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ABSTRACT. This paper is devoted to solving the Cauchy problem for a nonlinear
wave equation in space dimensions n < 9. Solutions belong to the Colombeau-like
multiplicative algebra G2 (see [1]).

First, a nonlinear term is regularized with respect to a small parameter £ such
that it becomes globally Lipschitz for each such €. A net of solutions to the Cauchy
problem determines an element in G;2 which is called the solution.

Next, we solve the equation without the regularization for certain growth condi-
tions on the nonlinear term with respect to the space dimension n.

Finally, we show that a solution to the regularized equation is also a solution to
the non-regularized one under some additional assumptions.

INTRODUCTION

The aim of this paper is to bring together two areas: L?-theory for the nonlinear
wave equation

O2u— Au+ g(u) =0, g(0) =0, u = u(z,t), € R, t >0,

and theory of generalized functions where nonlinear operations makes sense for a
large collection of singular objects.

We use the multiplicative algebra of generalized functions Gz defined in [1] which
is the version of Colombeau algebra G (see [2]). A representative of a generalized
functions is a net of smooth functions which permits a use of the classical energy
estimates on each element of the above net. This was the main idea used in the
paper.

Initial data are elements in Gr=(R™). Also, classical singular initial data in
classical functions spaces could be replaced with generalized functions and give a
meaning to the above equation. The advantage of using generalized functions lies
in the fact that we can multiply and make some other nonlinear operations within
this space.

The above equation is very well known, especially the illustrative cases g(u) =
|u|Pu. Good references on strong solutions can be found in [4], [9], [11]. Also, [3]
and [5] contain different kinds of weak solutions to the above equation.

Previous results for generalized solutions of Colombeau type can be found in [2],
Ch. VIII, where the 3D sub-cubic equation is solved without growth conditions on
the initial data in €. Solutions in G were found by the modified Jorgens L>°-method.

In order to apply various energy estimates as well as Sobolev type estimates for
the above equation, we use the algebra G2 as a general framework, the special case
of Gr» 14, which was constructed in [1].

Typeset by AMS-TEX
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Essentially, the paper consists of two parts. In the first one, growth conditions on
a nonlinear term g(u) are irrelevant. It is substituted by a net of globally Lipschitz
functions g.. Then the equation, called the ”regularized” one, is solved for each
fixed . Afterwards one has to check whether a solution obtained in this way solves
the original equation. In the second part, g is not regularized and the growth
conditions on g are important similarly to the classical case.

The paper is organized as follows.

In Theorem 1 the regularized equation is solved. For n < 6 it is solved in a
standard manner, but for the higher dimensional equations, n = 7,8,9 the precise
and technically complex results of the papers [7,8] are needed. In general, a solution
to the regularized equation is not a solution to the non-regularized one. We give
a partial answer on a question of their relations. In Theorem 2 we prove that
if u(t,-) € H%(R?) is a classical solution to the equation with the initial data in
(H?%, H?) (notice that we need more regularity than usually), then the solution to
the regularized equation, which is a net of solutions, converge to u. It was necessary
to regularize the initial data (a,b) by a (a*@es,b*Pes ), where ¢ = e~ P(-/e°) is a
delta net and s is large enough. Here, [ ¢(z)dz =1, ¢ € Cg° and ¢ > 0. In the 1D
case the solution to the regularized equation is a solution to the non-regularized one
if the initial data is of loge~!-growth. If initial data belong to some Sobolev space
H?, s € R, then they have to be regularized using the convolution with ¢y, where
h(e) ~ (loge=1)'/™ for some m € N. In Theorem 3 the cubic 3D wave equation is
solved in Gy providing that representatives of the initial data are o((loge=")'/?)
as € = 0. The similar growth rate has to hold for the initial data belonging to
the appropriate Sobolev space H®, s € R. In Theorems 4 and 5 the 3D and 4D
equations with nonlinearities of order less than 5 in case of 3D and less than 3 in
case of 4D are solved. The precise estimates from [7,8] are used for their proofs.
Also, we suppose that the initial data have appropriately slow growth with respect
to &, similarly to the conditions of Theorem 3.

1. NOTATION

Let 2 be an open subset of R*. We will denote by K CC Q a compact subset K
of Q. The notation f. = O(e?) means that a net of real or complex numbers satisfies
|f-| < Ce® for some C > 0, b € R and ¢ small enough. In this case we shall say
that f. satisfies moderate bounds or it is of moderate growth or simply moderate.
A net of functions g. in some Banach space B is called moderate if ||g:||p is of
the moderate growth. We use the following algebras of Colombeau’s generalized
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functions.

EM) ={G:(0,1) x Q> C: G(g,-) = G. € C(N) for every € > 0}.
Em () ={G: € £(Q) : for every a € N}, K CC Q there exists b € R
such that sup [0°G.(z)| = O(e%)}.
z€EK

N(@Q)={G. € Ey(Q): foreverya e Nj, K cCQanda€R
sup [0%Ge(z)| = O(e")}-

TEK
G(Q) =Em (/N (Q).
Ec ={S:(0,1) = C: there exists b € R such that

S| = O(")}.
N ={S €& : |S:| = O(?) for every a € R}.
C =&/ N.

Similarly, using the space R instead of C, we define R.
Let @ denote [0,T") x £ or Q. Then

Err(Q) ={G: € £(Q) : for every a € Nj there exists b € R such that
10°GelLe(q) = O(e")}-
N (Q) ={G: € £(Q) : for every a € Nj and a € R
10%GellLr(q) = O(e™)}-
Grr(Q) = €2 (Q) /N1r (Q).

If T is finite, then the L? norm with respect to the time variable ¢ can be changed
by the L*-norm (see [1]).

The algebra Gr»(Q) equals G, ,(Q) defined in [1]. The proof that Nr»(Q) is an
ideal of £»(Q) and the properties of the above algebras are given in [1].

Let us note that Nz2(Q) C N (Q) and £12(Q) C Em(Q), because of the Sobolev
embedding theorem. Therefore there exists a canonical mapping from Gr2(Q) into

G(Q)-

2. PRELIMINARY CONSTRUCTION

Consider a family of equations in £72([0,T) x Q)
(1) (6152 - N)G: = —g(Ge), Gelt=0 = Ac,04Ge|t=0 = B, € € (0,1),

where A, B, € £12(R"), € € (0,1), and g : R* — R is smooth, polynomially
bounded together with all its derivatives and ¢g(0) = 0.

In Section 3 a function g will be substituted by a family of smooth functions g,
€ € (0,1) which is called the regularization of g. One can chose the regularization
ge such that there exists a suitable net a. of positive real numbers such that for
every s € Ny there exist g > 0 and ms € N such that

'S

d—ysgs(y) = O(a™).

T

(2) 9:(y) = g(y), for |y| < ac, € <eo,
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Moreover, if the primitive of g, which equals zero at the origin, is non-negative, then
one can chose g. such that the same is true for its primitive for £ small enough.
Suppose that there exist a constant M > 0 such that g(y) > 0 for y > M and
g(y) < 0 for y < —M. Then we make the following regularization. Let r.(y) be
smooth function equals y for |y| < ar and equals some constant for |y| > 2a. such

that for every a € Ny there exists p, € R such that sup,cg |m§a) (y)| = O(eP=).
Then g.(y) = g(ke(y)). The positivity (negativity) of g as y — oo (y = —00) gives
the non negativity of a primitive of g. if g has a non-negative primitive.

In some interesting cases when g is not smooth there exist a regularization with
the above properties. For example, let g(y) = |y[P~'y. Then g.(y) = g(k.(y)) *
¢a.(y), where ¢, is a non-negative delta net described in the introduction (one
has to put a. instead of £° there) has the above properties. Let us note that in this
case a solution to the equation can be at most associated to the classical one if it
exists.

First, we shall solve

(3) (07 — D)Ge = —g.(Ge), Gelto = Ac, BGelimo = Be, € € (0, 1),

where A., B, € £2(R"), instead of (1).
Equation (3) will be called the regularized equation for Equation (1).

3. REGULARIZED WAVE EQUATION

In order to obtain the existence and the uniqueness of a generalized solution, we
need to estimate L2-norms of all derivatives of solution G. to (3) with respect to
€. The bounds depend on a space dimension because they are obtained by Sobolev
type embedding and interpolation theorems. If n < 5, the bounds for a. are of
(log(e~1))*-type, for some s. In the case n = 6, one needs a. to be estimated by
a slower function net. Moreover, the initial data has to be of small enough growth
rate with respect to €. The cases n = 7, 8,9 will be briefly described in the remark
after Theorem 1. Actually, the classical result for the existence of a global smooth
solution to (3) for fixed ¢ it causes a lot of technical problems as well as a lot of
additional assumptions on the initial data in order to obtain moderate bounds for
a solution.

Theorem 1. a) Let n < 5. Then there exists a net a. such that for every T > 0
there exists a unique solution to (3) in Gr2([0,T) x R™).

b) Let n = 6 and let ||Ac||gs> and ||B.||f22 be bounded by (log(log(e~1)))*, as
€ — 0, where s < 1. Then there ezists a net a. such that for every T > O there
exists a unique solution to (3) in Gr2([0,T) x R™).

Proof.
Existence

For every fixed e there exists a unique smooth solution to equation (3) (see [7,
Theorem 4.8]) since g is globally Lipschitz. Energy inequality (cf. [11, (2.5)]) and

(2) give
¢
@) (8:Ge, VG) (D)2 < [(8:Ge, VG:)(0)]| > +/0 llg=(Ge(s))l| L2ds

t
< (3G, VG (O) |12 + / 0" (|G (8) | 2.
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Since
(5) Ge@)lz2 < Crl|VGe|lz2,
Gronwall type inequality gives
1(0:Ge, VGe) ()2 < [1(8:Ge, VGE)(0)|| 2 exp(T Cral™)
for & small enough. Now we chose a net a. such that a. = O((loge~")'/™). Then
1(8:G, VG (t)||> < Ce™™, ase =0, t €[0,T), for some N >0, C > 0.

By (5) this is also true for ||G¢(¢)||z2, t € [0,T).

We differentiate equation (3) with respect to a spatial variable y in order to
obtain moderate bounds for higher order derivatives. Then

(07 — N)9,G. = —g:'(G:)0,G-.
By (4) we have
(6) (81 Ge, VO, Ge) (1) 2

t
<181y G, V8, G)(O)l| 2 + / l19:(G=(5))3, G (5)]| 23
t
<[|(BuyGe, V0, G2) (0) |12 + / Al 10,Ge (5)l| 2.
0

Since [|0yG<(s)l|z2 is of the moderate growth, sup;c(o 77 [|(01yGe, VO, Ge)(t)]| L2 is
also of the moderate growth. Therefore the second derivative with respect to the
time variable is also moderate, because of (3).

Another differentiation with respect to a spatial variable y gives
(0 = £)8y:Ge = —g.'(Ge)0y:Ge — g." (G=) 0, G0, G-
and by (4) we have
(7) 186:VGe, V20.G2) ()22 < [(8e:VGe, V?8:G:)(0) |12

/ 19:(Ge(5))0:VGe(s) + g." (G- () VG (5)0: G (3)]| r2ds.

(Here VQGE = [62G5/8.%'1'6.21"7']1'7]':17__7”.)

Casen <4

Since || [VGe|?||12 <||VGel24 <||VGe|%1, (7) and (3) imply that (8;VGe, V2G:)
and 0y G are moderate. Other derivatives can be approximated in a similar man-
ner.

Casen =25
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Note that H®/42(R%) — HUV4(R®) and H®/%% = (H2*(R®),H2(R®))
where (-, -)g) denotes a complex interpolation space. This implies

[1/4P

3/4 1/4
lullrse < Collull3ats ul|ifas-

Inequality (7) implies
t
IG@®)llmz.2 < [|Ge(0)] o2 +/0 al"?(|Ge ()| 22 ds

t
+ / a2 (G ()12, G ()2, ds.

Writing . (t) = ||Ge(s )|| p3.2, the last inequality implies

d
aﬂ?(t) < @l |Go(#) |2 + 1Ge(t)][ a2 ue (1)

1 (0) = [|Ge(0)]| 12

If u.(t) <1,¢ € [0,T), then ||Gc(s)||gs.2 is obviously moderate. Otherwise, u.(t) <
ve(t), where v, is a solution to

d

1
Z0:(t) < 5 (a2 1GO) li2 + G (B2 ) ve(to) = max{L, |G=(0) [z

-2

and t € [0,T). Since ||G(t)||g22 and ||G<(0)||gs.2 are of the moderate growth, this
is true for v.(t) also and hence for u.(t).

Let us prove that (0;V3G:(t), VAGe(t)) is of the moderate growth. After another
differentiation in a space direction, (2) implies

t
(8) 10 VG- (1), VAG- )|z < IVAGL(0)|| 2 +/ a™||V3G.(s)||p2ds
0
t
+2 / 42|V G (3)V2Ga (5)| s
0

t
+ / a8 |VGe (3)P | 2ds,
0

where components of VG.V2G, are products of the first and the second order
spatial derivatives of G.. ||[V4G.(0)||z2 is moderate, since the initial data are. We
have already proved that ||V3Gc(s)||2 is moderate. The other two terms on the
right-hand side of (8) can be estimated in the following way.

IVG:(O)V?Ge(®)llL2 < IVG(t)llLs[IV?Ge(®)l|o < NIGe(®)llmre |G (B)llzrzs-

By the Sobolev embedding theorem H32(R"*) — H?>3(R"), H>?(R") — HL%(R"),
for n < 6. Then
IVG(t)V*Ge()llL2 < NGe(t)l o2,

And
NVG®)Pllr> < IVG()lIFe < |G (8)l3s.2-
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In this way we obtain the moderateness of the right-hand side of (8).
All the other derivatives can be more easily estimated in the similar way.

Casen =26

Similarly to the case n < 5, by (4), (5) and the assumption on the initial data,
one can deduce that a. has to be O((log(log(loge=!))")), where r + s < 1. Then
|Gellm22 = O((loge*)™*?).

Since |||VGe(s)?||lr2 < [[VGe(8)|24, HY2(R®) < HY4(R®), and H/22(RS) =

(H2,2 (RG), H3’2(R6 )) 12

t
1G=®) |32 < [|G=(0)]| g2 +/0 a"(|Ge(s)[| .2 ds

t
+ / A |G ()| 221G () | s .

By the Gronwall type inequality, the moderate growth of |G (¢)||g3.2 follows from
the assumptions of the theorem. The higher order derivatives can be estimated in
the same manner as in the previous case.
Uniqueness

Now, let us show the uniqueness of the solution in G2([0,T) x R*). Let G. be
another solution. Then

(atz - A)(GE - G~E) = _gE(GE) + ga(éa) + Ne

and (G é )|t o = Nie, Ot(G é )|t o = Noo, where N, € NL2([0,T) X ]Rn)
and N € N2(R"), i = 1,2. Let G. = G- — G.. Then (4) implies

) 184G, VG @)Lz < |(Nae, VN1 L2 + IV (8)]] 2
+ [ 0 Gl 16

Since ||g:'(G<(5))||L=~ < a™ and a. = O((loge)/™1) as e — 0, for every N > 0
there exists C' > 0 such that

1(8:G:, VGe) ()2 < CeN.
From (5) the same follows for ||G.(t)||zz2.

Differentiating (10) with respect to a spatial variable y, we obtain
(82 — £)8, G = —g.'(G:)8,G. — g.'(G:)D, G + Oy N..
Using (4) gives
10eyGe; VB,Ge) (Bl 2 < [1(ByNoe, VOyNio)l| 2 + (10, Ne (8)]] 2
/ (02! (G (5)) — 9¢' (G (5))2, G (5) 122

+ ”gE ( E( ))(ang(S) — 6yé5(8))||L2ds
< 1By Nae, VO Nic) ()| 2> + 10y Ne (8)]] 2

t
+ / ™ (1Ge(s) = Gua(3)]] 12119y Ge () |
a2 (19,Ge(s) — 8,Ge(s) | ads.
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The Sobolev embedding theorem implies that all L® norms can be estimated by the
corresponding L?-norms of higher order derivatives. The above estimates implies
the moderate growth for (0, Ge, VO, Ge)(t)||2-

Other derivatives can be approximated in the similar manner. This finishes the
proof.

Remark 1. Let n = 7. In order to obtain the existence of a unique solution with

the moderate growth of all its derivatives, we need that H>2-norms of the initial

data are bounded by log(log ... (loge™!)...)? with respect to ¢ for some s and gq.
—_—

q
This follows from [8, Theorem 4.8]. The cases n = 8,9 can be handled out using
the procedure and Lemmas 2.1-2.20 in the same paper as well as a composition of
the logarithmic functions sufficiently many times.

Remark 2. In the case n = 1, when the initial data have compact supports, the
above calculations are simpler since in that case we can use

Gz < CT|IVGe(®)l|z2, t <T.

Also, for the existence of a generalized solution we do not need that the cut-off con-
stants a. are logarithmically bounded. But we need it for the proof of uniqueness.

Corollary. Let g(y) be globally Lipschitz. Then

a) If n <5 and T > 0, then there exists a solution to (1) in Gr2([0,T) x R™).

b) If n = 6, ||Ac||lgs and ||Be||g2 are bounded by |log(loge™1)|® ase — 0, s < 1,
then for every T > O there exists a unique solution to (1) in Gr=([0,T) x R™).

4. NON REGULARIZED WAVE EQUATIONS

Theorem 2. The equation
(07 = DG = =G?, Gli=o = A, 8,G|i=0 = B,

where A, B € Gra(rs), has a unique solution in Gr2([0,T) x R®) for every T > 0 if
there exist representatives of initial data such that

(10) I(V? A, VBe)||1= = o((loge™")'/?).

Proof. Equation
(11) (687 — A)Ge = =G, Geli=o = Ae, 8,Geli=0 = B

has a unique smooth solution in every strip [0,7) x R® as one can see in [9]. We
have to prove the moderate growth of the solution. Energy inequality immediately
gives

10:Ge, VGe)(#)llz> < [1(0:Ge, VG:)(0)]] 2

and from (5) it follows

1G> < Crll(8:Ge, VGe) (D)2 < Crl|(8:Ge, VGE) (0)]| 2
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After differentiating equation (11) with respect to the space variables we obtain
(using (4))

t
10V Ge, V2Ge) (#)llz2 < [[V2Ge(0)l2 +3/0 IG2(s)VGe(5)l|L2ds
t
< IV*G=(0)lI> +3/0 1G=(5) 1761V Ge (5)l|ods

t
< [IV2G:(0)] 2 +3/ IGe(S)Fn [IVGe(s)llrrrds
0
which gives the moderate growth of the second derivatives of G¢ if the initial energy
satisfies assumption (10). The moderate growth of 87G follows from the equation.

By another differentiation of equation with respect to spatial variables we obtain

1@ VGe, V2Ge) (t)l|z2 < IV*G(0)]|z2

+ /0 13G2(5)V2G. (5) + 6G-(5)|VGe (5) [l pods

t
< IV2G=(0)] = + 3/0 IGe (8|22 [V Ge ()] 122
+2/|G=(5)| VG (s) 3 ds.

This implies the existence of desired bounds. Other derivatives can be handled in
a similar way.

Let us show the uniqueness of the solution. Let G be another solution. Then,
by taking the notation from the proof of Theorem 1

02 - N)G. = -G+ G2+ N.
and

10:Ge, VGe)(t)ll2 < I(N2e, VN1 Iz + [INe ()] 2

+ / (G2(s) + G ()G (s) + G2(5))Ge (s) | = s.

Like in the previous case the integral can be estimated by

t
/0 (IGe()lIze + IG= ()l l|Ge()llze + IGZ ()| Lo)|Ge (5) | pods

and the Gronwall type inequality gives the moderate estimate like in the existence
proof. Also, this gives the moderate estimate for ||G¢||r2. The usual estimations

[V(Ge — Ge)(8)ll2 < (I3G2(s)VGe(s) — 3G2(5)VGe(s)]| 2
< I3(G2(s) — Go(s)) VG, (5)|| 2
+ 13(VGZ(s) — VG2(s))G=(s)]| 2
< 3)|G2(s) — G2()l|LeIG2(5) + G2(5) | Lo IV Ge(s)ll e
+3||VG.: (s)||Le||VG2( ) = VGZ(s)||Ls
< 3|1G2(s) = G2() |l [|G2() + G2 ()| [V G (8) | e
+ 3| VG ()|51: | VG2 (s) — VG2(8) ||
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give the desired result for the first order derivatives of G.. All the other derivatives
can be estimated in a similar manner.

In order to compose generalized functions we use the algebra of Colombeau
tempered generalized functions (cf. [2])

G+(R) = &(R) /N (R),
where

E(R) ={G: € E(R) : for every a € Ny there exist M € N,b € R such that
sup [0%Ge ()|(1 + |z[) = = O(e")}.
z€R

N (R) ={G: € E(R) : for every a € Nj and p € R there exist M € N such that
sup [0%Ge ()|(1 + [2) ™ = O(e")}
TzER

One can easily prove that the composition F(G) € Gr»(2) makes sense if F' €

gt(]R) and G € ng (Q)
The following theorem is a generalized version of the 3D wave equation with
sub-critical nonlinearity (p < 5).

Theorem 3. Let a representative of F € E(R) satisfy
|FL(y)] < CQlog(e )" (lyl~" + [y[™™*="), r < 5, y €R, & is small enough,

where p < 5, F.(0) = 0 and let its primitive be non negative. Let A, B € Gr2(gs).
Then the equation

(12) Gy — AG + FE(G) =0, G|t=0 = A, tht:O =B

has a unique solution in Grz([0,T) x R3?) for every T > 0 if || Ac||mr2 and ||Be|| g2
are bounded by (log(e1))*, r +4s <1 as e — 0.

Proof.
Existence

For every ¢ small enough there exists a unique solution G, to (12) (cf. [8, Theorem
4.8]). We have to prove that it belongs to £2([0,T) x R?) for every T > 0.

If p < 0, then the proof is the same as in Theorem 2. Thus, let us assume
p > 0. The energy inequality implies ||(8;Ge, VG)(t)|lg: = O((log(e71))*) as
€ - 0. Lemma 4.1 in [8] implies that for every § > 0

(13)
GOl 2525 + [10:Ge (D)l gsizrs < CUIG(0) |22 + [10:Ge (0)| 1r3.2)

t
+01(105(6_1))1/T/ (L+t = 8)lt = s|7*(IGe()l5.2 + DIIGe ()l 22 ds,
0

where C,C1, N > 0 and a € (0,1) are suitable constants. Thus, putting § = 1 and
using suitable constants, we have

GOl +10G ()l < CUG.O) s + 1G]
t

exp(Crloge 1Y G [ (1= s)lt = ds(IGL(3)t + 1
0

< Ce™Mexp(Cr(loge 1) H1%) < Ce™™ %7 ¢ 50, t €[0,T).
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Since the space dimension equals 3, ||G.(t)||r~ = O(e™M) as ¢ — 0 for some
M > 0. Now, differentiating (12) with respect to the spatial variables and the
energy inequality one obtain the moderate growth of all derivatives of G-.
Uniqueness

Let G. and G. be solutions to (12). Denote G, = G. — G.. Then

IG=Ollzrr2 < IG=(0)]] 1.2

+C(10g6_1)r/0 (IG=(s)llz2 + 1Ge ()l z2)IG= ()]l z2-

Using (13), the Gronwall type inequality and growth assumptions of the initial data
with respect to €, one can see that ||G.(t)||g1.2 = O(e™) for every M € R. The
higher derivatives can be estimated as above.

By the similar procedure it is possible to prove the following theorem for n = 4.

Theorem 4. Let a representative of F' € Gi(R) satisfy

|FL(y)| < C(log(log(loge™1)))(ly|*~* + [y|™n(p~1:D)),
|FY(y)] < C(log(loge™))(|yP~" + [y[™(P=1V), y € R, € is small enough,

where p < 3, 8 > 1, F.(0) = 0 and let its primitive be non negative. Let A,B €
Gr2rs)- Then the equation

Gy — AG+ F.(G) =0, Gli=0 = A, Gi|i=0 =B

has a unique solution in Gr2([0,T)xR*), for every T > 0, if || Ac|| 1.2 and || Be|| g2
are bounded by log(log(loge 1)), ase — 0.

Remark. Tt is possible to prove the existence and uniqueness for (12) for the space
dimensions n = 5,6, 7,8,9, when F_(y) satisfies appropriate growth conditions with
respect to both ¢ and y. Like in Remark 1 after Theorem 1, one has to iterate the
composition of logarithmic functions sufficiently many times in order to obtain the
moderate bounds with respect to .

5. COMPARISON OF THE SOLUTIONS TO THE
REGULARIZED AND THE NON-REGULARIZED EQUATIONS

Theorem 5. Let u be a classical H? solution to the n-dimensional semilinear wave
equation (n < 3)

(02 — A)u+ g(u), uli=o = a, sul=o = b

where a € H*(R) and b € H*(R) have compact supports, a primitive function of
g 1is positive and g satisfies the assumptions of Section 2. Then for every T > 0
there exist s € R and a net a. — 0o as € = 0, such that the solution G. to the
regqularized equation (3) with the initial data Ae = a * ¢, B; = b * ¢es converges
to u in H?(R®)-norm for everyt < T.

Proof. Since u € H2(R"), n < 3, ||u(-,t)||r~ < C for every t > 0. Therefore
ge(u) = g(u) for € small enough. Let D, = (A — a, B. — b). Since the initial data
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a and b are smooth enough, ||D¢||gz = O(e®) as € — 0. Using inequality (4) we
obtain

t
18 — A)(Ge — u)(®)llzx < 1D llars + / 19:(Ge(5)) — e (u(s)) | 2ds
< 1Dell s + / 1G.y) — u(s)l|2ds
t
< |D:llas + Cal® / IV(Ge(s)) — u(s))]|2ds.

Using the Gronwall type lemma and the construction of the regularized solution
gives

IV(Ge(t) — w(t)llz> < | De|ler exp(Cral't)
< Ce’ exp(Cral™'t) — 0, e = 0.

Differentiating the equation with respect to a space variable y gives
(3 = D) (3,G: — Byu) = g.' (w)dyu — g.'(Ge)dy G
We have

llge" (w(t)) Vu(t) — ge'(Ge (1)) VGe ()| L2

<llg:"(G (t))(VGa(t) Vu(t) + Vu(t)(g:'(Ge (1) — g:' (u(®)) || 2

<al*||VG:(t) = Vu®)||z2 + al[[Vu®)||2[|Ge (8) — u(t)|| L~

<aM|VGe(t) = Vu(t)||2 + al[[Vu(t)|| 12| V2 Ge(t) = Vu(t)]| L2
Therefore

t
IV(VGe(t) = Vu(®))llze < 1Dl +aZ" / IVG.(s) — Vus)| ads
t
+am / V(8 1221V G (5) — V2u(s)]| p2ds.
0

Using the Gronwall type lemma yields

IV(VG:(t) — Vu®))llz2 < ||Del|lm2 exp(a*CrT + al*T'Cr,1)
< Ce’exp(al*CrT + a7 TCh 1),

where C' 7 is the constant from the proof of Theorem 1. If we choose s large enough
and a. — oo slowly enough, then the right-hand side tends to zero as € — 0.
Theorem 6. Letn = 1 and let the primitive function of g., Ge, satisfies G:(0) =0
and Ge(u) >0, u e Re € (0,1). If

[|(B:, 05 As)| 2 = o(ac) as e — 0,
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then the solution to the regularized equation (8) is also the solution to the non-
regularized one (1).

Proof. The energy inequality gives
1(8:Ge, 0xGe) (Bl L2 < [[(Be, s Ac)| L2, t € [0,T],
and the Sobolev embedding theorem gives
IGe(t, )l < CllOxGe(t, )12, t € [0,T]

Therefore, ||G:||r~ < a. and the result follows from the construction of g..

Remark 1. If we regularize the 1-dimensional wave equation with an arbitrary mod-
erate net of positive numbers a. (when the proof of uniqueness does not hold), so
that ac > ||(Be, 0, A:)||L2, then every solution to the regularized equation is the
solution to non regularized one.

The following example illustrates that logarithmic bounds of initial data are
needed even in a linear case.

Ezxample. Consider the linear Klein-Gordon equation
U — Ugg = € U, Uli—o = 0, Ugle—o = 4.

Its solution, for every fixed e, is u(z,t) = $H(t* — z*)Io(Vt?> — 22/2). Net of
functions u.(z,t) = $H(t* — 2°)Io (V> — 22/2) * ¢ (w, ) satisfies equation

Uett — Uexz = E_QUE; us|t=0 =0, ust|t=0 = ¢5(l')

This net does not belong to Epr([0,T X R). Let us prove this. It is known that

Iy(z/e) ~ Cexp(z/e)/\/2]e, z = o,

for suitable C' > 0. Hence, if (z,t) varies in some compact K such that t> —z? > 22,
for some zg > 0, then u. does not satisfy a moderate growth.

Remark 2. In the case n < 3 one can use formulas for the fundamental solution
and work directly with L* norms and obtain the generalized solution. This is the
case of 3-dimensional sub-cubic wave equation in [2].
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