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INVERSE OF A SPLIT DELTA SHOCK WITH APPLICATIONS

SANA ADEEL MOHAMED AND MARKO NEDELJKOV

Abstract. A split delta shock is a variant of so called delta shock solution
types. We define a notion of a split delta shock inverse and use it for solving

some conservation law systems in a general form. We give a way of calculating

such formal solutions with some examples. They can be used in cases of
systems that does not posses a bounded solution for each Riemann initial

data.

1. Introduction

Split delta shock are introduced in order to solve some conservation laws systems
with unbounded solutions (see [5]). The main idea is to split an entire domain
R × R+ into pieces. In the interior of each such piece unknowns are chosen to
be classical solutions to the system while a boundary could contain a signed delta
measure. It is called split delta shock. After performing all necessary operations we
join these pieces back and use the distributional derivatives in the original system.
This procedure works well if the system is linear in one of unknowns. Here, we
expand the above procedure for systems that involves division by a split delta
shock and use it in calculations.

In the paper, one will find a formal calculation in a fairly general case of systems.
One can look for specific models in in [3], [8] and [9] for a chromatography model
and in [1] and [4] for the Chaplygin gas dynamics model.

2. The definition of split delta shocks

Let Ωi 6= ∅, i = 1, ..., n be a finite family of disjoint open sets with piecewise

smooth boundary curves Γi, i = 1, ...,m: Ωi ∩ Ωj = ∅,
⋃n
i=1 Ωi = R2

+ where Ωi
denotes the closure of Ωi. Denote by C(Ωi) the space of bounded and continuous
real-valued functions on Ωi, equipped with the L∞-norm. LetM(Ωi), be the space
of measures on Ωi.

Define

CΓ =

n∏
i=1

C(Ωi), MΓ =

n∏
i=1

M(Ωi).

The multiplication of G = (G1, ..., Gn) ∈ CΓ and D = (D1, ..., Dn) ∈MΓ is defined
to be an element D ·G = (D1G1, ..., DnGn) ∈MΓ, where each component is defined
as the usual product of a continuous function and a measure.

Every measure on Ωi can be identified with a measure defined on R2
+ with support

in Ωi. Thus one can define the mapping m in the following way

m :MΓ →M(R2
+), m(D) = D1 +D2 + ...+Dn.

A typical example is obtained when R2
+ is divided into two regions Ω1, Ω2 by a

piecewise smooth curve x = γ(t). The delta function δ(x − γ(t)) ∈ M(R2
+) along

s24 janat@yahoo.com.
marko@dmi.uns.ac.rs, partialy supported by the projects OI174024, III44006 (Ministry of Sci-

ence, Republic off Serbia), 142-451-3652 and 114-451-2098 (Provincial secretariat for science Au-
tonomous Province of Vojvodina).

1



2 SANA ADEEL MOHAMED AND MARKO NEDELJKOV

the line x = γ(t) can be split in a non unique way into a left-hand side D− ∈M(Ω1)
and the right-hand component D+ ∈M(Ω2) such that

δ(x− γ(t)) = α0(t)D− + α1(t)D+ = m(α0(t)D− + α1(t)D+)

with α0(t) + α1(t) = 1. The solution concept which allows to incorporate such
two sided delta functions as well as shock waves is modeled along the lines of the
classical weak solution concept and proceeds as follows:
Step 1: Perform all nonlinear operations of functions in the space CΓ.
Step 2: Perform multiplications with measures in the space MΓ.

Step 3: Map the spaceMΓ intoM(R2
+) by means of the map m and embed it into

the space of distributions.
Step 4: Perform the differentiation in the sense of distributions and require that
the equation is satisfied in this sense.

Let us define an inverse of a split delta function now. Suppose that

u =

{
u0, x ≤ ct
u1, x ≥ ct

+ α0δ
−(x− ct) + δ+(x− ct).

We define 1
u ∈ CΓ, Γ = {(x, t) : x = ct}, to be a function satisfying 1

uu = 1 in the
MΓ sense. Using the above definition that means

1

u
·

({
u0, x ≤ ct
u1, x ≥ ct

+ α0(t)δ−(x− ct) + α1(t)δ+(x− ct)

)

=1 +
α0(t)

u0
δ−(x− ct) +

α1(t)

u1
δ+(x− ct) m7→ 1 +

(α0(t)

u0
+
α1(t)

u1

)
δ(x− ct).

Thus, α0(t)/u0 + α1(t)/u1 = 0 should hold.

3. Systems given in a general form

Let us consider Riemann problem

ut +
(a0 + a1u

v
+
b0 + b1v

u

)
x

= 0, u(x, 0) =

{
u0, x < 0

u1, x > 0

vt +
( ā0 + ā1u

v
+
b̄0 + b̄1v

u

)
x

= 0, v(x, 0) =

{
v0, x < 0

v1, x > 0.

(1) ?sys?

We assume that (u, v) ∈ Ω, where Ω ⊂ R2 is a physical domain, i.e. a set of all
possible values for (u, v). Let us looking for a solution in the form of two component
split delta shock

u(x, t) =

{
u0, x ≤ ct
u1, x ≥ ct︸ ︷︷ ︸

=:û

+α0tδ
− +α1tδ

+, v(x, t) =

{
v0, x ≤ ct
v1, x ≥ ct︸ ︷︷ ︸

=:v̂

+β0tδ
− + β1tδ

+,

In the sequel, notation [u] is used for a jump in û. For a given point (u0, v0) in a
physical domain Ω for (1), a set of all (u1, v1) in the domain such that there exists
a split delta shock connecting these states is called split delta locus denoted by
L((u0, v0)).

The definition of the inverses of u and v gives the following equations

(2) ?i12? α0/u0 + α1/u1 = 0, β0/v0 + β1/v1 = 0.
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Using the procedure for split delta shock calculations, from the first equation in
(1) one gets

− c[u]δ +
[a0 + a1u

v
+
b0 + b1v

u

]
δ + (α0 + α1)δ

− ct(α0 + α1)tδ′ +
(a1

v0
α0 +

a1

v1
α1 +

b1
u0
β0 +

b1
u1
β1

)
tδ′ = 0,

where the support of δ and δ′ is the line x = ct.
The above equality is true if and only if

α0 + α1 = c[u]−
[a0 + a1u

v
+
b0 + b1v

u

]
=: κ1(3) ?e11?

c(α0 + α1) =
a1

v0
α0 +

a1

v1
α1 +

b1
u0
β0 +

b1
u1
β1.(4) ?e12?

With the same arguments, one gets

β0 + β1 = c[v]−
[ ā0 + ā1u

v
+
b̄0 + b̄1v

u

]
=: κ2(5) ?e21?

c(β0 + β1) =
ā1

v0
α0 +

ā1

v1
α1 +

b̄1
u0
β0 +

b̄1
u1
β1,(6) ?e22?

from the second equation in (1).

3.1. A general algorithm. If u0 6= u1 and v0 6= v1 then the variables α0, α1, β0, β1

are uniquely determined by the following systems

(7) ?ab?
α0 + α1 = κ1 β0 + β1 = κ2

α0/u0 + α1/u1 = 0 β0/v0 + β1/v1 = 0.

We have used (2), (3) and (5). All possible values for c and a relation between left-
and right-hand initial data are determined combining (3) and (4) as well as (3) and
(4) and solving the following system of equations (quadratic in c)

a1(α0/v0 + α1/v1) + b1(β0/u0 + β1/u1) = cκ1

ā1(α0/v0 + α1/v1) + b̄1(β0/u0 + β1/u1) = cκ2.

After solving (7) and inserting a solution in the above system one gets

a1

[u
v

]
κ1/[u] + b1

[ v
u

]
κ2/[v] =cκ1

ā1

[u
v

]
κ1/[u] + b̄1

[ v
u

]
κ2/[v] =cκ2

(8) ?eq?

In general, we expect that one could get a value(s) for c and a curve with possible
right-hand states that could be connected ny the left-hand ones by a split delta
shock. Of course, there are a lot of specific situations. We will look at some of
them in this paper.

For a real model one has to check whether (u1, v1) ∈ Ω and an admissibility
condition for split delta shocks, too. The most usual admissibility condition is
that split delta shocks are required to be overcompressive, i.e. all characteristics
should run into the shock curve. Another admissible solution is delta shock that
propagates along a characteristics. It is called a delta contact discontinuity (see [5]
or [7]). That is possible for systems having a linearly degenerate field.
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4. Some special cases

4.1. b0 = b1 = ā0 = ā1 = 0. In this case, (8) reduces to a1

[
u
v

]
= c[u], b̄1

[
v
u

]
= c[v].

That is, a speed c is uniquely determined with split delta locus given by the relation

L((u0, v0)) = {(u1, v1) ∈ Ω : a1

(u1

v1
− u0

v0

)
(v1 − v0) = b̄1

( v1

u1
− v0

u0

)
(u1 − u0)}.

Note that this relation can be easily solved now (quadratic equation for v1 or u1),
contrary to the general case given in (8).

4.2. b0 = b1 = b̄0 = b̄1 = 0. Now, there is only one condition for an inverse 1/v,
relation (2). Equations (3–6) are reduced to

α0 + α1 = c[u]−
[a0 + a1u

v

]
=: κ1,(9) ?f11?

c(α0 + α1) =
a1

v0
α0 +

a1

v1
α1.(10) ?f12?

β0 + β1 = c[v]−
[ ā0 + ā1u

v

]
=: κ2,(11) ?f21?

c(β0 + β1) =
ā1

v0
α0 +

ā1

v1
α1.(12) ?f22?

One could easily see that the above equations imply κ1 = a1
ā1
κ2 and that relation

uniquely determined a speed c of a split delta shock and (12) is satisfied.
Provided u0 6= u1 and v0 6= v1, one could also see that β0 and β1 are determined

from (2) and (11) while α0 and α1 are determined from (9) and (10). That means
there are no restriction on (u1, v1) and L((u0, v0)) = Ω. Of course, one should
exclude all non-physical and non-admissible points, but that depends on a concrete
model.

4.3. Chromatography system.

(13) ?chrom?

((
1 +

A

1− u+ v

)
u

)
t

+ ux = 0,

((
1 +

B

1− u+ v

)
v

)
t

+ vx = 0.

Physical domain for solutions is defined by 1− u+ v >, or v− u > −1 and A < B.
In [3] and [9] one can find all relevant things about that system. Let us note that
the real model has determined values for (x, 0), x > 0 and for (0, t), t > 0 instead
of the standard initial data, as we have assumed above. We use this system with
simplifications just as an illustration. One can also look in [2] about the model but
with A = B = 1. That version is much simpler than (13). In order to simplify
notation, we use the new variable w = 1 − u + v > 0 instead of v. Also, with a
change of variables t 7→ t− x system (13) becomes(

Au

w

)
t

+ ux = 0,

(
(B −A)u− 1

w

)
t

+ wx = 0.

Let us try with a split delta shock solution of the form

u(x, t) =

{
u0, x ≤ ct
u1, x ≥ ct

+ α0(t)D− + α1(t)D+

w(x, t) =

{
w0, x ≤ ct
w1, x ≥ ct

+ β0(t)D− + β1(t)D+,
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even the system is not in form (1) we were using above. After some direct calcula-
tions, we have the following equations analogous to (3-6)

A

w0
α0 +

A

w1
α1 = c

[Av
w

]
− [v]

c
( A
w0
α0 +

A

w1
α1

)
= α0 + α1

B −A
w0

α0 +
B −A
w1

α1 = c
[ (B −A)v − 1

w

]
− [w]

c
(B −A

w0
α0 +

B −A
w1

α1

)
= β0 + β1.

Also, the inverse condition β0

w0
+ β1

w1
= 0 should hold. Assume that w0 6= w1

(otherwise we do not expect a split delta shock). Using the first and the third
equation above, one could se that the necessary condition is κ1

A = κ2

B−A . That
condition determines a speed of the wave. Then α0 and α1 can be calculated from
the first and the second equation, while β0 and β1 from the fourth equation and
the inverse condition.

That was only a demonstration of split delta shock calculation, one could find
all physically relevant solutions in [3], [6] or [9].
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