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Abstract. We adopt the theory of uniformly continuous operator semigroups for use in Colombeau
generalized function spaces. The main objective is to find a unique solution to a class of semi-
linear hyperbolic systems with singularities. The idea of regularized derivatives is to transform
unbounded differential operators into bounded, integral ones. This idea is used here to permit
working with uniformly continuous operators.

1. Introduction

Generalized uniformly continuous semigroups are introduced in [5] in order to use the classical
theory of semigroups in solving linear partial differential equations with singularities in Colombeau
generalized function spaces. This paper is a continuation of that effort. Our aim is to solve some
semilinear hyperbolic systems. Singularities in initial data or in coefficients are represented by
generalized functions, so the theory of semigroups can be used efficiently.

Regularized derivatives (see [3]) are used for transforming differential into integral (bounded) op-
erators. This was the main tool permitting a use of uniformly continuous semigroups for differential
operators. Generalized functions used here are based on Sobolev spaces instead of distributions,
and the use of Banach space methods is available.

The main results of the paper are assertions concerning existence and uniqueness of solutions to a
class of semilinear hyperbolic systems. Cauchy problem for semilinear first-order hyperbolic system
with smooth coefficients and Lipschitz nonlinearity is solved in the usual Colombeau generalized
function space in [6]. In this paper, besides giving a solution to the problem above, we also
investigate its relation with the solution from [6] in the case when the system has smooth coefficients
with appropriate type of initial data.

The definitions of basic generalized function spaces suitable for work with generalized uniformly
continuous semigroups are given in the second section. Let us note that similar procedure can be
performed for generalized C0-semigroups (see [4], for example).

In the third section, the definitions given previously by the authors in [5] are repeated, and
followed with some assertions about uniformly continuous semigroups and their infinitesimal gen-
erators.

The existence and uniqueness theorem is given and proved in the fourth section.
The last, fifth, section is devoted to examination of the connection between the results from the

previous section and the result in [6] for a class of systems described above and the L2-association
of the solutions is established.
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2. Basic spaces

Let (E, ‖ · ‖) be a Banach space and L(E) the space of all linear continuous mappings from E
into E.

SEM ([0,∞) : L(E)) is the space of nets

Sε : [0,∞) → L(E), ε ∈ (0, 1)

differentiable with respect to t ∈ [0,∞), with the property that for every T > 0 there exist N ∈ N,
M > 0 and ε0 ∈ (0, 1) such that

(1) sup
t∈[0,T )

∥∥∥∥
dα

dtα
Sε(t)

∥∥∥∥
L(E)

≤ Mε−N , ε < ε0, α ∈ {0, 1}.

It is an algebra with respect to composition of operators.
SN ([0,∞) : L(E)) is the space of nets

Nε : [0,∞) → L(E), ε ∈ (0, 1)

differentiable with respect to t ∈ [0,∞), with the property that for every T > 0 and a ∈ R there
exist M > 0 and ε0 ∈ (0, 1) such that

(2) sup
t∈[0,T )

∥∥∥∥
dα

dtα
Nε(t)

∥∥∥∥
L(E)

≤ Mεa, ε < ε0, α ∈ {0, 1}.

It is an ideal of SEM . Thus, we define Colombeau space as

SG ([0,∞) : L(E)) =
SEM ([0,∞) : L(E))

SN ([0,∞) : L(E))
.

Elements of SG ([0,∞) : L(E)) will be denoted by S = [Sε] where Sε is a representative of the class.
Similarly, one can define following spaces:

SEM (E) is the space of nets of linear continuous mappings

Aε : E → E, ε ∈ (0, 1)

with the property that there exist constants N ∈ N, M > 0 and ε0 ∈ (0, 1) such that

(3) ‖Aε‖L(E) ≤ Mε−N , ε < ε0.

SN(E) is the space of nets of linear continuous mappings Aε : E → E, ε ∈ (0, 1) with the
property that for every a ∈ R there exist M > 0 and ε0 > 0 such that

(4) ‖Aε‖L(E) ≤ Mεa, ε < ε0.

Now, Colombeau space is defined by

SG(E) =
SEM (E)

SN(E)
.

Elements of SG(E) will be denoted by A = [Aε] where Aε is a representative of the class.
Let Hm(Rn) be the usual Sobolev space Hm,2(Rn). In the paper we shall use the following

spaces:
EM ([0,∞) : Hm(Rn)) is the space of nets

Gε : [0,∞) × R
n → C, Gε(t, ·) ∈ Hm(Rn), for every t ∈ [0,∞),
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with the property that for every T > 0 there exist C > 0, N ∈ N and ε0 > 0 such that

sup
t∈[0,T )

‖∂α
t Gε(t, ·)‖Hm ≤ Cε−N , α ∈ {0, 1}, ε < ε0.

N ([0,∞) : Hm(Rn)) is the space of nets Gε ∈ EM ([0,∞) : Hm(Rn)) with the property that for
every T > 0 and a ∈ R there exist C > 0 and ε0 > 0 such that

sup
t∈[0,T )

‖∂α
t Gε(t, ·)‖Hm ≤ Cεa, α ∈ {0, 1}, ε < ε0.

Define the quotient space

G ([0,∞) : Hm(Rn)) =
EM ([0,∞) : Hm(Rn))

N ([0,∞) : Hm(Rn))
.

In similar way, by omitting t-variable, one can define spaces EM (Hm(Rn)), N (Hm(Rn)) and
G (Hm(Rn)).

Note that the above spaces are not algebras with respect to multiplication (which is the case for
the original definition of generalized function spaces).

3. Generalized semigroups

Definition 1. S ∈ SG ([0,∞) : L(E)) is called a uniformly continuous Colombeau semigroup if it
has a representative Sε which is a uniformly continuous semigroup for every ε small enough, i.e.

(i) Sε(0) = I.
(ii) Sε(t1 + t2) = Sε(t1)Sε(t2), for every t1, t2 ≥ 0.
(iii) limt→0 ‖Sε(t) − I‖ = 0.

The following proposition is proved in [5].

Proposition 1. Let Sε and S̃ε be representatives of a uniformly continuous Colombeau semigroup

S, with infinitesimal generators Aε, and Ãε, respectively, for ε small enough. Then Aε − Ãε ∈
SN(E).

Definition 2. A ∈ SG(E) is called the infinitesimal generator of a uniformly continuous Colombeau
semigroup S ∈ SG ([0,∞) : L(E)) if Aε is the infinitesimal generator of the representative Sε, for
every ε small enough.

Definition 3. Let hε be a positive net satisfying hε ≤ ε−1. It is said that A ∈ SG(E) is of hε-type
if it has a representative Aε such that

(5) ‖Aε‖L(E) = O(hε), ε → 0.

G ∈ G ([0,∞) : Hm(Rn)) is said to be of hε-type if it has a representative Gε such that

‖Gε‖Hm = O(hε), ε → 0.

In the classical theory semigroups of bounded linear operators the following theorem holds.

Theorem 1. ([7], Theorem 1.2) A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup if and only if A is a bounded linear operator.

The following lemma holds for generalized operators.

Lemma 1. Every A ∈ SG(E) of hε-type, where hε ≤ C log 1
ε , is the infinitesimal generator of

some T ∈ SG ([0,∞) : L(E)).
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Proof. According to Theorem 1 every bounded operator Aε is the infinitesimal generator of the
uniformly continuous semigroup

Tε(t) = etAε =

∞∑

n=0

(tAε)
n

n!
.

Let us show that Tε ∈ SEM ([0,∞) : L(E)). We have that

‖Tε(t)‖ ≤
∞∑

n=0

‖tAε‖n

n!
≤ M

∞∑

n=0

1

n!
(thε)

n = Methε .

Since hε ≤ C log 1
ε we have supt∈[0,T ) ‖Tε(t)‖ ≤ Mε−TC , for ε small enough. Since d

dtTε(t) = Aε,
for every ε small enough, we have

∣∣∣∣
d

dt
Tε(t)

∣∣∣∣ = ‖Aε‖ ≤ C log
1

ε
≤ Cε−1,

for every such ε, i.e., Tε ∈ SEM ([0,∞) : L(E)). Thus, the proof is completed. �

Proposition 2. Let A be the infinitesimal generator of a uniformly continuous Colombeau semi-
group S, and B be the infinitesimal generator of a uniformly continuous Colombeau semigroup T .
If A = B, then S = T .

Proof. Let Nε = Aε − Bε ∈ SN (E). We have

d

dt
(Sε(t) − Tε(t))x = Aε(Sε(t) − Tε(t))x + NεTε(t)x.

Duhamel principle and Sε(0) = Tε(0) = I imply

(Sε(t) − Tε(t))x =

∫ t

0

Sε(t − s)NεTε(s)xds.

One can easily show that ‖Sε(t)− Tε(t)‖ ≤ Cεa, for every real a, because Nε ∈ SN (E). The same
bounds for t-derivative of Sε(t)− Tε(t) can be obtained by a successive differentiation of the above
term. �

4. Semilinear hyperbolic systems with regularized derivatives

Definition 4. Let α ∈ Nn
0 . Regularized α-th derivative of a generalized function G is defined by

the representative

(6) ∂̃α
hε

Gε = Gε ∗ ∂αφhε
,

where φhε
(x) = hn

ε φ(xhε), φ(y) = φ1(y1) · . . . · φ1(yn), φ1 ∈ C∞
0 (R), φ1(ξ) ≥ 0, φ is symmetric

function with
∫

φ1(ξ)dξ = 1.

For definition and some basic properties of regularized derivatives we refer to [3] and [8]. In the
sequel, we shall use the symbol ∂hε

for the first order derivative in one-dimensional case.

Theorem 2. Let u0 ∈
(
G

(
H1(R)

))n
and hε be a net satisfying hε = O

(
(log 1/ε)

1/2
)
, as ε → 0.

Let function f(x, t, u(t)) = (f1(x, t, u(t)), . . . , fn(x, t, u(t))) be globally Lipschitz with respect to x
and u with bounded second order derivative with respect to u and f(x, t, 0) = 0. Also, suppose that
∂xf(x, t, u(t)) is globally Lipschitz function with respect to u.
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Let operator A ∈ SG
((

H1(R)
)n)

be represented by the nets of operators

Aε :
(
H1(R)

)n
→

(
H1(R)

)n
,

Aεu = −λε∂̃hε
u,

(7)

where λε = diag(λ1
ε, . . . , λ

n
ε ) ∈

(
H1,∞(R)

)n×n
and ‖λε‖L∞(R) = O

(
(log 1/ε)

1/2
)
.

Then there exists the generalized function u ∈
(
G([0,∞) : (H1(R))

)n
, which uniquely solves the

Cauchy problem

(8)
d

dt
u(t) = Au(t) + f(·, t, u(t)), u(0) = u0.

That solution is represented by

(9) ui
ε(t) = Sε(t)u

i
0ε +

∫ t

0

Sε(t − s)f i(·, s, ui(s))ds, i = 1, . . . , n,

where S ∈ SG
(
[0,∞) :

(
H1(R)

)n)
is the uniformly continuous Colombeau semigroup generated by

A.

Proof. Take u ∈ (H1(R))n. Then

‖Aεu‖L2 ≤
n∑

i=1

‖λi
ε∂̃hε

ui‖L2 ≤
n∑

i=1

‖λi
ε‖L∞‖ui ∗ ∂̃hε

φhε
‖L2

≤
n∑

i=1

‖λi
ε‖L∞‖ui‖L2‖∂̃hε

φhε
‖L1 ≤

n∑

i=1

C1 (log 1/ε)
1/2 · C2 (log 1/ε)

1/2 ‖ui‖L2

≤C log 1/ε

n∑

i=1

‖ui‖L2

and

‖∂x(Aεu)‖L2 ≤
n∑

i=1

‖∂x(λi
ε)∂̃hε

ui‖L2 +
n∑

i=1

‖λi
ε∂x(∂̃hε

ui)‖L2

≤
n∑

i=1

‖∂xλi
ε‖L∞‖∂̃hε

ui‖L2 +

n∑

i=1

‖λi
ε‖L∞‖∂̃hε

(∂xui)‖L2

≤
n∑

i=1

‖∂xλi
ε‖L∞‖∂̃hε

‖L1‖ui‖L2 +
n∑

i=1

‖λi
ε‖L∞‖∂̃hε

‖L1‖(∂xui)‖L2

≤C log
1

ε

n∑

i=1

(
‖ui‖L2 + ‖∂xui‖L2

)
.

Since u ∈
(
H1(R)

)n
it follows that operator A is of log 1

ε -type. Therefore, it is the infinitesimal

generator of a uniformly continuous Colombeau semigroup S ∈
(
SG([0,∞) : (H1(R))

)n
. By well

known classical result (see [7]) we know that (9) represents a solution to (8).

Let us show that this solution is an element of
(
G([0,∞) : (H1(R))

)n
. We have

‖uε(t)‖L2 ≤ ‖Sε(t)u0ε‖L2 +

∫ t

0

‖Sε(t − s)f(·, s, uε(s))‖L2ds
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and

‖
d

dt
uε(t)

∥∥∥∥
L2

≤ ‖Aε(t)uε‖L2 + ‖f(x, t, uε(t))‖L2 .

Since f(x, t, u) is globally Lipschitz with respect to u and f(x, t, 0) = 0, one gets f(·, t, u(t)) ∈
(H1(R))n if u(t) ∈ (H1(R))n. Thus, the moderate bounds for ‖uε(t)‖L2 and

∥∥ d
dtuε(t)

∥∥
L2

immedi-
ately follow.

After a differentiation of (9) with respect to x we have

‖∂xuε(t)‖L2 ≤‖Sε(t)∂xu0ε‖L2 +

∫ t

0

‖Sε(t − s) (∇uf(x, s, uε(s))∂xuε(s)) ‖L2ds

+

∫ t

0

‖Sε(t − s)∂xf(x, s, uε(s))uε(s)‖L2ds

≤‖Sε(t)∂xu0ε‖L2 +

∫ t

0

‖Sε(t − s)‖ · ‖∇uf‖L∞ · ‖∂xuε(s)‖L2ds

+

∫ t

0

‖Sε(t − s)‖ · ‖∂xf‖L∞ · ‖uε(s)‖L2ds.

Since f is Lipschitz with respect to u and x the moderate bound for ‖∂xuε‖L2 follows. Thus,

u ∈
(
G([0,∞) : (H1(R))

)n
.

To show that the solution is unique in
(
G([0,∞) : (H1(Rn))

)n
, suppose that there exist two

solutions u and v to equation (8) and set wε = uε − vε. This difference satisfies

(10)
d

dt
wε(t) = Aε(t)wε(t) + f(·, t, uε(t)) − f(·, t, vε(t)) + Nε(t), wε(0) = w0ε,

where Nε(t) ∈ N ([0,∞) : (H1(R))n) and w0ε ∈ N ((H1(R)n). Then

wi
ε(t) =Sε(t)w

i
0ε +

∫ t

0

Sε(t − s)(fi(·, s, u
i
ε(s)) − fi(·, s, v

i
ε(s)))ds

+

∫ t

0

Sε(t − s)N i
ε(s)ds,

(11)

and

‖wε(t)‖L2 ≤‖Sε(t)w0ε‖L2 +

∫ t

0

‖Sε(t − s) (f(·, s, uε(s)) − f(·, s, vε(s))) ‖L2ds

+

∫ t

0

‖Sε(t − s)Nε(s)‖L2ds.

Using the fact that ‖∂uε
f‖L∞ ≤ C < ∞ and

‖f(x, s, uε(s)) − f(x, s, vε(s))‖L2 ≤ ‖∇uf‖L∞ · ‖uε(s) − vε(s)‖L2

we obtain N -bound for ‖wε(t)‖L2 .
Equation (10) implies

∥∥∥∥
d

dt
wε(t)

∥∥∥∥
L2

≤ ‖Aεwε(t)‖L2 + ‖f(x, s, uε(s)) − f(x, s, vε(s))‖L2 + ‖Nε(t)‖L2 .

Since, as we showed in previous step, ‖wε(t)‖H1 has the N -bound and Nε(t) ∈ N ([0, T ) : (H1(R))n)
we obtain that ‖ d

dtwε(t)‖L2 has the N -bound, too.
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Finally,

‖∂xwε‖L2 ≤‖Sε(t)∂xw0ε‖L2 + ‖∂xNε‖L2

+

∫ t

0

‖Sε(t − s) ((∇uf(·, s, uε(s))∂xuε(s) −∇uf(·, s, vε(s))∂xvε(s))) ‖L2ds

+

∫ t

0

‖Sε(t − s) ((∂xf(·, s, uε(s))uε(s) − ∂xf(·, s, vε(s))vε(s))) ‖L2ds.

But

‖(∇uf(·, s, uε(s))∂xuε(s) −∇uf(·, s, vε(s))∂xvε(s)‖L2

≤‖(∇uf(·, s, uε(s))∂xuε(s) −∇uf(·, s, vε(s))∂xuε(s)‖L2

+ ‖∇uf(·, s, vε(s))∂xuε(s) −∇uf(·, s, vε(s))∂xvε(s)‖L2

≤‖∂xuε(s)‖L2 · ‖fuu(·, s, ỹ(s))‖L∞ · ‖uε(s) − vε(s)‖L∞

+ ‖∇uf(·, s, vε(s))‖L∞ · ‖∂xuε(s) − ∂xvε(s)‖L2

≤C1‖∂xuε(s)‖L2 · ‖wε(s)‖H1 + C2 · ‖∂xwε(s)‖L2 ,

and

‖∂xf(·, s, uε(s))uε(s) − ∂xf(·, s, vε(s))vε(s)‖L2

≤‖∂xf(·, s, uε(s))uε(s) − ∂xf(·, s, uε(s))vε(s)‖L2

+ ‖∂xf(·, s, uε(s))vε(s)∂xf(·, s, vε(s))vε(s)‖L2

≤‖∂xf(·, s, us)‖L∞‖uε(s) − vε(s)‖L2

+ ‖vε(s)‖L∞‖∇2
uf(·, s, ỹ(s))‖L∞‖uε(s) − vε(s)‖L2 .

for some functions ỹ(s) ∈ (H1(R))n. Since w0ε ∈
(
N ((H1(R))

)n
and Nε ∈

(
N ([0, T ) : (H1(R))

)n
,

Gronwall inequality gives the N -bound for ‖∂xwε(t)‖L2 . Thus, wε := uε−vε ∈
(
N ([0,∞) : (H1(R))

)n
,

i.e. the solution is unique. �

Definition 5. The solution u of the problem (8) introduced in Theorem 2 is called generalized
solution of the equation

d

dt
u(t) = −λ∂xu(t) + f(·, t, u(t))

with regularized derivatives.

5. Relations with the previous results

In [6] Oberguggenberger gives the following theorem:

Theorem 3. ([6],Theorem 16.1) Let λ(x, t) be a smooth, real valued diagonal matrix. Let f be
smooth and u 7→ f(x, t, u) be polynomially bounded together with all derivatives, uniformly for (x, t)
varying in compact subsets of R2. Let u 7→ ▽uf(x, t, u) be globally bounded, uniformly with respect
to (x, t) varying in compact subsets of R2.

Then, for given u0 ∈ G(R), the problem

(12) (∂t + λ(x, t)∂x)u = f(x, t, u), u|t=0 = u0

has a unique solution u ∈ G(R2).

Let KT = K∩{(x, t) : t ∈ [0, T ]}, K is a region bounded by the external characteristics emerging
from the end points of K0 = [A, B] ⊃ suppU0ε. The following Lemma will be useful.
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Lemma 2. ([6], Lemma 16.2) Let v be a smooth solution to the linear problem

(∂t + λ(x, t)∂x)v(x, t) = f(x, t)v(x, t) + g(x, t), v(x, 0) = b(x),

where f is a smooth matrix and g, b are smooth. Then

‖v‖L∞(KT ) 6 ‖b‖L∞(K0) + T ‖g‖L∞(KT ) exp(nT ‖f‖L∞(KT )).

In order to compare solutions to regularized and non-regularized equations we need some addi-
tional a priori bounds for solution to (12).

Lemma 3. Let u be a solution to (12), where all derivatives of f with respect to ui, i = 1, ..., n,
and x of order less or equal to three are bounded when (x, t) belongs to some compact set. Suppose
that ‖∂iu0‖L∞(K0) 6 bε, i = 0, 1, 2,where bε > 1. Then

‖u‖L∞(KT ) 6 constbε, ‖∂xu‖L∞(KT ) 6 constbε,

and ‖∂2
xu‖L∞(KT ) 6 constb2

ε.

Proof. We differentiate system in (12) three times with respect to x and use the Lemma 2. The
bounds for u and ∂xu directly follows from the proof of Theorem 3 given in [6], so we shall give the
estimate for the second derivative.

After differentiating the system two times with respect to x we have

(∂t + λ∂x)w =(∇uf − 2∂xλ)w + ∂2
xf

(∇2
ufv + ∇u∂xf − ∂2

xλ)v,

where v = ∂xu and w = ∂2
xu. Now, the above lemma gives the estimate

‖w‖L∞(KT ) 6‖w0‖L∞(K0) + ‖∂2
xf‖L∞(KT ) + exp(nT ‖∇uf − 2∂xλ‖L∞(KT ))

· T (‖∇2
ufv2‖L∞(KT ) + ‖∇u∂xfv‖L∞(KT ) + ‖∂2

xλv‖L∞(KT )).

Using the assumptions and the bounds for u and v one can see that there exists a constant C such
that ‖∂2

xu‖L∞(KT ) 6 Cb2
ε. �

Theorem 4. Let u be a solution of (12), with λ = λ(x) from Theorem 3. Let the initial data be
compactly supported and satisfy

(13) ‖∂i
xu0ε‖L∞ ≤ g−M/3

ε , i = 0, 1, 2,

for some M > 0 and gε = log hε, hε < log 1
ε .

Then, u and the solution v to (8) with the initial data v(0) = u0 given in Theorem 2 are L2-
associated.

Proof. In Lemma 3 is proved that

(14) ‖∂i
xuε‖L∞ ≤ g−M

ε , as ε → 0, i = 0, 1, 2,

where L∞-norm can taken over all R× [0, T ], since supp(Uε) ⊂ KT .
Also, the assumption on compact supports for the initial data and finite propagation speed

ensures that u(·, t) ∈ L2(R), and (14) holds for L2-norm, too for every t 6 T .
The following equations are satisfied

∂tuε(t) + λ∂xuε(t) = f(·, t, uε(t))

∂tvε(t) + λ∂xvε ∗ φhε
(t) = f(·, t, vε(t)).
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Difference of these two equalities gives

∂t(uε(t) − vε(t)) + λ∂x(uε(t) − vε(t)) ∗ φhε

=λ(∂xuε(t) − ∂xuε ∗ φhε
(t)) + f(·, t, uε(t)) − f(·, t, vε(t)),

(15)

for every t < T .
Let us fix t for a moment. Then

‖∂xuε(·, t) − φhε
∗ ∂xuε(·, t)‖L∞(R)

= sup
x∈R ∣∣∣∣∣

∫

|y|≤hε

φhε
(y) (∂xuε(x, t) − ∂xuε(x − y, t)) dy

∣∣∣∣∣

= sup
x∈R ∣∣∣∣∣

∫

|y|≤hε

φhε
(y)

(∫ 1

0

∂2
xuε(x − σy, t)dσ

)
ydy

∣∣∣∣∣ ≤ Cg−M
ε h2

ε → 0, ε → 0,

since gε = log hε, and (14) holds.
Since KT ∩ {(x, τ) : τ = t} is a bounded set with a finite Lebesgue measure, say l(t), one can

immediately see that

‖λ(t)(∂i
xuε(·, t) − φhε

∗ ∂i
xuε(·, t))‖L2(R)

6const(λ) · l(t) · ‖∂i
xuε(·, t) − φhε

∗ ∂i
xuε(·, t)‖L∞(R) → 0, ε → 0, i = 0, 1

(16)

by the previous estimate on L∞-norm. Put wε = uε − vε. One can write (15) in the form

(17)
d

dt
wε(t) = Aε(t)wε(t) + f(·, t, uε(t)) − f(·, t, vε(t)) + Nε(t), wε(0) = 0,

where Aεu = −λ∂̃hε
u and Nε(t) = λ(t)(∂xuε(·, t) − φhε

∗ ∂xuε(·, t)). Inequality (16) means that
‖Nε‖H1 → 0 as ε → 0. Then, each component of wε satisfies

wi
ε(t) =

∫ t

0

Sε(t − s)(f i(·, s, ui
ε(s)) − f i(·, s, vi

ε(s)))ds

+

∫ t

0

Sε(t − s)N i
ε(s)ds, i = 1, . . . , n,

(18)

and

‖wε(t)‖L2 ≤

∫ t

0

‖Sε(t − s) (f(·, s, uε(s)) − f(·, s, vε(s))) ‖L2ds

+

∫ t

0

‖Sε(t − s)Nε(s)‖L2ds.

If u ∈ H1, then ‖Aεu‖L2 ≤ M‖u‖H1 , where M does not depend on ε. Since Sε(t) = etAε =∑∞
n=0

(tAε)n

n! , one can see that ‖Sεu‖L2 6 etM‖u‖H1 . Particularly, ‖Sε(t − s)Nε(s)‖L2 → 0, as
ε → 0. Using the fact that ‖∇uf‖L∞ ≤ C < ∞ and the estimate

‖f(x, s, uε(s)) − f(x, s, vε(s))‖L2 ≤ ‖∇uf‖L∞ · ‖uε(s) − vε(s)‖L2 6 C · wε(s),

use of Gronwall lemma gives supt∈(0,T ) ‖wε(t)‖L2 → 0, as ε → 0. �

Immediate consequence of the above theorem is the following corollary.

Corollary 1. If there exists a L∞ classical solution to problem (12) with L∞-initial data then it
can be regularized so that it is L∞-associated with the solution to system (8), when A given by (7).
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Acknowledgment

The authors are grateful to Michael Oberguggenberger for his help during the preparation of the
paper.

References

[1] Biagioni W A and Oberguggenberger M (1992), Generalized solutions to the Korteweg-de Vries and the regu-
larized long-wave equations, SIAM J. Math. Anal. 23, 923-940.

[2] Colombeau J F (1985), Elementary Introduction in New Generalized Functions, North Holland, Amsterdam.
[3] Colombeau JF, Heibig A and Oberguggenberger M (1996), Generalized solutions to partial differential equations

of evolution type, Acta Appl. Math. 45,2, 115-142.
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