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Abstract. We discus the existence of delta shock waves obtained as a limit of
two shock waves. For that purpose we perturb a prototype of weakly hyperbolic
2 × 2 system (sometimes called the “generalized pressureless gas dynamics
model”) by an additional term (which may be called the “generalized vanishing
pressure”). The obtained perturbed system will be strongly hyperbolic and
its Riemann problem is solvable by the means of usual elementary waves.
As perturbation vanishes, the solution converges in the space of distribution.
Specially, a pair of shock waves converge to a delta function.

After that we give a formal definition of approximate solution and prove
a kind of entropy argument. The paper finishes by a discussion about delta
shock wave interactions for the original system.

1. Introduction

Unbounded solutions to some conservation law systems called “delta shock waves“
are described in a number of papers. Some of them are in listed as references, and
one can look in [10] for additional ones. All of such solutions are not bounded
variation functions but contain the Dirac delta function. They can be obtained
by different procedures. All of them could be devided into two classes: measure
theoretic (see [1], [7], [8], [12], [13] and [14]), and asymptotic solutions (see [2], [5],
[6], [10] and [11]). Up to our knowledge, all of the systems in these papers are linear
in one of dependant variables and a lot of them are weakly hyperbolic.

One can find different methods for delta shock wave verification in the papers
cited above such as vanishing viscosity or some other physically motivated argu-
ments. The present paper is an attempt to show that such kind of solution may
exists as a “limit” of elementary waves for a given perturbation of the original
system. For that purpose we shall take the Riemann problem for a 2 × 2 weakly
hyperbolic system in a fairly general form and perturb it by an additional term in
its flux. Unlike the standard procedure with vanishing viscosity mentioned above
that produces hyperbolic-parabolic second order systems, we will get strictly hy-
perbolic first order system which can be solved by the means of elementary waves
combination assuming the Riemann initial data. The solution to the perturbed
system will represent a delta shock wave solution to the unperturbed system.

Let g be a non-decreasing function. The system we consider is

ρt + (ρg(u))x = 0

(ρu)t + (ρug(u))x = 0.
(1)
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It serves as a prototype of a non-strictly hyperbolic 2× 2 system sometimes called
the “generalized pressureless gas dynamics” model (see [8], [13] and [14]). One can
find definition of a weak solution belonging in a space of Borel measures in these
papers and that is a desired limit for the perturbed solution.

Our method can be simply described as follows. First, we shall perturb the sec-
ond equation in system (1) with “generalized vanishing pressure” term. Second,
we shall discuss a distributional limit of a weak, bounded variation solution to the
perturbed system. The limit is a Radon measure (sometimes called “signed Radon
measure”), precisely the one given in the cited papers. The proposed perturba-
tion generalizes the one given in [2] for the pressureless gas dynamics system with
vanishing pressure:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + εp(ρ))x = 0,
(2)

where p(ρ) = κργ−1, for γ ∈ (1, 3). We tried to recover all results from that paper
in the case when system (2) is substituted by the general one, (1). The result is
satisfactory, as expected, since the weak solution for (1) is a generalization of the
one for system (2).

After that, we shall propose a form of approximate solutions to the original
system and prove some kind of entropy inequality. Approximated solution resembles
nets of smooth function used in [10] as a solution description, but they have two
crucial differences:

• they are piecewise constant functions
• instead of one shock, now we have two x = c1,εt and x = c2,εt, where the

speeds satisfy limε→0 c1,ε − c2,ε = 0.

At the very end of the paper we try to give an answer on a problem of interaction
of two delta shock waves in system (1). The result is only partial (also in the case of
system (2)), so the interaction problem is still open. Let us mention that the delta
shock wave interaction problem is solved by using the weak asymptotic method
(see [5] and [6]) or splitted delta measures (see [12]) for some other, let say simpler
systems. Unlike the systems above, there are some indications that the result of
two delta shock waves interaction may not produce a delta shock wave with the
vanishing pressure approach for system (1). One can find different clues in the
literature: The solution concept from [13] does not allow two delta shock waves to
interact, but with the solution concept in [8] one gets a single delta shock wave as
a result of the interaction.

2. BV solutions

Let p(0) = 0, g′ and p′ be non-negative functions, p′ a smooth, increasing function
on its domain (0,∞) satisfying p((0,∞)) = (0,∞). Consider the following Riemann
problem in the domain Ω = {(ρ, u) ∈ R+ ∪ {0} × R}

ρt + (ρg(u))x = 0

(ρu)t + (ρug(u) + εp(ρ))x = 0

ρ|t=0 =

{

ρ0, x < 0
ρ1, x > 0

, v|t=0 =

{

v0, x < 0
v1, x > 0

,

(3)

where ε≪ 1 is a perturbation parameter.
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After a change of variables ρu → v, system (3) can be written in the evolution
form

ρt + (ρg(v/ρ))x = 0

vt + (vg(v/ρ) + εp(ρ))x = 0

ρ|t=0 =

{

ρ0, x < 0
ρ1, x > 0

, v|t=0 =

{

v0, x < 0
v1, x > 0

,

(4)

which is strictly hyperbolic, genuinely nonlinear system for ρ > 0.
Its eigenvalues are λ1 = g(v/ρ)−

√

εg′(v/ρ)p′(ρ) and λ2 = g(v/ρ)+
√

εg′(v/ρ)p′(ρ),
while the characteristic vectors are chosen to be

r1 =

(

−1,−v
√

g′(v/ρ) − ρ
√

εp′(ρ)

ρ
√

g′(v/ρ)

)

and

r2 =

(

1,
v
√

g′(v/ρ) + ρ
√

εp′(ρ)

ρ
√

g′(v/ρ)

)

,

such that ∇λi · ri > 0, i = 1, 2.
The unperturbed system (1) has only one eigenvalue λ = g(v/ρ) with the eigen-

vector r = (1, v/ρ), and ∇λ · r ≡ 0.
The rarefaction curves for system (3) are defined by the following systems of

differential equations

dρ

dσ
= −1

dv

dσ
= −v

√

g′(v/ρ) − ρ
√

εp′(ρ))

ρ
√

g′(v/ρ))

ρ|σ=0 = ρ0, v|σ=0 = v0 = ρ0u0,

(5)

for the first rarefaction curve, and

dρ

dσ
= 1

dv

dσ
=
v
√

g′(v/ρ) + ρ
√

εp′(ρ))

ρ
√

g′(v/ρ))

ρ|σ=0 = ρ0, u|σ=0 = u0,

(6)

for the second one. In both cases σ is positive. The contact discontinuity curve for
system (1) is defined by the solution to the system

dρ

dσ
= 1

dv

dσ
=
v

ρ

ρ|t=0 = ρ0, u|t=0 = u0,

(7)

where σ ∈ R. Solution to system (7) is given by v/ρ = v0/ρ0 or u = u0 if one
uses the original variables. By the basic theorem in ODE’s theory, one can see that
the solutions to (5) and (6) tend to the solution to (7) as ε → 0 (the right-hand
sides of systems (5) and (6) tends to the right-hand side of system (7)). Since ρ
is positive in the interior of the domain Ω, and p is an increasing function, one
can see that v from (5) and (6) satisfies v > ρv0/ρ0, i.e. the rarefaction curves for
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system (3) are above contact discontinuity curve for system (1). That means that
rarefaction wave solution for (3) exists if v1/ρ1 > v0/ρ0, i.e. u1 > u0. For a given
initial data (ρ0, u0) and (ρ1, u1) there exists a small enough ε such that one can
always find a solution consisting of two rarefaction waves connected by the vacuum
state (ρ = 0). In that vacuum state variable u takes values from u1

m to u2
m, where

(0, u1
m) is intersection point of the first rarefaction curve starting at (ρ0, u0) with

the line ρ = 0 and (0, u2
m) is intersection point of the inverse second rarefaction

curve starting at (ρ1, u1) with the line ρ = 0. One can find details of the above
explanation in Section 4. Such a solution to (3) tends to the BV solution to (1)
consisting of two contact discontinuities connected by vacuum state.

In the case when u0 = u1 (i.e. v0/ρ0 = v1/ρ1) a solution to (3) will be a
rarefaction wave followed by a shock one or vice versa, depending on a sign of
ρ0 − ρ1. In both cases the limit is a contact discontinuity. See Section 4 for a
detailed explanation, too.

A situation is a bit more complex in the case u0 > u1 when we expect a delta
shock wave as a limit (solution obtained previously in the literature, see [8] for
example). Shock curves for (3) are below the contact discontinuity line u0 = u1 for
system (1). One will see in next section that the solution is always a shock wave
followed by another one. The crucial assumption is that g′(u) > 0. Unlike the
pressureless gas dynamic model (where g(u) ≡ u), we do not have explicit values
for an intermediate state (ρε, uε) between two shock waves. The mast we have is
it exists. But that was enough to successfully finish the analysis of that case. The
limit of such solution tends in the sense of distributions to the one obtained in [8].

3. Shock waves

The main result of the paper is given in the following theorem.

Theorem 1. For each pair of initial states (ρ0, v0), (ρ1, v1) such that u1 = v1/ρ1 <
u0 = v0/ρ0, there exists ε small enough such that the Riemann problem for (3) has
a unique solution consisting of two shock waves. Let us denote the solution to that
problem by (ρε, uε). The distributional limit of this solution is given by

lim
ε→0

ρε = G(x − ct) + t · const ·δ(x− ct),

lim
ε→0

uε = H(x− ct),
(8)

where G and H are step functions with values (ρ0, ρ1) and (u0, u1), resp.

Proof. We shall use variables ρ and u in the proof. Let u1 < u0. Assume that for
(ρε, uε) ∈ R+ ×R there exists a solution to (3) such that (ρ0, u0) is connected with
(ρε, uε) by an one-shock wave and (ρε, uε) is connected with (ρ0, u0) by a two-shock
wave. Denote by c1 and c2 the speeds of the first and second wave, respectively.

Rankine-Hugoniot conditions for the shocks are determined by the system

(u− u0)(g(u) − g(u0)) = ε
(

1
ρ0

− 1
ρ

)

(p(ρ) − p(ρ0)) (9)

(u− u1)(g(u) − g(u1)) = ε
(

1
ρ1

− 1
ρ

)

(p(ρ) − p(ρ1)). (10)

Our first task is to prove that there exists a solution (ρε, uε) ∈ (max{ρ0, ρ1},∞)×
(u1, u0) to system of nonlinear equations (9-10), i.e. that the two shock wave
combination is really a solution to (3).
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Immediately it follows that for every u < u0 there exists a unique ρ > ρ0 such
that (9) is true. This is consequence of the fact that p and g are increasing functions.
That means that there exists a function ρc1 : (u1, u0) → (ρ0,∞), ρc1(u0) = ρ0, such
that (9) holds true for (ρ, u) = (ρc1(u), u). Additionally, one can check that ρc1 is
a decreasing function: Denote by

F (u) := ε

(

1

ρ0
− 1

ρc1(u)

)

(p(ρc1(u)) − p(ρ0)).

Then one can see that F ′(u) < 0 using the left-hand side of (9):

F ′(u) =
d

du
((u− u0)(g(u) − g(u0))) = g(u) − g(u0) + g′(u)(u − u0) < 0,

since g′ > 0 and u < u0. On the other hand we have

F ′(u) =
ε

ρ2
c1(u)

ρ′c1(u)(p(ρc1(u)) − p(ρ0))

+ ε

(

1

ρ0
− 1

ρc1(u)

)

p′(ρc1(u))ρ
′

c1(u)

=ερ′c1(u)

(

p(ρc1(u)) − p(ρ0)

ρ2
c1(u)

+

(

1

ρ0
− 1

ρc1(u)

)

p′(ρc1(u))

)

.

Using the fact that p′ > 0 and ρc1(u) > ρ0 for u ∈ (u1, u0), one can see that
p(ρc1(u))−p(ρ0)

ρ2

c1
(u)

+
(

1
ρ0

− 1
ρc1(u)

)

p′(ρc1(u)) > 0. Thus, sign(F ′(u)) = sign(ρ′c1(u)), i.e.

ρ′c1 < 0 in the interval u ∈ (u1, u0).
In the same way as above one can see that there exists an increasing function

ρc2 : (u1, u0) → (ρ1,∞), ρc2(u1) = ρ1 defined by (10):

(u− u1)(g(u) − g(u1)) = ε

(

1

ρ1
− 1

ρc2(u)

)

(p(ρc2(u)) − p(ρ1)).

Additionally, we have that ρc1(u1) > ρ1 for ε small enough, since the term on the
left-hand side of (9) is bounded with respect to ε, and ρc2(u0) > ρ0, because of the
similar reasons. These properties of functions ρc1 and ρc2 ensures that there exist
unique interaction point (ρε, uε) ∈ (min{ρ0, ρ1},∞)× (u1, u0) of curves defined by
these functions. Therefore ρ = ρε and u = uε define the intermediate point of two
shock wave weak solution to (3). On the other hand, from (9) and (10) it follows that
the value ρε → ∞ as ε → 0, while uε stays bounded. More precisely p(ρε) ∼ 1/ε
as ε→ 0. Thus, we can assume that (ρε, uε) ∈ (max{ρ0, ρ1},∞) × (u1, u0).

In order to obtain the distributional limit of the above solution as ε→ 0 one has
to prove that limε→0 uε and limε→0 εp(ρε) do exist. Let us define

F (ε, ρ, u) := (u0 − u)(g(u0) − g(u)) − ε

(

1

ρ0
− 1

ρ

)

(p(ρ) − p(ρ0)) = 0

G(ε, ρ, u) := (u1 − u)(g(u1) − g(u)) − ε

(

1

ρ1
− 1

ρ

)

(p(ρ) − p(ρ1)) = 0.

(11)
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Since

Ds =

∣

∣

∣

∣

∣

∂F
∂ρ

∂F
∂u

∂G
∂ρ

∂G
∂u

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−ε
(

1
ρ2 (p(ρ) − p(ρ0)) +

(

1
ρ0

− 1
ρ

)

p′(ρ)
)

g(u) − g(u0) + (u− u0)g
′(u)

−ε
(

1
ρ2 (p(ρ) − p(ρ1)) +

(

1
ρ1

− 1
ρ

)

p′(ρ)
)

g(u) − g(u1) + (u− u1)g
′(u)

∣

∣

∣

∣

∣

∣

= − ε

(

1

ρ2
(p(ρ) − p(ρ0)) +

(

1

ρ0
− 1

ρ

)

p′(ρ)

)

(g(u) − g(u1) + (u− u1)g
′(u))

+ ε

(

1

ρ2
(p(ρ) − p(ρ1)) +

(

1

ρ1
− 1

ρ

)

p′(ρ)

)

(g(u) − g(u0) + (u− u0)g
′(u)) < 0,

on the domain (0, 1)× (max{ρ0, ρ1},∞)× (u1, u0), the Implicit Function Theorem
implies that it is possible to define ρε := ρ(ε) and uε := u(ε) from (11). Also, from
the same theorem one can see that

∂ρ

∂ε
=

∣

∣

∣

∣

−∂F
∂ε

∂F
∂u

−∂G
∂ε

∂G
∂u

∣

∣

∣

∣

·D−1
s ,

∂u

∂ε
=

∣

∣

∣

∣

∣

∂F
∂ρ

−∂F
∂ε

∂G
∂ρ

−∂G
∂ε

∣

∣

∣

∣

∣

·D−1
s .

By simple calculations one finds that

∣

∣

∣

∣

−∂F
∂ε

∂F
∂u

−∂G
∂ε

∂G
∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

1
ρ0

− 1
ρ

)

(p(ρ) − p(ρ0)) g(u) − g(u0) + (u− u0)g
′(u)

(

1
ρ1

− 1
ρ

)

(p(ρ) − p(ρ1)) g(u) − g(u1) + (u− u1)g
′(u)

∣

∣

∣

∣

∣

∣

=

(

1

ρ0
− 1

ρ

)

(p(ρ) − p(ρ0))(g(u) − g(u1) + (u− u1)g
′(u))

−
(

1

ρ1
− 1

ρ

)

(p(ρ) − p(ρ1))(g(u) − g(u0) + (u − u0)g
′(u)) > 0.

Since Ds¡0, the above means that ρ(ε) is a decreasing function, i.e. ρε → ∞ as
ε→ 0.

Also,
∣

∣

∣

∣

∣

∂F
∂ρ

−∂F
∂ε

∂G
∂ρ

−∂G
∂ε

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−ε
(

1
ρ2 (p(ρ) − p(ρ0)) +

(

1
ρ0

− 1
ρ

)

p′(ρ)
) (

1
ρ0

− 1
ρ

)

(p(ρ) − p(ρ0))

−ε
(

1
ρ2 (p(ρ) − p(ρ1)) +

(

1
ρ1

− 1
ρ

)

p′(ρ)
) (

1
ρ1

− 1
ρ

)

(p(ρ) − p(ρ1))

∣

∣

∣

∣

∣

∣

=ε
1

ρ2
(p(ρ) − p(ρ0))(p(ρ) − p(ρ1))

(

1

ρ0
− 1

ρ1

)

+ ε

(

1

ρ0
− 1

ρ

)(

1

ρ1
− 1

ρ

)

(p(ρ1) − p(ρ0)).

If ρ0 ≤ ρ1, then 1
ρ0

− 1
ρ1

≤ 0 and p(ρ1)− p(ρ0) ≤ 0. Now, the above determinant is

positive for ε small enough and u(ε) is an increasing function, i.e. uε decreases as
ε → 0. On the other hand, if ρ0 > ρ1, then 1

ρ0

− 1
ρ1

> 0, p(ρ1) − p(ρ0) > 0, and

u(ε) is a decreasing function, i.e. uε increases as ε→ 0.
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In both of the cases, the sequence uε is a monotone one, and since it is bounded,
there exists limε→0 uε =: us. Now, it easy to see that (9) implies

lim
ε→0

εp(ρε) = ρ0(u0 − us)(g(u0) − g(us)),

or that (10) implies

lim
ε→0

εp(ρε) = ρ1(u1 − us)(g(u1) − g(us)).

Thus, us is a unique solution to the equation

f(us) := ρ0(u0 − us)(g(u0) − g(us)) − ρ1(u1 − us)(g(u1) − g(us)) = 0. (12)

Uniqueness follows from the fact that

f ′(us) =ρ0(g(us) − g(u0) + (us − u0)g
′(us))

+ ρ1(g(u1) − g(us) + (u1 − us)g
′(us)) < 0.

Now we have to show that these shock waves are admissible (in Lax sense).The
speeds of the shock waves are given by

c1,ε =
ρεg(uε) − ρ0g(u0)

ρε − ρ0
and c2,ε =

ρ1g(u1) − ρεg(uε)

ρ1 − ρε

. (13)

The first shock is admissible if

g(u0) −
√

εg′(u0)p′(ρ0) >
ρεg(uε) − ρ0g(u0)

ρε − ρ0
> g(uε) −

√

εg′(uε)p′(ρε).

These inequalities imply

ρε(g(uε) − g(u0))

ρε − ρ0
< −

√

εg′(u0)p′(u0) (14)

and
ρ0(g(uε) − g(u0))

ρε − ρ0
> −

√

εg′(uε)p′(ρε). (15)

The left-hand side of (14) tends to g(us) − g(u0) < 0, while the term on the right-
hand side tends to 0 as ε→ 0. Thus, (14) is satisfied for ε small enough. To prove
inequality (15) we substitute ε by 1/p(ρε), and using the fact that ρε → ∞ we have

p(ρ)

ρ2
∼ p′(ρ)

ρ
≪ p′(ρ) as ρ→ ∞.

This proves (15).
The second shock wave is admissible if

g(uε) +
√

εg′(uε)p′(ρε) >
ρ1g(u1) − ρεg(uε)

ρ1 − ρε

> g(uε) +
√

εg′(u1)p′(ρ1).

These inequalities imply

ρ1(g(u1) − g(uε))

ρ1 − ρε

<
√

εg′(uε)p′(uε) (16)

and
ρε(g(u1) − g(uε))

ρ1 − ρε

>
√

εg′(u1)p′(ρ1). (17)

The left-hand side of (17) tends to −(g(u1) − g(us)) > 0, while the term on the
right-hand side tends to 0 as ε → 0. Thus, (17) is satisfied for ε small enough.
Proof of inequality (16) can be done in the same way as the one for (15).
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The direct calculation gives

c2,ε − c1,ε = (ρ0g(u0) − ρ1g(u1) + g(uε)(ρ1 − ρ0))/ρε → 0,

and since (c2,ε − c1,ε)tρε → ρ0g(u0) − ρ1g(u1) + g(us)(ρ1 − ρ0), the solution com-
ponent ρ(x, t) → G(x− ct) + t(ρ0g(u0)− ρ1g(u1) + g(us)(ρ1 − ρ0))δ(x− ct), where
c = limε→0 c1,ε = limε→0 c2,ε. This completes the proof. �

Remark 1. Lax entropy conditions can be true only if ρε ≥ max{ρ0, ρ1} because
S1 is given for ρ increasing while S2 is given for ρ decreasing. Therefore the choice
of the domain where (ρ, u) lie for system (9-10) is appropriate.

4. Other elementary wave combinations

In the previous section we were dealing with the initial data satisfying u0 > u1.
We are now looking at other two possibilities.

4.1. u0 = u1. Let the initial conditions for system (3) be

ρ|t=0 =

{

ρ0, x < 0
ρ1, x > 0

u|t=0 = u0.

(18)

There are two cases (the case ρ0 = ρ1 is trivial: u ≡ u0, ρ ≡ ρ0 is the solution).
In the first case we assume that ρ1 < ρ0. We will show that the states (u0, ρ1)

and (u0, ρ0) can be connected by a rarefaction wave (R1) followed by shock one
(S2). An S2 connection of the state (ρ, u) with the end state (ρ1, u0) satisfies

(u− u0)(g(u) − g(u0)) = ε

(

1

ρ1
− 1

ρ

)

(p(ρ) − p(ρ1)), (19)

where u > u0 and ρ > ρ1 (see (10)). Let us prove that for every fixed ρ > ρ1 there
exists a unique u > u0 such that (19) holds. Define

G(u) := (u− u0)(g(u) − g(u0)).

Since F (u0) = 0 and g is increasing we haveG(u) → ∞ as u→ ∞, andG([u0,∞)) =
[0,∞). The right-hand side of (19) is positive for every ρ > ρ1, so there exists a
u > u0 such that

G(u) = ε

(

1

ρ1
− 1

ρ

)

(p(ρ) − p(ρ1)).

Also,

G′(u) = g(u) − g(u0) + (u− u0)g
′(u) > 0,

since g is increasing and u > u0. That means that such u is unique.
Denote by uS2

= uS2
(ρ) the function defined by

(uS2
(ρ) − u0)(g(uS2

(ρ)) − g(u0)) = ε

(

1

ρ1
− 1

ρ

)

(p(ρ) − p(ρ1)). (20)

We have seen above that uS2
(ρ1) = u0, uS2

: [ρ1, ρ0) → [u0,+∞) and the function
uS2

is well defined. It is increasing in the interval (ρ1, ρ0): Differentiation of (20)
gives

u′S2
(ρ) (g(uS2

(ρ)) − g(u0) + (uS2
(ρ) − u0)g

′(uS2
(ρ)))

=
ε

ρ2
(p(ρ) − p(ρ0)) + ε

(

1

ρ1
− 1

ρ

)

p′(ρ).
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Since p and g are increasing functions and u > u0 as well as ρ > ρ1 we conclude
that u′S2

(ρ) > 0, i.e. uS2
(ρ0) > u0.

Similarly, we define the function uR1
: (ρ1, ρ0) → (u0,+∞) to be the solution to

the differential equation for 1-rarefaction wave:

duR1

dρ
= −

√

εp′(ρ)

ρ
√

g′(uR1
(ρ))

, uR1
(ρ0) = u0.

Since p and g are increasing function one can see that uR1
is decreasing. Therefore,

uR1
(ρ1) > u0.

From the above we conclude that there exists ρm ∈ (ρ1, ρ0) such that um =
uS2

(ρm) = uR1
(ρm), i.e. the solution of problem (3), (18) is given by:

ρε(x, t) =















ρ0, x < λ1(u0, ρ1)t
R1,ρ(x/t), λ1(u0, ρ1)t < x < λ1(um, ρm)t
ρm, λ1(um, ρm)t < x < ct
ρ1, x > ct

uε(x, t) =















u0, x < λ1(u0, ρ1)t
R1,u(x/t), λ1(u0, ρ1)t < x < λ1(um, ρm)t
um, λ1(um, ρm)t < x < ct
u1, x > ct.

(21)

Here, c =
g(u1)ρ1 − g(um)ρm

ρ1 − ρm

is the speed of S2 given by Rankine-Hugoniot con-

dition, and (R1,ρ, R1,u) is a non-constant part of R1.
The case when ρ0 < ρ1 can be done in a similar way. In that case solution

consists from S1 followed by R2 and is given by

ρε(x, t) =















ρ0, x < ct
ρm, ct < x < λ2(um, ρm)t
R2,ρ(x/t), λ2(um, ρm)t < x < λ2(u0, ρ1)t
ρ1, x > λ2(u0, ρ1)t

uε(x, t) =















u0, x < ct
um, ct < x < λ2(um, ρm)
R2,u(x/t), λ2(um, ρm)t < x < λ2(u0, ρ1)
u1, x > λ2(u0, ρ1)t.

(22)

Here, c =
g(um)ρm − g(u0)ρ0

ρm − ρ0
is the speed of S1 and (R2,ρ, R2,u) is a non-constant

part of R2.
It remains to find limits of (21) and (22) as ε → 0. Since ρ ∈ (ρ0, ρ1) or

ρ ∈ (ρ1, ρ0), ρ is bounded in ε. Also, (19) implies that um and ρm satisfy

(um − u0)(g(um) − g(u0)) = ε

(

1

ρ1
− 1

ρm

)

(p(ρm) − p(ρ1)),

and

lim
ε→0

(um − u0)(g(um) − g(u0)) = 0,

which implies limε→0 um = u0 since g is increasing. Boundedness of ρ implies

λi(ρm, um) → g(u0), i = 1, 2, as ε→ 0.
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Thus the solution (uε, ρε) given by (21) or (22) tends to the contact discontinuity

ρ(x, t) =

{

ρ0, x < g(u0)
ρ1, x > g(u0)

u(x, t) = u0

for system (1).

4.2. u0 < u1. In that case the rarefaction curves for problem (3) are given by the
following formulas.

The 1-rarefaction curve starting from (ρ0, u0) is defined by

duR1

dρ
= −

√

εp′(ρ)

ρ
√

g′(uR1
(ρ))

, uR2
(ρ0) = u0, ρ < ρ0,

so

uR1
(ρ) = −

√
ε

∫ ρ

ρ0

√

p′(ρ′)

ρ′
√

g′(uR1
(ρ′))

dρ′ + u0.

Since ρ ∈ [0, ρ0] is bounded and g′ > 0 we have

uR1(ρ) → u0, ε→ 0, ρ ∈ [0, ρ0]. (23)

The 2-rarefaction curve with the starting point (ρ, u) and the end point (ρ1, u1)
is a solution to

duR2

dρ
=

√

εp′(ρ)

ρ
√

g′(uR2
)
, uR2

(ρ1) = u1, ρ < ρ1,

i.e.

uR2
(ρ) =

√
ε

∫ ρ1

ρ

√

p′(ρ′)

ρ′
√

g′(uR1
(ρ′))

dρ′ + u1.

The variable ρ lies in [0, ρ1] and g′ > 0, so

uR2(ρ) → u1, ε→ 0, ρ ∈ [0, ρ0]. (24)

Since we have assumed that u1 > u0, relations (23) and (24) imply that

uR1
(0) > uR2

(0),

diminishing ε if necessary.
In this case, the solution is given as a combination of two rarefaction waves

connected by the vacuum state:

ρε(x, t) =























ρ0, x < λ1(u0, ρ0)
R1,ρ(x/t), λ1(u0, ρ0)t ≤ x < λ1(u

1
m, 0)t

0, λ1(u
1
m, 0)t ≤ x < λ2(u

2
m, 0)t

R2,ρ(x/t), λ2(u
2
m, 0)t ≤ x < λ2(u1, ρ1)t

ρ1, λ2(u1, ρ1)t

uε(x, t) =























u0, x < λ1(u0, ρ0)
R1,u(x/t), λ1(u0, ρ0)t ≤ x < λ1(u

1
m, 0)t

const, λ1(u
1
m, 0)t ≤ x < λ2(u

2
m, 0)t

R2,u(x/t), λ2(u
2
m, 0)t ≤ x < λ2(u1, ρ1)t

u1, λ2(u1, ρ1)t

(25)

We have to inspect limits of u1
m and u2

m as ε→ 0.
We have seen above that u1

m = uR1
(0) → u0. In the same way we have

limε→0 u
2
m = u1.
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So, in the case of u0 < u1 the solution to (3) given by (25) tends to the combi-
nation of two contact discontinuities joined by the vacuum state,

ρ(x, t) =







ρ0, x < g(u0)t,
0, g(u0)t < x < g(u1)t
ρ1, x > g(u1)t

u(x, t) =







u0, x < g(u0)t
const, g(u0)t < x < g(u1)t
u1, x > g(u1)t.

5. Approximated solutions

Delta shock wave solution to (1) can be viewed as a net of piecewise constant
functions (ρε, uε) satisfying initial conditions and the system in approximated sense,
i.e..

∫

ρεϕt + ρεg(uε)ϕx → 0

∫

ρεuεψt + ρεuεg(uε)ϕx → 0,

as ε→ 0, for every pair of test functions ϕ and ψ in C∞

0 (R × R+).
Using the results in the third section one can see that the functions defined by

uε(x, t) =







u0, x < c1,εt
uε, c1,εt < x < c2,εt
u1, x > c2,εt

ρε(x, t) =







ρ0, x < c1,εt
ρε, c1,εt < x < c2,εt
ρ1, x > c2,εt

(26)

for c1,ε, c2,ε, us, ρε determined there, is a solution to (3) if u1 = v1/ρ1 < u0 = v0/ρ0.
Our first task is to prove that (26) is the approximated solution to (1). Second,

we shall show that (26) satisfies a kind of entropy inequality.

Theorem 2. Functions given by (26) with c1,ε, c2,ε, uε, ρε obtained in Section 3
defines an approximate solution to (1).

Proof. We will calculate limits after substitution of step functions for every fixed
ε into (1). Let us denote by Γ1, Γ2 and Γ the sets {x = c1,εt}, {x = c2,εt} and
{x = ct}, resp. Substitution of (26) into the first equation of (1) gives

Aε = − c1,ε(ρε − ρ0)δΓ1
− c2,ε(ρ1 − ρε)δΓ2

+ (ρεg(uε) − ρ0g(u0))δΓ1
+ (ρ1g(u1) − ρεg(uε))δΓ2

= − (ρεg(uε) − ρ0g(u0))δΓ1
− (ρ1g(u1) − ρεg(uε))δΓ2

+ (ρεg(uε) − ρ0g(u0))δΓ1
+ (ρ1g(u1) − ρεg(uε))δΓ2

= 0,

where we have used that

c1,ε =
ρεg(uε) − ρ0g(u0)

ρε − ρ0
and c2,ε =

ρ1g(u1) − ρεg(uε)

ρ1 − ρε

.
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Substitution in the second equation gives

Bε = − c1,ε(ρεuε − ρ0u0)δΓ1
− c2,ε(ρ1u1 − ρεuε)δΓ2

+ (ρεuεg(uε) − ρ0u0g(u0))δΓ1
+ (ρ1u1g(u1) − ρεuεg(uε))δΓ2

=
−(ρεg(uε) − ρ0g(u0))(ρεuε − ρ0u0) + (ρε − ρ0)(ρεuεg(uε) − ρ0u0g(u0))

ρε − ρ0
δΓ1

+
(ρεg(uε) − ρ1g(u1))(ρ1u1 − ρεuε) + (ρ1 − ρε)(ρ1u1g(u1) − ρεuεg(uε))

ρ1 − ρε

δΓ2

=
ρερ0uεg(u0) + ρερ0u0g(uε) − ρερ0u0g(u0) − ρερ0uεg(uε)

ρε − ρ0
δΓ1

+
ρερ1u1g(uε) + ρερ1uεg(u1) − ρερ1uεg(uε) − ρερ1u1g(u1)

ρ1 − ρε

δΓ2
.

The coefficients in front of δΓ1
and δΓ2

converge as ε → 0 (because ρε → ∞, as
ε→ 0). Also, Γ1 and Γ2 tends to Γ as ε→ 0. Therefore, the distributional limit of
Bε is

lim
ε→0

Bε =(ρ0usg(u0) + ρ0u0g(us) − ρ0u0g(u0) − ρ0usg(us))δΓ

− (ρ1u1g(us) + ρ1usg(u1) − ρ1usg(us) − ρ1u1g(u1))δΓ

=(ρ0(us − u0)(g(u0) − g(us)) − ρ1(u1 − us)(g(us) − g(u1)))δΓ.

Taking the limit of (9) as ε→ 0 one gets

1

ρ0
lim
ε→0

εp(ρε) = (us − u0)(g(us) − g(u0)),

and repeating the procedure for (10),

1

ρ1
lim
ε→0

εp(ρε) = (u1 − us)(g(u1) − g(us)),

because uε → us as ε→ 0. Since limε→0 εp(ρε) exists,

ρ0(us − u0)(g(u0) − g(us)) = ρ1(u1 − us)(g(us) − g(u1)),

and limε→0 Bε = 0.
�

6. Entropy and entropy flux pairs

As it was expected, system (1) does not admit a convex entropy function, but
one can construct semi-convex entropy function η (D2η is positive semi-definite).

We shall look for entropy and entropy-flux functions in the region where ρ > 0.
Using (ρ, v) variables and (4), one can find that an entropy function is of the form
η(ρ, v) = θ(v/ρ)ρ + θ(v/ρ). Semi-convex condition on η implies that θ has to be
convex, θ′′ > 0, and θ ≡ 0. For such η, the entropy-flux is q(ρ, v) = θ(v/ρ)g(v/ρ)ρ.
Now, we shall return to (ρ, u) variables because the calculations has a simpler form
in this case.

As above, denote by Γ1, Γ2 and Γ the sets {x = c1,εt}, {x = c2,εt} and {x = ct},
resp, where c = limε→0 ci,ε, i = 1, 2. Substitution of (26) into ηt + qx gives

ηt + qx = − c1,ε (θ(uε)ρε − θ(u0)ρ0) δΓ1
− c1,ε (θ(u1)ρ1 − θ(uε)ρε) δΓ2

+ (θ(uε)g (uε) ρε − θ(u0)g (u0) ρ0) δΓ1

+ (θ(u1)g (u1) ρ1 − θ(uε)g (uε) ρε) δΓ2
.
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Using the formulas for the speeds (13) one gets

−c1,εθ(uε)ρε + θ(uε)g (uε) ρε =ρεθ(uε)(g(uε) −
ρεg(uε) − ρ0g(u0)

ρε − ρ0
)

=ρ0ρεθ(uε)
g(u0) − g(uε)

ρε − ρ0

→ρ0θ(us)(g(u0) − g(us)),

c2,εθ(uε)ρε − θ(uε)g (uε) ρε =ρεθ(uε)(
ρ1g(u1) − ρεg(uε)

ρ1 − ρε

− g(uε))

=ρ1ρεθ(uε)
g(uε) − g(u1)

ρε − ρ1

→ρ1θ(us)(g(us) − g(u1)),

c1,εθ(u0)ρ0 − θ(u0)g (u0) ρ0 →− ρ0θ(u0)(g(u0) − g(us)),

−c2,εθ(u1)ρ1 + θ(u1)g (u1) ρ1 →− ρ1θ(u1)(g(us) − g(u1)).

Since all of these limits are finite,

ηt + qx →(ρ0θ(us)(g(u0) − g(us)) + ρ1θ(us)(g(us) − g(u1))

− ρ0θ(u0)(g(u0) − g(us)) − ρ1θ(u1)(g(us) − g(u1)))δΓ.

Thus the entropy condition is

ρ0(θ(us) − θ(u0))(g(u0) − g(us)) + ρ1(θ(us) − θ(u1))(g(us) − g(u1)) ≤ 0.

This is true if

ρ0(g(u0) − g(us))θ(u0) + ρ1(g(us) − g(u1))θ(u1)

≥(ρ0(g(u0) − g(us)) + ρ1(g(us) − g(u1)))θ(us),

i.e. if

θ(us) ≤
ρ0(g(u0) − g(us))

ρ0(g(u0) − g(us)) + ρ1(g(us) − g(u1))
θ(u0)

+
ρ1(g(us) − g(u1))

ρ0(g(u0) − g(us)) + ρ1(g(us) − g(u1))
θ(u1).

But, since

ρ0(u0 − us)(g(u0) − g(us)) − ρ1(u1 − us)(g(u1) − g(us)) = 0

(which is true by definition of us, see (12)) is equivalent to

us =
ρ0(g(u0) − g(us))

ρ0(g(u0) − g(us)) + ρ1(g(us) − g(u1))
u0

+
ρ1(g(us) − g(u1))

ρ0(g(u0) − g(us)) + ρ1(g(us) − g(u1))
u1,

the entropy follows directly from the fact that θ is a convex function.

7. Interaction of δ shock waves

Previous considerations we will use to describe δ shock waves interaction. Con-
sider system (3) with the initial condition:

ρ|t=0 =







ρ0, x < a1

ρ1, a1 < x < a2

ρ2, x > a2

, v|t=0 =







u0, x < a1

u1, a1 < x < a2

u2, x > a2

,
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where u0 > u1 > u2 and a1 < a2. According to the results of the previous section,
the states (u0, ρ0) and (u1, ρ1) as well as (u1, ρ1) and (u2, ρ2) are connected by the
combination of S1 and S2 with the intermediate states (u0

1,ε, ρ
0
1,ε) and (u0

2,ε, ρ
0
2,ε),

respectively. Also, p(ρ0
i,ε) = O(1/ε), u0

i,ε → u0
i,s as ε→ 0, i = 1, 2.

The speeds of 1-shock connecting (u0, ρ0) and (u0
1,ε, ρ

0
1,ε) and 2-shock connecting

(u0
1,ε, ρ

0
1,ε) and (u1, ρ1) are, respectively,

c11,ε =
ρ0g(u0) − ρ0

1,εg(u
0
1,ε)

ρ0 − ρ0
1,ε

and c12,ε =
ρ0
1,εg(u

0
1,ε) − ρ1g(u1)

ρ0
1,ε − ρ1

and the speeds of 1-shock connecting (u1, ρ1) and (u0
2,ε, ρ

0
2,ε) and 2-shock connecting

(u0
2,ε, ρ

0
2,ε) and (u2, ρ2) are, respectively,

c21,ε =
ρ0
2,εg(u

0
2,ε) − ρ1g(u1)

ρ0
2,ε − ρ1

and c22,ε =
ρ2g(u2) − ρ0

2,εg(u
0
2,ε)

ρ2 − ρ0
2,ε

.

Lax admissibility conditions imply c12,ε ≥ g(u0
1,ε) +

√

εg′(u0
1,ε)p

′(ρ0
1,ε) and c21,ε ≤

g(u0
2,ε) −

√

εg(u0
2,ε)p

′(ρ0
2,ε), where g is increasing function and u0

1,ε > u0
2,ε. That

implies c12,ε > c21,ε. So, there exists a moment t∗ε > 0 such that

x∗ε := c12,εt
∗

ε + a1 = c21,εt
∗

ε + a2,

and

t∗ε =
a2 − a1

c12,ε − c21,ε

, x∗ε =
a2c12,ε − a1c21,ε

c12,ε − c21,ε

.

This is the moment of the first interaction which happens between the 2-shock wave
connecting (u0

1,ε, ρ
0
1,ε) and (u1, ρ1), and the 1-shock wave connecting (u0

1,ε, ρ
0
1,ε) and

(u1, ρ1).
So, in the moment t∗ε the functions uε and ρε representing the solution of the

considered problem have the form

ρε(x, t
∗

ε) =















ρ0, x < c11,εt
∗

ε + a1

ρ0
1,ε, c11,εt

∗

ε + a1 < x < c12,εt
∗

ε + a1

ρ0
2,ε, c21,εt

∗

ε + a2 < x < c22,εt
∗

ε + a2

ρ2, x > c22,εt
∗

ε + a2

uε(x, t
∗

ε) =















u0, x < c11,εt
∗

ε + a1

u0
1,ε, c11,εt

∗

ε + a1 < x < c12,εt
∗

ε + a1

u0
2,ε, c21,εt

∗

ε + a2 < x < c22,εt
∗

ε + a2

u2, x > c22,εt
∗

ε + a2

The “normal” procedure would be to track all wave interactions after that time
t∗ε. At least isentropic gas dynamics system (2) has a bounded global solution (see
[3] and [9]). But the existence of a solution was not enough for us to conclude
something about its limit as ε → 0. So, the complete result of delta shock waves
interaction is left open. There are some numerical results which suggest that such
a result would not be (always) a single delta shock as expected in sticky particle
model ([1] or [7]) and paper [8]. We propose a different procedure described bellow,
but we did not succeed to solve the complete problem as one could see.

In the moment t∗ε we stop the clock and re-approximate the solution. According
to the results of the previous section, distributional limits of the functions ρε(x, t

∗

ε)
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Figure 1

and uε(x, t
∗

ε) are given by

ρε(x, t
∗

ε) →G0(x− a1 − c1t
∗)

+ t∗ (ρ0g(u0) + g(us1)(ρ1 − ρ0) − ρ2g(u2),

+g(us2)(ρ2 − ρ1)) δ(x− a1 − c1t
∗)

uε(x, t
∗

ε) →H0(x − a1 − c1t
∗),

(27)

where

G0(x) =

{

ρ0, x < 0
ρ1, x > 0

, H0(x) =

{

u0, x < 0
u1, x > 0

,

c1 = lim
ε→0

c11,ε = lim
ε→0

c12,ε = g(us1), us1∈(u1, u0),

c2 = lim
ε→0

c21,ε = lim
ε→0

c22,ε = g(us2), us2∈(u2, u1),

t∗ = lim
ε→0

t∗ε =
a1 − a2

c1 − c2
,

and (us1,us2) is the solution to the system

ρ0(u0 − u1s)(g(u0) − g(u1s)) − ρ1(u1 − u1s)(g(u1) − g(u1s) = 0,

ρ1(u1 − u2s)(g(u1) − g(u2s)) − ρ2(u2 − u2s)(g(u2) − g(u2s) = 0.

Now, we approximate distributions on the right-hand sides of (27) by piecewise
constant families of functions

ρ̃ε(x, t
∗) =







ρ0, x− x∗ε < −a(ε)
ρ1

ε, −a(ε) < x− x∗ε < a(ε)
ρ2, x− x∗ε > a(ε)

ũε(x, t
∗) =







u0, x− x∗ε < −a(ε)
u1

ε, −a(ε) < x− x∗ε < a(ε)
u2, x− x∗ε > a(ε)

(28)
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in the way described later. The idea is to solve (3) in the region t > t∗ with the
new initial data (28) using the elementary waves and to connect such a solution
to the already obtained in the region t < t∗. (The connected solution will be only
approximated solution to (1)). In order to get such connection it is necessary to
ensure ρ and ρu to be continuous in the distributional sense across the line t = t∗.
(One has to take care only about the terms with t-derivative in (1) across the
line). Denote by Γ1 := {(x, t∗) : c11,εt

∗

ε + a1 < x < c12,εt
∗

ε + a1}, Γ2 := {(x, t∗) :
c21,εt

∗

ε + a1 < x < c22,εt
∗

ε + a2} and Γ := {(x, t∗) : −a(ε) < x − x∗ε < a(ε)}.
Distributional continuity of ρ and ρu implies

ρ1
ε|Γ| ≈ ρ0

1,ε|Γ1| + ρ0
2,ε|Γ2|

ρ1
ε|Γ|u1

ε ≈ ρ0
1,ε|Γ1|u0

1,ε + ρ0
2,ε|Γ2|u0

2,ε,

where | · | is one dimensional Lebesgue measure. The values α1 := ρ0
1,ε|Γ1| and

α2 := ρ0
2,ε|Γ2| are strengths of delta shock waves at the time t = t∗ε , in fact. From

the above system it follows that u1
ε is convex combination of u0

1,ε and u0
12,ε:

u1
ε =

α1

α1 + α2
u0

1,ε +
α2

α1 + α2
u0

2,ε,

while we are still in position to chose ρ1
ε providing |Γ| → 0 as ε→ 0. The situation

is similar when delta shock wave interacts with a rarefaction wave. One just has to
split the rarefaction wave in a fan of non-entropic shock waves and apply the same
procedure.

Assumption 1. If possible, let ρ1
ε and u1

ε be solutions to the system

(u1
ε − u0)(g(u

1
ε) − g(u0)) = ε

(

1

ρ0
− 1

ρ1
ε

)

(

p(ρ1
ε) − p(ρ0)

)

(u1
ε − u2)(g(u

1
ε) − g(u2)) = ε

(

1

ρ2
− 1

ρ1
ε

)

(

p(ρ1
ε) − p(ρ2)

)

.

for every ε ∈ (0, 1).
The solution (ρ1

ε, u
1
ε) to the above system need not to exist, obviously. One can

assume that one of the values (ρ1, u1) or (ρ2, u2) has to satisfy an a priori condition
(belong to so called “second delta locus” – see [11] for that notion). In the present
case there is no real use of that value, but in principle it could provide a possibility
for adding some other wave on a side of the delta shock wave. Using the assumption,
the states (u0, ρ0) and (u1

ε, ρ
1
ε) are connected by 1-shock of the speed

c11,ε =
ρ1

εg(u
1
ε) − ρ0g(u0)

ρ1
ε − ρ0

,

and the states (u1
ε, ρ

1
ε) and (u2, ρ2) are connected by 2-shock of the speed

c12,ε =
ρ1

εg(u
1
ε) − ρ2g(u2)

ρ1
ε − ρ2

.

In order to have continuity of distributional limits from both sides of the line t = t∗ε,
put

a(ε) =
t∗ε
(

ρ0g(u0) + g(u1
ε)(ρ

1
ε − ρ0) − ρ2g(u2) + g(u2

ε)(ρ2 − ρ1
ε)
)

2ρ1
ε

. (29)
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Then

ρ̃ε(x, t
∗)→G02(x− a1 − c1t∗)

+ t∗ (ρ0g(u0) + g(us1)(ρ1 − ρ0) − ρ2g(u2),

+g(us2) ∗ (ρ2 − ρ1)) ∗ δ(x− a1 − c1 ∗ t∗)
ũε(x, t

∗

ε)→H02(x− a1 − c1 ∗ t∗),

where c1 := limε→0 c
1
1,ε = limε→0 c

1
2,ε.

According to the choice of ρ1
ε and u1

ε, the states (u0, ρ0) and (u1
ε, ρ

1
ε) can be

connected by 1-shock, while the states (u1
ε, ρ

1
ε) and (u2, ρ2) can be connected by

2-shock. Therefore, the solution to (3), (27) for t > t∗ is given by

ρ̃ε(x, t) =







ρ0, x < c11,εt− a(ε)
ρ1

ε, c11,εt− a(ε) < x < c12,εt+ a(ε)
ρ2, x > c12,εt+ a(ε)

ũε(x, t) =







u0, x < c11,εt− a(ε)
u1

ε, c11,εt− a(ε) < x < c12,εt+ a(ε),
u2, x > c12,εt+ a(ε)

Also, it is not difficult to see that for t > t∗ we have

ρ̃ε(x, t) →G02(x− a1 − c1t)

+ [t∗ (ρ0g(u0) + g(us1)(ρ1 − ρ0) − ρ2g(u2) + g(us2)(ρ2 − ρ1))

+(t− t∗) (ρ0g(u0) − ρ2g(u2) + g(us)(ρ2 − ρ0))] δ(x− a1 − c1t),

ũε(x, t) →H02(x − a1 − c1t).

The constant u1
s ∈ (u2, u0) is the solution of the equation:

ρ0(u0 − u1
s)(g(u0) − g(u1

s)) − ρ2(u2 − u1
s)(g(u2) − g(u1

s)) = 0.

Now, the global approximate solution (ρG
ε , u

G
ε ) of problem (3), (27) is given by

ρG
ε (x, t) =

{

ρε(x, t), t < t∗ε
ρ̃ε(x, t), t > t∗ε

and uG
ε (x, t) =

{

uε(x, t), t < t∗ε
ũε(x, t), t > t∗ε

. (30)

7.1. Admissibility of re-approximated solution. Let us first observe that both
below and above the line t = t∗ε, the solution (30) satisfies the entropy condition

ηt + qx ≤ 0, η(ρ, u) = f(u)ρ, q(ρ, u) = g(u)f(u)ρ, ρ > 0,

where f is a convex function, f ′′ > 0.
If one proves that ηt ≤ 0 across the line γ : t = t∗ε, then the solution (30) satisfies

the complete entropy condition. Thus we need

〈ηt, ϕ〉 = −
∫

t<t∗
ε

ηϕt −
∫

t>t∗
ε

ηϕt

= −
∫

R

η|t=t∗
ε
−0ϕdx+

∫

R

η|t=t∗
ε
+0ϕdx ≤ 0.

(31)

to hold on the line γ. The integrals in (31) over γ\(Γ ∪ Γ1 ∪ Γ2) from upper and
lower side annihilates, and (31) is now

2a(ε)ρ1
εθ(u

1
ε) − |Γ1|ρ0

1,εθ(u
0
1ε) − |Γ2|ρ0

2,εθ(u
0
2,ε) ≤ 0.
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From the previous section, one knows that 2a(ε)ρ1
ε = |Γ1|ρ0

1,ε + |Γ2|ρ0
2,ε (a(ε) was

chosen to satisfy this relation, see (29)), and that

A1 := |Γ1|ρ0
1,ε → t∗ (ρ0g(u0) + g(us1)(ρ1 − ρ0) − ρ1g(u1))

A2 := |Γ2|ρ0
2,ε → t∗ (ρ1g(u1) + g(us2)(ρ2 − ρ1) − ρ2g(u2)) .

With such a notation, entropy inequality reads

θ(u1
s) ≤

A1

A1 +A2
θ(us1) +

A2

A1 +A2
θ(us2).

Since u1
s = A1

A1+A2

us1 + A2

A1+A2

us2 and θ is convex, we are in position to tell that it
always holds if Assumption 1 is satisfied.
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