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Abstract. Nets of C0-semigroups (Sε)ε with polynomial growth in ε as
ε → 0 are used for solving Cauchy problems (∂t − ∆)u + V u = f(t, u),
u(0, x) = u0(x), in particular for f = 0, in suitable generalized function
algebras, where V and u0 are singular generalized functions and f satisfies
Lipshitz type conditions. The existance of distribution solutions to some
classes of such equations is given.

1. Introduction

In this paper nets of C0-semigroups, with the controlled growth rate with re-
spect to a parameter, are used in solving a class of heat equations with singular
coefficients and data. The general idea is simple. It lies in the core of a con-
struction of a generalized function space or algebra (cf. [9] and [24]). Singular
coefficients (generalized functions) of a PDE are regularized to become nets of
smooth functions depending on a small parameter ε. Regularized PDE is then
solved using an appropriate net of semigroups. A net of solutions obtained in
this way represents a generalized function solution. Moreover, apriori bounds
imply that the nets of solutions contain convergent sequences in L2 or L1 space
and this leads to distribution solutions of corresponding linear and semilinear
equations with singular data or potential.

we will use different variants of Colombeau type generalized function alge-
bras. They contain embedded distributions and with the notion of association
in such algebras the notions of weak limit and equality in distribution theory are
extended. We refer to [8], [24], [3] and the recent papers [12], [11], [13] for the
properties of Colombeau type algebras (and distributions embedded therein)
and their use in PDEs.

The first part of this paper is devoted to the construction and analysis of
generalized semigroups which map algebras of generalized functions into them-
selves. They are defined after constructions of generalized function spaces. The
concept of an associated solution for the equation ∂tG = AG is defined through
the existence of the limit ε−a supt∈[0,T ) ||∂tGε −AεGε||L2 → 0, ε→ 0, for every

a > 0, where (Gε)ε and (Aε)ε are appropriate nets determining a generalized
function G and a generalized infinitesimal generator A. Later, this concept is
used for the definition of generalized solutions to Cauchy problems under con-
siderations. We pose in Remark 1 an open problem concerning the Hille -Yosida
type theorem for a generalized semigroup of operators.
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Note that the analysis of families of semigroups and corresponding families of
resolvents and infinitesimal generators dates back to Trotter [28] and has been
used later by many authors.

In the second part of the paper, we use semigroups related to Schrödinger
operators ∆−Vε, ε ∈ (0, 1), in solving a class of linear and semilinear parabolic
equations ∂tu − (∆ − V )u = f , u|t=0 = u0, with singular potential V and
singular initial data u0.

We refer to [1] and the references therein for the stationary case, ∂tu ≡
0, which concerns −∆ and its singular perturbations (for example, ∆u(x) −
αu(0)δ(x) = 0), Here we will give only some remarks related to this case.

Concerning semilinear parabolic equations with distributional singularities
and potential V = 0, the work of Brézis and Friedman in [7] gave the stimulus
for many papers in this direction. We mention Kato [14], Kato and Ponce [15],
Kozono and Yamazaki [17], Biagioni, Cadeddu and Gramchev [4]. In general, in
these papers conditions on a growth order of a nonlinear term g(u) = u|u|p and
the order of singularity of initial data lead to a unique global solvability in an
appropriate Kato type space. For instance, in the paper [4], Biagioni, Cadeddu
and Gramchev considered the Cauchy problem for the semilinear parabolic
equation ∂tu−∆u+ g(u) = 0, t > 0, x ∈ Rn, where g(u) is a locally Lipschitz
real-valued function and the initial data are strongly singular, i.e. belong to the
strong dual of the Banach space Ckb (Rn) ⊂ Ck(Rn) of functions with bounded
derivatives up to the order k. Colombeau and Langlais studied in [10] this
problem for semilinear parabolic equation in case n = 1 and g(u) = u3 and
recovered the classical solutions when the initial data are Lp-functions.

In this paper, there are basically two types of Cauchy problems which are
solved in generalized function algebra, GC1,H2([0, T ) : Rn), T > 0, n ≤ 3.
Initial data u0 are taken to be the elements of Colombeau type space GH2(Rn).
This involves singular initial data, embedded singular distributions of the form

u0 =
∑p

i=0 f
(i)
i , fi ∈ L2, i = 0, 1, ..., p, as well as distributions of the form∑p

i=0

∑s
j=1 δ

(i)(· − xj).
The first Cauchy problem is a linear heat equation given in Theorem 2,

(∂t −∆)u+ V u = 0, u(0, x) = u0(x), x ∈ Rn, (1)

where potential V and initial data u0 are singular distributions, for example, the
delta distribution or its powers. In case V = δα ∈ GH2,∞(Rn), α ∈ (0, 1), (this
generalized function is not an embedded Schwartz distribution) equation (1)
with u0 ∈ GH2(Rn) has a unique solution [uε(t, x)] ∈ GC1,L2([0, T )×Rn). If u0 ∈
L2(Rn), a representative of that solution has a subsequence uεν (t, x), ν ∈ N,
converging in D′(Rn) to u(t, x) = e−∆tu0(x), the solution to equation (1) with
V = 0. In case V = δ ∈ GH2,∞(Rn) and u0 ∈ L2(Rn), we also obtain converging
subsequence uεν (t, x), ν ∈ N, but not a distributional solution. Propositions 3,
4 and 5 deal with the explanations of equations with such potentials and initial
data.

Also, we consider the stationary case ∂tu ≡ 0 with the singular potential
V = δ, essential in the analysis of singular point interactions ([1]). In case n = 1
our approximating procedure for the perturbation by δ leads to the solution
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semigroup for the Schrödinger equation −iut = ∆u − δu in an appropriate
Hilbert space (cf. [1]). In cases when n = 2, 3, the corresponding results are
mentioned and announced for further investigations.

Also we show that our method of approximating a Cauchy problem with a
family of Cauchy problems leads to distributional solutions in case when V is
a ”good” potential and u0 = δ.

The second type of heat equation considered in this paper is the nonlinear
Cauchy problem

(∂t −4)u+ V u = f(t, u), u(0, x) = u0(x),

where V and u0 are singular generalized functions and a function f is sublinear
with respect to u, with bounded first and second derivatives with respect to
this variable. Constrains on f correspond to apriori L2-bounds and can be
relaxed with the change of Colombeau type algebras.This is shown in the last
proposition where the usual assumptions on f with a potential V ∈ H2,∞ and
u0 = δ lead to the net of solutions having an L1− convergent sequence, leading
to a distribution solution. In Theorem 3 the existence and the uniqueness of a
generalized function solution is proved with the general assumptions on V and
u0 and because of that, with necessary assumptions on f.

2. Generalized semigroups

2.1. Spaces and algebras of generalized functions. Let Hr,s(Ω) be the
Sobolev space of functions in Ls(Ω) with all distributional derivatives of order
|α| ≤ r belonging to Ls(Ω), equipped with the usual norm. In case s = 2, we
simply write Hr(Ω). We refer to [3], [9], [22] and [24] for general Colombeau
algebras and to [5] and [21] for the Colombeau type algebras GLp,Lq . Here, we
make some necessary modifications depending on a Cauchy problem in question.

Notation fε = O(εa) means that |fε| ≤ Cεa, 0 < ε < ε0, for some constants
C > 0 and ε0 ∈ (0, 1). In that case, we say that (fε)ε has the moderate bound,
or it is of moderate growth, or simply moderate. A net of functions (gε)ε in
some Banach space B is called moderate, or of moderate growth, if this holds
for (‖gε‖B)ε.

Definition 1. EC1,H2 ([0, T ) : Rn) (respectively NC1,H2 ([0, T ) : Rn)), T > 0, is
the vector space of nets (Gε)ε of functions

Gε ∈ C0
(
[0, T ) : H2(Rn)

)
∩ C1

(
(0, T ) : L2(Rn)

)
, ε ∈ (0, 1)

with the property: for every T1 ∈ (0, T ) there exists a ∈ R, (respectively, for
every a ∈ R) such that

max
{

sup
t∈[0,T )

‖Gε(t)‖H2 , sup
t∈[T1,T )

‖∂tGε(t)‖L2

}
= O(εa), as ε→ 0. (2)

The quotient space

GC1,H2 ([0, T ) : Rn) =
EC1,H2 ([0, T ) : Rn)

NC1,H2 ([0, T ) : Rn)

is a Colombeau type vector space.



4 M. NEDELJKOV, S. PILIPOVIĆ, D. RAJTER

Dropping the conditions on ∂tGε in (2) we obtain spaces EC0,H2 ([0, T ) : Rn),
NC0,H2 ([0, T ) : Rn) and GC0,H2 ([0, T ) : Rn).

The assertions given in the following lemma are consequences of Sobolev type
inequalities, i.e. of the fact that only for n ≤ 3, H2(Rn) ⊂ L∞(Rn) .

Lemma 1. If n ≤ 3, then EC1,H2 ([0, T ) : Rn) is an algebra with the multipli-
cation and NC1,H2 ([0, T ) : Rn) is an ideal of EC1,H2 ([0, T ) : Rn). Therefore,
GC1,H2 ([0, T ) : Rn) is an algebra with the multiplication. The same holds for
EC0,H2 ([0, T ) : Rn), NC0,H2 ([0, T ) : Rn) and GC0,H2 ([0, T ) : Rn).

Substituting H2-norm with L2-norm in (2) we obtain vector spaces

EC1,L2 ([0, T ) : Rn) , NC1,L2 ([0, T ) : Rn) and GC1,L2 ([0, T ) : Rn) .

Canonical mapping ιL2 : GC1,H2 ([0, T ) : Rn)→ GC1,L2 ([0, T ) : Rn) is defined
by ιL2(G) = G, where G = [Gε].

Space GH2(Rn) is defined in a similar way as GC1,H2(Rn), but with repre-
sentatives independent of time variable t. This space is also an algebra in case
n ≤ 3. We give more explanations for space GH2,∞ ([0, T ) : Rn).
EH2,∞ (Rn), (respectively, NH2,∞ (Rn)) is the space of nets (Gε)ε of functions

Gε ∈ H2,∞ (Rn), ε ∈ (0, 1), with the property: there exists a ∈ R (respectively,
for every a ∈ R) such that

‖Gε‖H2,∞(Rn) = O(εa), as ε→ 0.

Both spaces are algebras with the usual multiplication and NH2,∞ (Rn) is an
ideal. Colombeau type algebra is defined by

GH2,∞ (Rn) =
EH2,∞ (Rn)

NH2,∞ (Rn)
.

Definition 2. An element V ∈ GH2,∞ (Rn) is of logarithmic type if it has a
representative (Vε)ε ∈ EH2,∞ (Rn) with the property

‖Vε‖H2,∞(Rn) = O
(
log ε−1

)
, as ε→ 0.

An element V ∈ GH2,∞ (Rn) is said to be of log-log type if it has a representative
(Vε)ε ∈ EH2,∞ (Rn) such that, for every a ∈ (0, 1),

‖Vε‖H2,∞(Rn) = O(loga(log ε−1)), as ε→ 0.

2.2. Generalized semigroups. Let (E, ‖ · ‖) be a Banach space and let L(E)
be the space of all linear continuous mappings E → E.

Definition 3. SEM ([0,∞) : L(E)) is the space of nets (Sε)ε of strongly con-
tinuous mappings Sε : [0,∞) → L(E), ε ∈ (0, 1) with the property that for
every T > 0 there exists a ∈ R such that

sup
t∈[0,T )

‖Sε(t)‖ = O (εa) , as ε→ 0. (3)

SN ([0,∞) : L(E)) is the space of nets (Nε)ε of strongly continuous mappings
Nε : [0,∞)→ L(E), ε ∈ (0, 1), with the properties:
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For every b ∈ R and T > 0

sup
t∈[0,T )

‖Nε(t)‖ = O(εb), as ε→ 0. (4)

There exist t0 > 0 and a ∈ R such that

sup
t<t0

∥∥∥∥Nε(t)

t

∥∥∥∥ = O(εa). (5)

There exists a net (Hε)ε in L(E) and ε0 ∈ (0, 1) such that

lim
t→0

Nε(t)

t
x = Hεx, x ∈ E, ε < ε0. (6)

For every b > 0,

‖Hε‖ = O(εb), as ε→ 0. (7)

Let us remark that, because of 5, it is enough that (6) holds for all x ∈ D,
where D is a dense subspace of E.

Proposition 1. SEM ([0,∞) : L(E)) is an algebra with respect to composition
and SN ([0,∞) : L(E)) is an ideal of SEM ([0,∞) : L(E)).

Proof. Let

(Sε(t))ε ∈ SEM ([0,∞) : L(E)) and (Nε(t))ε ∈ SN ([0,∞) : L(E)) .

We will prove only the second assertion, i.e., that

(Sε(t)Nε(t))ε , (Nε(t)Sε(t))ε ∈ SN ([0,∞) : L(E)) ,

where Sε(t)Nε(t) denotes the composition.
Let ε ∈ (0, 1). By (3) and (4), for some a ∈ R and every b ∈ R,

‖Sε(t)Nε(t)‖ ≤ ‖Sε(t)‖ · ‖Nε(t)‖ = O(εa+b), as ε→ 0.

The same holds for ‖Nε(t)Sε(t)‖. Further, (3) and (6) yield

sup
t<t0

∥∥∥∥Sε(t)Nε(t)

t

∥∥∥∥ ≤ sup
t<t0
‖Sε(t)‖ sup

t<t0

∥∥∥∥Nε(t)

t

∥∥∥∥ = O(εa), as ε→ 0,

for some t0 > 0 and a ∈ R. Also,

sup
t<t0

∥∥∥∥Nε(t)Sε(t)

t

∥∥∥∥ = O(εa), as ε→ 0,

for some t0 > 0 and a ∈ R.
Let now ε ∈ (0, 1) be fixed. We have∥∥∥∥Sε(t)Nε(t)

t
x− Sε(0)Hεx

∥∥∥∥
=

∥∥∥∥Sε(t)Nε(t)

t
x− Sε(t)Hεx+ Sε(t)Hεx− Sε(0)Hεx

∥∥∥∥
≤ ‖Sε(t)‖ ·

∥∥∥∥Nε(t)

t
x−Hεx

∥∥∥∥+ ‖Sε(t)Hεx− Sε(0)Hεx‖ .
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By (3) and (6) as well as by the continuity of t 7→ Sε(t)(Hεx) at zero, it follows
that the last expression tends to zero as t→ 0. Similarly, we have∥∥∥∥Nε(t)Sε(t)

t
x−HεSε(0)x

∥∥∥∥
=

∥∥∥∥Nε(t)

t
Sε(t)x−

Nε(t)

t
Sε(0)x+

Nε(t)

t
Sε(0)x−HεSε(0)x

∥∥∥∥
≤
∥∥∥∥Nε(t)

t

∥∥∥∥ ‖Sε(t)x−Hε(t)Sε(0)x‖+

∥∥∥∥Nε(t)

t
(Sε(0)x)−Hε(Sε(0)x)

∥∥∥∥ .
Assumptions (5), (6) and (3) imply that the last expression tends to zero as
t→ 0. Thus (6) is proved in both cases. �

Now we define Colombeau type algebra as the factor algebra

SG ([0,∞) : L(E)) =
SEM ([0,∞) : L(E))

SN ([0,∞) : L(E))
.

Elements of SG ([0,∞) : L(E)) will be denoted by S = [Sε], where (Sε)ε is a
representative of the above class.

Definition 4. S ∈ SG ([0,∞) : L(E)) is called a Colombeau C0-semigroup if
it has a representative (Sε)ε such that, for some ε0 > 0, Sε is a C0-semigroup,
for every ε < ε0.

In the sequel we will use only representatives (Sε)ε of a Colombeau C0-
semigroup S which are C0-semigroups, for ε small enough.

Proposition 2. Let (Sε)ε and (S̃ε)ε be representatives of a Colombeau C0-

semigroup S, with the infinitesimal generators Aε, ε < ε0, and Ãε, ε < ε̃0,
respectively, where ε0 and ε̃0 correspond (in the sense of Definition 4) to (Sε)ε
and (S̃ε)ε, respectively.

Then, D(Aε) = D(Ãε), for every ε < ε̄0 = min {ε0, ε̃0} and Aε − Ãε can be

extended to an element of L(E), denoted again by Aε − Ãε.
Moreover, for every a ∈ R,

‖Aε − Ãε‖ = O (εa) , as ε→ 0. (8)

Proof. Denote (Nε)ε = (Sε − S̃ε)ε ∈ SN ([0,∞) : L(E)). Let ε < ε̄0 be fixed
and x ∈ E. We have

Sε(t)x− x
t

− S̃ε(t)x− x
t

=
Nε(t)

t
x.

This implies, letting t→ 0, that D(Aε) = D(Ãε). Now we have

(Aε − Ãε)x = lim
t→0

Sε(t)x− x
t

− lim
t→0

S̃ε(t)x− x
t

= lim
t→0

Nε(t)

t
x = Hεx, x ∈ D(Aε).

(9)

Since D(Aε) is dense in E, properties (6), (7) and (9) imply that for every

a ∈ R,
∥∥∥Aε − Ãε∥∥∥ = O(εa), as ε→ 0. �
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Now we define the infinitesimal generator of a Colombeau C0-semigroup S.
Denote by A the set of pairs ((Aε)ε, (D(Aε))ε) where Aε is a closed linear
operator on E with the dense domain D(Aε) ⊂ E, for every ε ∈ (0, 1). We
introduce an equivalence relation in A:

((Aε)ε, (D(Aε))ε) ∼ ((Ãε)ε, (D(Ãε))ε)

if there exist ε0 ∈ (0, 1) such that D(Aε) = D(Ãε), for every ε < ε0, and
for every a ∈ R there exist C > 0 and εa ≤ ε0 such that, for x ∈ D(Aε),

‖(Aε − Ãε)x‖ ≤ Cεa‖x‖, x ∈ D(Aε), ε ≤ εa.
Since Aε has a dense domain in E, Rε := Aε − Ãε can be extended to be an

operator in L(E) satisfying ‖Aε − Ãε‖ = O(εa), ε → 0, for every a ∈ R. Such
an operator Rε is called the zero operator.

We denote by A the corresponding element of the quotient space A/ ∼. Due
to Proposition 2, the following definition makes sense.

Definition 5. A ∈ A/ ∼ is the infinitesimal generator of a Colombeau C0-
semigroup S if there exists a representative (Aε)ε of A such that Aε is the
infinitesimal generator of Sε, for ε small enough.

We collect some obvious properties in the following proposition (cf. [25]).

Proposition 3. Let S be a Colombeau C0-semigroup with the infinitesimal
generator A. Then there exists ε0 ∈ (0, 1) such that:

(a) Mapping t 7→ Sε(t)x : [0,∞) → E is continuous for every x ∈ E and
ε < ε0.

(b)

lim
h→0

1

h

∫ t+h

t
Sε(s)x ds = Sε(t)x, ε < ε0, x ∈ E.

(c) ∫ t

0
Sε(s)x ds ∈ D(Aε), ε < ε0, x ∈ E.

(d) For every x ∈ D(Aε) and t ≥ 0, Sε(t)x ∈ D(Aε) and

d

dt
Sε(t)x = AεSε(t)x = Sε(t)Aεx, ε < ε0. (10)

(e) Let (Sε)ε and (S̃ε)ε be representatives of Colombeau C0-semigroup S,

with infinitesimal generators Aε and Ãε, ε < ε0, respectively. Then, for
every a ∈ R and t ≥ 0∥∥∥∥ ddtSε(t)− ÃεSε(t)

∥∥∥∥ = O (εa) , as ε→ 0. (11)

(f) For every x ∈ D(Aε) and every t, s ≥ 0,

Sε(t)x− Sε(s)x =

∫ t

s
Sε(τ)Aεx dτ =

∫ t

s
AεSε(τ)x dτ, ε < ε0.

Theorem 1. Let S and S̃ be Colombeau C0-semigroups with infinitesimal gen-
erators A and Ã, respectively. If A = Ã then S = S̃.
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Proof. Let ε be small enough and x ∈ D(Aε) = D(Ãε). Proposition 3 (d) im-

plies that for t ≥ 0, the mapping s 7→ S̃ε(t−s)Sε(s)x, t ≥ s ≥ 0 is differentiable
and
d

ds

(
S̃ε(t− s)Sε(s)x

)
= −ÃεS̃ε(t− s)Sε(s)x+ S̃ε(t− s)AεSε(s)x, t ≥ s ≥ 0.

The assumption A = Ã implies that Aε = Ãε+Rε, where Rε is a zero operator.
Since Ãε commutes with S̃ε, for every x ∈ D(Aε)

d

ds

(
S̃ε(t− s)Sε(s)x

)
= S̃ε(t− s)RεSε(s)x, t ≥ s ≥ 0

and this implies

S̃ε(t− s)Sε(s)x− S̃ε(t)x =

∫ s

0
S̃ε(t− u)RεSε(u)xdu, t ≥ s ≥ 0. (12)

Putting s = t in (12), we obtain

Sε(t)x− S̃ε(t)x =

∫ t

0
S̃ε(t− u)RεSε(u)x du, t ≥ 0, x ∈ D(Aε). (13)

Since D(Aε) is dense in E, uniform boundedness of S and S̃ on [0, t] implies
that 13 holds for every y ∈ E.

Let us prove that (Nε)ε = (Sε − S̃ε)ε ∈ SN ([0,∞) : L(E)).
(13) and Definition 3 imply that for some C > 0 and a, ã ∈ R,

sup
t∈[0,T )

‖Nε(t)x‖ ≤ sup
t∈[0,T )

∫ t

0
‖S̃ε(t− u)‖ · ‖Rε‖ · ‖Sε(u)‖‖x‖ du

≤ T C εa+ã ‖Rε‖‖x‖, x ∈ E.
Since ‖Rε‖ = O(εb), as ε → 0, for every b ∈ R, (Nε(t))ε satisfies condition

(4) in Definition 3. Condition (5) follows from the boundedness of (S̃ε)ε, (Sε)ε
on bounded domain [0, t), the properties of (Rε)ε and the following expression:∥∥∥∥Nε(t)

t

∥∥∥∥ =

∥∥∥∥1

t

∫ t

0
S̃ε(t− u)RεSε(u)x du

∥∥∥∥
≤ ‖S̃ε(t))‖ · ‖Rε‖ · ‖Sε(t))‖ ≤ const, x ∈ E, t ≤ t0,

for some t0 > 0. Also,

lim
t→0

Nε(t)

t
= lim

t→0

S̃ε(t)x− x
t

− lim
t→0

Sε(t)x− x
t

= Rεx, x ∈ D(Aε).

Since it is enough that (6) holds for a dense subset of E (see the remark after
Definition 3) this concludes the proof. �

Remark 1. Let the assumptions of Definition 3 hold. Moreover, assume a
stronger assumption than (3):

There exist M > 0, a ∈ R and ε0 ∈ (0, 1) such that

‖Sε(t)‖ ≤Mεaeαεt, ε < ε0, t ≥ 0,

where 0 < αε < α, for some α > 0.
Then we obtain the corresponding subalgebra of SG ([0,∞) : L(E)). For this

subalgebra we can formulate the Hille-Yosida theorem in a usual way.
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For the whole algebra of Colombeau C0-semigroups SG ([0,∞) : L(E)) the
formulation of the Hille-Yosida-type theorem is an open problem.

3. Schrödinger operators with singular potentials

This section deals with applications of Colombeau C0-semigroups in solving
a class of heat equations with singular potentials and singular data. First note
that the multiplication of elements G ∈ GH2,∞ (Rn) and H ∈ GC1,H2 ([0, T ) : Rn)
gives an element in GC1,H2 ([0, T ) : Rn). Indeed, if (Gε)ε ∈ EH2,∞ (Rn) and
(Hε)ε ∈ EC1,H2 ([0, T ) : Rn) then

(GεHε)ε ∈ EC1,H2 ([0, T ) : Rn) .

Similarly, if (Gε)ε ∈ NH2,∞ (Rn) or (Hε)ε ∈ NC1,H2 ([0, T ) : Rn) , then

(GεHε)ε ∈ NC1,H2 ([0, T ) : Rn) .

Thus, multiplication of potential V ∈ GH2,∞ (Rn) and u ∈ GC1,H2 ([0, T ) : Rn)
which is expected to be a solution to equation

∂tu = (∆− V )u, u(0, x) = u0(x),

makes sense.

Definition 6. LetA be represented by a net (Aε)ε, ε ∈ (0, 1), of linear operators
with the common domain H2(Rn) and with ranges in L2(Rn). A generalized
function G ∈ GC1,H2([0, T ) : Rn), T > 0, is said to be a solution to equation
∂tG = AG if

sup
t∈[0,T )

‖∂tGε(t, ·)−AεGε(t, ·)‖L2(Rn) = O(εa), for every a ∈ R.

3.1. General potential.

Theorem 2. Let V ∈ GH2,∞ (Rn) be of logarithmic type.

(i) Differential operators Aεu = (∆ − Vε)u, u ∈ H2(Rn), ε < ε0, are
infinitesimal generators of semigroups Sε, for every ε < ε0, and (Sε)ε
is a representative of a Colombeau C0-semigroup

S ∈ SG
(
[0,∞) : L(L2(Rn))

)
.

(ii) Let u0 = [u0ε] ∈ GH2 (Rn) and let (Sε)ε, ε < ε0, be as in (i).
Then, for every T > 0, u(t, x) = Su0 ∈ GC1,H2 ([0, T ) : Rn) is the

solution to equation

∂tu(t, x)−∆u(t, x) + V (x)u(t, x) = 0, u(0, x) = u0(x). (14)

The solution is unique in the space GC1,L2([0, T ) : Rn), i.e. if v is also
a solution to (14), then ιL2(u) = ιL2(v).

Proof. (i) Let ε < ε0 be fixed. The operator Aε is the infinitesimal generator of
the corresponding semigroup Sε : [0,∞)→ L(L2(Rn)) defined by the Feynman-
Kac formula

Sε(t)ψ(x) =

∫
Ω

exp

(
−
∫ t

0
Vε(ω(s)) ds

)
ψ(ω(t))dµx(ω), t ≥ 0, x ∈ Rn, (15)
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for ψ ∈ L2(Rn), ε < ε0, where Ω =
∏
t∈[0,∞) Rn and µx is the Wiener measure

concentrated at x ∈ Rn (cf. [27] or [26]).
Since V = [Vε] is of logarithmic type, there exist C > 0 and η ∈ (0, 1) such

that

|Sε(t)ψ(x)| ≤ exp

(
t sup
s∈Rn
|Vε(s)|

)∫
Ω
|ψ(ω(t))|dµx(ω)

= εCt(4πt)−n/2
∫
Rn

exp

(
−|x− y|

2

4t

)
|ψ(y)|dy,

for every t > 0, x ∈ Rn and ε < η.
Therefore, there exist C0 > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T )

‖Sε(t)ψ‖L2 ≤ C0ε
CT ‖ψ‖L2 , ε < ε0,

i.e. (Sε(t))ε, t ≥ 0, satisfies relation (3) and S = [Sε] ∈ SG
(
[0,∞) : L(L2(Rn))

)
.

(ii) Let ε < ε0. The solution to equation

∂tuε(t, x)−∆uε(t, x) + Vε(x)uε(t, x) = 0, uε(0, x) = u0ε(x) (16)

is given by

uε(t, x) = Sε(t)u0ε(x), t ∈ [0, T ), x ∈ Rn,
and uε ∈ C1

(
[0, T ) : L2(Rn)

)
. Let us show that (uε)ε ∈ EC1,H2 ([0, T ) : Rn).

Recall, the heat kernel is given by

En(t, x) =


1

(4πt)n/2
exp

(
−x

2

4t

)
, t > 0,

0, t = 0, x ∈ Rn
(17)

and its L1(Rn)-norm equals 1, for every t > 0. Let ε < ε0. By the Duhamel
principle, solution uε(t, x) to equation (16) satisfies

uε(t, x) =

∫
Rn
En(t, x− y)u0ε(y) dy

+

∫ t

0

∫
Rn
En(t− s, x− y)Vε(y)uε(s, y) dy ds,

(18)

for t ∈ [0, T ) and x ∈ Rn. Since En(t, x) → δ(x) as t → 0, we obtain that
uε(t, x)→ u0ε(x), as t→ 0.

Young’s inequality implies

‖uε(t, ·)‖L2 ≤ ‖En(t, ·)‖L1‖u0ε‖L2 +

∫ t

0
‖En(t− s, ·)‖L1‖Vε(·)‖L∞‖uε(s, ·)‖L2 ds

= ‖u0ε‖L2 +

∫ t

0
‖Vε(·)‖L∞‖uε(s, ·)‖L2 ds, t ∈ [0, T ), ε < ε0.

Gronwall’s inequality gives

‖uε(t, ·)‖L2 ≤ ‖u0ε‖L2 exp

(∫ t

0
‖Vε(·)‖L∞ ds

)
, t ∈ [0, T ), ε < ε0.
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Since V = [Vε] ∈ GH2,∞ (Rn) is of logarithmic type and (u0ε)ε ∈ EH2 (Rn),
it follows that supt∈[0,T ) ‖uε(t, ·)‖L2 has a moderate bound. Differentiation of

equation (18) with respect to some spatial variable xi gives

∂xiuε(t, x) =

∫
Rn
En(t, y)∂xiu0ε(x− y) dy

+

∫ t

0

∫
Rn
En(t− s, y)∂xi(Vε(x− y)uε(s, x− y)) dy ds,

=

∫
Rn
En(t, y)∂xiu0ε(x− y) dy

+

∫ t

0

∫
Rn
En(t− s, y)(∂xiVε(x− y)uε(s, x− y)

+ Vε(x− y)∂xiuε(s, x− y)) dy ds,

for t ∈ [0, T ), x ∈ Rn and ε < ε0. Then, for t ∈ [0, T ) and ε < ε0,

‖∂xiuε(t, ·)‖L2 ≤ ‖∂xiu0ε‖L2 (19)

+

∫ t

0

(
‖∂xiVε(·)‖L∞‖uε(s, ·)‖L2 + ‖Vε(·)‖L∞‖∂xiuε(s, ·)‖L2

)
ds.

Since supt∈(0,T ) ‖uε(t, ·)‖L2 and the first two derivatives of Vε are moderate,

Gronwall’s inequality implies that supt∈[0,T ) ‖∂xiuε(t, ·)‖L2 is moderate, too.
One can similarly estimate all the second order space derivatives of uε. The
moderateness of supt∈[T1,T ) ‖∂tu(t, ·)‖L2 , T1 < T , simply follows from equation

(14). Therefore, (uε)ε ∈ EC1,H2 ([0, T ) : Rn).
It remains to show that the solution [uε(t, x)] is unique in the sense described

in the statement of the theorem.
Suppose that (uε)ε, (vε)ε ∈ EC1,H2([0, T ) : Rn) are representatives of two

solutions to the given Cauchy problem. Then Gε := uε − vε satisfies

∂tGε(t, x)− (4− Vε)Gε(t, x) = Nε(t, x)

Gε(0, x) = N0ε(x),

where (Nε)ε ∈ NC1,L2([0, T ) : Rn) and (N0ε)ε ∈ NH2([0, T ) : Rn).
Therefore, for x ∈ Rn, t ∈ [0, T ) and ε < ε0,

Gε(t, x) =

∫
En(t, x− y)N0ε(y) dy

+

∫ t

0

∫
En(t− s, x− y)Vε(y)Gε(s, y) dy ds

+

∫ t

0

∫
En(t− s, x− y)Nε(s, y) dy ds,

(20)

where (N0ε)ε ∈ NH2(Rn) and, for every a ∈ R, supt∈[0,T ) ‖Nε(t, ·)‖L2 = O(εa),
as ε→ 0. Then Young’s and Gronwall’s inequalities imply

‖Gε(t, ·)‖L2 ≤ ‖N0ε‖L2 +

∫ t

0
‖Vε(·)‖L∞‖Gε(s, ·)‖L2 ds+

∫ t

0
‖Nε(s, ·)‖L2 ds,
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for t ∈ [0, T ), i.e.,

sup
t∈[0,T )

‖Gε(t, ·)‖L2 = O(εa), as ε→ 0,

for every a ∈ R. �

3.2. Powers of the delta function as a potential. Let (φε)ε be a net of
mollifiers of the form

φε = ε−nφ(·/ε), ε ∈ (0, 1), (21)

where φ ∈ C∞0 (Rn),
∫
φ(x)dx = 1 and φ(x) ≥ 0, x ∈ Rn. It represents the

generalized delta function in G(Rn).
Powers of the delta function are defined by the representatives

δα =

[
1

εnα
φα
( ·
ε

)]
, ε ∈ (0, 1), (22)

where α > 0.
Let Aεu = (∆ − φε)u, u ∈ H2(Rn), ε < 1. The operator Aε is the in-

finitesimal generator of the semigroup Sε : [0,∞) → L(L2(Rn)), denoted by

Sε(t) = e(∆−φε)t, t ≥ 0, ε ∈ (0, 1) (cf. (15)). It is representative of a Colombeau
C0-semigroup S ∈ SG

(
[0,∞) : L(L2(Rn))

)
.

Feynman-Kac formula gives

Sε(t)ψ(x) =

∫
Ω

exp

(
−
∫ t

0
φε(ω(s)) ds

)
ψ(ω(t))dµx(ω), ψ ∈ L2(Rn), (23)

for every x ∈ Rn, t ≥ 0 and ε ∈ (0, 1).
Since the delta generalized function is represented by a net of non-negative

functions, we have that {Sε, ε ∈ (0, 1), t ≥ 0} is bounded in L(L2(Rn)) (not
only moderate) and thus satisfies relation (3).

Proposition 4. Let δα ∈ GH2,∞(Rn), 0 < α < 1, be defined by (22) and let
u0 ∈ L2(Rn) be a continuous and bounded function. Then, by

uε(t, x) =

∫
Ω

exp
(
− 1

εnα

∫ t

0
φα
(
ω(s)

ε

)
ds
)
u0(ω(t))dµx(ω)), (24)

where t ∈ [0, T ) and x ∈ Rn, is defined a representative of a unique solution
u(t, x) ∈ GC1,L2([0, T )× Rn) to equation

∂tu(t, x)−∆u(t, x) + δα(x)u(t, x) = 0, u(0, x) = u0(x). (25)

The above representative of the solution has a subsequence uεν (t, x), ν ∈ N,
converging in D′ to u(t, x) = e−∆tu0(x), the solution to equation

∂tu(t, x)−∆u(t, x) = 0, u(0, x) = u0(x). (26)

Proof. The representative of the solution to equation (25) equals

uε(t, x) = Sε(t)u0(x), t ∈ [0, T ), x ∈ Rn, ε < ε0,

where Sε(t) is semigroup generated by operator Aε = ∆− 1

εnα
φα
( ·
ε

)
, ε < ε0.

The Feynman-Kac formula gives (24). Similarly as in the proof of Theorem 2
it follows that Sε(t)u0(·) ∈ L2 ([0, T )× Rn) , for every T > 0 and ε < ε0. Using
this and the fact that {Sε(·)u0(·); ε < ε0} is bounded in L2 ([0, T )× Rn) and
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hence relatively compact with respect to the weak topology, we obtain that
there exists a sequence {εν}ν∈N such that

Sεν (t)u0(x)→ u(t, x), εν → 0,

in the sense of weak topology in L2 ([0, T )× Rn). Let x ∈ Rn, t ∈ [0, T ) and
ε < ε0. Using Duhamel’s principle we have

uε(t, x) =

∫
Rn
En(t, x− y)u0(y) dy

+

∫ t

0

∫
Rn
En(t− s, x− y)

1

εnα
φα
(y
ε

)
uε(s, y) dy ds,

=

∫
Rn
En(t, x− y)u0ε(y) dy

+

∫ t

0

∫
Rn
En(t− s, x− yε)εn(1−α)φ(y) uε(s, yε) dy ds.

(24) and the assumption on the initial data and φ imply ‖uε(t, ·)‖L∞ <∞.
Let ψ ∈ D([0, T )× Rn) and

Jεν =

∫ T

0

∫
Rn

∫ t

0

∫
Rn
En(t− s, x− yεν)εn(1−α)

ν φ(y)uεν (s, yεν) dy ds ψ(t, x) dx dt

=εn(1−α)
ν

∫ T

0

∫
Rn

∫ t

0

∫
Rn

1

(4π(t− s))n/2
exp

(
−(x− ενy)2

4(t− s)

)
φ(y)

uεν (s, ενy) dy ds ψ(t, x)dx dt, ε < ε0, ν ∈ N.

After a suitable change of variables, using the non-negativity of sub-integral
function and Fubini-Tonelli theorem one obtains

Jεν =εn(1−α)

∫ T

0

∫
Rn

(∫ t

0

∫
Rn

1

(4πs)n/2
exp

(
−(x− ενy)2

4s

)
φ(y)ψ(t, x)uεν (t− s, ενy) dx ds

)
dy dt

=

∫ T

0

∫
Rn
εn(1−α)Hεν (y, t) dy dt, ε < ε0, ν ∈ N.

Now, for ε < ε0, ν ∈ N, y ∈ Rn and t ∈ [0, T )

|Hεν (y, t)| ≤
∫ t

0

∫
Rn

1

(4πs)n/2
exp

(
−(x− ενy)2

4s

)
|φ(y)| · |ψ(t, x)| · |uεν (t− s, ενy)| dx ds

≤C
∫ t

0

∫
Rn

1

(4πs)n/2
exp

(
−(x− ενy)2

4s

)
dx ds = Ct,

since we have proved that {uε, ε < ε0} is bounded.
Therefore, using Lebesgue’s dominated convergence theorem gives

lim
ε→0

Jεν =

∫ T

0

∫
Rn

lim
ε→0

εn(1−α)Hεν (y, t) dy dt = 0.

�
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In a similar way as above we have

Proposition 5. Let δ ∈ GH2,∞(Rn) be defined by (21) and u0 be a continuous
bounded and L2(Rn)-function. Let u be the solution to equation (14), with
V = δ, is constructed in Theorem 2 and Sε(t) be the semigroup generated by
operator Aε = ∆ − φε, ε < ε0. Then, there is a decreasing sequence {εν}ν∈N
converging to zero such that

uεν (t, x) = Sεν (t)u0(x)→ u(t, x), εν → 0, (t, x) ∈ (0, T )× Rn,

in the sense of weak topology in L2 ((0, T )× Rn), T > 0.

Remark 2. We can treat the above equation when the δ-function is substituted

with a positive linear combination of its powers
M∑
i=1

αiδ
i(x), M ∈ N, αi > 0,

i = 1, . . .M . Then

exp

(
−
∫ 1

0
(φε(ω(s)))i ds

)
≤ 1, i ≤M,

i.e., (Sε(t)ψ(x))ε, ε < ε0, defined by (15) satisfies

sup
t∈[0,T )

‖Sε(t)ψ‖L2 = O(1).

Thus, (Sε(t)u0ε)ε is a representative of the solution to equation

∂tu(t, x) =

(
∆−

M∑
i=1

αiδ
i(x)

)
u(t, x), t ∈ [0, T ), x ∈ Rn.

Remark 3. The first mathematically rigorous investigation of a singular per-
turbation was carried over in [2], where a self-adjoint realization of −∆ + αδ is
obtained via the Krein theory of self-adjoint extensions of−∆ over C∞0 (R3\{0}).

By Theorem 1.3.1 in [1], in case n = 1, −∆+ δ is a self-adjoint operator with
the domain D = {ψ; ψ ∈ H1(R), (−∆ + δ)ψ ∈ L2(R)}. In this case, with any
delta net (δε)ε instead of δ, the strong resolvent convergence leads to a solution
of Schrödinger equation

−i ∂tu = (∆− δ)u, u|t=0 = u0.

In fact, the net of semigroups (Sε)ε determined by i(∆− δε)ε, converges to the

semigroup eit(∆−δ) and Sεu0, u0 ∈ D, converges to the solution eit(∆−δ)u0 of the
corresponding Cauchy problem in the sense of weak convergence.

If n = 2 or n = 3, δ ∈ H−2 and the rank one form unbounded perturbations
are performed in [1] (cf. Sections 1.4 and 1.5 ). In these cases our approximate
solutions, has to be done by a suitable delta net, for example, the one given
in Lemma 1.5.3 in [1]. With (log | log ε|)−1 instead of ε the convergence to the
solution semigroup for the Schrödinger equation with potential δ can be also
obtained. This analysis will be given in a separate paper.

Remark 4. We will prove the existance of an L2 function satisfying

∂tu(t, x)−∆u(t, x) + V (x)u(t, x) = 0, u(0, x) = δ(x), (27)
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in the sense of distriibutins, where V is a locally bounded function on Rn so
that the Schrödinger operator is the self-adjoint one (for instance of Stummel
class, [26]).

With (φε)ε as in (21) and Feynman-Kac formula we have a net of approxi-
mated solutions

uε(x, t) =

∫
Ω

exp

(
−
∫ t

0
V (ω(s)) ds

)
φε(ω(t))dµx(ω), t ≥ 0, x ∈ Rn. (28)

There exist C > 0 and η ∈ (0, 1) such that

|uε(x, t)| ≤
∫

Ω
|φε(ω(t))|dµx(ω) = C(4πt)−n/2

∫
Rn

exp

(
−|x− y|

2

4t

)
φε(y)dy,

for every t ≥ 0, x ∈ Rn and ε < η. This implies that there exists a net (εν)ν
decreasing to zero such that (uεν )ν converges to u ∈ L2([0, T ]× Rn) weakly in
L2([0, T ]× Rn). Then,

uε(t, x) =

∫
Rn
En(t, x− y)φεν (y) dy

+

∫ t

0

∫
Rn
En(t− s, x− y)V (y)uεν (s, y) dy ds,

(29)

leads to the equality in the sense of distributions:

u(t, x) = En(t, x) +

∫ t

0

∫
Rn
En(t− s, x− y)V (y)u(s, y) dy ds. (30)

Thus, we obtain a distributional solution to (27).

3.3. Lipschitz nonlinear case. We will use the well known inequality

‖ | 5 g|2‖L2(Rn) ≤ ‖5 g ‖2L4(Rn) ≤ ‖5 g ‖2H1(Rn), g ∈ H
2(Rn), (31)

which holds for n ≤ 4. But in the sequel we assume that n ≤ 3 because in this
case EC1,H2([0, T ) : Rn) is an algebra.

Lemma 2. Let n ≤ 3. Suppose that a function f : [0, T ) × Rn → Rn satisfies
f(t, ·) ∈ C2(Rn), f(·, y) ∈ C1([0, T )), t ∈ (0, T ), T > 0, y ∈ Rn and

|f(t, y)| ≤ L0(t)|y|, |∂yf(t, y)| ≤ L1(t), |∂yyf(t, y)| ≤ L2(t), (32)

for some positive bounded functions Li : [0, T )→ R, i = 0, 1, 2.
Then, by

(uε)ε 7→ (f(t, uε))ε

are defined mappings

EC1,H2 ([0, T ) : Rn)→ EC0,H2 ([0, T ) : Rn)

and

NC1,H2 ([0, T ) : Rn)→ NC0,H2 ([0, T ) : Rn)

inducing the mapping u 7→ [f(t, uε)]

GC1,H2 ([0, T ) : Rn)→ GC0,H2 ([0, T ) : Rn) .
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Proof. We will only prove that (uε)ε ∈ EC1,H2 ([0, T ) : Rn) implies (f(t, uε))ε ∈
EC0,H2 ([0, T ) : Rn). The other parts of the proof follow in a similar way.

We have to show that there exists a ∈ Rn such that

sup
t∈[0,T )

‖f(t, uε)‖H2(Rn) = O(εa), as ε→ 0.

Relation (32) implies

‖f(t, uε)‖L2(Rn) ≤ L0(t)‖uε‖L2(Rn), t ∈ [0, T ), ε < 1.

Since (uε)ε ∈ EC1,H2 ([0, T ) : Rn), we obtain that supt∈[0,T ) ‖f(t, uε)‖L2(Rn)

has the moderate bound.
After differentiation with respect to some spatial variable xi we obtain

‖∂yf(t, uε)∂xiuε‖L2(Rn) ≤ ‖∂yf(t, uε)‖L∞(Rn)‖∂xiuε‖L2(Rn)

≤ L1(t)‖∂xiuε‖L2(Rn).

As above we obtain the moderate bound for supt∈[0,T ) ‖fy(t, uε)∂xiuε‖L2(Rn).

After another differentiation with respect to xi, using (31), the estimate
|L1(t)|, |L2(t)| ≤ C, t ∈ [0, T ), and the fact that EC1,H2([0, T ) : Rn) is an
algebra for n ≤ 3, we obtain

‖∂yyf(t, uε)(∂xiuε)
2 + ∂yf(t, uε)∂xi,xiuε‖L2(Rn)

≤ ‖∂yyf(t, uε)‖L∞(Rn)‖(∂xiuε)2‖L2(Rn) + ‖∂yf(t, uε)‖L∞(Rn)‖∂xixiuε‖L2(Rn)

≤ L2(t)‖∂xiuε‖2L4(Rn) + L1(t)‖∂xixiuε‖L2(Rn)

≤ C
(
‖∂xixiuε‖2L2(Rn) + ‖∂xixiuε‖L2(Rn)

)
.

Since, by assumption, ‖∂xixiuε‖L2(Rn) has a moderate bound, the assertion
follows. �

Theorem 3. Let n ≤ 3, T > 0, V ∈ GH2,∞ (Rn) be of logarithmic type and
u0 ∈ GH2(Rn). Suppose that a function f : [0, T ) × Rn → Rn satisfies the
conditions of Lemma 2.

Then, there exists a solution u(t, x) ∈ GC1,H2([0, T ) : Rn) to equation

∂tu(t, x) = (∆− V )u(t, x) + f(t, u(t, x)), u(0, x) = u0(x). (33)

Moreover, if potential V is of log-log type, then the solution to equation (33)
is unique in GC1,L2([0, T ) : Rn).

Proof. Let ε < ε0 be fixed. Consider the approximated equation

∂tuε(t, x) = (∆− Vε)uε(t, x) + f(t, uε(t, x)), uε(0, x) = u0ε(x). (34)

As we have shown in Theorem 2 (i), (Sε)ε defined by (15) is an element of
SEM

(
[0,∞) : L(L2(Rn))

)
.

For every fixed ε ∈ (0, 1) the classical solution to (34) exists and satisfies

uε(t, x) = Sε(t)u0ε(x) +

∫ t

0
Sε(t− s)f(s, uε(s, x)) ds, t ∈ [0, T ), x ∈ Rn. (35)

Let us show that (uε)ε ∈ EC1,H2 ([0, T ) : Rn).
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First,

uε(t, x) =

∫
Rn
En(t, x− y)u0ε(y)dy

+

∫ t

0

∫
Rn
En(t− s, x− y)Vε(y)uε(s, y)dyds

+

∫ t

0

∫
Rn
En(t− s, x− y)f(s, uε(s, y))ds, (t, x) ∈ [0, T )× Rn.

(36)

Therefore,

‖uε(t, ·)‖L2 ≤ ‖En(t, ·)‖L1‖u0ε‖L2 +

∫ t

0
‖En(t− s, ·)‖L1‖Vε(·)‖L∞‖uε(s, ·)‖L2ds

+

∫ t

0
‖En(t− s, ·)‖L1‖f(s, uε(s, ·))‖L2ds

≤ ‖u0ε‖L2 +

∫ t

0
‖Vε(·)‖L∞‖uε(s, ·)‖L2ds

+

∫ t

0
L0(s) ‖uε(s, ·)‖L2ds, t ∈ [0, T ),

i.e.,

‖uε(t, ·)‖L2 = ‖u0ε‖L2 exp

(∫ t

0
(‖Vε(·)‖L∞ + L0(s)) ds

)
= O(εa), as ε→ 0,

(37)
uniformly for t ∈ [0, T ), for some a ∈ R, since V is of logarithmic type.

Note, u0ε ∈ H2(Rn) and inequality (31) imply the moderate bound for
‖u0ε(·)‖L4 . Therefore, the same procedure as above, with ‖ · ‖L4 instead of
‖ · ‖L2 , gives the moderate bound for ‖uε(t, ·)‖L4 .

Differentiating (36) with respect to some spatial variable, we have

∂xiuε(t, x) =

∫
Rn
En(t, y)∂xiu0ε(x− y) dy

+

∫ t

0

∫
Rn
En(t− s, y)∂xi(Vε(x− y)uε(s, x− y)) dy ds

+

∫ t

0

∫
Rn
En(t− s, y)∂xif(s, uε(s, x− y))dyds,

=

∫
Rn
En(t, y)∂xiu0ε(x− y) dy (38)

+

∫ t

0

∫
Rn
En(t− s, y)(∂xiVε(x− y)uε(s, x− y)

+ Vε(x− y)∂xiuε(s, x− y)) dy ds

+

∫ t

0

∫
Rn
En(t− s, y)∂uf(s, uε(s, x− y))∂xiuε(s, x− y)dyds,
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for (t, x) ∈ [0, T )× Rn. Young’s inequality implies

‖∂xiuε(t, ·)‖L2 ≤ ‖En(t, ·)‖L1‖∂xiu0ε(·)‖L2

+

∫ t

0
‖En(t− s, ·)‖L1(‖∂xiVε(·)‖L∞‖uε(s, ·)‖L2

+ ‖Vε(·)‖L∞‖∂xiuε(s, ·)‖L2) ds

+

∫ t

0
‖En(t− s, ·)‖L1‖∂uf(s, uε(s, ·))‖L∞‖∂xiuε(s, ·)‖L2 ds,

≤ ‖∂xiu0ε(·)‖L2 +

∫ t

0
(‖∂xiVε(·)‖L∞‖uε(s, ·)‖L2

+ ‖Vε(·)‖L∞‖∂xiuε(s, ·)‖L2) ds

+

∫ t

0
L1(s)‖∂xiuε(s, ·)‖L2 ds,

uniformly for t ∈ [0, T ). This implies

‖∂xiuε(t, ·)‖L2 ≤(‖∂xiu0ε(·)‖L2 +

∫ t

0
‖∂xiVε(·)‖L∞‖uε(s, ·)‖L2)

· exp(

∫ t

0
(‖Vε(·)‖L∞ + L1(s)) ds, t ∈ [0, T ).

Using the facts that supt∈[0,T ) ‖uε(t, ·)‖L2 has the moderate bound and that V

is of logarithmic type we obtain the moderate bound for supt∈[0,T ) ‖∂xiuε(t, ·)‖L2 .

Since ‖∂xiu0ε(·)‖L4 and supt∈[0,T ) ‖uε(t, ·)‖L4 have moderate bounds (the first

one by inequality (31) and the second one by the previous step), the same
procedure gives us the moderate bound for supt∈[0,T ) ‖∂xiuε(t, ·)‖L4 , too.

After another differentiation, one can obtain the moderateness bounds also.
Let us show the uniqueness of the solution.

Note that if potential V is of log-log type (as assumed for the uniqueness)
then from (37) follows that solution to equation (33) is of logarithmic type.

Let uε and vε, be solutions to equation (34). Denote Gε = uε− vε and define

gε(t, x) =

∫ 1

0
∂uf(t, σuε(t, x) + (1− σ)vε(t, x)) dσ, t ∈ [0, T ), x ∈ Rn.

Then, Gε is a solution to equation

∂tGε(t, x) = (∆− Vε)Gε(t, x) + gε(t, x)Gε(t, x) +Nε(t, x),

(Gε(0, x))ε = (N0ε(x))ε ∈ NH2(Rn), ε < ε0,

where (Nε)ε ∈ NC1,L2([0, T ) : Rn). From the definition of gε, conditions given
on the function f and the fact that u and v are both of logarithmic type it
follows that

‖gε(t, x)‖L2 ≤ C (‖uε‖L2 + ‖vε‖L2) = O(log ε−1), t ∈ [0, T ).
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Let V1ε = Vε − gε, ε < ε0. Then function V1 is of logarithmic type. Now,

Gε(t, x) =

∫
Rn
En(t, x− y)N0ε(y)dy

+

∫ t

0

∫
Rn
En(t− s, x− y)V1ε(y)Gε(s, y)dyds

+

∫ t

0

∫
Rn
En(t− s, x− y)f(s,Gε(s, y))ds, (t, x) ∈ [0, T )× Rn,

(39)

for ε < ε0. This implies

‖Gε(t, ·)‖L2 ≤‖En(t, ·)‖L1‖N0ε‖L2 +

∫ t

0
‖En(t− s, ·)‖L1‖V1ε(·)‖L∞‖Gε(s, ·)‖L2ds

+

∫ t

0
‖En(t− s, ·)‖L1‖f(s,Gε(s, ·))‖L2ds

≤‖N0ε‖L2 +

∫ t

0
‖V1ε(·)‖L∞‖Gε(s, ·)‖L2ds

+

∫ t

0
L0(s) ‖Gε(s, ·)‖L2ds, t ∈ [0, T ),

and

‖Gε(t, ·)‖L2 = ‖N0ε‖L2 exp

(∫ t

0
(‖V1ε(·)‖L∞ + L0(s)) ds

)
= O(εa),

uniformly for t ∈ [0, T ), for every a ∈ R, since (N0ε(x))ε ∈ NH2(Rn) and V1 is
of logarithmic type. Therefore, the solution is unique in GC1,L2([0, T ) : Rn). �

Proposition 6. Let n ≤ 3, T > 0, V ∈ H2,∞(Rn), u0 = δ (thus u0,ε = 1
εnφ( ·ε),

ε ∈ (0, 1)) and a function f : [0, T ) × Rn → Rn satisfy first two conditions of
(32).

Then, there exists a function u(t, x) ∈ L1([0, T ) : Rn) satisfying equation

∂tu(t, x) = (∆− V )u(t, x) + f(t, u(t, x)), u(0, x) = u0(x).

in the sense of distributions.

Proof. As in (36)-(37) but with the L1-norm instead of L2-norm (where it ap-
pears) we have

||uε||L1 , ||∂xiuε||L1 < const, ε ∈ (0, 1).

By Rellich lemma this implies the existence of an L1-convergent sequence (uεν )ν .
Denote by u ∈ L1([0, T ] ×Rn) its limit. It has a subsequence converging to u
almost everywhere. By (35) we have

uε(t, x) = En(t, x) +

∫ t

0

∫
Rn
En(t− s, x− y)V (y)u(s, y)dyds

+

∫ t

0

∫
Rn
En(t− s, x− y)f(s, u(s, y))ds, (t, x) ∈ [0, T )× Rn.

Now it is easy to see that u is a distribution solution to the equation. �
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