varepsilon) \) is a representative of the above class.

Definition 1.5. \(S \in SG([0, \infty) : \mathcal{L}(E)) \) is called a Colombeau \(C_0 \)-semigroup if it has a representative \((S_\varepsilon) \) such that, for some \(\varepsilon_0 > 0 \), \(S_\varepsilon \) is a \(C_0 \)-semigroup, for every \(\varepsilon < \varepsilon_0 \).

In the sequel we will use only representatives \((S_\varepsilon) \) of a Colombeau \(C_0 \)-semigroup \(S \) which are \(C_0 \)-semigroups, for \(\varepsilon \) small enough.

Proposition 1.2. Let \((S_\varepsilon) \) and \((\tilde{S}_\varepsilon) \) be representatives of a Colombeau \(C_0 \)-semigroup \(S \), with the infinitesimal generators \(A_\varepsilon \), \(\varepsilon < \varepsilon_0 \), and \(\tilde{A}_\varepsilon \), \(\varepsilon < \tilde{\varepsilon}_0 \), respectively, where \(\varepsilon_0 \) and \(\tilde{\varepsilon}_0 \) correspond (in the sense of Definition 1.5) to \((S_\varepsilon) \) and \((\tilde{S}_\varepsilon) \), respectively.

Then, \(D(A_\varepsilon) = D(\tilde{A}_\varepsilon) \), for every \(\varepsilon < \tilde{\varepsilon}_0 = \min \{ \varepsilon_0, \tilde{\varepsilon}_0 \} \) and \(A_\varepsilon - \tilde{A}_\varepsilon \) can be extended to be an element of \(\mathcal{L}(E) \), denoted again by \(A_\varepsilon - \tilde{A}_\varepsilon \).

Moreover, for every \(a \in \mathbb{R} \),

\[\|A_\varepsilon - \tilde{A}_\varepsilon\| = O(\varepsilon^a), \text{ as } \varepsilon \to 0. \] (6)

Now we define the infinitesimal generator of a Colombeau \(C_0 \)-semigroup \(S \). Denote by \(\mathcal{A} \) the set of pairs \(((A_\varepsilon), (D(A_\varepsilon))) \) where \(A_\varepsilon \) is a closed linear operator on \(E \) with dense domain \(D(A_\varepsilon) \subset E \), for every \(\varepsilon \in (0,1) \).

We introduce an equivalence relation in \(\mathcal{A} \):

\[((A_\varepsilon), (D(A_\varepsilon))) \sim ((\tilde{A}_\varepsilon), (D(\tilde{A}_\varepsilon))) \]

if there exists \(\varepsilon_0 \in (0,1) \) such that \(D(A_\varepsilon) = D(\tilde{A}_\varepsilon) \), for every \(\varepsilon < \varepsilon_0 \), and for every \(a \in \mathbb{R} \) there exists \(C > 0 \) such that, for \(x \in D(A_\varepsilon) \),

(i) \[\|(A_\varepsilon - \tilde{A}_\varepsilon)x\| \leq C\varepsilon^a\|x\|, \text{ as } \varepsilon \to 0. \]

Since \(A_\varepsilon \) has a dense domain in \(E \), \(A_\varepsilon - \tilde{A}_\varepsilon \) can be extended to be an operator in \(\mathcal{L}(E) \) satisfying \(\|A_\varepsilon - \tilde{A}_\varepsilon\| = O(\varepsilon^a), \varepsilon \to 0 \), for every \(a \in \mathbb{R} \).

We denote by \(A \) the corresponding element of the quotient space \(\mathcal{A}/\sim \). Due to Proposition 1.2, the following definition makes sense.

Definition 1.6. \(A \in \mathcal{A}/\sim \) is the infinitesimal generator of a Colombeau \(C_0 \)-semigroup \(S \) if there exists a representative \((A_\varepsilon) \) of \(A \) such that \(A_\varepsilon \) is the infinitesimal generator of \(S_\varepsilon \), for \(\varepsilon \) small enough.

We collect some obvious properties in the following proposition (cf. [48]).

Proposition 1.3. Let \(S \) be a Colombeau \(C_0 \)-semigroup with the infinitesimal generator \(A \). Then there exists \(\varepsilon_0 \in (0,1) \) such that:

(a) Mapping \(t \mapsto S_\varepsilon(t)x : [0, \infty) \to E \) is continuous for every \(x \in E \) and \(\varepsilon < \varepsilon_0 \).
for every \(t > 0 \),
\[
\lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} S_{\varepsilon}(s) ds = S_{\varepsilon}(t), \varepsilon < \varepsilon_0, x \in E.
\]

(c) \[
\int_{0}^{t} S_{\varepsilon}(s) ds \in D(A_{\varepsilon}), \varepsilon < \varepsilon_0, x \in E.
\]

(d) For every \(x \in D(A_{\varepsilon}) \) and \(t \geq 0 \), \(S_{\varepsilon}(t)x \in D(A_{\varepsilon}) \) and
\[
\frac{d}{dt} S_{\varepsilon}(t)x = A_{\varepsilon} S_{\varepsilon}(t)x = S_{\varepsilon}(t) A_{\varepsilon}x, \varepsilon < \varepsilon_0.
\]

(e) Let \((S_{\varepsilon})_{\varepsilon}\) and \((\tilde{S}_{\varepsilon})_{\varepsilon}\) be representatives of Colombeau \(C_{0}\)-semigroup \(S \), with infinitesimal generators \(A_{\varepsilon} \) and \(\tilde{A}_{\varepsilon} \), \(\varepsilon < \varepsilon_0 \), respectively. Then, for every \(a \in \mathbb{R} \) and \(t \geq 0 \)
\[
\left\| \frac{d}{dt} S_{\varepsilon}(t) - \tilde{A}_{\varepsilon} S_{\varepsilon}(t) \right\| = O(\varepsilon^a), \text{ as } \varepsilon \to 0.
\]

(f) For every \(x \in D(A_{\varepsilon}) \) and every \(t, s \geq 0 \),
\[
S_{\varepsilon}(t)x - S_{\varepsilon}(s)x = \int_{s}^{t} S_{\varepsilon}(\tau) A_{\varepsilon}x d\tau = \int_{s}^{t} A_{\varepsilon} S_{\varepsilon}(\tau)x d\tau, \varepsilon < \varepsilon_0.
\]

Theorem 1.1. Let \(S \) and \(\tilde{S} \) be two Colombeau \(C_{0}\)-semigroups with infinitesimal generators \(A \) and \(B \), respectively. If \(A = B \) then \(S = \tilde{S} \).

Example 1.1. Semigroups of Schrödinger-type operators.

Let \(V \in \mathcal{G}_{W2,\infty}(\mathbb{R}^n) \) be of logarithmic type. Then differential operators
\(A_{\varepsilon}u = (\Delta - V_{\varepsilon})u, u \in W^{2}(\mathbb{R}^n), \varepsilon < 1 \), are infinitesimal generators of \(C_{0}\)-semigroups \(S_{\varepsilon}, \varepsilon < 1 \), and \((S_{\varepsilon})_{\varepsilon}\) is a representative of a generalized \(C_{0}\)-semigroup
\[
S \in \mathcal{SG}([0, \infty) : \mathcal{L}(L^2(\mathbb{R}^n))).
\]

Let \(\varepsilon < 1 \). Operator \(A_{\varepsilon} \) is the infinitesimal generator of the corresponding \(C_{0}\)-semigroup \(S_{\varepsilon} : [0, \infty) \to \mathcal{L}(L^2(\mathbb{R}^n)) \) defined by the Feynman-Kac formula:
\[
S_{\varepsilon}(t)\psi(x) = \int_{O} \exp\left(-\int_{0}^{t} V_{\varepsilon}(\omega(s)) ds\right) \psi(\omega(t)) d\mu_{\varepsilon}(\omega), \quad t \geq 0, x \in \mathbb{R}^n,
\]
for \(\psi \in L^2(\mathbb{R}^n) \), where \(O = \prod_{t \in [0, \infty)} \mathbb{R}^n \) and \(\mu_{\varepsilon} \) is the Wiener measure concentrated at \(x \in \mathbb{R}^n \) (cf. [56] or [61]).

The assumption on \(V \) implies that there exists \(C > 0 \) such that
\[
|S_{\varepsilon}(t)\psi(x)| \leq \exp\left(t \sup_{s \in \mathbb{R}^n} |V_{\varepsilon}(s)|\right) \int_{O} |\psi(\omega(t))| d\mu_{\varepsilon}(\omega)
\]
\[
= \varepsilon^{-Ct} (4\pi t)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-\frac{|x - y|^2}{4t}\right) |\psi(y)| dy,
\]
for every \(t > 0, x \in \mathbb{R}^n \) and \(\varepsilon < 1 \).
Recall that the heat kernel is given by
\[E_n(t, x) = \frac{1}{(4\pi t)^{n/2}} \exp \left(-\frac{x^2}{4t} \right), \quad t > 0, \quad x \in \mathbb{R}^n, \]
and its $L^1(\mathbb{R}^n)$-norm equals 1 for every $t > 0$. By the Young inequality,
\[|S_\varepsilon(t)\psi| \leq e^{-Ct\|E_n(t, \cdot)\|_{L^1(\mathbb{R}^n)}\|\psi\|_{L^2(\mathbb{R}^n)}} \]
for every $t > 0$, $\varepsilon < 1$.

Therefore, there exists $C_0 > 0$ such that
\[\sup_{t \in [0, T]} \|S_\varepsilon(t)\psi\|_{L^2} \leq C_0\varepsilon^{-CT}\|\psi\|_{L^2}, \quad \varepsilon < 1, \]
for every T, i.e. $(S_\varepsilon(t))_\varepsilon$, $t \in [0, T]$, satisfies relation (2) and
\[S = [S_\varepsilon] \in SG \left([0, \infty) : \mathcal{L}(L^2(\mathbb{R}^n))\right). \]
CHAPTER 2

Second order equations

1. Linear Elliptic PDEs

1.1. Linear elliptic PDE. This part of the article is the original one and contains complete proofs.

1.1.1. Additional definitions for this framework. In the sequel we use the notation $(A)_-\gamma = \{ x \in A : \text{dist}(x, \partial A) \geq \gamma \}$, $(A)_\gamma = \{ x \in \mathbb{R}^n : \text{dist}(x, A) \geq \gamma \}$. We will use the regularizations by delta nets of the following form: We take $\phi_\gamma = \gamma - n \phi(\cdot/\gamma)$, $\gamma > 0$, where $\phi \in C^\infty_0(\mathbb{R}^n)$, $\int \phi(x) dx = 1$.

For the sake of simplicity, let us assume that ϕ is a radially symmetric, positive function in the open unit ball and that ϕ is supported by the closed unit ball in \mathbb{R}^n. Let $\psi_\varepsilon = \mathbf{1}_\Omega 2^\varepsilon \phi_\varepsilon$. We define the mapping ι of $D'(\Omega)$ into $G(\Omega)$ in the following way. If $g \in D'(\Omega)$, then $\iota(g) = G$ is represented by $G_\varepsilon = (g \cdot \psi_\varepsilon) \ast \phi_\varepsilon$.

Similarly, a generalized function G_1 and $g \in D'$ equals in D'-sense, $G_1 \approx g$, if $\langle G_1, \varphi \rangle = \langle g, \varphi \rangle$ for every $\varphi \in D$. Usually, D equals Sobolev space H^m or H^m_0.

The s-association (\approx_s), $s \geq 0$ of generalized complex numbers is defined as follows. For $G \in C$, $G \approx_s 0$ means that G has a representative G_ε such that $G_\varepsilon = o(\varepsilon^s)$ as $\varepsilon \to 0$. If G_1, G_2 are in $G(\Omega)$, then $G_1 \approx_s G_2$ if $\langle G_1 - G_2, \varphi \rangle \approx_s 0$ for every $\varphi \in D$. If $s = 0$, then the notation \ldots-association is often used instead of \ldots-0-association. As in the previous case one can define association between a generalized function in G and a generalized function in D'.

In order to give a meaning to the Dirichlet problem in \mathcal{E}_M and thus in G we recall the definition of the space of generalized functions on a closed set (cf. [3]).

Let X be a non-void subset of \mathbb{R}^n and $\{ G_\alpha^\varepsilon, \alpha \in \mathbb{N}_0^n \}$ be a family of mappings $G_\alpha^\varepsilon : (0,1) \times X \to \mathbb{C}$. Denote by $\mathcal{E}_{W,M}(X)$ the vector space of families $\{ G_\alpha^\varepsilon, \alpha \in \mathbb{N}_0^n \}$ which satisfy the following conditions:

\begin{itemize}
 \item[(a)] $\{ G_\alpha^\varepsilon, \alpha \in \mathbb{N}_0^n \}$ has a locally moderate growth when $\varepsilon \to 0$.
\end{itemize}

This means that for every $\alpha \in \mathbb{N}_0^n$ and $x_0 \in X$ there exist a neighbourhood V of x_0, $N \in \mathbb{R}$, $C > 0$ and $\eta > 0$ such that

$$|G_\alpha^\varepsilon(x)| \leq C\varepsilon^{-N}, \quad x \in V \cap X, \quad \varepsilon \in (0, \eta).$$
2. SECOND ORDER EQUATIONS

(b) There exists $\eta > 0$ such that the family

$$\{X \ni x \mapsto G_{\alpha}^\varepsilon(x), \varepsilon < \eta, \alpha \in N_0^m\}$$

satisfies requirements defining Whitney’s C^∞-function on X, that is for every $m \in \mathbb{N}$, $\alpha \in N_0^m$, $|\alpha| \leq m$ and $x_0 \in X$ there exist a neighbourhood V of x_0 and $c_\varepsilon > 0$ such that

$$|G_{\alpha}^\varepsilon(x) - \sum_{|\beta| \leq m-|\alpha|} \frac{(x-x')^\beta G_{\alpha}^{\varepsilon+\beta}(x')}{\beta!}| \leq c_\varepsilon|x-x'|^{m-|\alpha|-1},$$

for every $x, x' \in V$, $\varepsilon \in (0, \eta)$.

(c) Constants c_ε are locally bounded above by $c\varepsilon^{-N}$ as $\varepsilon \to 0$. More precisely, for every $m \in \mathbb{N}$, $\alpha \in N_0^m$, $|\alpha| \leq m$ and $x_0 \in X$ there exist a neighbourhood V of x_0, $N \in \mathbb{R}$, $C > 0$ and $\eta > 0$ such that (10) holds with $c_\varepsilon = C\varepsilon^{-N}$.

The ideal $N_W(X)$ of $E_{W,M}(X)$ is the set of those $\{G_{\alpha}^\varepsilon, \alpha \in N_0^m\}$ which satisfy:

For every $\alpha \in N_0^m$, and $x_0 \in X$ there exists a neighbourhood V of x_0 such that for every $q > 0$ there exist $C > 0$ and $\eta > 0$ such that

$$|G_{\alpha}^\varepsilon(x)| \leq C\varepsilon^q, x \in V \cap X, \varepsilon \in (0, \eta).$$

Put $G_W(X) = E_{W,M}(X)/N_W(X)$. Clearly, if $G \in G(\Omega)$, where Ω is an open set containing X, then $\{D^\alpha G_{\varepsilon}|X, \alpha \in N_0^m\} \in E_{W,M}$ defines the restriction $G|_X \in G_W$.

Theorem 2.1. ([3]) Let X be a closed subset of \mathbb{R}^n. Then the restriction map $G(\mathbb{R}^n) \to G_W(X)$ is surjective. In particular, for given $\{G_{\alpha}^\varepsilon, \alpha \in N_0^m\} \in E_{W,M}(X)$ there exists $F_{\varepsilon} \in E_M(\mathbb{R}^n)$ such that $\{D^\alpha F_{\varepsilon}|X - G_{\alpha}^\varepsilon, \alpha \in N_0^m\} \in N_W(X)$.

1.2. Generalized Dirichlet problem. A differential operator of the form $P(x, D) = \sum_{|\alpha| \leq m} a_\alpha(x)D^\alpha$, where $a_\alpha \in G(\mathbb{R}^n)$, is called a generalized differential operator. A representative of $P(x, D)$ is given by $P_{\varepsilon}(x, D) = \sum_{|\alpha| \leq m} a_{\alpha, \varepsilon}(x)D^\alpha$, where $a_{\alpha, \varepsilon} \in E_M(\mathbb{R}^n)$ is a representative of a_α, $|\alpha| \leq m$. Note that if $b_{\alpha, \varepsilon}$ is another representative of a_α, $|\alpha| \leq m$, then

$$\sum_{|\alpha| \leq m} a_{\alpha, \varepsilon}(x)D^\alpha G_{\varepsilon} - \sum_{|\alpha| \leq m} b_{\alpha, \varepsilon}(x)D^\alpha G_{\varepsilon} \in N(\mathbb{R}^n), G_{\varepsilon} \in E_M(\mathbb{R}^n).$$

Let O be a bounded open set in \mathbb{R}^n, $H \in G(\mathbb{R}^n)$ and let $F \in G_W(\partial O)$ be defined by a family $\{F_{\alpha}^\varepsilon, \alpha \in N_0^m\}$. Let the following boundary value problem

$$P(x, D)G_{\varepsilon} \approx H, \text{ in } O, \ G|_{\partial O} = F. (\mathbb{D}_0^m(\partial O) = H^m(O) \cap H_0^{m-1}(O))$$

be given.
Theorem 2.1 implies that there exists $\tilde{F} \in \mathcal{G}(\mathbb{R}^n)$ such that $\tilde{F}|_{\partial O} = F$. Let $V = P(x, D)\tilde{F}$ and U be a solution to the problem

$$P(x, D)U \overset{\mathcal{D}_0^m(O)}{\approx} H - V \text{ in } O, \quad U|_{\partial O} = 0.$$

Then $G = U + \tilde{F}$ is a solution to (11).

So, in the sequel we shall consider the following problem

$$(12) \quad \{\text{dir5}\} \quad P(x, D)G \overset{\mathcal{D}_0^m(O)}{\approx} H \text{ in } O, \quad G|_{\partial O} = 0,$$

in terms of representatives,

$$\lim_{\varepsilon \to 0} \int (P(x, D)G_\varepsilon(x) - H_\varepsilon(x))\psi(x)dx = 0, \quad \psi \in \mathcal{D}_0^m(O) \quad \{D^\alpha G_\varepsilon|_{\partial O}, \alpha \in \mathbb{N}_0^n \} \in \mathcal{N}_W(\partial O).$$

Theorem 2.2. With the assumptions given above, for every $s \geq 0$ there exists a solution $G \in \mathcal{G}(\mathbb{R}^n)$ to (12) in $\mathcal{D}_0^m(O)$-s-associated sense.

Proof. Let $P^*_\varepsilon(x, D) = \sum_{|\alpha| \leq m} \tilde{a}_{\alpha, \varepsilon}(x)D^\alpha$ be the adjoint operator to $P_\varepsilon(x, D)$.

Since $\tilde{a}_{\alpha, \varepsilon} \in \mathcal{E}_M(\mathbb{R}^n)$, there exist $N_1 > 0$ and $C_1 > 0$ such that

$$B_\varepsilon = \max\{|\nabla \tilde{a}_{\alpha, \varepsilon}(x)|, |\tilde{a}_{\alpha, \varepsilon}(x)|, x \in \overline{O}, |\alpha| \leq m\} \leq C_1\varepsilon^{-N_1},$$

for ε small enough, say $\varepsilon < \eta_1$.

Let $\varepsilon \in (0, \eta_1)$ be given. Let Π_ε be a cube $\{x : |x_i| \leq b, i = 1, \ldots, n\}$, which contains O. Put $N_\varepsilon = B_\varepsilon b\varepsilon^{-q}/2$, where q will be determined later, and divide Π_ε by hyperplanes

$$x_i = bk/N_\varepsilon, \quad i = 1, \ldots, n, \quad k = 0, \pm 1, \ldots, \pm(N_\varepsilon - 1), \quad N_\varepsilon \in \mathbb{N},$$

into $(2N_\varepsilon)^n$ cubes $\Pi_{j, \varepsilon}, j = 1, \ldots, (2N_\varepsilon)^n$. These cubes can be prenumerated such that $\Pi_{j, \varepsilon}, j = 1, \ldots, J_\varepsilon$ cover \overline{O} and denote $O_{j, \varepsilon} = O \cap \Pi_{j, \varepsilon}$. Then $J_\varepsilon = O(\varepsilon^{-n(q+N_1)})$ as $\varepsilon \to 0$.

Denote by $X_{j, \varepsilon}$ the center of $\Pi_{j, \varepsilon}$ and $\tilde{A}_{\alpha, j, \varepsilon} = \tilde{a}_{\alpha, \varepsilon}(X_{j, \varepsilon})$.

For ε small enough, let $\{\psi_{j, \varepsilon}\}$ be a partition of the unity defined in the following way.

$$\tilde{\psi}_{j, \varepsilon} = 1_{O_{j, \varepsilon}} \ast \phi_{\varepsilon, \varepsilon}, \quad \psi_{j, \varepsilon} = \frac{\tilde{\psi}_{j, \varepsilon}}{\sum_{j=1}^{J_\varepsilon} \psi_{j, \varepsilon}}, \quad j = 1, \ldots, J_\varepsilon.$$

Note that $\psi_{j, \varepsilon} \equiv 1$ on $\tilde{K}_{j, \varepsilon} \subset O_{j, \varepsilon}$ and $\text{mes}(\text{supp}\psi_{j, \varepsilon} \setminus \tilde{K}_{j, \varepsilon}) \leq C_0\varepsilon^d$, where C_0 does not depend on j and d to be chosen later. Moreover,

$$\sup_{|\alpha| \leq m, j \leq J_\varepsilon} \|\tilde{a}_{\alpha, \varepsilon} - \tilde{A}_{\alpha, j, \varepsilon}\|_{L^\infty(O_{j, \varepsilon})} \leq B_\varepsilon b \frac{1}{2N_\varepsilon} = \varepsilon^q.$$

Since $H_\varepsilon \in \mathcal{E}_M(\mathbb{R}^n)$, there exist $N_2 > 0$ and $C_2 > 0$ such that

$$\|H_\varepsilon \psi_{j, \varepsilon}\|_{L^\infty(\overline{O})} \leq \|H_\varepsilon\|_{L^\infty(\overline{O})} \leq C_2\varepsilon^{-N_2}, \quad j = 1, \ldots, J_\varepsilon,$$

for ε small enough. Denote $H_{j, \varepsilon} := H_\varepsilon \psi_{j, \varepsilon}$.

1. LINEAR ELLIPTIC PDES 21
Let $\tilde{G}_{j,\varepsilon} \in \mathcal{E}_M(\mathbb{R}^n)$ be a solution to

$$P_{j,\varepsilon}(D)\tilde{G}_{j,\varepsilon} = \sum_{|\alpha| \leq m} A_{\alpha,j,\varepsilon} D^{\alpha} \tilde{G}_{j,\varepsilon} = H_{j,\varepsilon}, \ j \leq J_{\varepsilon},$$

which exists by Theorem 1 in [52], where $P_{j,\varepsilon}(D)$ is the adjoint operator for $P_{*j,\varepsilon}(D) = \sum_{|\alpha| \leq m} \tilde{A}_{\alpha,j,\varepsilon} D^{\alpha}$.

Put $G_{j,\varepsilon}(x) = \tilde{G}_{j,\varepsilon}(x) \kappa_{j,\varepsilon}(x) \xi_{\varepsilon}(x)$, where

$$\kappa_{j,\varepsilon} = 1_{(\tilde{K}_{j,\varepsilon})_{\varepsilon}^{\varepsilon}} \ast \phi_{e^{d/2}}, \ \xi_{\varepsilon} = 1_{(O)_{-3}\varepsilon^{d/4}} \ast \phi_{e^{d/4}}, \ j \leq J_{\varepsilon}.$$

Let $K_{j,\varepsilon} = \{x \in O_{j,\varepsilon} : G_{j,\varepsilon}(x) = \tilde{G}_{j,\varepsilon}(x)\}, j = 1, \ldots, J_{\varepsilon}$. Obviously,

$$\sup_{j \leq J_{\varepsilon}} \text{mes}(O_{j,\varepsilon} \setminus K_{j,\varepsilon}) = O(\varepsilon^{nd}) \text{ as } \varepsilon \to 0.$$

By inspecting the proof of Theorem 1 in [52] one can see that there exist $C_0, M > 0$ and $\tilde{N}_0 > 0$, which depend only on H and a_α such that

$$\sup_{j \leq J_{\varepsilon}} \|\tilde{G}_{j,\varepsilon}\|_{L_{\infty}(\overline{O})} \leq C_0 \varepsilon^{-M - \tilde{N}_0},$$

for ε small enough.

One can easily see that $\text{supp}(G_{i,\varepsilon}) \cap \text{supp}(G_{j,\varepsilon}) = \emptyset$, $i \neq j$ and $G_{j,\varepsilon} \in \mathcal{E}_M(\overline{O})$.

Let $G_{\varepsilon} = \sum_{j=1}^{J_{\varepsilon}} G_{j,\varepsilon}$ and let ψ be an arbitrary function in $\mathcal{D}^m_0(O) = H^m(O) \cap H^{m-1}_0(O)$. Then

$$\int_O \psi(x) P_{\varepsilon}(x, D) \sum_{j=1}^{J_{\varepsilon}} G_{j,\varepsilon}(x) - \int_O \psi(x) H_{\varepsilon}(x) dx = I_1 + I_2,$$

where

$$I_1 = \int_O \psi(x) P_{\varepsilon}(x, D) \sum_{j=1}^{J_{\varepsilon}} G_{j,\varepsilon}(x) - \int_O \psi(x) \sum_{j=1}^{J_{\varepsilon}} P_{j,\varepsilon}(D) G_{j,\varepsilon}(x) dx,$$

$$I_2 = \int_O \psi(x) \sum_{j=1}^{J_{\varepsilon}} P_{j,\varepsilon}(D) G_{j,\varepsilon}(x) - \int_O \psi(x) H_{\varepsilon}(x) dx.$$
By using $H_\varepsilon = \sum_{j=1}^{J_\varepsilon} H_{j,\varepsilon}$, and $P_{j,\varepsilon}(D)\tilde{G}_{j,\varepsilon} = H_{j,\varepsilon}$, $j \leq J_\varepsilon$, and passing to the adjoint operators, we have

$$|I_2| = \left| \sum_{j=1}^{J_\varepsilon} \int_O P_{j,\varepsilon}^*(D)\psi(x)(\tilde{G}_{j,\varepsilon}(x) - G_{j,\varepsilon}(x))dx \right|$$

$$\leq \sum_{j=1}^{J_\varepsilon} \int_O |P_{j,\varepsilon}^*(D)\psi(x)| \cdot |\tilde{G}_{j,\varepsilon}(x)| \cdot |1 - \kappa_{j,\varepsilon}(x)\xi_\varepsilon(x)|dx$$

$$\leq \sum_{j=1}^{J_\varepsilon} \sum_{|\alpha| \leq m} \|\tilde{a}_{\alpha,\varepsilon}\|_{L^\infty(O)} \int_O |D^\alpha \psi(x)| \cdot |\tilde{G}_{j,\varepsilon}(x)| \cdot |1 - \kappa_{j,\varepsilon}(x)\xi_\varepsilon(x)|dx.$$

By using Cauchy-Schwartz inequality and bounds for $a_{\alpha,\varepsilon}$, $|\alpha| \leq m$ it follows

$$|I_2| \leq C_1\varepsilon^{-\tilde{N}_1} \|\psi\|_{H^m(O)} \sum_{j=1}^{J_\varepsilon} \left(\int_{O_{j,\varepsilon}} |\tilde{G}_{j,\varepsilon}(x)|^2 |1 - \kappa_{j,\varepsilon}(x)\xi_\varepsilon(x)|^2 dx \right)^{1/2}$$

$$\leq C_1\varepsilon^{-\tilde{N}_1} \|\psi\|_{H^m(O)} \|\tilde{G}_{j,\varepsilon}\|_{L^\infty(O)} \sum_{j=1}^{J_\varepsilon} (\text{mes}(O_{j,\varepsilon} \setminus K_{j,\varepsilon}))^{1/2}$$

$$= O(\varepsilon^{d/2 - \tilde{N}_1 - \tilde{N}_0 - M - n(q + \tilde{N}_1)}), \varepsilon \to 0.$$
Thus, the first constant d is now determined. Further on,

\[
|I_1| \leq \sum_{j=1}^{J_\varepsilon} \left| \int_{K_{j,\varepsilon}} \psi(x)(P_\varepsilon(x, D)G_{j,\varepsilon}(x) - P_{j,\varepsilon}(D)G_{j,\varepsilon}(x)) \, dx \right| \\
+ \sum_{j=1}^{J_\varepsilon} \left| \int_{O_{j,\varepsilon} \setminus K_{j,\varepsilon}} \psi(x)(P_\varepsilon(x, D)G_{j,\varepsilon}(x) - P_{j,\varepsilon}(D)G_{j,\varepsilon}(x)) \, dx \right| \\
\leq \sum_{j=1}^{J_\varepsilon} \int_{K_{j,\varepsilon}} |G_{j,\varepsilon}(x)| \sum_{|\alpha| \leq m} |\tilde{a}_{\alpha,\varepsilon}(x) - A_{\alpha,j,\varepsilon}| \cdot |D^\alpha \psi(x)| \, dx \\
+ \sum_{|\alpha| \leq m} J_\varepsilon \sup_{j \leq J_\varepsilon} \left| \int_{O_{j,\varepsilon} \setminus K_{j,\varepsilon}} |G_{j,\varepsilon}(x)| \cdot ||\tilde{a}_{\alpha,\varepsilon}||_{L^\infty(\overline{\Omega})} |D^\alpha \psi(x)| \, dx \right| \\
\leq \varepsilon^q \sum_{|\alpha| \leq m} \int_{\Omega} |G_{j,\varepsilon}(x)| \cdot |D^\alpha \psi(x)| \, dx \\
+ J_\varepsilon \sum_{|\alpha| \leq m} ||\tilde{a}_{\alpha,\varepsilon}||_{L^\infty(\overline{\Omega})} \sup_{j \leq J_\varepsilon} \left(\int_{O_{j,\varepsilon} \setminus K_{j,\varepsilon}} |G_{j,\varepsilon}(x)|^2 \right)^{1/2} ||D^\alpha \psi||_{L^2(\Omega)} \\
\leq \varepsilon^q ||G_\varepsilon||_{L^2(\Omega)} ||\psi||_{H^m(\Omega)} \\
+ J_\varepsilon \sum_{|\alpha| \leq m} ||\tilde{a}_{\alpha,\varepsilon}||_{L^\infty(\overline{\Omega})} \sup_{j \leq J_\varepsilon} ||\psi||_{H^m(\Omega)} ||G_{j,\varepsilon}||_{L^\infty(\overline{\Omega})} (\text{mes}(O_{j,\varepsilon} \setminus K_{j,\varepsilon}))^{1/2} \\
\leq \varepsilon^q ||G_{j,\varepsilon}||_{L^\infty(\overline{\Omega})} (\text{mes}(\Omega))^{1/2} ||\psi||_{H^m(\Omega)} \\
+ C\varepsilon^{d/2-n(q+\tilde{N}_1)} ||\psi||_{H^m(\Omega)} \sum_{|\alpha| \leq m} ||\tilde{a}_{\alpha,\varepsilon}||_{L^\infty(\overline{\Omega})} \sup_{j \leq J_\varepsilon} ||G_{j,\varepsilon}||_{L^\infty(\overline{\Omega})} \\
\leq \mathcal{O}(\varepsilon^{q-M-\tilde{N}_0}) + \mathcal{O}(\varepsilon^{d/2-n(q+\tilde{N}_1)-\tilde{N}_1-M-\tilde{N}_0}), \quad \varepsilon \to 0.
\]

This implies that $|I_1| \to 0$ as $\varepsilon \to 0$ if

$$q > M + \tilde{N}_0 \text{ and } d > 2(n(q + \tilde{N}_1) + \tilde{N}_1 + M + \tilde{N}_0).$$

More precisely, $|I_1|$ and $|I_2|$ are \mathcal{D}_0^m-s-associated with zero if one chooses $q > M + \tilde{N}_0 + s$, and then $d > 2(n(q + \tilde{N}_1) + \tilde{N}_1 + M + \tilde{N}_0) + s$. This proves the theorem.
Denote by $\mathbb{D}^m_{0,\alpha,t}(O)$ the space of nets with elements $\Psi_\varepsilon \in C^{m,\alpha}(\overline{O}) \cap H^m_0(O)$, $\varepsilon \in (0, 1)$ such that
$$\|D^a\Psi_\varepsilon\|_{L^\infty(\overline{O})} = \mathcal{O}(\varepsilon^{-t}), \varepsilon \to 0, \ |\alpha| \leq m.$$
Then,
$$\|\Psi_\varepsilon\|_{H^m(O)} \leq \sum_{|\alpha| \leq m} (\text{mes}(O))^{1/2} \|D^a\Psi_\varepsilon\|_{L^\infty(\overline{O})} = \mathcal{O}(\varepsilon^{-t}), \varepsilon \to 0.$$

If $q > M + N_0 + \delta + t$ and $d > 2(n(q + N_1) + N_1 + M + N_0 + t) + \delta$, then
$$|\langle P(\varepsilon, D)G\varepsilon, \Psi_\varepsilon \rangle - \langle H_\varepsilon, \Psi_\varepsilon \rangle| = o(\varepsilon^d), \text{ as } \varepsilon \to 0, \ \Psi_\varepsilon \in \mathbb{D}^m_{0,\alpha}(O),$$
i.e. for every $s > 0$ there exists a solution to

$$P(x, D)G\varepsilon \approx_s H \text{ in } O, \ G|_{\partial O} = 0.$$

This result will be used in the following two theorems. The assumption $\Psi_\varepsilon \in H^m_0(O)$ is crucial in the construction of the solution. This will restrict applications of the above theorem to strictly elliptic problem of order greater than two.

1.3. Applications of the general method. Let

(13) \{dir6\} \quad L = \sum_{i,j=1}^n a_{ij}(x)D_iD_j + \sum_{i=1}^n b_i(x)D_i + c(x)

be a differential operator with real coefficients such that

(14) \{dir7\} $a_{ij}, b_i, c \in C^{1}(\overline{\Omega})$, $c \leq 0$, $a_{ij} = a_{ji}, i, j = 1, \ldots, n.$

Assume that

(15) \{dir8\} \quad \Omega \text{ is bounded and } \partial \Omega \text{ is of } C^\infty \text{ class.}

For a method used in this and the following section, the regularization of coefficients of a differential operator and a function h is needed. Since $C^\infty(\overline{\Omega})$ is not dense in $C^{\alpha}(\overline{\Omega}) = C^{0,\alpha}(\overline{\Omega}), \ \alpha \in (0, 1)$, (cf. [63], Remark 2 in 4.5.1) we suppose that the coefficients and h are in $C^{\alpha}(\overline{\Omega})$.

Assume that there exist $\lambda > 0$ and $\Lambda > 0$ such that

(16) \{dir9\} \quad \lambda|\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x)|\xi_i\xi_j| \leq \Lambda|\xi|^2, \quad x \in \Omega, \ \xi \in \mathbb{R}^n.$

By Theorem 6.14 and (6.42) in [18], we have

(17) \{dir10\} \quad \text{If } h \in C^{\alpha}(\overline{\Omega}), \ \text{there exists a unique solution } g \in C^{2,\alpha}(\overline{\Omega}) \text{ to Dirichlet problem } Lg = h \text{ in } \Omega, \ g = 0 \text{ on } \partial \Omega \text{ and}

(18) \{dir10’\} \quad \|g\|_{C^{2,\alpha}(\overline{\Omega})} \leq C\|h\|_{C^{\alpha}(\overline{\Omega})}, \text{ for some } C > 0.$$

Let $h \in C^{1}(\overline{\Omega}), \ h = 0 \text{ outside of } \Omega$ and $H_\varepsilon = h * \hat{\phi}_\varepsilon$ (where ϕ is a radially symmetric function in $C^\infty_0(\mathbb{R}^n)$, $\int \phi(x)dx = 1$, $\hat{\phi}_\varepsilon = \varepsilon^{-n}\phi(- \cdot / \varepsilon)$.)
Consider the Dirichlet problems
\begin{align}
(19) & \quad Lg = h \text{ in } \Omega, \: g|_{\partial \Omega} = 0, \\
(20) & \quad LZ_\varepsilon = H_\varepsilon \text{ in } \Omega, \: Z_\varepsilon|_{\partial \Omega} = 0, \text{ for fixed } \varepsilon \in (0, 1), \\
(21) & \quad LG^{H^2(\Omega) \cap H^1_0(\Omega)} \approx H \text{ in } \Omega, \: G|_{\partial \Omega} = 0.
\end{align}

The last equation means that
\begin{align}
(22) & \quad \lim_{\varepsilon \to 0} \int (LG_\varepsilon - H_\varepsilon) \psi dx = 0, \text{ for every } \psi \in H^2(\Omega) \cap H^1_0(\Omega), G|_{\partial \Omega} \in \mathcal{N}_W(\partial \Omega),
\end{align}
in terms of representatives. Let \(g_\varepsilon, Z_\varepsilon \) and \(G_\varepsilon \) be solutions to (19), (20) and (22), respectively, where solutions \(g_\varepsilon \) and \(Z_\varepsilon \) exist by (17) and \(G_\varepsilon \) is the solution given in Theorem 2.2.

Theorem 2.3. Let \(L \) and \(\Omega \) satisfy assumptions given above. Moreover, assume that \(L \) has coefficients which are smooth on \(\Omega \). The generalized solution \(G \) to (21) constructed in Theorem 2.2 is \(C^\alpha(\overline{\Omega}) \cap H^1_0(\Omega) \)-associated, \(\alpha > 0 \), with the classical solution \(g \) to (19).

Proof. By [63], Theorem 1 in 4.5.2, \(C^\alpha(\overline{\Omega}) = [C^0(\overline{\Omega}), C^1(\overline{\Omega})]_\alpha \). (\([\cdot, \cdot]_\alpha \) denotes an interpolation space.) This implies ([63], (7) in 4.5.2),
\begin{align}
\|f\|_{C^\alpha(\overline{\Omega})} \leq \|f\|_{C^0(\overline{\Omega})}^{1-\alpha} \|f\|_{C^1(\overline{\Omega})}^\alpha, \quad f \in C^1(\overline{\Omega}).
\end{align}
and in the special case,
\begin{align}
\|h - H_\varepsilon\|_{C^\alpha(\overline{\Omega})} \leq \|h - H_\varepsilon\|_{C^0(\overline{\Omega})}^{1-\alpha} \|h - H_\varepsilon\|_{C^1(\overline{\Omega})}^\alpha \to 0, \: \varepsilon \to 0,
\end{align}
where \(h \) and \(H_\varepsilon \) are the functions from (19) and (22) respectively.

The above inequality, boundedness of \(\Omega \) and (18) imply
\begin{align}
\|g - Z_\varepsilon\|_{H^1(\Omega)} \to 0, \: \text{as } \varepsilon \to 0
\end{align}
and
\begin{align}
\int (g(x) - Z_\varepsilon(x)) \theta(x) dx \to 0, \: \text{as } \varepsilon \to 0, \: \theta \in C^\alpha(\overline{\Omega}) \cap H^1_0(\Omega).
\end{align}
We have to prove that
\begin{align}
\int (G_\varepsilon(x) - Z_\varepsilon(x)) \theta(x) dx \to 0, \: \text{as } \varepsilon \to 0.
\end{align}
The boundary value problem
\begin{align}
L^* \psi = \theta \text{ in } \Omega, \: \psi|_{\partial \Omega} = 0
\end{align}
has a solution in \(C^{2,\alpha}(\overline{\Omega}) \cap H^1_0(\Omega) \). This follows from (17) since the adjoint operator \(L^* \) satisfies the assumptions given in this paragraph.

We have
\begin{align}
\int_\Omega G_\varepsilon(x) \theta(x) dx = \int_\Omega G_\varepsilon(x)L^* \psi(x) dx = \int_\Omega LG_\varepsilon(x) \psi(x) dx, \\
\int_\Omega Z_\varepsilon(x) \theta(x) dx = \int_\Omega Z_\varepsilon(x)L^* \psi(x) dx, \: \psi \in C^{2,\alpha}(\overline{\Omega}) \cap H^1_0(\Omega).
\end{align}
By Theorem 2.2
\[\int_{\Omega} (G_\varepsilon(x) - Z_\varepsilon(x))\theta(x)dx = \int_{\Omega} (LG_\varepsilon(x) - H_\varepsilon(x))\psi(x)dx \to 0, \text{ as } \varepsilon \to 0. \]
This proves the theorem.

We continue to consider \(L \) of the form (13) which satisfies (14), (15) and (16). Let \(\overline{\Omega} \) satisfies the cone property \([63]\) Definition in 4.2.3 in addition. Let
\[\tilde{L}_\varepsilon = \sum_{i,j=1}^{n} a_{ij,\varepsilon}(x)D_iD_j + \sum_{i=1}^{n} b_{i,\varepsilon}(x)D_i + c_\varepsilon(x) \]
be regularized operator for \(L \), where
\[(1_\Omega a_{ij}) * \tilde{\phi}_\varepsilon(x) = a_{ij,\varepsilon}(x), \quad (1_\Omega b_i) * \tilde{\phi}_\varepsilon(x) = b_{i,\varepsilon}(x) \]
and
\[(1_\Omega c) * \tilde{\phi}_\varepsilon(x) = c_\varepsilon(x), \quad x \in \mathbb{R}. \]
Clearly, \(c_\varepsilon(y) \leq 0, \quad y \in \Omega. \)
Since \(a_{ij,\varepsilon} \to a_{ij}, \quad b_{i,\varepsilon} \to b_i \) and \(c_\varepsilon \to c \) in \(C^0(\overline{\Omega}) \) and \(C^1(\overline{\Omega}) \) as \(\varepsilon \to 0 \), one gets convergence in \(C^{\overline{\varepsilon}}(\overline{\Omega}) \), too.
Multiplying \(a_{ij} \) in (16) by \(1_\Omega \), then multiplying all the members of (16) by \(\phi_\varepsilon(y - x) \) and by integrating over \(\mathbb{R}^n \), we obtain
\[\lambda|\xi|^2 \int_{\Omega} \phi_\varepsilon(y - x)dy \leq \sum_{i,j=1}^{n} a_{ij,\varepsilon}(x)\xi_i\xi_j \leq \Lambda|\xi|^2 \int_{\Omega} \phi_\varepsilon(y - x)dy \leq \Lambda|\xi|^2, \]
where \(y \in \Omega, \quad \xi \in \mathbb{R}^n, \quad \varepsilon \leq \varepsilon_0. \) By using radial symmetry and non-negativity of the function \(\phi \) and the cone property of \(\overline{\Omega} \),
\[\int_{\Omega} \phi_\varepsilon(y - x)dy \geq \int_{\Gamma_{x,h}} \phi_\varepsilon(y - x)dy \geq \tilde{D} > 0, \]
where \(\Gamma_{x,h} \) is a cone with the vertex at zero and hight \(h, \) and \(y \in x + \Gamma_{x,h} \subset \Omega. \) The constant \(\tilde{D} \) does not depend on \(\varepsilon \) and we have
\[\tilde{D}\lambda|\xi|^2 \leq \sum_{i,j=1}^{n} a_{ij,\varepsilon}(x)\xi_i\xi_j \leq \Lambda|\xi|^2, \quad x \in \Omega, \quad \xi \in \mathbb{R}^n, \quad \varepsilon \leq \varepsilon_0. \]

Theorem 2.4. Let \(L \) satisfy given assumptions. Then the generalized solution \(G \) to
\[\tilde{L}G \approx H^2(\Omega) \cap H_0^1(\Omega) \quad H \text{ in } \Omega, \quad G|_{\partial\Omega} = 0, \]
constructed in Theorem 2.2, is \(C^{\overline{\varepsilon}}(\overline{\Omega}) \cap H_0^1(\Omega) \)-associated to the classical solution \(g \in H^{2,\overline{\varepsilon}}(\overline{\Omega}) \) to (19).

Proof Let \(\theta \in C^{\overline{\varepsilon}}(\overline{\Omega}) \cap H_0^1(\Omega) \) be given. Then (17) and (18) applied to \(L_\varepsilon \) imply that for every \(\varepsilon \in (0,1) \) the solution \(\Psi_\varepsilon \) to
\[\tilde{L}_\varepsilon \Psi_\varepsilon = \theta \text{ in } \Omega, \quad \Psi_\varepsilon|_{\partial\Omega} = 0. \]
Let \(\partial_1 \). \(\Omega \) is an open bounded set with a smooth boundary (25)

This and (24) prove the theorem.

and (23) imply belongs to \(C^{2,\alpha}(\Omega) \) and

\[
\sup_{|\beta| \leq 2} |D^\beta \Psi_\varepsilon(x)| \leq C \left(\sup_{x \in \Omega} |\theta(x)| + \sup_{x,y \in \Omega} \frac{|\theta(x) - \theta(y)|}{|x - y|^{\alpha}} \right) = \|\theta\|_{C^{\alpha}(\Omega)},
\]

where \(\varepsilon \in (0,1) \) while \(C > 0 \) depends only on \(\lambda, \Lambda \) and the diameter of the set \(\Omega \). By the remark after Theorem 2.2 we have that for every \(s > 0 \) there exists \(G_\varepsilon \) such that

\[
\langle \tilde{L}_\varepsilon G_\varepsilon, \Psi_\varepsilon \rangle - \langle H_\varepsilon, \Psi_\varepsilon \rangle = o(\varepsilon^s), \quad \varepsilon \to 0.
\]

Denote by \(Z_\varepsilon \) a smooth solution to

\[
\tilde{L}_\varepsilon Z_\varepsilon = H_\varepsilon \text{ in } \Omega, \quad Z_\varepsilon|_{\partial \Omega} = 0, \quad \varepsilon \in (0,1) \text{ is fixed.}
\]

Then

\[
\int_\Omega (G_\varepsilon(x) - Z_\varepsilon(x))\theta(x)dx = \int_\Omega (G_\varepsilon(x) - Z_\varepsilon(x))L_\varepsilon^*\Psi_\varepsilon(x)dx
\]

\[
= \int_\Omega (\tilde{L}_\varepsilon G_\varepsilon(x) - \tilde{L}_\varepsilon Z_\varepsilon(x))\Psi_\varepsilon(x)dx = \langle \tilde{L}_\varepsilon G_\varepsilon - H_\varepsilon, \Psi_\varepsilon \rangle = o(\varepsilon^s), \quad \varepsilon \to 0.
\]

Let \(\tilde{H}_\varepsilon = \tilde{L}_\varepsilon g \), where \(g \in C^{2,\alpha}(\Omega) \) is the solution to (19). Inequality (18) and (23) imply

\[
\|\tilde{L}_\varepsilon - L\|_{C^{\alpha}(\Omega)} \leq n \sum_{i=1}^n \sum_{j=1}^n \|a_{ij,\varepsilon} - a_{ij}\|_{C^{\alpha}(\Omega)} \|D_iD_jg\|_{L^\infty(\Omega)}
\]

\[
+ \sum_{i=1}^n \|b_{i,\varepsilon} - b_i\|_{C^{\alpha}(\Omega)} \|D_ig\|_{L^\infty(\Omega)} + \|c_\varepsilon - c\|_{C^{\alpha}(\Omega)} \|g\|_{L^\infty(\Omega)} \to 0,
\]

as \(\varepsilon \to 0 \). This implies that \(\tilde{H}_\varepsilon - h \to C^{\alpha}(\Omega) \) 0 as \(\varepsilon \to 0 \), i.e., \(\tilde{H}_\varepsilon - H_\varepsilon \to C^{\alpha}(\Omega) \) 0 (since \(h \in C^1(\Omega) \)). Finally, (17) implies

\[
\|Z_\varepsilon - g\|_{C^{2,\alpha}(\Omega)} \leq C\|\tilde{H}_\varepsilon - H_\varepsilon\|_{C^{\alpha}(\Omega)} \to 0.
\]

This and (24) prove the theorem.

1.4. A class of generalized elliptic differential operators of order 2m. Consider a family of equations

\[
\left\{ \begin{array}{l}
P_\varepsilon(x,D)G_\varepsilon = \sum_{|\alpha| \leq 2m} a_{\alpha,\varepsilon}(x)D^\alpha G_\varepsilon(x) = H_\varepsilon(x), \quad x \in \Omega, \\
\{D^\alpha G_\varepsilon|_{\partial \Omega}, \alpha \in N^n_0\} \in \mathcal{N}_W(\partial \Omega),
\end{array} \right.
\]

where

1. \(\Omega \) is an open bounded set with a smooth boundary \(\partial \Omega \).
2. \(a_{\alpha,\varepsilon} \in \mathcal{E}_M(\mathbb{R}^n) \) is complex valued, \(|\alpha| \leq 2m \), \(H_\varepsilon \in \mathcal{E}_M(\mathbb{R}^n) \).
3. For every \(\varepsilon \in (0,\varepsilon_0) \), \(P_\varepsilon(x,D) \) is uniformly and strongly elliptic (cf. [62], Ch. 36, (36.3)) and moreover, there exist \(C_0 > 0 \) and \(p_0 \geq 0 \) such that

\[
C_0\varepsilon^{p_0}\|u\|^2_{H^m(\Omega)} \leq \Re \langle P_\varepsilon(x,D)u, u \rangle_{L^2(\Omega)}, \quad u \in C_0^\infty, \quad \varepsilon < \varepsilon_0.
\]
Then, for every fixed $\varepsilon < \varepsilon_0$,
\[P_\varepsilon(x, D) : H^{2m}_0(\Omega) \to H^{-m}(\Omega) \]
is a surjective isomorphism.

The solution to (25) satisfies
\[\|G_\varepsilon\|_{H^{m}} \leq C_0^{-1} 1_{\Omega}^{\varepsilon} \|H_\varepsilon\|_{H^{-m}(\Omega)}. \]

(cf. [62], Theorem 36.2, Lemma 23.1.)

The second assumption means that there exist $\nu_1, \nu_2 > 0$ such that
\[\sup_{|\alpha| \leq m} \|a_{\alpha, \varepsilon}\|_{L^\infty(\Omega)} = O(\varepsilon^{-\nu_1}), \]
\[\|H_\varepsilon\|_{L^\infty(\Omega)} = O(\varepsilon^{-\nu_2}), \text{ as } \varepsilon \to 0. \]

Note that (28) implies
\[\{ \text{dir20} \} \quad \|H_\varepsilon\|_{H^{-m}(\Omega)} = O(\varepsilon^{-\nu_2}), \text{ as } \varepsilon \to 0. \]

Theorem 2.5. Let $P_\varepsilon(x, D)$, H_ε and Ω satisfy the conditions given above.

(a) For every $s \geq 0$ there exists a solution $G_{s, \varepsilon} \in E_M(\mathbb{R}^n)$ to (25) in the $H^{2m}_0(\Omega)$-s-associated sense, i.e.
\[(P_\varepsilon(x, D)G_{s, \varepsilon} - H_\varepsilon, \psi) = o(\varepsilon^s), \varepsilon \to 0, \psi \in H^{2m}_0(\Omega) \]
and \(\{ D^\alpha G_{s, \varepsilon} \mid \partial \Omega = 0, \alpha \in \mathbb{N}^n \} \in N_W(\partial \Omega) \).

The solution constructed in the proof will be called s-solution.

(b) Let $T_{s, \varepsilon}$ be an s-solution to $P_\varepsilon(x, D)T_{s, \varepsilon} = R_\varepsilon$, where R_ε satisfies (28). Moreover, assume that
\[\varepsilon^{-(p_0 + s_0 m)} \|R_\varepsilon - H_\varepsilon\|_{H^{-m}(\Omega)} \to 0 \text{ as } \varepsilon \to 0, \]
where $s_0 > \nu_1 + \nu_2 + p_0 + s$.

Then $T_{s, \varepsilon}$ and $G_{s, \varepsilon}$ are $H^{-m}(\Omega)$-s-associated.

Specially, if R_ε and H_ε are in the same class of $G(\Omega)$, then the appropriate solutions are $H^{-m}(\Omega)$-s-associated for arbitrary $s > 0$. This is a kind of the uniqueness of solution to (25).

(c) Let $P(x, D)$ have $C^\infty(\mathbb{R}^n)$ coefficients which satisfy condition 3 with $p_0 = 0$ and let C_0 do not depend on ε. Assume that $H \in H^{-m}(\Omega)$ is of the form $H = \sum_{|\alpha| \leq m} D^\alpha f_\alpha$, where $f_\alpha \in L^2(\Omega)$, $f_\alpha(x) = 0$ for $x \notin \Omega$, $|\alpha| \leq m$.

Let

(i) $U \in H^m_0(\Omega)$ be the solution to $P(x, D)U = H$, $U|_{\partial \Omega} = 0$ (which exists by the Lax-Milgram Lemma) and

(ii) $G_{s, \varepsilon}$ be the s-solution to
\[\{ \text{dir21} \} \quad P(x, D)G_{s, \varepsilon} = H_\varepsilon \text{ in } \Omega, \quad G_{s, \varepsilon}|_{\partial \Omega} = 0, \]
in H^{2m}_0-s-associated sense, where $H_\varepsilon = H \ast \phi_\varepsilon$ for an appropriate $d = d(s) > 0$.

Then $U \approx H^{-m}(\Omega)$

(d) Denote by G_ε the solution in $D^{2m}_0(\Omega)$-0-associated sense to (30) constructed in the proof of Theorem 2.2 and by $G_{0, \varepsilon}$ the solution to (30) in
$H_0^2m(\Omega)$-0-associated sense. Then $G_\varepsilon \overset{\mathbb{D}_P(\Omega)}{\approx} G_{0,\varepsilon}$, where $\mathbb{D}_P(\Omega)$ is the set of all nets Ψ_ε in $H_0^2m(\Omega)$ such that there exist a function $\psi \in H_0^2m(\Omega)$ and $\eta > 0$ such that $\Psi_\varepsilon = P_\varepsilon^* \psi$, for every $\varepsilon < \eta$.

Proof

(a) Recall, (26) implies that for every fixed $\varepsilon < \varepsilon_0$ there exists a solution $g_\varepsilon \in H_0^m(\Omega)$ to equation $P_\varepsilon(x,D)g_\varepsilon = H_\varepsilon$, in Ω, that is

$$
\langle P_\varepsilon(x,D)g_\varepsilon, \psi \rangle = \langle H_\varepsilon, \psi \rangle, \; \psi \in H_0^m(\Omega).
$$

By ellipticity of $P_\varepsilon(x,D)$ for every fixed ε, the solution g_ε to (31) is in $C^\infty(\Omega)$. Let us prove that $g_\varepsilon \in \mathcal{E}_M(\Omega)$. Let D_i be an arbitrary derivative of the first order. Then

$$
D_i(P_\varepsilon(x,D)g_\varepsilon(x)) = P_\varepsilon(x,D)D_i g_\varepsilon(x) + \tilde{P}_\varepsilon(x,D)g_\varepsilon(x),
$$

where $\tilde{P}_\varepsilon(x,D) = \sum_{|\alpha| \leq 2m} D_i a_{\alpha,\varepsilon}(x) D^\alpha g_\varepsilon(x)$. Integration by parts implies

$$
\|\tilde{P}_\varepsilon(\cdot,D)g_\varepsilon\|_{H^{-m}(\Omega)} = \sup_{\|\phi\|_{H^m(\Omega)} \leq 1} \left| \int_\Omega \tilde{P}_\varepsilon(x,D)g_\varepsilon(x)\phi(x)dx \right|
$$

$$
\leq \sup_{\|\phi\|_{H^m(\Omega)} \leq 1} \int_\Omega \left| \sum b_{\alpha,\varepsilon}(x) D^\alpha g_\varepsilon(x) \right| \cdot \left| \sum c_{\beta,\varepsilon} D^\beta \phi(x) \right| dx,
$$

where $b_{\alpha,\varepsilon}, c_{\beta,\varepsilon} \in \mathcal{E}_M(\mathbb{R}^n)$, $|\alpha| \leq m$, $|\beta| \leq m$. Since (26) and (31) imply

$$
\|g_\varepsilon\|_{H^m(\Omega)} = \mathcal{O}(\varepsilon^{-(\rho_0+\rho_2)}), \; \varepsilon \to 0,
$$

then

$$
\|\tilde{P}_\varepsilon(\cdot,D)g_\varepsilon\|_{H^{-m}(\Omega)} = \mathcal{O}(\varepsilon^{-\nu_3}), \; \varepsilon \to 0,
$$

and

$$
P_\varepsilon(x,D)D_i g_\varepsilon(x) = D_i H_\varepsilon(x) - \tilde{P}_\varepsilon(x,D)g_\varepsilon(x) \in H^{-m} \cap \mathcal{E}_M(\mathbb{R}^n)
$$

for a suitable $\nu_3 > 0$. Thus, (26) implies

$$
\|D_i g_\varepsilon\|_{H^m(\Omega)} = \mathcal{O}(\varepsilon^{-\nu_4}), \; \varepsilon \to 0,
$$

for some $\nu_4 > 0$. By induction with the respect to the orders of derivatives, it follows that $g_\varepsilon \in \mathcal{E}_M(\Omega)$.

Put

$$
\kappa_\varepsilon = 1_{(\Omega)_{-3s_0/4}} \ast \phi_{\varepsilon^{s_0/4}},
$$

where s_0 will be determined later. Note that $\text{mes}(\Omega \setminus (\Omega)_{-\varepsilon_0}) = \mathcal{O}(\varepsilon^{s_0})$ as $\varepsilon \to 0$.

Define $G_{s,\varepsilon} = g_\varepsilon \kappa_\varepsilon$. Then $G_{s,\varepsilon} \in \mathcal{E}_M(\mathbb{R}^n)$ since $g_\varepsilon \in \mathcal{E}_M(\mathbb{R}^n)$.
2. QUASILINEAR ELLIPTIC PDE

For arbitrary $\psi \in H^{2m}_0$,
\[|I_\varepsilon| = |\langle P_\varepsilon(x, D) G_{s, \varepsilon} - H_\varepsilon, \psi \rangle| = |\langle G_{s, \varepsilon} - H_\varepsilon, P_\varepsilon^*(x, D) \psi \rangle| \leq \int_\Omega |g_\varepsilon(x) (1 - \kappa_\varepsilon(x))| \cdot |P_\varepsilon^*(x, D) \psi(x)| \, dx \]

\[\leq 2 \sup_{|\alpha| \leq m} \|\tilde{a}_{\alpha, \varepsilon}\|_{L^\infty(\Omega)} \|\psi\|_{H^{2m}(\Omega)} \|g_\varepsilon\|_{L^2(\Omega)} \|g_\varepsilon\|_{H^2(\Omega)} \leq C_0 \varepsilon^{-\varphi_0} \varepsilon^{-s_0} \|F_\varepsilon - R_\varepsilon\|_{H^{-m}(\Omega)} \]

The assertion follows by choosing $s_0 > \varphi_1 + \varphi_2 + p_0 + s$.
(b) Let t_ε be the solution to (31) when H_ε is replaced by R_ε and $T_\varepsilon = t_\varepsilon \kappa_\varepsilon$, where κ_ε is given by (32). Then, (26) implies
\[\|G_{s, \varepsilon} - T_{s, \varepsilon}\|_{H^m(\Omega)} = \|(g_{s, \varepsilon} - t_{s, \varepsilon}) \kappa_\varepsilon\|_{H^m(\Omega)} \leq \sup_{|\alpha| \leq m} \|g_{s, \varepsilon} - t_{s, \varepsilon}\|_{H^m(\Omega)} \|D^\alpha \kappa_\varepsilon\|_{L^\infty(\Omega)} \leq C_1 \varepsilon^{-p_0} \varepsilon^{-s_0} \|F_\varepsilon - R_\varepsilon\|_{H^{-m}(\Omega)} \]

Now, for $\psi \in H^{-m}(\Omega)$,
\[\|G_{s, \varepsilon} - T_{s, \varepsilon}\|_{H^m(\Omega)} \|\psi\|_{H^{-m}(\Omega)} \leq C_1 \varepsilon^{-p_0} \varepsilon^{-s_0} \|F_\varepsilon - R_\varepsilon\|_{H^{-m}(\Omega)} \]

and the proof follows.
(c) The assertion is a direct consequence of (b).
(d) Let $\Psi_\varepsilon \in \mathcal{D}(\Omega)$ and G_ε be the solution constructed in Theorem 2.2. By the definition of $\mathcal{D}(\Omega)$ there exists $\psi_1 \in H^{2m}_0(\Omega)$ such that $P_\varepsilon^*(x, D) \psi_1 = \Psi_\varepsilon$ for every $\varepsilon < \eta$. Then
\[\int_\Omega (G_\varepsilon - G_{0, \varepsilon})(x) \Psi_\varepsilon(x) \, dx = \int_\Omega (G_\varepsilon - G_{0, \varepsilon})(x) P_\varepsilon^*(x, D) \psi_1(x) \, dx \]

\[= \int_\Omega P_\varepsilon(x, D) (G_\varepsilon - G_{0, \varepsilon})(x) \psi_1(x) \, dx \to 0, \quad \varepsilon \to 0. \]

This proves (d).

2. Quasilinear elliptic PDE

We shall present the main assertions from [54].

2.1. Example. In order to illustrate our approach to problems with singularities, we present a simple example.

Let $\delta_{(0,1)}(x_1, x_2) = \delta(x_1) \delta(x_2 - 1)$, $(x_1, x_2) \in \mathbb{R}^2$ be the delta distribution concentrated at $(0, 1)$ and B_1 be the ball with the radius 1 and center $(0, 0)$. Define $\delta_{(0,1)}|_{\partial B_1}$ by $\langle \delta_{(0,1)}|_{\partial B_1}, \phi \rangle = \phi(0, 1)$, where ϕ is a smooth function on the circle ∂B_1.

Consider a Dirichlet problem formally written as
\[\Delta u(x) = 0, \quad x \in B_1 \subset \mathbb{R}^2, \quad u|_{\partial B_1} = \delta_{(0,1)}|_{\partial B_1}. \]

We approximate $\delta(x_1) \delta(x_2 - 1)$ by a net
\[\frac{1}{\varepsilon} \phi_{\frac{x_1}{\varepsilon}}(\frac{x_2}{\varepsilon} - 1), \quad (x_1, x_2) \in \mathbb{R}^2, \quad \varepsilon \in (0, 1), \]

where $\phi_{\frac{x_1}{\varepsilon}}(\frac{x_2}{\varepsilon} - 1)$ is a smooth function.
We assume that \(a \) \((35) 0 \leq \lambda \) denote respectively the minimum and maximum eigenvalues, then we have
\[
\Delta u_\varepsilon(x) = 0, \ x \in B_1 \subset \mathbb{R}^2,
\]
\[
u_\varepsilon|_{\partial B_1} = \frac{1}{\varepsilon^2} \phi(x) \phi\left(\frac{\sqrt{1 - x_1^2} - 1}{\varepsilon}\right), |x_1| < \varepsilon
\]
and zero on the rest of the boundary.

Using the Poisson formula we obtain a family of solutions \((u_\varepsilon)_{\varepsilon \in (0,1)}\) of corresponding classical solutions.

Assume additionally:
\[
\exists \theta \epsilon \mathbb{R}
\]
\[
\text{where} \ \theta \text{ and, for } \varepsilon > 0, (37) \ \theta = \pi/2.
\]

This shows the “blow up” of a solution at \((0,0)\).

2.2. Formulation of the problem and the main theorem. Let \((Q_\varepsilon)_\varepsilon\) be a net of elliptic nonlinear operators of divergent type of the form
\[
Q_\varepsilon(u) = \nabla A_\varepsilon(Du) = a_{ij}^\varepsilon(Du) D_i j u, \varepsilon < 1,
\]
where \(a_{ij}^\varepsilon(p) = D_p A_\varepsilon^\varepsilon(p) \) or, in case \(n = 2 \), let \((Q_\varepsilon)_\varepsilon\) be a net of elliptic nonlinear operators of the form
\[
Q_\varepsilon(u) = a_{ij}^\varepsilon(x,u,Du) D_i j u, u \in C^\infty(\bar{O}).
\]

We assume that \(a_{ij}^\varepsilon, \varepsilon \in (0,1) \) are smooth functions on \(O \). If \(\lambda_\varepsilon \) and \(\Lambda_\varepsilon \) denote respectively the minimum and maximum eigenvalues, then we have
\[
0 < \lambda_\varepsilon(x,t,p)|\xi|^2 \leq a_{ij}^\varepsilon(x,t,p) \xi_i \xi_j \leq \Lambda_\varepsilon(x,t,p)|\xi|^2,
\]
\[
p \in \mathbb{R}^n, \xi \in \mathbb{R}^n \setminus \{0\}, x \in O, t \in \mathbb{R}, \varepsilon < \varepsilon_0.
\]

Assume additionally:
\[
(\forall d \in \mathbb{N}_0^n)(\exists d \in \mathbb{R})(\exists ad \in \mathbb{R})
\]
\[
\sup \left\{ \left| \frac{\partial^d a_{ij}^\varepsilon(x,t,p)}{(1 + |t| + |p|)^{ad}} \right|; x \in \bar{O}, t \in \mathbb{R}, p \in \mathbb{R}^n \right\} = O(\varepsilon^{d/2}).
\]
\[
(\exists C > 0)(\exists \mu > 0)(\exists b \in \mathbb{R})
\]
\[
\frac{\varepsilon^\mu}{C} (1 + |t| + |p|)^b \leq \lambda_\varepsilon(x,t,p) \leq \Lambda_\varepsilon(x,t,p) \leq \frac{C}{\varepsilon^\mu} (1 + |t| + |p|)^b,
\]
\[
p \in \mathbb{R}^n, x \in \bar{O}, t \in \mathbb{R}, \varepsilon < \varepsilon_0.
\]
In the case when the net \((Q_\varepsilon)_\varepsilon\) is of the form (34) then \(n = 2\), and if it is of the divergent form (33), then we exclude variables \(x\) and \(t\) in the conditions given above.

Note that condition (37) implies
\[
\Lambda_\varepsilon / \lambda_\varepsilon \leq C^2 / \varepsilon^2, \varepsilon < \varepsilon_0.
\]

We will consider this net in the framework of \(G_{C^{k,\alpha}}\). In this case we will use the notation \(F = \mathcal{E}_{C^{k,\alpha}}\).

With the given properties \((Q_\varepsilon)_\varepsilon\) is called the net of uniformly elliptic moderate continuous operators.

Example 2.1. (i) All the examples given in [18], pp. 260-262, for \(n = 2\) can serve as examples in our framework but now with singular boundary conditions.

(ii) Consider in \(\mathbb{R}^3\) the operator
\[
Q(x, u, Du) = (1 + \sum_{i=1}^3 \delta(D_i)) \Delta u \ (\delta \text{ is the delta distribution}).
\]

With the regularization of \(\delta\), we have
\[
Q_\varepsilon(x, u, Du) = \left(1 / \varepsilon \psi \left(\frac{D_1 u}{\varepsilon} \right) + 1 / \varepsilon \psi \left(\frac{D_2 u}{\varepsilon} \right) \right) \Delta u.
\]

(\(\psi\) is a compactly supported smooth function with the integral equals 1.)

Then, \(\lambda_\varepsilon = 1\) and \(\Lambda_\varepsilon = \left(\frac{1}{\varepsilon} \psi \left(\frac{D_1}{\varepsilon} \right) + \frac{1}{\varepsilon} \psi \left(\frac{D_2}{\varepsilon} \right) + \frac{1}{\varepsilon} \psi \left(\frac{D_3}{\varepsilon} \right) + 1\right)^2\).

This operator is of the form (33) for which all the assumptions given above hold.

We need a “slope condition” adapted to the setting of Colombeau theory.

Definition 2.1. Let \(E = C^{k,\alpha}(\bar{O})\) for some \(k \in \mathbb{N}\) (cf. 1.1 and \(G_{C^{k,\alpha}}\)), \((\phi_\varepsilon)_\varepsilon \in F = \mathcal{E}_{C^{k,\alpha}}\) and \(\Gamma_\varepsilon = \{(x, z_\varepsilon), x \in \partial O, z_\varepsilon = \phi_\varepsilon(x)\}\). The boundary \(\partial O\) satisfies a moderate slope condition if for any \(P_\varepsilon \in \Gamma_\varepsilon\) there exist hyperplanes \(\pi^+_{\varepsilon,P_\varepsilon}\) and \(\pi^-_{\varepsilon,P_\varepsilon}\) defined by \(z_\varepsilon = \pi^+_{\varepsilon,P_\varepsilon}(x)\) and \(z_\varepsilon = \pi^-_{\varepsilon,P_\varepsilon}(x)\) such that
\[
\pi^-_{\varepsilon,P_\varepsilon}(x) \leq \phi_\varepsilon(x) \leq \pi^+_{\varepsilon,P_\varepsilon}(x), \ x \in \partial O, \varepsilon < \varepsilon_0
\]
and such that for some \(K > 0\) and some \(m \in \mathbb{R}\),
\[
\sup\{|D\pi^+_{\varepsilon,P_\varepsilon}(x)|, |D\pi^-_{\varepsilon,P_\varepsilon}(x)|; x \in \partial O, P_\varepsilon \in \Gamma_\varepsilon\} \leq K\varepsilon^m, \varepsilon < \varepsilon_0.
\]

Theorem 2.6. Let \((Q_\varepsilon)_\varepsilon\) be a net of uniformly elliptic operators of the form (33) or (34) with \(a^{ij}_\varepsilon \in C^{k+1}(\bar{O})\) \((k \in \mathbb{N})\) satisfying (36) with \(d \leq k + 1\) and (37). Let \(E = C^{k+2,\alpha}(\bar{O})\) \((\phi_\varepsilon)_\varepsilon \in \mathcal{E}_{C^{k+2,\alpha}}\) where \(\partial O\) is of \(C^{k+2,\alpha}\) class and it satisfies a moderate slope condition with \((\phi_\varepsilon)_\varepsilon\). Then, there exists \((u_\varepsilon)_\varepsilon \in \mathcal{E}_{C^{k+2,\alpha}}\) such that
\[
Q_\varepsilon(u_\varepsilon) = 0, u_\varepsilon|_{\partial O} = \phi_\varepsilon, \varepsilon < 1.
\]
This theorem implies the solvability in $\mathcal{G}_{C_k,\alpha}$. The process of regularization of equation $\text{div} \, A(Du) = 0$, $u|_{\partial \Omega} = \phi$ with singular coefficients and singular data leads to the approximated net of solutions by the mean of previous theorem.

3. Hyperbolic PDE

3.1. Semilinear wave equation. The following text is from [37]. In this setting we connect two areas: the L^2-theory for the nonlinear wave equation

$$\partial_t^2 u - \Delta u + g(u) = 0, \quad g(0) = 0, \quad u(x,0) = a(x), \quad u_t(x,0) = b(x), \quad x \in \mathbb{R}^n,$$

involving energy estimates and the theory of generalized functions where nonlinear operations makes sense for a large collection of singular objects.

Concerning g, if it is not globally Lipschitz, then it is substituted by a net of globally Lipschitz functions $g_\varepsilon(u)$. Then the obtained net of equations, called regularized equation, is solved for each fixed ε.

In some cases g is not regularized and the growth conditions on g are involved for the existence and uniqueness of a solution similarly as in the classical theory.

We use here the algebra $\mathcal{E}_{\infty,L^2}([0,T) \times \mathbb{R}^n)$. Also we use the notation $\mathcal{F} = \mathcal{E}_{L^2}([0,T) \times \mathbb{R}^n)$.

Consider a family of equations in $\mathcal{E}_{\infty,L^2}([0,T) \times \mathbb{R}^n)$

$$\partial_t^2 G_\varepsilon - \Delta G_\varepsilon = -g(G_\varepsilon), \quad G_\varepsilon|_{t=0} = A_\varepsilon, \quad \partial_t G_\varepsilon|_{t=0} = B_\varepsilon, \quad \varepsilon \in (0,1),$$

where $A_\varepsilon, B_\varepsilon \in \mathcal{E}_{\infty,L^2}([0,T) \times \mathbb{R}^n)$ and $g : \mathbb{R}^n \to \mathbb{R}$ is smooth, polynomially bounded together with all its derivatives and $g(0) = 0$.

Equation (41), with the regularization g_ε instead of g is called the regularized equation for (40).

Theorem 2.7. a) Let $n \leq 5$. Then there exists a regularized net g_ε such that for every $T > 0$ there exists a unique solution to 41 in $\mathcal{G}_{\infty,L^2}([0,T) \times \mathbb{R}^n)$.

b) Let $n = 6$ and let $\|A_\varepsilon\|_{H^{3,2}}$ and $\|B_\varepsilon\|_{H^{2,2}}$ be bounded by $(\log(\log(\varepsilon^{-1})))^s$, as $\varepsilon \to 0$, where $s < 1$. Then there exists a regularized net g_ε such that for every $T > 0$ there exists a unique solution to 41 in $\mathcal{G}_{\infty,L^2}([0,T) \times \mathbb{R}^n)$.

Let $n = 7$. In order to obtain the existence of a unique solution with the moderate growth of all its derivatives, we need that $H^{3,2}$-norms of initial data are bounded by $\log(\log(\varepsilon^{-1}))^s$ with respect to ε for some s and q. This follows from [49], Theorem 4.8. Cases $n = 8,9$ can be handled out using the procedure and Lemmas 2.1-2.20 in the same paper as well as a composition of the logarithmic function sufficiently many times.

The proof of quoted theorem for $n = 3$ implies the next corollary.
3. HYPERBOLIC PDE

COROLLARY 2.1. Let \(n = 3 \), \(g(y) \) be globally Lipschitz and its first derivative be polynomially bounded. Then for every \(T > 0 \) there exists a solution to (41) in \(G_{\infty,L^2}([0,T) \times \mathbb{R}^n) \).

If \(g(y) \) is globally Lipschitz, for \(n = 4, 5, 6 \), we need to assume appropriate conditions for the first and second derivatives of \(g \). If \(n = 7, 8, 9 \), then the assumptions of corollary are more complicated.

Especially, we have

PROPOSITION 2.1. Equation

\[
(\partial_t^2 - \Delta)G = -G^3, \quad G|_{t=0} = A, \quad \partial_t G|_{t=0} = B,
\]

where \(A, B \in G_{\infty,L^2}([0,T)) \), has a unique solution in \(G_{\infty,L^2}([0,T) \times \mathbb{R}^3) \) for every \(T > 0 \) if there exist representatives of initial data such that

\[
\|\nabla A \|_{L^2} = o((\log \varepsilon^{-1})^{1/2}).
\]

3.2. Stochastic wave equations. We shall give the main results from the paper [42] concerning the different stochastic wave equations.

Consider the problem

\[
\begin{align*}
\partial_t^2 - \partial_x^2 U + F(U) \cdot S &= 0, \\
\tau(t=0) &= A, \quad \partial_t U|_{t=0} = B,
\end{align*}
\]

where \(A \) and \(B \) are \(G_{2,2} \)-Colombeau generalized stochastic processes on \(\mathbb{R} \), that is, \(A, B \in G_{2,2}^{\Omega}([0,T)) \), and \(S \in G_{2,2}^{\Omega}([0,T) \times \mathbb{R}) \) is \(G_{2,2} \)-Colombeau generalized stochastic process on \(\mathbb{R}^2 \) with compact support. We suppose that the function \(F \) is smooth, polynomially bounded together with all its derivatives and that \(F(0) = 0 \). We look for a solution \(U \in G_{2,2}^{\Omega}([0,T) \times \mathbb{R}). \)

We substitute \(F \) by a family of smooth functions \(F_\varepsilon, \varepsilon \in (0,1) \), which is called the regularization of \(F \). This is done in the following way.

We choose the smooth function \(F_\varepsilon \) with the property that there exists a net \(a_\varepsilon \) such that for every \(\alpha \in \mathbb{N} \) there exist \(\varepsilon_0 \in (0,1) \) and \(m^\alpha \in \mathbb{N} \) such that

\[
F_\varepsilon(y) = F(y), \text{ for } |y| \leq a_\varepsilon, \varepsilon < \varepsilon_0
\]

\[
\|D^\alpha F_\varepsilon(y)\|_{L^\infty} = O(a_\varepsilon^{m^\alpha}).
\]

In the sequel we shall denote \(m = \sup_{|\alpha| \leq 1} m^\alpha \).

Denote by \(\tilde{F} = [F_\varepsilon] \), where \(F_\varepsilon \in G_{2,2}^{\Omega}([0,T) \times \mathbb{R}) \) has properties as above. Then, instead of non-regularized equation (42)-(43), we consider the regularized one

\[
\begin{align*}
\partial_t^2 - \partial_x^2 U + \tilde{F}(U) \cdot S &= 0, \\
U|_{t=0} &= A, \quad \partial_t U|_{t=0} = B,
\end{align*}
\]

where \(S = [S_\varepsilon] \in G_{2,2}^{\Omega}([0,T) \times \mathbb{R}) \) and \(A, B \in G_{2,2}^{\Omega}([0,T) \times \mathbb{R}). \)

Note that for \(U_\varepsilon, V_\varepsilon \in G_{2,2}^{\Omega}([0,T) \times \mathbb{R}) \) such that \(U_\varepsilon - V_\varepsilon \in N_{2,2}^{\Omega}([0,T) \times \mathbb{R}) \), we have that \(\tilde{F}(U_\varepsilon) - \tilde{F}(V_\varepsilon) \in N_{2,2}^{\Omega}([0,T) \times \mathbb{R}). \)
First, one can see the connection of regularized and non-regularized one dimensional wave equation in the following theorem.

Theorem 2.8. Let G, a primitive function of F, be nonnegative and $G(0) = 0$. Let Colombeau generalized stochastic process $S \in \mathcal{G}^{\Omega}_{2,2}(\mathbb{R})$ be nonnegative and depend only on the variable x, i.e., there exists a representative S_ε of S such that $S_\varepsilon(x) \geq 0$, for all ε small enough and $x \in \mathbb{R}$. Suppose that

$$
\| (B_\varepsilon, \partial_x A_\varepsilon) \|_{L^2} = o(a\varepsilon), \quad \text{as } \varepsilon \to 0,
$$

where a_ε is the corresponding net used in regularization of function F.

Then, for every $T > 0$, the solution to the regularized equation (44)-(45) is also the solution to the non-regularized equation (2)-(3).

3.2.1. Cubic wave equation with nonnegative stochastic process

We consider the problem

$$
(\partial_t^2 - \triangle) U + U^3 \cdot S = 0,
$$

$$
U|_{\{t=0\}} = A, \quad \partial_t U|_{\{t=0\}} = B,
$$

where we suppose that $A, B \in \mathcal{G}^{\Omega}_{2,2}(\mathbb{R}^3)$ are $\mathcal{G}_{2,2}$-Colombeau generalized stochastic processes such that

$$
\| (B_\varepsilon, \nabla A_\varepsilon) \|_{L^2} = o \left((\log \varepsilon^{-1})^{1/4} \right),
$$

and $S \in \mathcal{G}^{\Omega}_{2}(\mathbb{R}^3)$ is nonnegative \mathcal{G}_2-Colombeau generalized stochastic process which depends only on variable x and such that

$$
\| S_\varepsilon \|_{L^\infty} = o \left((\log \varepsilon^{-1})^{1/2} \right).
$$

Theorem 2.9. Let stochastic processes $A, B \in \mathcal{G}^{\Omega}_{2,2}(\mathbb{R}^3)$ have representatives which satisfy condition (49) and $S \in \mathcal{G}^{\Omega}_{2}(\mathbb{R}^3)$ be nonnegative stochastic process which depends only on variable x and has a representative which satisfies (50). Then, for every $T > 0$, problem (47,48) has a unique solution almost surely in $\mathcal{G}^{\Omega}_{2,2}(0,T) \times \mathbb{R}^3$.

Remark 2.1. If a Colombeau stochastic generalized process S is a image of a generalized stochastic process, then one can use a regularization which ensures estimate (50). This remark could be added after each further assertion when we need estimates on a stochastic term.

3.2.2. Cubic wave equation with multiplicative stochastic process

We consider the problem

$$
(\partial_t^2 - \triangle) U + U \cdot S + U^3 = 0,
$$

$$
U|_{\{t=0\}} = A, \quad \partial_t U|_{\{t=0\}} = B,
$$

where stochastic processes $A, B \in \mathcal{G}^{\Omega}_{2,2}(\mathbb{R}^3)$ are such that

$$
\| (B_\varepsilon, \nabla A_\varepsilon) \|_{L^2} = o \left((\log \varepsilon^{-1})^{1/2} \right),
$$

and $S \in \mathcal{G}^{\Omega}_{2}(\mathbb{R}^3)$ is nonnegative \mathcal{G}_2-Colombeau generalized stochastic process which depends only on variable x and such that

$$
\| S_\varepsilon \|_{L^\infty} = o \left((\log \varepsilon^{-1})^{1/2} \right).$$
and \(S \in \mathcal{G}^\Omega_g([0, T) \times \mathbb{R}^3) \) is such that

\[
\|S_\varepsilon\|_{L^\infty} = o \left(\log (\log \varepsilon^{-1})^{1/2} \right).
\]

Theorem 2.10. Let \(\mathcal{G}_{g,2} \)-Colombeau generalized stochastic processes \(A, B \in \mathcal{G}_{g,2}^\Omega(\mathbb{R}^3) \) satisfy condition (53) and \(\mathcal{G}_g \)-Colombeau stochastic process \(S \in \mathcal{G}_g^\Omega([0, T) \times \mathbb{R}^3) \) satisfy (54). Then, for every \(T > 0 \), problem (51)-(52) has a unique solution almost surely in \(\mathcal{G}_{g,2}^\Omega([0, T) \times \mathbb{R}^3) \).

3.2.3. Klein-Gordon equation with additive stochastic process. We consider the problem

\[
(\partial_t^2 - \triangle)U + U + U^3 + S = 0,
\]

(55)

\[
U|_{t=0} = A, \quad \partial_t U|_{t=0} = B,
\]

where stochastic processes \(A, B \in \mathcal{G}_{g,2}^\Omega(\mathbb{R}^3) \) satisfy

\[
\|B_\varepsilon, \nabla A_\varepsilon\|_{L^2} = o \left((\log \varepsilon^{-1})^{1/2} \right),
\]

(57)

and \(S \in \mathcal{G}_{g,2}^\Omega([0, T) \times \mathbb{R}^3) \) is such that

\[
\|S_\varepsilon\|_{L^\infty} = o \left((\log \varepsilon^{-1})^{1/2} \right)
\]

(58)

and

\[
S_\varepsilon \text{ has a compact support.}
\]

Theorem 2.11. Let \(\mathcal{G}_{g,2} \)-Colombeau generalized stochastic processes \(A, B \in \mathcal{G}_{g,2}^\Omega(\mathbb{R}^3) \) and \(S \in \mathcal{G}_{g,2}^\Omega([0, T) \times \mathbb{R}^3) \) satisfy conditions (57) and (58)-(59), respectively. Then, for \(T > 0 \), the problem (55)-(56) has a unique solution almost surely in \(\mathcal{G}_{g,2}^\Omega([0, T) \times \mathbb{R}^3) \).

4. Semilinear parabolic PDE

We shall follow the presentation from [40]. There are basically two types of equations which we consider in generalized functions algebra, \(\mathcal{G}_{C^1, H^2}([0, T) : \mathbb{R}^n) \) (given below).

The first one is a Cauchy problem

\[
(\partial_t - \triangle)u + Vu = 0, \quad u(0, x) = u_0(x),
\]

where potential \(V \) is a singular distribution, for example the delta distribution or a linear combination of its derivatives.

The second type (not considered here) is a nonlinear Cauchy problem

\[
(\partial_t - \triangle)u + Vu = f(t, u), \quad u(0, x) = u_0(x),
\]

where \(f \) satisfies certain conditions.

In both types of equations \(u_0 \) is an element of Colombeau-type space, \(\mathcal{G}_{H^2}(\mathbb{R}^n) \). This involves singular data, embedded singular distributions, for example of the form \(u_0 = \sum_{i=0}^2 f_i^{(i)} \), \(f_i \in L^2, i = 0, 1, 2 \), again the important standpoint of our approach.
We will present the use of generalized C_0-semigroups in solving a class of heat equations with singular potentials and singular data. First note that the multiplication of elements $G \in \mathcal{G}_{H^2,\infty}(\mathbb{R}^n)$ and $H \in \mathcal{G}_{C^1,H^2}([0,T]:\mathbb{R}^n)$ gives an element in $\mathcal{G}_{C^1,H^2}([0,T]:\mathbb{R}^n)$. Indeed, if $(G_\varepsilon)_\varepsilon \in \mathcal{E}_{H^2,\infty}(\mathbb{R}^n)$ and $(H_\varepsilon)_\varepsilon \in \mathcal{E}_{C^1,H^2}([0,T]:\mathbb{R}^n)$ then

$$(G_\varepsilon H_\varepsilon)_\varepsilon \in \mathcal{E}_{C^1,H^2}([0,T]:\mathbb{R}^n).$$

Similarly, if $(G_\varepsilon)_\varepsilon \in \mathcal{N}_{H^2,\infty}(\mathbb{R}^n)$ or $(H_\varepsilon)_\varepsilon \in \mathcal{N}_{C^1,H^2}([0,T]:\mathbb{R}^n)$, then

$$(G_\varepsilon H_\varepsilon)_\varepsilon \in \mathcal{N}_{C^1,H^2}([0,T]:\mathbb{R}^n).$$

Thus, multiplication of potential $V \in \mathcal{G}_{H^2,\infty}(\mathbb{R}^n)$ and $u \in \mathcal{G}_{C^1,H^2}([0,T]:\mathbb{R}^n)$ which is expected to be a solution to equation

$$\partial_t u = (\Delta - V)u, \ u(0,x) = u_0(x),$$

makes sense.

Definition 2.2. Let A be represented by a net $(A_\varepsilon)_\varepsilon$, $\varepsilon \in (0,1)$, of linear operators with the common domain $H^2(\mathbb{R}^n)$ and with ranges in $L^2(\mathbb{R}^n)$. A generalized function $G \in \mathcal{G}_{C^1,H^2}([0,T]:\mathbb{R}^n)$, $T > 0$, is said to be a solution to equation $\partial_t G = AG$ if

$$\sup_{t \in [0,T]} ||\partial_t G_\varepsilon(t, \cdot) - A_\varepsilon G_\varepsilon(t, \cdot)||_{L^2(\mathbb{R}^n)} = O(\varepsilon^n), \text{ for every } a \in \mathbb{R}.$$

We have the following theorem.

Theorem 2.12. Let $V \in \mathcal{G}_{H^2,\infty}(\mathbb{R}^n)$ be of logarithmic type, $U_0 = [U_{0\varepsilon}] \in \mathcal{G}_{H^2}(\mathbb{R}^n)$ and $[S_\varepsilon]$ be defined as in Example 1.1. Let $T > 0$. Then $U = SU_0 \in \mathcal{G}_{C^1,H^2}([0,T]:\mathbb{R}^n)$ ($U_\varepsilon(t,x) = S_\varepsilon(t)u_0(x)$, $\varepsilon < 1$) is the unique solution to equation

$$\partial_t U(t,x) - \Delta U(t,x) + V(x)U(t,x) = 0, \ U(0,x) = U_0(x).$$

in the sense of Definition 2.2.

Note that in our construction of a solution to (60) the perturbations with elements in $\mathcal{N}_{H^2,\infty}$ null-nets do not effect the solution. More precisely, if in (60) V_ε is substituted by $V_\varepsilon + R_\varepsilon$, $(R_\varepsilon)_\varepsilon \in \mathcal{N}_{H^2,\infty}$, we have the same generalized solution.

Let $(\phi_\varepsilon)_\varepsilon$ be a net of mollifiers

$$\phi_\varepsilon = \varepsilon^{-n}\phi(\cdot/\varepsilon), \ \varepsilon \in (0,1),$$

where $\phi \in C_0^\infty(\mathbb{R}^n)$, $\int \phi(x)dx = 1$ and $\phi(x) \geq 0$, $x \in \mathbb{R}^n$. It represents the generalized delta function $\delta = [\phi_\varepsilon] \in \mathcal{G}(\mathbb{R}^n)$.

Different ϕ_ε's (with the prescribed properties on ϕ) define different infinitesimal generators. Let us show this. Put $A_\varepsilon = \Delta - \phi_\varepsilon$ and $\tilde{A}_\varepsilon = \Delta - \tilde{\phi}_\varepsilon$, $\varepsilon < 1$. The equality of infinitesimal generators would imply that

$$||(A_\varepsilon - \tilde{A}_\varepsilon)u||_{L^2}^2 = \varepsilon^{-2n} \int_{\mathbb{R}^n} |\phi(y) - \tilde{\phi}(y)|^2 |u(\varepsilon y)|^2 dt \leq C_\varepsilon \varepsilon^n ||u||_{L^2}^2, \ \varepsilon < 1$$

for every $a > 0$ (and corresponding $C_\varepsilon > 0$). Thus, it follows that $\phi = \tilde{\phi}$.

\[\text{sol}\]

\[\text{thm-5}\]
Let \(m \in \mathbb{N} \). We will use the \(\delta^m = [\phi_\varepsilon^m]_{m \in \mathbb{N}} \) as the definition of \(m \)-th power of \(\delta \in \mathcal{G}(\mathbb{R}^n) \). Let

\[
A_{\varepsilon,m}u = (\Delta - \phi_\varepsilon^m)u, \ u \in H^2(\mathbb{R}^n), \ \varepsilon < 1.
\]

\(A_{\varepsilon,m} \) is the infinitesimal generator of the semigroup

\[
S_{\varepsilon,m} : [0, \infty) \to \mathcal{L}(L^2(\mathbb{R}^n)), \ S_{\varepsilon}(t) = \exp((\Delta - \phi_\varepsilon^m)t), \ t \geq 0\text{ (cf. [48])}.
\]

It follows that \((S_{\varepsilon,m})_\varepsilon \) is a representative of a generalized \(C_0 \)-semigroup \(S \in \mathcal{L}(L^2(\mathbb{R}^n)) \).

We know that \(S_{\varepsilon,m} \psi, \ \varepsilon < 1 \) and \(\psi \in L^2(\mathbb{R}^n) \), given by

\[
S_{\varepsilon}(t) \psi(x) = \int_0^\infty \exp \left(- \int_0^t \phi_\varepsilon^m(\omega(s))ds \right) \psi(\omega(t))d\mu_\varepsilon(\omega), \ x \in \mathbb{R}^n, \ t \geq 0.
\]

Since \(\phi_\varepsilon(x) \geq 0, \ x \in \mathbb{R}^n, \ \varepsilon < 1 \), it follows that the set \(\{S_{\varepsilon,m} : \ \varepsilon \in (0, 1), \ t \geq 0\} \) is bounded in \(\mathcal{L}(L^2(\mathbb{R}^n)) \) (not only moderate). Thus (42) holds for \((S_{\varepsilon,m})_\varepsilon \).

Our goal is the following theorem, where the assumption \(n \geq 2 \) is crucial.

Theorem 2.13. Let \(n \geq 2 \), \(m \in \mathbb{N} \), \(T > 0 \) and \(U_0 \in H^2(\mathbb{R}^n) \). Then

\[
U_{\varepsilon,m}(t,x) = \int_0^\infty \exp \left(- \int_0^t \varepsilon^{-mn} \phi_\varepsilon^m(\omega(s)/\varepsilon)ds \right) U_0(\omega(t))d\mu_\varepsilon(\omega),
\]

\[
x \in \mathbb{R}^n, \ t \geq 0, \ \varepsilon < 1
\]

defines a representative of a solution \(U \in \mathcal{G}_{C^1,H^2}([0,T) : \mathbb{R}^n) \) to the equation

\[
\{ \partial_t U(t,x) - \Delta U(t,x) + \delta^m(x)U(t,x) = 0, \ U(0,x) = U_0(x) \}
\]

The solution is unique in the sense of Definition 2.2.

Moreover net (63) converges to

\[
\hat{U}(t,\cdot) = e^{-\Delta t}U_0(\cdot)
\]

uniformly on compact sets of \(\mathbb{R}^n \) of \(H^2(\mathbb{R}^n) \), for every \(t \geq 0 \).

We need several notions and properties of \(n \)-dimensional Brownian motions, \(n \geq 2 \). Recall that the hitting time \(\tau_A \) of a subset \(A \) of \(\mathbb{R}^n \) is defined by \(\tau_A = \inf\{ t > 0 : \ \omega(t) \in A \} \) \((\tau_A = \infty \text{ if } \omega(t) \notin A \text{ for all } t > 0) \). We refer to [55], Ch. 1 Sec. 2 for the elementary properties of hitting times. Recall, a Borel set \(A \) is said to be polar if

\[
\mu_\varepsilon(\{\omega \in O : \ \omega(t) \in A \text{ for some } t < \infty\}) = 0.
\]

We will use the fact that every one-point set is polar for \(n \geq 2 \). This is not true for \(n = 1 \) and that is the essential reason for different results in the cases \(n \geq 2 \) and \(n = 1 \).

Let \(B_\varepsilon = \{ x \in \mathbb{R}^n : \|x\| \leq \varepsilon \}, \ B = B_1 \). Take \(\varepsilon \in (0,1), \ t > 0 \) and define

\[
W_{B_\varepsilon}(t) = \{ \tau_{B_\varepsilon} < t \} = \{ \omega : \text{ there exists } 0 < s < t, \ \omega(s) \in B_\varepsilon \},
\]

\[
W_{B_\varepsilon} = \bigcup_{t>0} W_{B_\varepsilon}(t).
\]
Clearly, $W_{B_k}(t) \subset W_{B_k}(s)$, $0 < t \leq s$. Note that

$$W_{B_k}(s) \setminus W_{B_k}(t) = \{ t \leq \tau_{B_k} < s \}, \ 0 < t < s$$

and

$$(66) \quad W_{B_k}(s) \setminus W_{B_k}(t) \subset W_{B_k} \setminus W_{B_k}(t) \subset \{ t - 1 < \tau_{B_k} \},$$

for $s > t > 1$.

Choose an increasing sequence $(t_m)_m$ such that $t_{m+1} > t_m + 1$, and (66) holds for every $m \in \mathbb{N}$.

Lemma 2.1. 1) For every compact subset K of \mathbb{R}^n and $\varepsilon < 1$, there exists a constant $C_{\varepsilon} > 0$ such that $\mu_x(W_{B_k}) \leq C_{\varepsilon}$.
2) $\lim_{\varepsilon \to 0} \sup_{x \in K} \mu_x(W_{B_k}) = 0$.

Powers of the generalized delta function, δ^α, $\alpha \in (0, 1)$, are defined in this paper by

$$(67) \quad \delta^\alpha = [(\phi_\varepsilon)^\alpha \ast \phi_\varepsilon], \ \varepsilon \in (0, 1).$$

The reason for introducing (67) is simple: When $\alpha \in (0, 1)$, the function ϕ_ε^α, $\varepsilon < 1$ is not smooth, in general. Note, generalized function $[\phi_\varepsilon \ast \phi_\varepsilon]$ is only associated with the generalized delta function $\delta = [\phi_\varepsilon]$.

Since one-point sets are not polar for $n = 1$, we could not use the same arguments as in the case $n \geq 2$. Note that functions in $H^2(\mathbb{R})$ are continuous and bounded.

Proposition 2.2. Let $\alpha \in (0, 1)$, $T > 0$ and $U_0 \in H^2(\mathbb{R})$. Then by

$$(68) \quad U_\varepsilon(t, x) = \int_0^t \exp \left(- \int_0^s (\phi_\varepsilon)^\alpha \ast \phi_\varepsilon(\omega(s))ds \right) U_0(\omega(t))d\mu_\varepsilon(\omega)$$

is defined a representative of a solution $U(t, x) \in \mathcal{G}_{C^1, H^2}([0, T] \times \mathbb{R})$ to equation

$$(69) \quad \partial_t U(t, x) - \Delta U(t, x) + \delta^\alpha(x)U(t, x) = 0, \ U(0, x) = U_0(x).$$

The solution is unique in the sense of Definition 2.2.

Net (68) has a subsequence $(U_{\varepsilon, \alpha}(t, x))_{\varepsilon \in \mathbb{N}}$, converging to

$$\tilde{U}(t, x) = e^{-\Delta t}U_0(x), \ t \geq 0, \ x \in \mathbb{R}$$

in the weak topology of $L^2([0, T] \times \mathbb{R})$.

Example 2.2. Assume $n \geq 2$, $T > 0$, $V \in H^{1, \infty}(\mathbb{R}^n)$, and $f \in C^1([0, \infty) \times \mathbb{R}^n)$ satisfies $f(s, 0) = 0$, $s \in \mathbb{R}$ and $|f(s, y_1) - f(s, y_2)| \leq C|y_1 - y_2|$.

Let $U_0(x) = \delta(x)$, $x \in \mathbb{R}^n$, i.e., $U_{0\varepsilon} = \phi_\varepsilon$, $\varepsilon < 1$ (cf. (61)). Then for fixed $\varepsilon < 1$,

$$\partial_t U_\varepsilon(t, x) = (\Delta x - V(x))U_\varepsilon(t, x) + f(t, U_\varepsilon(t, x)), \ U_\varepsilon(0, x) = \phi_\varepsilon,$$

has a unique classical solution $U_\varepsilon \in C^0([0, T], L^1(\mathbb{R}^n)) \cap C^1((0, T), L^1(\mathbb{R}^n))$ and $U_\varepsilon(t, x) \in H^{2, 1}(\mathbb{R}^n)$ for every $t > 0$. Again we have $U_\varepsilon(t, x) \in$
$C^0((0,T) : H^2(\mathbb{R}^n))$, $\varepsilon < 1$. We will show that there exists a sequence $(U_{\varepsilon, \nu})_{\nu \in \mathbb{N}}$ converging to $U \in L^q_{loc}((0,T), \mathbb{R}^n)$, $1 \leq q < n/(n-1)$, in $L^q_{loc}((0,T), \mathbb{R}^n)$ such that $\partial_t U = (\Delta - V)U$ in $\mathcal{D}'((0,T), \mathbb{R}^n)$.

CHAPTER 3

Hyperbolic systems

1. Semilinear hyperbolic systems

Let

\begin{equation}
(70) \{ \partial_t + \Lambda(x,t)\partial_x \} y(x,t) = F(x,t,y(x,t)), \quad y(x,0) = A(x)
\end{equation}

be a semilinear hyperbolic system, where Λ is a real diagonal matrix and a mapping $y \mapsto F(x,t,y)$ is in $O_m(\mathbb{C}^n)$ with uniform bounds for $(x,t) \in K \subset \mathbb{R}^2$. Oberguggenberger [44] has constructed a generalized solution to (70) when A is an arbitrary generalized function and F has a bounded gradient with respect to y for $(x,t) \in K \subset \mathbb{R}^2$.

Here, F is substituted by $F_h(\varepsilon)$ which has a bounded gradient with respect to y for every fixed (ϕ,ε) and converges pointwisely to F as $\varepsilon \to 0$.

Our aim is to find a generalized solution to

\begin{equation}
(71) \{ \partial_t + \Lambda(x,t)\partial_x \} y(x,t) = F_h(\varepsilon)(x,t,y(x,t)), \quad y(x,0) = A(x).
\end{equation}

We fix a decreasing function $h : (0,1) \to (0,\infty)$ such that

\begin{equation}
(72) \{ \text{shs}4 \} \quad h(\varepsilon) = O((\log \varepsilon^{-1})^{1/2}), \quad h(\varepsilon) \to \infty \text{ as } \varepsilon \to 0.
\end{equation}

Denote by B_r the cube $|x| \leq r, |t| \leq r, |y| \leq r$, where $y = (u_1, v_1, ..., u_n, v_n)$.

Let ε_i be a decreasing sequence of positive numbers such that $h(\varepsilon_{i+1}) = i, \ i \in \mathbb{N}$. This implies that $h(\varepsilon) \geq i - 1$ if $\varepsilon < \varepsilon_i$.

Let

\begin{align*}
S_i &= B_i \cap \{(x,t,u,v), \ |F(x,t,u,v)| \leq i - 1\} \\
&\quad \cap \{(x,t,u,v), \ |
abla_{u,v}F(x,t,u,v)| \leq i - 1\}, \quad i \in \mathbb{N}.
\end{align*}

Let κ_i be the characteristic function of $S_i, \ i \in \mathbb{N}$. Put

$$
\kappa_h(\varepsilon) = (\kappa_i * \phi_{1/h(\varepsilon)}), \quad \varepsilon \in [\varepsilon_{i+1}, \varepsilon_i], \quad i \in \mathbb{N},
$$

$$
F_{h(\varepsilon)}^k = F^k \kappa_h(\varepsilon), \quad \varepsilon \in (0,\varepsilon_1), \quad k \in \{1, ..., n\}.
$$

We have that there exists a constant $C = C(C_0) > 0$ (which does not depend on $\phi \in A_0$) such that

\begin{align*}
\|F_h(\varepsilon)\|_{L^\infty(\mathbb{R}^{2+2n})} &\leq Ch(\varepsilon) \\
\|
abla_{u,v}F_h(\varepsilon)\|_{L^\infty(\mathbb{R}^{2+2n})} &\leq Ch(\varepsilon)^2, \quad \varepsilon \in (0,\varepsilon_1).
\end{align*}
Definition 3.1. \(G = (G_1, \ldots, G_n) \in (G(\mathbb{R}^2))^n \) is a solution to (71) if any of its representative \(G_{\phi,\varepsilon} \) satisfies the system

\[
(\partial_t + \Lambda(x,t) \partial_x) G_{\phi,\varepsilon}(x,t) = F_h(\varepsilon)(x,t,G_{\phi,\varepsilon}(x,t)) + d_{1,\phi,\varepsilon}(x,t),
\]

\[
G_{\phi,\varepsilon}(x,0) = A_{\phi,\varepsilon}(x) + d_{2,\phi,\varepsilon}(x),
\]

where \(A_{\phi,\varepsilon} \in (E_M(\mathbb{R}))^n \) is a representative for some \(d_{2,\phi,\varepsilon} \in (N(\mathbb{R}))^n \), and \(d_{1,\phi,\varepsilon} \in (N(\mathbb{R}^2))^n \). We call (71) and (73) the h-regularized system.

Theorem 3.1. Assume that every component of the mapping \(y \mapsto F(x,t,y) \) belongs to \(O_M(\mathbb{C}^n) \) and has uniform bounds for \((x,t) \in K \subseteq \mathbb{R}^2\). Then the h-regularized system (71) has a unique solution in \((G(\mathbb{R}^2))^n\) whenever the initial data is in \((G(\mathbb{R}^2))^n\).

The proof follows by using the method of characteristics and the fixed point theorem.

Theorem 3.2. Let the initial data \((a_1, \ldots, a_n)\) in (70) belong to \((C(\mathbb{R}))^n\).

(a) The solution \(G_h \) to the regularized system (71) is \(L^\infty \)-associated with the continuous local solution \(g \) to (1) in \(K_{T_0} \), for some \(T_0 > 0 \).

(b) Assume that (70) is globally well posed. Then the solution \(G_h \) to (71) is \(L^\infty \)-associated with the continuous solution \(g \) to (70) on each \(K_T \).

Remark 3.1. If for every compact set \(K \subseteq \mathbb{R}^2 \) there exists \(C > 0 \) such that

\[
\sup_{(x,t) \in K, y \in \mathbb{C}^n} |F(x,t,y)| \leq C \quad \text{or} \quad \sup_{(x,t) \in K, y \in \mathbb{C}^n} |\nabla_y F(x,t,y)| \leq C,
\]

then system (70) is globally well posed.

2. Systems of conservation laws

2.1. Introduction. For an \(n \times n \) hyperbolic system (\(n \) real eigenvalues) in one space dimension

\[
U_t + f(U)_x = 0, \quad U : O \subseteq \mathbb{R}^2 \to \mathbb{R}^n, \quad f : \mathbb{R}^n \to \mathbb{R}
\]

with Riemann initial data

\[
U|_{t=0} = \begin{cases} U_0, & x < 0 \\ U_1, & x > 0 \end{cases}, \quad U_0, U_1 \text{ are vectors},
\]

there exists a unique entropy solution, provided \(\|U_1 - U_0\|_{L^\infty} \) small enough (Lax in 50’s ([28])). The classical solution to the above Riemann problem consists of shock, rarefaction waves and contact discontinuities. (If \(n \) real eigenvalues are all different, then system (75) is called strictly hyperbolic.) Also, methods for solving an arbitrary Cauchy problem (Glimm scheme, wave front tracking algorithm (Di Perna for 2 \times 2 system (70’s), Bressan et all (90’s) for \(n \times n \) system), see [6] are based on the fact that the total variation of the initial data is small enough.
So, the first reason for introducing solutions containing Dirac δ distribution is a possible managing of the system with "large" initial total variation. The second reason for doing this is that some systems of conservation laws, perturbed by a "viscosity" matrix,

$$U_t + f(U)_x = \varepsilon A(U)U_{xx}$$

have solutions which limit contains terms with δ distribution, as $\varepsilon \to 0$ (Oberguggenberger (O1), Joseph (J1)).

The third reason is that if one perturb Riemann data by smooth functions

$$U|_{t=0} = U_{0,x} \to \begin{cases} U_0, & x < 0 \\ U_1, & x > 0 \end{cases}, \text{ as } \varepsilon \to 0,$$

local smooth solution has not only gradient catastrophe (the case of shock waves), but also L^∞ catastrophe (the L^∞ norm of the smooth solution goes to infinity in a finite time).

The aim of this chapter is threefold:

1. We shall give two solution concepts where δ function appears (delta and singular shock waves), see [33], [36] or [32].

2. Describe when it is possible to find such solutions (delta and delta singular locus, see [33] for these notions).

3. Give some results of interaction of delta and singular shock waves with other types of elementary waves in some special cases (see [35] or [36]).

At the end, we shall present some of numerous open problems concerning the above topics.

2.2. Previous examples.

Dirac δ distribution, as a part of a viscosity limit for solutions to some systems of conservation laws was numerically observed by Korchinski in his PhD thesis, [27] (1977).

Oberguggenberger, [44] (1992) and Joseph, [25] (1993) proved that the viscosity limit of some Riemann data for the system

$$u_t + \left(\frac{u^2}{2}\right)_x = 0$$

$$v_t + (uv)_x = 0$$

contain δ distribution.

Keyfitz and Kranzer, [26] (1995 - final version of their investigations which started in 1988) solved the arbitrary Riemann problem for the system

$$u_t + (u^2 - v)_x = 0$$

$$v_t + \left(\frac{u^3}{3} - u\right)_x = 0$$

which is a modified model of spreading ion acoustic waves. For some initial data (the area Q_7 at Figure 1, the solution (in approximative sense) is given
by

\[u_\varepsilon(x,t) = G_\varepsilon(x - ct) + a \sqrt{\frac{t}{\varepsilon}} \rho \left(x - \frac{t}{\varepsilon} \right), \]

\[v_\varepsilon(x,t) = H_\varepsilon(x - ct) + a^2 \frac{t}{\varepsilon} \rho^2 \left(x - \frac{t}{\varepsilon} \right), \]

where \(G_\varepsilon \) and \(H_\varepsilon \) converge to appropriate step functions defined by the Riemann initial data, \(\rho^2_\varepsilon(\cdot) := \varepsilon^{-1}\rho^2(\cdot/\varepsilon) \), where \(\rho \in C^\infty_0 \), \(\int \rho^2 = 1 \), converges to the delta distribution and \(\rho^2_\varepsilon \) converges to zero in \(\mathcal{D}' \) as \(\varepsilon \to 0 \), \(i = 1, 3 \).

Pressureless gas dynamics model

\[
\begin{align*}
 u_t + (uv)_x &= 0 \\
 (uv)_t + (uv^2)_x &= 0
\end{align*}
\]

(79)

can be transformed (after the elimination of the variable \(u_t \) from the second equation) into

\[
\begin{align*}
 u_t + (u^2)_x &= 0 \\
 v_t + (uv)_x &= 0
\end{align*}
\]

(80)

for which the Riemann problem is solved by Tan, Zhang and Zheng in [60] (1994). Some of the solutions contains \(\delta \) distribution as a term. They used Dafermos-Di Perna viscosity limit method (viscous term is given by \(\varepsilon tu_{xx} \), so the viscous approximation allows self-similar solutions), and the results are justified by assuming that \(u \in L^\infty \), \(v \) is a Borel measure, and \(u \) has an appropriate value at line of discontinuity.
The same ideas are used in the paper of Yang [64] (1999) for the systems of the form

\[
\begin{align*}
 u_t + (f(u)v)_x &= 0 \\
 (uv)_t + (f(u)v^2)_x &= 0
\end{align*}
\]

(81)

for which is a special case.

Huang (in his PhD theses, 2000) gave a measure theoretic solution to the above system.

Heyes and Le Floch found in [22] (1996) a solution to an arbitrary Riemann problem for the system

\[
\begin{align*}
 u_t + (u^2/2)_x &= 0 \\
 v_t + ((u - 1)v)_x &= 0
\end{align*}
\]

(82)

\{hlf\}

which is a very simplified MHD-model, by using Vol’pert idea of multiplication of functions with bounded total variation and distributions. In some cases, the solution contains a term with δ distribution.

Finally, we shall mention the paper of Ercole [17] (2000), where the author found viscosity limits to the Riemann problem

\[
\begin{align*}
 u_t + (f(u))_x &= 0 \\
 (uv)_t + (g(u)v)_x &= 0
\end{align*}
\]

(83)

\{er\}

(under mild assumptions on functions f and g). Again, some limits contain δ distribution as a term.

2.3. Solution concepts. In the sequel we shall restrict ourselves to 2 \times 2 systems, i.e. system (75) we shall write in the following form

\[
\begin{align*}
 u_t + (f_1(u)v + f_2(u))_x &= 0 \\
 v_t + (g_1(u)v + g_2(u))_x &= 0
\end{align*}
\]

(84)

\{osn2\}

where f_1, f_2, g_1 and g_2 are smooth functions, polynomially bounded with all its derivatives. One can see that the above system can be substituted by more general one

\[
\begin{align*}
 \left(\tilde{f}_1(u)v + \tilde{f}_2(u)\right)_t + (f_1(u)v + f_2(u))_x &= 0 \\
 \left(\tilde{g}_1(u)v + \tilde{g}_2(u)\right)_t + (g_1(u)v + g_2(u))_x &= 0
\end{align*}
\]

(85)

\{osn2-2\}

without any major change in statements and concepts given in the rest of this chapter.

As it was written in the introduction, we shall present two solution concepts which are suitable for multiplication of distributions (in fact, δ distribution with a discontinuous function). The first one is based on the Colombeau generalized function space introduced by Oberguggenberger and Wang ([47]). The second one is based on splitting δ distribution into two parts, which are divided by a discontinuity line.
2.3.1. First solution concept. We shall use Colombeau space \(\mathcal{G}_g \) in this section. Let us start with a simple lemma heavily used in the rest of it.

Lemma 3.1. The generalized function defined by the representative \(\phi_\varepsilon(x-ct) \in \mathcal{E}_{M,\delta}(\mathbb{R}^2_+) \), \(\phi \in \mathcal{A}_0 \), \(c \in \mathbb{R} \), is associated with \(\delta(x-ct) \in \mathcal{D}'(\mathbb{R}^2_+) \).

Proof. Let \(\psi \in C^\infty_0(\mathbb{R}^2_+) \) and

\[
 I_\varepsilon := \int \int (x-ct)/\varepsilon \psi(x,t) dx dt.
\]

Changing the variables \((x-ct)/\varepsilon \rightarrow y, t \rightarrow s\), using the Lebesgue dominated convergence theorem and the properties of the functions from \(\mathcal{A}_0 \) gives

\[
 I_\varepsilon = \int \int \phi(y) \psi(\varepsilon y + cs,s) dy ds \rightarrow \int \phi(y) dy \psi(cs,s) ds = \int \psi(cs,s) ds, \quad \text{as } \varepsilon \rightarrow 0. \quad \square
\]

The step functions, mapped by \(\iota \) into \(\mathcal{G}_g(\mathbb{R}) \), belong to the following important class of generalized functions. \(G \in \mathcal{G}_g(O) \) is said to be of a bounded type if

\[
 \sup_{x \in O} |G_\varepsilon(x)| = \mathcal{O}(1) \text{ as } \varepsilon \rightarrow 0,
\]

for every \(T > 0 \).

Definition 3.2. (a) \(G \in \mathcal{G}(\mathbb{R}) \) is said to be a generalized step function with value \((y_0, y_1)\) if it is of bounded type and \(G_\varepsilon(y) = \begin{cases} y_0, & y < -\varepsilon \\ y_1, & y > \varepsilon \end{cases} \).

Denote \([G] := y_1 - y_0 \).

(b) \(D \in \mathcal{G}_g(\mathbb{R}) \) is said to be generalized slitted delta function (S\(\delta \)-function for short) with value \((\alpha_0, \alpha_1)\) if \(D = \alpha_0 D^- + \alpha_1 D^+ \), where \(\alpha_0 + \alpha_1 = 1 \) and \(D^\pm \in \mathcal{G}_g(\mathbb{R}) \) are associated to delta distribution and

\[
 D^- G \approx y_0 \delta \text{ and } D^+ G \approx y_1 \delta,
\]

for any generalized step function \(G \) with value \((y_0, y_1)\).

Remark 3.2. One can give fixed representatives for a generalized split delta function in the following way

\[
 D^\pm_\varepsilon(y) := \frac{1}{\varepsilon} \phi \left(\frac{y-(\pm 2\varepsilon)}{\varepsilon} \right), \quad \phi \in \mathcal{A}_0.
\]

Note that \(D^\pm_\varepsilon \) are in fact shifted model delta nets.

Lemma 3.2. If \(G \) is a generalized step function with value \((y_0, y_1)\) and \(D \) is an S\(\delta \)-function with value \((\alpha_0, \alpha_1)\), then the following hold.

(i) \(f(G) \) is a generalized step function with value \((f(y_0), f(y_1))\), where \(f \) is a smooth function.
2. SYSTEMS OF CONSERVATION LAWS

\{slika_dsw\}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{slika_dsw}
\caption{Delta shock wave}
\end{figure}

(ii)
\[G \cdot D \approx (y_0 \alpha_0 + y_1 \alpha_1) \delta. \]

Proof. The proof is a straightforward consequence of the definitions. □

Remark 3.3. The support property of \(S\delta \)-function ensures the uniqueness in the association sense of its product with a generalized step function. This was done in order to deal with conservation law systems given is a general form. Of course that some other choices can be more efficient in specific cases (see [9] and literature there, for example).

The generalized initial data for our system are now generalized step functions \(G \) and \(H \) with values \((u_0, v_1)\) and \((v_0, v_1)\) instead of \(\Theta_1 \) and \(\Theta_2 \), respectively. One can see that the inclusion by \(\iota_\phi \) of a classical step function gives a generalized step function in the sense of Definition 3.2 (a) for every \(\phi \in \mathcal{A}_0 \).

Definition 3.3. \((U, V) \in (G(\mathbb{R}^2_+))^2\) is called delta shock wave solution to Riemann problem (84,76) if a) and b) hold:

a)
\[
U_t + (f_1(U)V + f_2(U,V))_x \approx 0 \\
V_t + (g_1(U)V + g_2(U,V))_x \approx 0.
\]
\[U|_{t=0} = G, \; V|_{t=0} = H. \]

b) \(U(x, t) = G(x - ct), \; V(x, t) = H(x - ct) + s(t)(\beta_0 D^- (x - ct) + \beta_1 D^+(x - ct)) \),
where \(G \) and \(H \) are generalized step functions, \(f_i, g_i, \; i = 1, 2 \), are smooth functions polynomially bounded together with all derivatives, \(f_2 \) and \(g_2 \) are also sublinearly bounded with respect to \(V \), \(c \in \mathbb{R} \) is a speed of the shock.
The function \(s(t) \beta_0 \) is called the left-handed strength of the wave, and \(s(t) \beta_1 \) is called the right-handed strength of the wave. Its sum \((s(t)) \) is called the strength of delta or singular shock wave.

Definition 3.4. A generalized function \(d \in G_g(\mathbb{R}) \) is said to be \(m \)-singular delta function (\(m \)-SD-function for short) with value \((\beta_0, \beta_1)\) if

\[
d = \beta_0 d^- + \beta_1 d^+, \quad (d^\pm)^i \approx 0, \quad i \in \{1, \ldots, m-1\}, \quad (d^\pm)^m \approx \delta, \quad (d^-)^m G \approx y_0 \delta \text{ and } (d^+)^m G \approx y_1 \delta, \quad \text{for each generalized step function } G \text{ with value } (y_0, y_1).
\]

Let \(m \) be an odd positive integer. A generalized function \(d \in G_g(\mathbb{R}) \) is said to be \(m' \)-singular delta function (\(m' \)-SD-function for short) with value \((\beta_0, \beta_1)\) if

\[
d = \beta_0 d^- + \beta_1 d^+, \quad d^\pm \in G_g(\mathbb{R}), \quad (d^\pm)^i \approx 0, \quad i \in \{1, \ldots, m-2, m\}, \quad (d^-)^{m-1} \approx \delta, \quad (d^-)^{m-1} G \approx y_0 \delta \text{ and } (d^+)^{m-1} G \approx y_1 \delta, \quad \text{for each generalized step function } G \text{ with value } (y_0, y_1).
\]

An \(S\delta \)-function \(D \) and an \(m\)-SD-function (or an \(m'\)-SD-function) \(d \) are said to be compatible if \((d^m D \approx 0) \) (or \((d)^{m-1} D \approx 0) \).

Remark 3.4. One can construct such functions in a similar way as an \(S\delta \)-function, with \(\text{supp} d^- \subset (-\infty, \varepsilon) \), \(\text{supp} d^+ \subset (\varepsilon, \infty) \). Compatibility conditions can be achieved by demanding that \(D \) and \(d \) have disjoint supports for \(\varepsilon \) small enough, for example.

The definition of \(m'\)-SD-function \(d \) implies \(Gd^m \approx 0 \) if \(G \) is a generalized step function.

Now we shall give the definition of singular shock wave and a useful lemma.
2. SYSTEMS OF CONSERVATION LAWS

Definition 3.5. \((U, V) \in (G(\mathbb{R}^2_+))^2\) is called singular shock wave solution to Riemann problem (1-3) if a) and b) hold:

a) \[U_t + (f_1(U)V + f_2(U,V))_x \approx 0\]
\[V_t + (g_1(U)V + g_2(U,V))_x \approx 0\]
\[U|_{t=0} = G, \ V|_{t=0} = H.\]

b) \[U(x,t) = G(x - ct) + s_1(t), \text{ and } V(x,t) = H(x - ct) + s_2(t)(\beta_0 D^-(x - ct) + \beta_1 D^+(x - ct)) + s_3(t)(\gamma_0 d^-(x - ct) + \gamma_1 d^+(x - ct)),\]
where \(G\) and \(H\) are generalized step functions, \(f_i, g_i, i = 1, 2\), are polynomials of the degree at most \(m\ c \in \mathbb{R}\) is a speed of the shock, \(s, s_1, s_2 \in C^1([0, \infty))\), \(s_1(0) = s_2(0) = s_3(0) = 0\), \(D\) is an \(S\delta\)-function, as before, and \(d_j\) are \(mSD\) or \(m'\text{SD}\)-function, \(j = 1, 2\). Also \(\alpha_0 + \alpha_1 = 1, \beta_0 + \beta_1 = 1, \text{ and } \gamma_0 + \gamma_1 = 1,\)

Here, the strength of a singular shock wave is \(s_2(t)\), and the left- and right-hand sided strengths are defined as in the case of delta shock wave.

Lemma 3.3. a) Let \(d \in \mathcal{G}_m(\mathbb{R})\) be an \(m\text{SD}\)-function with value \((\beta_0, \beta_1)\), \(\beta_0^m + \beta_1^m = 1\), \(G \in \mathcal{G}_m(\mathbb{R})\) generalized step function with value \((y_0, y_1)\), \(s \in C^1(\mathbb{R}_+)\), \(s(0) = 0\), and \(\Gamma(y) = \sum_{i=0}^m a_i y^i\) be a real valued polynomial. Then

\[\Gamma(G(x - ct)) + s(t)d(x - ct)) \approx \Gamma(G(x - ct)) + a_m s^m(t)(\beta_0^m(d^-)^m(x - ct) + \beta_1^m(d^+)^m(x - ct))\]
\[\approx \Gamma(G(x - ct)) + a_m s^m(t)\delta(x - ct).\]
b) Let \(d \in \mathcal{G}_p(\mathbb{R}) \) be an \(m' \)SD-function with value \((\beta_0, \beta_1), \beta_0^{m-1} + \beta_1^{m-1} = 1\), while \(G, s \) and \(\Gamma \) are as above. Then

\[
\Gamma(G(x - ct) + s(t)d(x - ct))
\]

\[\approx \Gamma(G(x - ct)) + a_{m-1}s^{m-1}(t)(\beta_0^{m-1}(d^-)^{m-1}(x - ct) + \beta_1^{m-1}(d^+)^{m-1}(x - ct))
\]

\[+ \ma_m s^{m-1}(t)(\beta_0^{m-1}y_0 (d^-)^{m-1}(x - ct) + \beta_1^{m-1}y_1 (d^+)^{m-1}(x - ct)) \]

\[\approx \Gamma(G(x - ct)) + a_{m-1}s^{m-1}(t)\delta(x - ct)
\]

\[+ \ma_m s^{m-1}(t)(\beta_0^{m-1}y_0 + \beta_1^{m-1}y_1)\delta(x - ct).\]

2.3.2. Second solution concept. We shall now briefly describe the solution concept we use.

Suppose \(\mathbb{R}_+^n \) is divided into finitely disjoint open sets \(O_i \neq \emptyset, i = 1, ..., n \) with piecewise smooth boundary curves \(\Gamma_i, i = 1, ..., m \), that is \(O_i \cap O_j = \emptyset \), \(\bigcup_{i=1}^n \overline{\Gamma}_i = \mathbb{R}_+^n \) where \(\overline{\Gamma}_i \) denotes the closure of \(O_i \). Let \(\mathcal{C}(\overline{\Gamma}_i) \) be the space of bounded and continuous real-valued functions on \(\overline{\Gamma}_i \), equipped with the \(L^\infty \)-norm. Let \(\mathcal{M}(\overline{\Gamma}_i) \), be the space of measures on \(\overline{\Gamma}_i \).

We consider the spaces

\[
\mathcal{C}_\Gamma = \prod_{i=1}^n \mathcal{C}(\overline{\Gamma}_i), \quad \mathcal{M}_\Gamma = \prod_{i=1}^n \mathcal{M}(\overline{\Gamma}_i).
\]

The product of an element \(G = (G_1, ..., G_n) \in \mathcal{C}_\Gamma \) and \(D = (D_1, ..., D_n) \in \mathcal{M}_\Gamma \) is defined as an element \(D \cdot G = (D_1G_1, ..., D_nG_n) \in \mathcal{M}_\Gamma \), where each component is defined as the usual product of a continuous function and a measure.

Every measure on \(\overline{\Gamma}_i \) can be viewed as a measure on \(\mathbb{R}_+^n \) with support in \(\overline{\Gamma}_i \). This way we obtain a mapping

\[
m : \mathcal{M}_\Gamma \rightarrow \mathcal{M}(\mathbb{R}_+^n)
\]

\[
m : D \mapsto D_1 + D_2 + ... + D_n.
\]

A typical example is obtained when \(\mathbb{R}_+^n \) is divided into two regions \(O_1, O_2 \) by a piecewise smooth curve \(x = \gamma(t) \). The delta function \(\delta(x - \gamma(t)) \in \mathcal{M}(\mathbb{R}_+^n) \) along the line \(x = \gamma(t) \) can be split in a non unique way into a left-hand side \(D^- \in \mathcal{M}(\overline{\Gamma}_1) \) and the right-hand component \(D^+ \in \mathcal{M}(\overline{\Gamma}_2) \) such that

\[
\delta(x - \gamma(t)) = \alpha_0(t)D^- + \alpha_1(t)D^+
\]

\[= m(\alpha_0(t)D^- + \alpha_1(t)D^+)\]

with \(\alpha_0(t) + \alpha_1(t) = 1. \)

A solution of the form

\[
u(x, t) = G(x - ct)
\]

\[
u(x, t) = H(x - ct) + s(t)(\alpha_0 D^- + \alpha_1 D^+)
\]

is called delta shock wave.
The solution concept which allows to incorporate such two sided delta functions as well as shock waves is modeled along the lines of the classical weak solution concept and proceeds as follows:

Step 1: Perform all nonlinear operations of functions in the space $C \Gamma$.

Step 2: Perform multiplications with measures in the space $M \Gamma$.

Step 3: Map the space $M \Gamma$ into $M(\mathbb{R}^2_+)$ by means of the map m and embed it into the space of distributions.

Step 4: Perform the differentiation in the sense of distributions and require that the equation is satisfied in this sense.

Note that in the case of absence of a measure part (Step 2), this is the precisely the concept of a weak solution to equations in divergence form.

2.4. Existence theorems. Delta locus is the set of all points $U_1 = (u_1, v_1) \in \mathbb{R}^2$ such that there exists a delta shock solution to system (84, 76).

Singular delta locus is the set of all points $U_1 \in \mathbb{R}^2$ such that there exists a singular shock solution to system (84), (76). In this case f_1, f_2, g_1 and g_2 have to be polynomials.

As one can see, these definitions are just a simple analogue to the definition of Hugoniot locus.

2.4.1. Existence theorems using the first solution concept. We shall present (without proofs) two theorems about delta locus and singular delta locus from [33].

Theorem 3.3. a) Let $f_1 \not\equiv \text{const}$. Then a delta shock wave solution to (84, 76) exists if $u_0 \neq u_1$, $f_1(u_0) \neq f_1(u_1)$ and

$$ c = \frac{f_1(u_1)v_1 + f_2(u_1, v_1) - f_1(u_0)v_0 - f_2(u_0, v_0)}{u_1 - u_0} $$

$$ = \frac{g_1(u_0)f_1(u_1) - g_1(u_1)f_1(u_0)}{f_1(u_1) - f_1(u_0)}, $$

(88) \{12\}

where c is the velocity of the delta shock. The set of all points (u_1, v_1) such that (88) holds is the delta locus of the system (for the point (u_0, v_0)).

b) If $f_1(u_0) = f_1(u_1) = 0$ (specially, if $f_1 \equiv 0$) and $g_1 \not\equiv \text{const}$, then the delta locus is the set of all points (u_1, v_1) such that $g_1(u_0) \neq g_1(u_1)$.

c) If $f_1 \equiv 0$ and $g_1 \equiv b \in \mathbb{R}$, then the delta locus is the set of all points (u_1, v_1) such that $b(u_1 - u_0) = f_2(u_1) - f_2(u_0)$.

The main point of the proof is to express c from the first equation of the system and then substitute this value of c into the second one. Then, one has to find appropriate $s(t) = \sigma t$, and other coefficients to “compensate” so called Rankine-Hugoniot deficit in the second equation and eliminate terms associated to δ'.

The exact proof contains a lot of details, so we shall omit it. One has to use the definitions and lemmas above.
For the second theorem, we have to make same assumption and give notation. Suppose that the maximal degree of all polynomials in the fluxes equals m. Let

$$f_1(y) = \sum_{i=0}^{m} a_{1,i}y^i, \quad f_2(y) = \sum_{i=0}^{m} a_{2,i}y^i, \quad g_1(y) = \sum_{i=0}^{m} b_{1,i}y^i, \quad g_2(y) = \sum_{i=0}^{m} b_{2,i}y^i.$$

The following lemma is obvious consequence of the given definitions.

Lemma 3.4. a) Let $d \in \mathcal{G}_y(\mathbb{R})$ be an mSD-function with value (β_0, β_1), $\beta_0^m + \beta_1^m = 1$, $G \in \mathcal{G}_y(\mathbb{R})$ generalized step function with value (y_0, y_1), $s \in C^1(\mathbb{R}_+)$, $s(0) = 0$, and $\Gamma(y) = \sum_{i=0}^{m} a_iy^i$ be a real valued polynomial. Then

$$\Gamma(G(x-ct)) + s(t)d(x-ct) \approx \Gamma(G(x-ct)) + \sum_{i=0}^{m} a_is^m(t)(\beta_0^m(x-ct) + \beta_1^m(x-ct))$$

b) Let $d \in \mathcal{G}_y(\mathbb{R})$ be an m'SD-function with value (β_0, β_1), $\beta_0^{m-1} + \beta_1^{m-1} = 1$, while G, s and Γ are as above. Then

$$\Gamma(G(x-ct)) + s(t)d(x-ct) \approx \Gamma(G(x-ct)) + a_{m-1}s^{m-1}(t)(\beta_0^{m-1}(x-ct) + \beta_1^{m-1}(x-ct))$$

Now, we are in position to state the main theorem in this subsection.

Theorem 3.4. Let $G(x-ct)$ and $H(x-ct)$ be generalized step functions with the speed c and values (u_0, u_1) and (v_0, v_1), respectively.

Let

$$\alpha = c(v_1 - v_0) - (g_1(u_1)v_1 + g_2(u_1)v_0 - g_1(u_0)v_0 - g_2(u_0)) = c[H] - [g_1(G)H + g_2(G)]$$

to be Rankine-Hugoniot deficit (defined in [26]).

A singular shock wave solution to $(84, 76)$ which has the form of the singular shock wave exists if one of the following two assertions are true:

(i) There exists a solution $(\alpha_0, y_0) \in \mathbb{R}^2$ to the system

$$\alpha[f_1(G)]\alpha_0 + \sigma[H]a_{1,m}y_0 = \sigma(v_1a_{1,m} + a_{2,m}) + \alpha f_1(u_1)$$

$$\alpha[g_1(G)]\alpha_0 + \sigma[H]b_{1,m}y_0 = \sigma(v_1b_{1,m} + b_{2,m}) + \alpha(g_1(u_1) - c),$$

for some $\sigma \in \mathbb{R} \setminus \{0\}$. If m is an even number, then σ also has to be positive and $y_0 \in [0, 1]$.

(ii) \(m \) is an odd number and there exists a solution \((\alpha_0, y_0) \in \mathbb{R} \times \mathbb{R}_+\) to the system
\[
\alpha f_1(G)\alpha_0 + \sigma(a_{1,m-1} |G| + ma_{1,m}GH + ma_{2,m}|G|)y_0 \\
= \sigma(a_{1,m-1}v_1 + ma_{1,m}u_1v_1 + ma_{2,m}u_1 + a_{2,m-1}) + \alpha f_1(u_1) \\
\alpha g_1(G)\alpha_0 + \sigma(b_{1,m-1} |G| + mb_{1,m}GH + mb_{2,m}|G|)y_0 \\
= \sigma(b_{1,m-1}v_1 + mb_{1,m}u_1v_1 + mb_{2,m}u_1 + b_{2,m-1}) + \alpha(g_1(u_1) - c)
\]
for some \(\sigma \in \mathbb{R}_+ \).

The speed of the singular shock waves is always given by
\[
c = \frac{f_1(u_1)v_1 + f_2(u_1) - f_1(u_0)v_0 - f_2(u_0)}{u_1 - u_0} = \frac{[f_1(G)H + f_2(G)]}{|G|}
\]
Again, we shall omit the proof because it is even longer than the proof of the previous theorem, and the idea is almost the same. The main difference is that now \(d^2 \) plays significant role in constructing a solution, even they are zeros in distributional sense.

Remark 3.5. By using the first solution concept, all results from the introduction are recovered, except (79). System (79) do not have delta shock wave solution, but singular shock wave solution where the density of the gas is distributionally greater or equal to zero. This singular shock solution gives the same distribution limit as the original one, obtained by using the measure theoretical and vanishing viscosity in method given in [64] and Huang’s PhD thesis.

Remark 3.6. Let us note that the delta locus is just a curve in \(\mathbb{R}_+^2 \) and the delta singular locus is an area in the same set, in general. This has deep consequence: It is not easy to solve arbitrary Riemann problem without using a singular delta shock locus. The usual delta shock wave can not be followed or can not follow any of the elementary waves, if the system (75) is strictly hyperbolic. But the combination of 1-rarefaction nd singular shock wave or shock and 2-rarefaction wave is quite possible, even in this case. One, eventually successful, idea to connect general delta shock waves with rarefaction ones is given in [34].

2.4.2. Existence theorems using the second solution concept. In the paper [32], the following theorem is proved.

Theorem 3.5. A point \((u_1, v_1)\) is in the delta locus of a point \((u_0, v_0)\) for the Riemann problem (84,76) if \(f_2 \) and \(g_2 \) do not depend on \(v \) and the following holds:

(a) \(g_1(u_0) \neq g_1(u_1) \).

(b) \(f_1(u_0) \frac{k_1(g_1(u_1) - c)}{g_1(u_1) - g_1(u_0)} = f_1(u_1) \frac{k_1(g_1(u_0) - c)}{g_1(u_1) - g_1(u_0)} \),

where \(k_1 = c|G| - [f_1(G)H + f_2] \), and \(c \) is a speed of the delta shock wave.
We shall give the proof of this theorem, just to show the simplicity of this solution concept.

Proof. Let us denote by $s_0(t) = s(t)\beta_0$ and $s_1(t) = s(t)\beta_1$.

The substitution of functions in (87) into (84-76) and the use of the Rankine-Hugoniot conditions gives the following equation

\[
(-c[G] + [f_1(G)H + f_2(G)])\delta(x - ct) + (f_1(s_0(t)u_0)\delta^-(x - ct)
+ f_1(s_1(t)u_1)\delta^+(x - ct))x
= (-c[G] + [f_1(G)H + f_2(G)])\delta(x - ct)
+ (f_1(s_0(t)u_0) + f_1(s_1(t)u_1))\delta'(x - ct) = 0.
\]

Suppose that $u_0 \neq u_1$. From the above equation, one obtains the value of the speed c and the coupling equations for s_0 and s_1:

\[
c = \frac{[f_1(G)H + f_2(G)]}{[G]}
\]

\[
s_0(t)f_1(u_0) + s_1(t)f_1(u_1) = 0.
\]

Doing the same for the second equation, one obtains

\[
-c[H] + (s_0(t) + s_1(t))'\delta(x - ct) - c(s_0(t) + s_1)\delta'(x - ct)
+ [g_1(G)H + g_2(G)]\delta(x - ct) + (s_0(t)g_1(u_0) + s_1(t)g_1(u_1))\delta'(x - ct) = 0.
\]

Since c is already determined,

\[
(s_0(t) + s_1(t))' = c[H] - [g_1(G)H + g_2(G)], \text{ i.e. } s_0(t) + s_1(t) = k_1 t,
\]

and k_1 is called Rankine-Hugoniot deficit ([26]). Now, one obtains the following system of equations for s_0 and s_1:

\[
(g_1(u_0) - c)s_0(t) + (g_1(u_1) - c)s_1(t) = 0
\]

\[
s_0(t) + s_1(t) = k_1 t.
\]

If $g_1(u_0) = g_1(u_1)$, then $k_1 = 0$, i.e. there is no delta shock wave solution. Otherwise,

\[
s_0(t) = \frac{k_1(g_1(u_1) - c)}{g_1(u_1) - g_1(u_0)}
\]

\[
s_1(t) = \frac{k_1(c - g_1(u_0))}{g_1(u_1) - g_1(u_0)}
\]

are determined. Using these values and the second equation in (89), one gets the assertion of the theorem.

Now, let $u_0 = u_1$. Then, from the above equations, one can see that $k_1 = 0$ and there is no delta shock wave solution to (84-76). \(\square\)

Remark 3.7. Again, the solutions admitting delta shock wave, mentioned in introduction has also the same solution in this sense, except (79).
2.4.3. **Admissibility conditions.** A delta or singular shock wave is said to be admissible wave (entropy one) if it is overcompressive, i.e.

\[\lambda_i(u_0) \geq c \geq \lambda_i(u_1), \quad i = 1, \ldots, n, \]

where \(\lambda_i \) is the \(i \)-th characteristic for the system

\[u_t + \nabla f(u)u_x = 0 \]

which is equivalent to (84) for smooth solutions, and \(c \) is the speed of the delta or singular shock wave.

If the \(i \)-th characteristic field is linearly degenerate, i.e.

\[\nabla \lambda_i \cdot r_i = 0, \]

where \(r_i \) is the \(i \)-th eigenvector for the matrix \(\nabla f \), then the delta or singular shock wave with singular support on the \(i \)-th characteristics is admissible and called delta or singular delta discontinuity (36).

2.5. **Intersection of delta or singular shock waves with themselves and other elementary waves.** Before considering interaction of delta or singular shock wave with a rarefaction wave, in the first moment one has to decompose the rarefaction wave into a large family of approximate, but non-entropy physical waves.

The main idea is simple: If delta or singular shock wave interacts with some other wave at the point \((x_0, t_0)\), one has to solve the new initial data.
problem

\[u|_{t=t_0} = \begin{cases} u_0, & x < x_0 \\ u_2, & x < x_0 \end{cases} \]

(93)

\[v|_{t=t_0} = \begin{cases} v_0, & x < x_0 \\ v_2, & x < x_0 + \gamma \delta_{(x_0,t_0)} \end{cases}, \]

where \(\gamma = s_2(t_0) \). In the case of interaction of delta or singular shock wave with rarefaction or shock wave, \(\gamma \) is a strength of delta or singular shock wave. If delta or singular shock waves interacts mutually, then \(\gamma \) is sum of strengths of these waves.

Definition 3.6. The set of points \((u_2, v_2)\) for which there exists a solution to (84,93) in a form of delta (singular) shock wave is called second delta (singular delta) locus.

2.5.1. *Some results for the first solution concept.* A general result about second singular locus for system (84) is not done, but we expect that a result would not be hard to get.

The major problem is intersection of a delta or singular shock wave and rarefaction wave due to continuous multiplication of delta function and some continuous function (rarefaction fan). One has to solve an ordinary differential equation considering admissibility condition. Due to this fact, the singular support of singular shock wave is a curve, not a straight line as before. In special cases it can be done more easily. For example, for system (78) a complete analysis of interaction for singular shock waves and any other elementary wave or another singular shock wave is done (see[35]).

We shall present one phenomena obtained in the cited paper. For an usual Riemann problem, a strength of singular shock wave increases (linearly) with time. During a interaction with rarefaction wave it can decrease with time. If the strength reaches zero, then the singular shock wave decouples into two ordinary shock waves (see Figure 5, where “initial shock wave” is non-admissible one – it is a result of rarefaction wave approximation with a fan of such shock waves)

2.5.2. *Some results for the second solution concept.* In contrast to previous case, there exist a theorem (given in [34]) describing the second delta locus.

Theorem 3.6. A point \((u_2, v_2)\) is in the second delta locus of the point \((u_0, v_0)\) if one of the following is true.

\(f_1 \neq \text{const} \) and

\[\frac{f_1(u_2)v_2 + f_1(u_2) - f_1(u_0)v_0 - f_1(u_0)}{u_2 - u_0} = \frac{g_1(u_0)f_1(u_2) - g_1(u_2)f_1(u_0)}{f_1(u_2) - f_1(u_0)}. \]

(b) \(f_1 \equiv 0 \) and \(g_1(u_0) \neq g_1(u_2) \).

(c) If \((u_2, v_2)\) is in a Hugoniot locus of the point \((u_0, v_0)\).
But, complete analysis is done only for system (82) so far (up to our knowledge). Again, we obtained few new interesting things. The first one is an existence of delta contact discontinuity (which is possible only if a given system is not genuinely nonlinear). And the second one is that we start with piecewise constant function, the solution can be unbounded in a region with Lebesgue measure greater than zero. That is, a part of solution (after intersection of a delta shock wave and rarefaction wave) is L^∞_{loc} function (going to infinity as a square root at zero). One can see illustration in Figure 6: the function w is unbounded, 1 denotes the delta contact discontinuity, while 2 denotes a shock wave. We shall demonstrate how a delta shock curve $x = c(t)$ can be found during the intersection of delta shock wave and rarefaction wave in the case of system (82).

The function $x = c(t)$ has to satisfy the following ordinary differential equation:

\[
\begin{align*}
 -c'(t)\left(\frac{c(t)}{t} - u_0\right) + \frac{1}{2} \left(\left(\frac{c(t)}{t}\right)^2 - u_0^2\right) &= 0, \quad c(t_0) = x_0, \\
\end{align*}
\]

which has a the unique solution

\[
\begin{align*}
 c(t) &= u_0 t - a \sqrt{2(u_0 - u_1)t}, \quad t \geq t_0.
\end{align*}
\]
This example also shows why the intersection problem depends highly on a system in question: The equation (95) should be explicitly solved, which is not always the case.

But the main problems and interesting phenomenons of this intersection appears when the delta shock wave is no longer overcompressive during the above interaction. One can found complete results in [36].

2.6. Numerical verification. For system (78) after mollifying the initial data in a usual way (convolution with a delta model net), one can try to use finite volume scheme (modified Godunov scheme, see [29]) together with moving mesh method ([59]). This was done in [14]. Obtained smooth solution for a short time interval (because approximated delta function will reach machine maximal precision number very quickly) resembles the theoretical results for (78) and Riemann data which admits singular shock wave solution. One can see in Figures 7 and 8 the theoretically expected linear dependence of $s_1(t)$ and $s_2(t)$ on t (using the notation from Definition 3.5).

Using the first solution method in [33], we found a singular shock wave solution to (79) which converges to the measure valued solution described in [64]. After a “natural” change of variables $uv \mapsto u$ one gets the following system in evolution form

\begin{align*}
u_t + w_x &= 0 \\
w_t + (w^2/u)_x &= 0
\end{align*}

which makes sense because u is the density, and there is no vacuum state. Transformed system do not permit measure theoretical results for some
initial data, since square of w appears in the flux function. But, using
Colombeau generalized functions, it has the same (up to association rela-
tion) solutions for all initial data as the original one.

Again, numerical procedure given in [43] resembles the solution given in
[33] (obtained by the first solution method).
Remark 3.8. The word “resembles” in the above context means that the numerical speed of a singular shock wave is arbitrarily near the theoretical one, and the masses delta function part of singular shock wave are linearly growing with respect to time, as expected.

2.7. Open problems. As it was announced in the beginning of the chapter, now we shall present some of numerous open problems. More dimensional cases are totally excluded from the list below, because the number and form of problems in this case is quite large and vague.

(i) Uniqueness in some sense (no results so far).
(ii) Avoiding not wanted delta or singular delta shock waves (Overcompressibility condition is not enough).
(iii) Overcome linearity in one variable (There are some minor results using Colombeau generalized functions).
(iv) General interactions of these new singularities (Probably, the solution highly depends on particular systems).
(v) How delta shock waves can be followed (or follow) rarefaction wave, as singular shock waves do (Some ideas are given in [34]).
Bibliography

[54] S Pilipovic, D Scarpalezos, Divergent type quasilinear Dirichlet problem with singularities, Preprint.

