SEMIGROUPS IN GENERALIZED FUNCTION ALGEBRAS.
HEAT EQUATION WITH SINGULAR POTENTIAL AND
SINGULAR DATA
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ABSTRACT. Nets of Co-semigroups (Se). with polynomial growth in ¢ as
e — 0 are used for solving Cauchy problems (9; — A)u + Vu = f(¢,u),
u(0,z) = wo(x), in particular for f = 0, in suitable generalized function
algebras, where V' and wuo are singular generalized functions and f satisfies
Lipshitz type conditions. The existance of distribution solutions to some
classes of such equations is given.

1. INTRODUCTION

In this paper nets of Cy-semigroups, with the controlled growth rate with re-
spect to a parameter, are used in solving a class of heat equations with singular
coefficients and data. The general idea is simple. It lies in the core of a con-
struction of a generalized function space or algebra (cf. [9] and [24]). Singular
coefficients (generalized functions) of a PDE are regularized to become nets of
smooth functions depending on a small parameter €. Regularized PDE is then
solved using an appropriate net of semigroups. A net of solutions obtained in
this way represents a generalized function solution. Moreover, apriori bounds
imply that the nets of solutions contain convergent sequences in L? or L! space
and this leads to distribution solutions of corresponding linear and semilinear
equations with singular data or potential.

we will use different variants of Colombeau type generalized function alge-
bras. They contain embedded distributions and with the notion of association
in such algebras the notions of weak limit and equality in distribution theory are
extended. We refer to [8], [24], [3] and the recent papers [12], [11], [13] for the
properties of Colombeau type algebras (and distributions embedded therein)
and their use in PDEs.

The first part of this paper is devoted to the construction and analysis of
generalized semigroups which map algebras of generalized functions into them-
selves. They are defined after constructions of generalized function spaces. The
concept of an associated solution for the equation ;G = AG is defined through
the existence of the limit e~ sup,c(o 1) [|0:Ge — A:Gel[2 — 0, € — 0, for every
a > 0, where (G.). and (A;). are appropriate nets determining a generalized
function G and a generalized infinitesimal generator A. Later, this concept is
used for the definition of generalized solutions to Cauchy problems under con-
siderations. We pose in Remark 1 an open problem concerning the Hille -Yosida
type theorem for a generalized semigroup of operators.
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Note that the analysis of families of semigroups and corresponding families of
resolvents and infinitesimal generators dates back to Trotter [28] and has been
used later by many authors.

In the second part of the paper, we use semigroups related to Schrédinger
operators A — V., € € (0,1), in solving a class of linear and semilinear parabolic
equations dyu — (A — V)u = f, uli=p = up, with singular potential V' and
singular initial data wuy.

We refer to [1] and the references therein for the stationary case, dyu =
0, which concerns —A and its singular perturbations (for example, Au(x) —
au(0)d(z) = 0), Here we will give only some remarks related to this case.

Concerning semilinear parabolic equations with distributional singularities
and potential V' = 0, the work of Brézis and Friedman in [7] gave the stimulus
for many papers in this direction. We mention Kato [14], Kato and Ponce [15],
Kozono and Yamazaki [17], Biagioni, Cadeddu and Gramchev [4]. In general, in
these papers conditions on a growth order of a nonlinear term g(u) = u|u|? and
the order of singularity of initial data lead to a unique global solvability in an
appropriate Kato type space. For instance, in the paper [4], Biagioni, Cadeddu
and Gramchev considered the Cauchy problem for the semilinear parabolic
equation dyu — Au+ g(u) =0, t > 0, € R™, where g(u) is a locally Lipschitz
real-valued function and the initial data are strongly singular, i.e. belong to the
strong dual of the Banach space Cff(R™) C C*(R") of functions with bounded
derivatives up to the order k. Colombeau and Langlais studied in [10] this
problem for semilinear parabolic equation in case n = 1 and g(u) = »® and
recovered the classical solutions when the initial data are LP-functions.

In this paper, there are basically two types of Cauchy problems which are
solved in generalized function algebra, Gen y2([0,7) @ R"), T > 0, n < 3.
Initial data ug are taken to be the elements of Colombeau type space Gg2(R"™).
This involves singular initial data, embedded singular distributions of the form
up = >0, fi(z), fi € L?, i = 0,1,...,p, as well as distributions of the form

o Z;=1 5(i)(' - ;).

The first Cauchy problem is a linear heat equation given in Theorem 2,
(O —A)u+Vu=0, u(0,z) =up(x), z € R", (1)

where potential V' and initial data ug are singular distributions, for example, the
delta distribution or its powers. In case V = §% € Gp2.0(R"), a € (0,1), (this
generalized function is not an embedded Schwartz distribution) equation (1)
with ug € Gy2(R™) has a unique solution [uc(t, )] € Gen £2([0,T) xR™). If ug €
L?(R™), a representative of that solution has a subsequence u.,(t,z), v € N,
converging in D'(R™) to u(t,z) = e~ ?ug(z), the solution to equation (1) with
V =0.Incase V =0 € G20 (R") and uy € L?>(R"), we also obtain converging
subsequence u., (t,z), v € N, but not a distributional solution. Propositions 3,
4 and 5 deal with the explanations of equations with such potentials and initial
data.

Also, we consider the stationary case dyu = 0 with the singular potential
V' =4, essential in the analysis of singular point interactions ([1]). In case n =1
our approximating procedure for the perturbation by d leads to the solution
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semigroup for the Schrodinger equation —iuy = Awu — du in an appropriate
Hilbert space (cf. [1]). In cases when n = 2,3, the corresponding results are
mentioned and announced for further investigations.

Also we show that our method of approximating a Cauchy problem with a
family of Cauchy problems leads to distributional solutions in case when V is
a "good” potential and ug = 9.

The second type of heat equation considered in this paper is the nonlinear
Cauchy problem

(O — DN)u+Vu= f(t,u), u(0,z) = up(x),

where V and ug are singular generalized functions and a function f is sublinear
with respect to u, with bounded first and second derivatives with respect to
this variable. Constrains on f correspond to apriori L?-bounds and can be
relaxed with the change of Colombeau type algebras.This is shown in the last
proposition where the usual assumptions on f with a potential V € H?>> and
up = § lead to the net of solutions having an L'— convergent sequence, leading
to a distribution solution. In Theorem 3 the existence and the uniqueness of a
generalized function solution is proved with the general assumptions on V and
ug and because of that, with necessary assumptions on f.

2. GENERALIZED SEMIGROUPS

2.1. Spaces and algebras of generalized functions. Let H™*({2) be the
Sobolev space of functions in L*(€2) with all distributional derivatives of order
|a| < r belonging to L*(2), equipped with the usual norm. In case s = 2, we
simply write H"(§2). We refer to [3], [9], [22] and [24] for general Colombeau
algebras and to [5] and [21] for the Colombeau type algebras Gr» ra. Here, we
make some necessary modifications depending on a Cauchy problem in question.

Notation f. = O(e*) means that |f.| < Ce®, 0 < € < g9, for some constants
C >0and ¢p € (0,1). In that case, we say that (f:). has the moderate bound,
or it is of moderate growth, or simply moderate. A net of functions (g:). in
some Banach space B is called moderate, or of moderate growth, if this holds

for ([lg-1l5)e-

Definition 1. &1 g2 ([0,T) : R™) (respectively Nea g2 ([0,T) : R™)), T > 0, is
the vector space of nets (G¢). of functions

G. € C°([0,T) : H*(R™) N C' ((0,T) : L*(R™)), € € (0,1)

with the property: for every 77 € (0,7) there exists a € R, (respectively, for
every a € R) such that

max{ sup ||G=(t)]| gz, sup HatGE(t)HLz}:O(Ea), ase 0. (2)
t€[0,T) te[T1,T)

The quotient space

Gor,m2 ([0,T) : R") = ==

is a Colombeau type vector space.
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Dropping the conditions on 9;G. in (2) we obtain spaces Eco g2 ([0,T) : R"),
Neo g2 ([0,T) : R™) and Geo g2 ([0,T) : R™).

The assertions given in the following lemma are consequences of Sobolev type
inequalities, i.e. of the fact that only for n < 3, H2(R") C L®(R") .

Lemma 1. Ifn < 3, then Ec1 g2 ([0,T) : R™) is an algebra with the multipli-
cation and Nei g2 ([0,T) : R™) is an ideal of Ecn g2 ([0,T) : R™). Therefore,
Ger g2 ([0,T) - R™) is an algebra with the multiplication. The same holds for
(C/‘Co’HQ ([O, T) : Rn), ./\/’0071_[2 ([O,T) . Rn) and gco’Hz ([O,T) . Rn)
Substituting H2-norm with L2-norm in (2) we obtain vector spaces
Ecr 2 ([0,T) :R™), Nen 12 ([0,T) : R") and Gen 72 ([0,7) : R™).

Canonical mapping ¢z2 : Gor g2 ([0,T) : R?) — Gen 12 ([0,7) : R™) is defined
by t72(G) = G, where G = [G.].

Space G2 (R™) is defined in a similar way as Gen y2(R™), but with repre-
sentatives independent of time variable t. This space is also an algebra in case
n < 3. We give more explanations for space G2, ([0,7) : R™).

Exz.00 (R™), (respectively, N2, (R™)) is the space of nets (G.). of functions
G. € H*>>® (R"), € € (0,1), with the property: there exists a € R (respectively,
for every a € R) such that

|Gell 200 mrny = O(e®), as e — 0.

Both spaces are algebras with the usual multiplication and N2, (R™) is an
ideal. Colombeau type algebra is defined by

gHQ,oo (Rn)

o (R?) = /7~
I (RY) = 3 (R
Definition 2. An element V € Gp2.0 (R™) is of logarithmic type if it has a
representative (Vz)e € Ef2.« (R™) with the property

I Vell 2,00y = O (loge_l) , ase— 0.
An element V' € G2, (R™) is said to be of log-log type if it has a representative
(V2)e € Epz.00 (R™) such that, for every a € (0,1),
| Vell 2,00 (mny = O(log?(log e 1), ase —0.

2.2. Generalized semigroups. Let (E, | -||) be a Banach space and let L(E)
be the space of all linear continuous mappings £ — F.

Definition 3. SEj ([0,00) : L(E)) is the space of nets (S¢). of strongly con-
tinuous mappings S; : [0,00) — L(E), € € (0,1) with the property that for
every T > 0 there exists a € R such that
sup ||S:(t)]| = O (%), ase — 0. (3)
te[0,T)

SN ([0,00) : L(E)) is the space of nets (N¢). of strongly continuous mappings
N; :[0,00) = L(E), € € (0,1), with the properties:
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For every be Rand 7' > 0

sup |[N(t)] = O(e?), ase — 0.
te[0,T)

There exist tg > 0 and a € R such that
Nc(t)

= O0(e).

sup
t<to

There exists a net (H.). in L(F) and ¢¢ € (0, 1) such that
Ne(t)

lim rxr=H.x, z e FE, € <egy.

t—0

For every b > 0,
|H.|| = O(), ase— 0.

(6)

(7)

Let us remark that, because of 5, it is enough that (6) holds for all z € D,

where D is a dense subspace of E.

Proposition 1. SE); ([0,00) : L(E)) is an algebra with respect to composition

and SN ([0,00) : L(E)) is an ideal of SEp ([0,00) : L(E)).
Proof. Let

(S-(t))- € SEar ([0,00) : L(E)) and (N-(t)). € SN ([0, 00) : L(E)).

We will prove only the second assertion, i.e., that
(Sc(D)Ne(t))e» (Ne()S:(t)), € SN ([0,00) : L(E)),

where S¢(t)N¢(t) denotes the composition.
Let € € (0,1). By (3) and (4), for some a € R and every b € R,

1SN < 1S= @)1 - [Ne(2)| = O(™*?), as e — 0.
The same holds for | N¢(¢)S:(t)||. Further, ( ) and (6) yield
SN0

sup
t<to

H < sup ()] sup

H (%), ase =0,

for some tg > 0 and a € R. Also,

Ne(t)5:(t)
t

H =0(e"), ase—0,
t<to

for some tg > 0 and a € R.
Let now ¢ € (0, 1) be fixed. We have

|,

<.l |

— S:(0)H.x

Se(t) NE(t)$

— Sc(t)Hex + Sc(t)Hex — S-(0)Hex

r— H.x

Nat(t) + ||S(t)Hew — S.(0) Hez|| -
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By (3) and (6) as well as by the continuity of t — S.(t)(H.x) at zero, it follows
that the last expression tends to zero as ¢ — 0. Similarly, we have

t eENME

Ne®) g 0y 4 Ne®)

_ HNgt(t)Sg(t)x =W 0)e + =W 0y — H.5.(0)a

N.(t)

< eT(Ss(O)"E) - HE(SE(O):E)

Nt@)H 1S (t)2 — Ho()S-(0)a] +

Assumptions (5), (6) and (3) imply that the last expression tends to zero as
t — 0. Thus (6) is proved in both cases. O

Now we define Colombeau type algebra as the factor algebra
SE) ([0,00) : L(E))
SG ([0 : L(F)) = .
(0290 £ =" (10.00) - £(8)
Elements of SG ([0, 00) : L(E)) will be denoted by S = [S.], where (S:). is a

representative of the above class.

Definition 4. S € SG (|0,00) : L(E)) is called a Colombeau Cy-semigroup if
it has a representative (S¢)c such that, for some gy > 0, S is a Cy-semigroup,
for every e < gg.

In the sequel we will use only representatives (S:). of a Colombeau Cjy-
semigroup S which are Cy-semigroups, for € small enough.

Proposition 2. Let (S:). and (S:): be representatives of a Colombeau Cp-
semigroup S, with the infinitesimal generators A., £ < £o, and As, € < &,
respectively, where €y and €y correspond (in the sense of Definition 4) to (Sc)e
and (S.)., respectively.

Then, D(A;) = D(A;), for every e < &y = min{eg, &9} and A; — A, can be
extended to an element of L(E), denoted again by A. — A..

Moreover, for every a € R,

|Ae — A = O (%), ase — 0. (8)

Proof. Denote (N.). = (S: — S.)e € SN ([0,00) : L(E)). Let € < & be fixed
and x € E. We have
Se(t)r —x S.(t)x —x ~N:(t)
t t .t

This implies, letting ¢ — 0, that D(A.) = D(A.). Now we have

(A — Az =lim Seltle—=z _ lim Slt)e—z

t—0 t t—0 t
9
. N:(t) ©)
=lim x=H.x, x € D(A).
t—0

Since D(Ag) is dense in E, properties (6), (7) and (9) imply that for every
aeR, [|A. — A, =0(e%), as e — 0. O
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Now we define the infinitesimal generator of a Colombeau Cy-semigroup S.
Denote by A the set of pairs ((Ac)e, (D(A:))e) where A. is a closed linear
operator on E with the dense domain D(A.;) C E, for every ¢ € (0,1). We
introduce an equivalence relation in A:

((Ao)e, (D(A:))e) ~ ((Ae)e, (D(A:))e)

if there exist g9 € (0,1) such that D(A.) = D(A.), for every ¢ < eg, and
for every a € R there exist C' > 0 and ¢, < ¢ such that, for x € D(A.),
[(Ae — Ae)z|| < Ce|z|, x € D(Ae), € < &q. _

Since A has a dense domain in F, R. := A — A, can be extended to be an
operator in £(E) satisfying ||4. — A.|| = O(e%), e — 0, for every a € R. Such
an operator R, is called the zero operator.

We denote by A the corresponding element of the quotient space A/ ~. Due
to Proposition 2, the following definition makes sense.

Definition 5. A € A/ ~ is the infinitesimal generator of a Colombeau Cjy-
semigroup S if there exists a representative (A.). of A such that A. is the
infinitesimal generator of Sg, for € small enough.

We collect some obvious properties in the following proposition (cf. [25]).

Proposition 3. Let S be a Colombeau Cy-semigroup with the infinitesimal
generator A. Then there exists ey € (0,1) such that:
(a) Mapping t — Sc(t)x : [0,00) — E is continuous for every x € E and
€ <egp.

(b)

t+h
li = E.
lim h/ s)x ds = Se(t)z, € <ep, x €

() t
/ Se(s)xds € D(A;), € <eg, x € E.
0
(d) For every x € D(A:) and t >0, S-(t)x € D(A:) and

%Sg(t):v — AS.(H)z = S.(t) Aoz, € < e, (10)

(e) Let (S-). and (S:): be representatives of Colombeau Cy-semigroup S,
with infinitesimal generators Az and Ac, € < €, respectively. Then, for
everya € R andt >0

4
dt
(f) For every x € D(A:) and every t,s > 0,

Se(t)xr — Se(s)x —/ Se(7)Acx dr :/ AS(T)xdr, € < gg.

Se(t) —/LSg(t)H =0(", ase—0. (11)

Theorem 1. Let S and S be Colombeau C- -semigroups with infinitesimal gen-
erators A and A, respectively. If A= A then S = S.
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Proof. Let € be small enough and = € D(A;) = D(A.). Proposition 3 (d) im-
plies that for ¢ > 0, the mapping s — S- (t—s5)Se(s)x, t > s > 0 is differentiable

and

% (5’8(15 - S)Sa(s)x> — A5t — 8)S-(8)7 + S-(t — 8)AS-(s)z, t > 5> 0.

The assumption A = A implies that A, = = A. + R., where R. is a zero operator.
Since A. commutes with S., for every = € D(A.)
d
ds
and this implies

(5;(7: - 5)55(5)1:> = 5.(t — $)R.S.(s)z, t > 5> 0

S.(t — 8)S.(s)z x—/ 3. S.(u)zdu, t>5>0.  (12)
Putting s =t in (12), we obtain
Se(t)z m—/S (t —u)R:S:(w)x du, t >0, z € D(A,). (13)

Since D(A.) is dense in F, uniform boundedness of S and S on [0,#] implies
that 13 holds for every y € E.

Let us prove that (N.). = (S. — S:). € SN ([0,00) : L(E)).

(13) and Definition 3 imply that for some C' > 0 and a,a € R,

sup [[Ne(t)z|| < sup / 15=(t = w)l - | Rl - 1S=(u) || ]| dw
tel0,T) te[0,T)

T C et ||R||z]|, =€ E.
Since ||R.|| = O(e"), as e — 0, for every b € R, (N.(t)). satisfies condition

(4) in Definition 3. Condition (5) follows from the boundedness of (S:)., (S:)-
on bounded domain [0, t), the properties of (R.). and the following expression:

|2 - [ ] se-wmsicoma

< IS - IR - [|Se())] < comst, @ € Bt < to,
for some tg > 0. Also,
N.(t .S

lim *) = lim

t—0 ¢ t—0 t t—0

IN

Se(t)xr —x

= R.x, v € D(A;).

Since it is enough that (6) holds for a dense subset of E (see the remark after
Definition 3) this concludes the proof. O

Remark 1. Let the assumptions of Definition 3 hold. Moreover, assume a
stronger assumption than (3):
There exist M > 0, a € R and ¢g € (0, 1) such that

1Sc()|| < Me%e®!, e < gy, t >0,

where 0 < a. < a, for some a > 0.
Then we obtain the corresponding subalgebra of SG ([0, 00) : L(E)). For this
subalgebra we can formulate the Hille-Yosida theorem in a usual way.
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For the whole algebra of Colombeau Cp-semigroups SG ([0,00) : L(E)) the
formulation of the Hille-Yosida-type theorem is an open problem.

3. SCHRODINGER OPERATORS WITH SINGULAR POTENTIALS

This section deals with applications of Colombeau Cy-semigroups in solving
a class of heat equations with singular potentials and singular data. First note
that the multiplication of elements G € G200 (R") and H € G g2 ([0,T) : R™)
gives an element in Go1 g2 ([0,T) : R™). Indeed, if (G:): € Epzoo (R™) and
(He)a € 501,H2 ([O,T) : Rn) then
(G:H.): € Ecr g2 ([0,T) : R™).
Similarly, if (G:)e € Nz (R") or (He)e € Nen g2 ([0,T) : R™), then
(G-H.); € N01,H2 ([O,T) :R™).
Thus, multiplication of potential V' € G200 (R") and u € Gen g2 ([0,T) : R™)
which is expected to be a solution to equation
Ou = (A = V)u, u(0,z) = ug(z),
makes sense.
Definition 6. Let A be represented by a net (A¢)., ¢ € (0,1), of linear operators
with the common domain H?(R") and with ranges in L?(R"). A generalized

function G € G 2([0,T) : R™), T > 0, is said to be a solution to equation
0,G = AG if

sup [|0:Ge(t,-) — AcGe(t, )| 2mn) = O(e”), for every a € R.
te[0,T)

3.1. General potential.

Theorem 2. Let V' € G200 (R™) be of logarithmic type.
(i) Differential operators Acu = (A — Vo)u, u € H*(R"), € < eo, are
infinitesimal generators of semigroups Se, for every e < eg, and (Sc)e

s a representative of a Colombeau Coy-semigroup

S € 8G ([0,00) : L(L*(R™))).

(i) Let ug = [uoe] € G2 (R™) and let (S:)e, € < €0, be as in (i).
Then, for every T' > 0, u(t,x) = Sug € Ger g2 ([0,T) : R™) is the
solution to equation
Owu(t,z) — Au(t,z) + V(x)u(t,z) =0, u(0,z) = up(z). (14)

The solution is unique in the space Gen 12([0,T) : R™), d.e. if v is also
a solution to (14), then tr2(u) = 172 (v).

Proof. (i) Let € < g be fixed. The operator A. is the infinitesimal generator of
the corresponding semigroup S; : [0, 00) — L(L?*(R™)) defined by the Feynman-
Kac formula

5.0 = [ e (- | Velw(s)) i) UwlO)), 120, 2 € R, (15)
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for ¢» € L?(R"), £ < &g, where ) = [Ticpo,00) R” and p, is the Wiener measure

concentrated at x € R™ (cf. [27] or [26]).
Since V' = [V,] is of logarithmic type, there exist C' > 0 and n € (0,1) such
that

(o) < exp (¢ sup V(o)) [ [oe(o)idnate)

sER™

_ Ct(47rt)_”/2/nexp< [z y’2> [ (y)ldy

for every t > 0, z € R™ and € < 7.
Therefore, there exist Cy > 0 and g € (0,1) such that

sup || Se(8) ]l 2 < CocT[[Wl12, € < o,
0,7

i.e. (S=(t))e, t > 0, satisfies relation (3) and S = [S.] € SG ([0, 00) : L(L*(R™))).
(ii) Let € < gg. The solution to equation

Opus(t, ) — Aue(t, ) + Ve(z)us(t,z) = 0, ue(0,2) = ups(x) (16)

is given by
ue(t,x) = Sc(t)upe(z), t € 10,T), z € R",

and u. € C'([0,T) : L*(R™)). Let us show that (uc): € Eo1 g2 ([0,T) : R™).
Recall, the heat kernel is given by

L e z” t>0
R
Eu(t,) = (art)yn2 P\ " ) ’ (17)
0, t=0, z € R

and its L'(R™)-norm equals 1, for every t > 0. Let € < g9. By the Duhamel
principle, solution u.(t,z) to equation (16) satisfies

uE(t>x) E (t L= y)UOE(y) dy
(18)
/ [ Bt 5.0 = )Vety)uc(svn) dyds,
for t € [0,T) and z € R™. Since E,(t,x) — 0(z) as t — 0, we obtain that
ue(t, ) = upe(x), as t — 0.
Young’s inequality implies

t
[uc(t, )l 2 < [[En(t, )I!L1IIUOEIIL2+/0 [En(t = s, M1 [[Ve(O)llzoe lue(s, )l 2 ds

t
= Jlugelz2 + / IVl (s, Iz ds, ¢ € [0,T), & < <.
0

Gronwall’s inequality gives

t
e (t, Yoz < el 2 exp ( JRLsIrs ds> LE0,T), < < <0
0
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Since V' = [VZ] € G2 (R") is of logarithmic type and (ugp:)e € Ex2 (R™),
it follows that sup,cpr) |luc(t, )| 12 has a moderate bound. Differentiation of
equation (18) with respect to some spatial variable x; gives

a;tiue(ta .’L‘) = En(tv y)a;t,-UOE(x - y) dy
R’I’L

t
+ / E,(t — s,9)0z,(Ve(z — y)u:(s,x — y)) dy ds,
]Rn

= | En (t, y) O, u0e (x — y) dy

v / [ Bt = 5)(0nVelo — g)uc(sia )
+ — Y)Og,ue(s, @ —y)) dy ds,
for t € [0,T), x € R™ and € < 9. Then, for ¢t € [0,T) and ¢ < &,
10z, us(t, Mz < (|0 u0ell 2 (19)

[ (10O e,z + Ve w0 e, 2 ) s,

Since supye (o) lus(t,-)|[2 and the first two derivatives of V. are moderate,
Gronwall’s inequality implies that sup,cio 7y |0z, ue(t, )|z is moderate, too.
One can similarly estimate all the second order space derivatives of u.. The
moderateness of sup,cip, 7y [|0wu(t, -)|| g2, T1 < T, simply follows from equation
(14). Therefore, (ue)e € Ecn g2 ([0,T) : R™).

It remains to show that the solution [u. (¢, z)] is unique in the sense described
in the statement of the theorem.

Suppose that (uc)e, (ve)e € Ecr y2([0,T) : R™) are representatives of two
solutions to the given Cauchy problem. Then G; := u. — v, satisfies

8,Go(t, ) — (A — Vo)G.(t,x) = No(t, )
GE(O,SL‘) = NOE(:E)’

where (N:): € Ne1 12([0,T) : R™) and (No:)e € Ny2([0,T) : R™).
Therefore, for x € R, t € [0,T") and € < &,

e(t:) /E y)Noe (y) dy
—|—/0 /En(t—s,x_y)‘/e(y)GE(s7y) dy ds (20)
" /ot / En(t — 5,2 — y)Ne(s,y) dy ds,

where (Noec)e € Np2(R™) and, for every a € R, supejo 1) [ Ne(t, )22 = O(e?),
as € — 0. Then Young’s and Gronwall’s inequalities imply

t
1Ga(t, Mz < I1Noell e + /0 Vel [Gels, 2 dis + / N (s, )l 2 ds,
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for t € [0,7), i.e.,
sup ||G:(t,)||2 = O(e?), ase — 0,
t€[0,T)

for every a € R. O

3.2. Powers of the delta function as a potential. Let (¢.). be a net of
mollifiers of the form
Ge = 5_n¢('/€)7 €€ (07 1)7 (21)
where ¢ € C§°(R"), [¢(z)dz = 1 and ¢(x) > 0, x € R™. It represents the
generalized delta function in G(R™).
Powers of the delta function are defined by the representatives

5 = [6:&@250‘ (5)] L ee(0,1), (22)

where a > 0.

Let Acu = (A — ¢.)u, u € H?(R"), ¢ < 1. The operator A. is the in-
finitesimal generator of the semigroup S: : [0,00) — L(L?*(R")), denoted by
S.(t) = eB79) £ >0,e e (0,1) (cf. (15)). It is representative of a Colombeau
Co-semigroup S € SG ([0,00) : L(L*(R™))).

Feynman-Kac formula gives

S (1)) = /Q exp (— /0 @(w(s))ds) B () dua(w), ¥ € 2R, (23)

for every x € R", ¢t > 0 and ¢ € (0,1).

Since the delta generalized function is represented by a net of non-negative
functions, we have that {S., e € (0,1), t > 0} is bounded in £(L?*(R")) (not
only moderate) and thus satisfies relation (3).

Proposition 4. Let 6% € G2, (R™), 0 < a < 1, be defined by (22) and let
ug € L2(R™) be a continuous and bounded function. Then, by

1 t w(s
ue(t,z) = / exp ( - na/ o <()> ds)uo(w(t))dum(w)), (24)
Q € 0 €
where t € [0,T) and x € R", is defined a representative of a unique solution
u(t,x) € Gen 12([0,T) x R™) to equation
Owu(t, z) — Au(t, z) + 0% (x)u(t,z) = 0, u(0,z) = up(z). (25)
The above representative of the solution has a subsequence uc, (t,x), v € N,
converging in D' to u(t,x) = e Atug(x), the solution to equation
Owu(t,z) — Au(t,z) =0, u(0,z) = up(z). (26)
Proof. The representative of the solution to equation (25) equals
ue(t,x) = Se(t)up(x), t € [0,T), z € R", & < &y,

1 .
where S.(t) is semigroup generated by operator A, = A — —¢% (f), € < €9.
3

Enoz
The Feynman-Kac formula gives (24). Similarly as in the proof of Theorem 2
it follows that S.(t)ug(-) € L2 ([0,T) x R™), for every T > 0 and € < gg. Using
this and the fact that {S.(-)ug(); € < o} is bounded in L* ([0, T) x R™) and
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hence relatively compact with respect to the weak topology, we obtain that
there exists a sequence {e, },en such that

Se, (t)up(z) — u(t,x), €, — 0,

in the sense of weak topology in L?([0,T) x R"). Let x € R", ¢t € [0,7) and
€ < gg. Using Duhamel’s principle we have

ug(t,z) = E( — y)uo(y) dy
; / [ Bt = sz =)0 () welon) dy s,
= | Ea(t,w—y)uoc(y) dy

+/ Bt — 5,2 — y2)e" (= 0(y) . (s, ye) dy ds.
Rn

(24) and the assumption on the initial data and ¢ imply ||u(¢,-)|| L~ < 0.
Let ¢ € D([0,T) x R™) and

T t
Je, :/ / / E,(t—s,z— ysy)eﬁ(l_a)qb(y)ugy (s,yey) dy ds (t, x) dx dt
n R”’L

L e () ow

Ue, (8,€0y) dy ds Y (t, x)dx dt, e<eg, vEN.

After a suitable change of variables, using the non-negativity of sub-integral
function and Fubini-Tonelli theorem one obtains

J., =" 1a/ /n //n 47r3n/2exp< (x—4ayy)>

d(y)(t, x)ue, (t — s,6,y) dz dS) dy dt

/ / gnii- O‘)H y,t)dydt, € < ep, v € N.

Now, for € < g9, v € N, yGR”anth[O T)

) < / / (z—e)?
He,(y,t)] < n (47s) ”/2 4s

|t @) - |ue, (t — s, ey)| dz ds

(z —ey)® _
C//n 47T871/2ep( s dx ds = Ct,

since we have proved that {u., € < g0} is bounded.
Therefore, using Lebesgue’s dominated convergence theorem gives

lim J., = / / lim e"M"H, (y,t)dydt = 0.
R

e—0 n €—0
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In a similar way as above we have

Proposition 5. Let 0 € Gy2,(R™) be defined by (21) and uy be a continuous
bounded and L?(R™)-function. Let u be the solution to equation (14), with
V =6, is constructed in Theorem 2 and S:(t) be the semigroup generated by
operator Ac = A — ¢, € < 9. Then, there is a decreasing sequence {&,},eN
converging to zero such that

ue, (t,x) =S¢, (t)up(z) = u(t,z), €, =0, (t,z) € (0,T) x R",
in the sense of weak topology in L? ((0,T) x R™), T > 0.

Remark 2. We can treat the above equation when the d-function is substituted
M

with a positive linear combination of its powers Zaiéi(az), M e N, a; >0,

=1
i=1,...M. Then

1 .
em<—/(@@@wngLigM,
0
ie., (Sc(t)(z))., € < €o, defined by (15) satisfies

sup |[|Se(t)¢[| 2 = O(1).
tel0,T)

Thus, (Se(t)uoe). is a representative of the solution to equation

M
dyu(t,z) = (A - Zaidi(a:)) u(t,z), t€[0,T7), x € R".
i=1

Remark 3. The first mathematically rigorous investigation of a singular per-
turbation was carried over in [2], where a self-adjoint realization of —A + a4 is
obtained via the Krein theory of self-adjoint extensions of —A over C§°(R3\{0}).

By Theorem 1.3.1 in [1], in case n = 1, —A 4 is a self-adjoint operator with
the domain D = {1; ¥ € H'(R), (—A + d)» € L2(R)}. In this case, with any
delta net (J;). instead of , the strong resolvent convergence leads to a solution
of Schrédinger equation

—i Opu = (A = §)u, ul=o = up.

In fact, the net of semigroups (S:). determined by (A — d.), converges to the
semigroup e(A=9) and Seug, ug € D, converges to the solution eit(A*‘s)uo of the
corresponding Cauchy problem in the sense of weak convergence.

Ifn=2orn=3, 0 € H? and the rank one form unbounded perturbations
are performed in [1] (cf. Sections 1.4 and 1.5 ). In these cases our approximate
solutions, has to be done by a suitable delta net, for example, the one given
in Lemma 1.5.3 in [1]. With (log|loge|)~! instead of ¢ the convergence to the
solution semigroup for the Schrodinger equation with potential § can be also
obtained. This analysis will be given in a separate paper.

Remark 4. We will prove the existance of an L? function satisfying

Ou(t, ) — Au(t,z) + V(z)u(t,z) = 0, u(0,z) = d(x), (27)
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in the sense of distriibutins, where V' is a locally bounded function on R"™ so
that the Schrodinger operator is the self-adjoint one (for instance of Stummel
class, [26]).

With (¢¢) as in (21) and Feynman-Kac formula we have a net of approxi-
mated solutions

ue(z,t) = /ﬂexp <— /Ot V(w(s))ds> de(w(t))dug(w), t >0, x € R". (28)

There exist C' > 0 and n € (0, 1) such that

o) < [ 1oelO)ldnate) = Ctam) 2 [ e (<E ) 6 g)an

for every t > 0, z € R™ and € < n. This implies that there exists a net (g,),
decreasing to zero such that (u.,), converges to u € L?([0,T] x R") weakly in
L?([0,T] x R™). Then,

wteo) = | Eultiw—)6., () dy

(29)
t [ B s - 0V o) dyds,
R
leads to the equality in the sense of distributions:
u(t,x) = Ep(t, x) / E.(t— s,z —y)V(y)u(s,y) dy ds. (30)
R

Thus, we obtain a distributional solution to (27).

3.3. Lipschitz nonlinear case. We will use the well known inequality

17 92 @y <1V 9 1 2e@ny < 17 9 1 Fny, 9 € HAR™),  (31)
which holds for n < 4. But in the sequel we assume that n < 3 because in this
case Ec1 g2([0,7) : R™) is an algebra.
Lemma 2. Let n < 3. Suppose that a function f :[0,T) x R™ — R" satisfies
f(t,) € C3(R™), f(-y) € C'([0,T)), t € (0,7), T >0, y €R" and

|ty < Loyl 10y f (&, y)| < Li(t), |9yyf(t,y)| < La(t), (32)

for some positive bounded functions L; : [0,T) - R, i =0,1,2.
Then, by

(ue)e = (f(tsue))e
are defined mappings
501’H2 ([O,T) : Rn) — 5007];[2 ([O,T) : Rn)
and
Ner g2 ([0,T) : R™) — Neo g2 ([0,7) : R™)
inducing the mapping u— [f(t, u.)]
901,H2 ([O,T) : Rn) — gCO7H2 ([O,T) : Rn) .
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Proof. We will only prove that (u:)e € Ec1 g2 ([0,T) : R") implies (f(t,ue))e €
Eco g2 ([0,T) : R™). The other parts of the proof follow in a similar way.
We have to show that there exists a € R" such that

SUP) 1f(t; ue) | 2@mny = O("), ase — 0.

Relation (32) implies
1f (£, ue)ll 2@y < Lo(®)luell2@ny, t €[0,T), e < 1.
Since (uc)e € Ecn g2 ([0,T) : R™), we obtain that sup.cjo 1y |f (¢, ue)l| L2 (mn)
has the moderate bound.
After differentiation with respect to some spatial variable x; we obtain
”8yf(t7u5)837iu5HL2(R") < Hayf(t:Us)HLOO(]R“)Hamiuf:HL?(R")
< Ll(t)Hazz'UEHH(R")-

As above we obtain the moderate bound for sup,cjo 7y | fy (¢, ue) O, ue || 2 (rn).-
After another differentiation with respect to x;, using (31), the estimate

|L1(8)],|L*(t)] < C, t € [0,T), and the fact that Ec1 g2([0,7) : R™) is an
algebra for n < 3, we obtain
Oy (¢, u5>(81'iu5>2 + 0y f(t, ue)awi7:viusHL2(Rn)
< 1By f (8 )| oo oy | (B )| L2y + 18y f (£, e) | oo (mny 19205 e | L2y
< L2(t)Haa:iUsH%4(Rn) + Ll(t)Haﬂzia:NEHL%Rn)

< C (1000, te oy + 10010, 2 ) -

Since, by assumption, ||0z,z,uel/2®n) has a moderate bound, the assertion
follows. O

Theorem 3. Letn < 3, T > 0, V € G2, (R™) be of logarithmic type and
ug € G2(R™). Suppose that a function f : [0,T) x R® — R" satisfies the
conditions of Lemma 2.

Then, there exists a solution u(t,z) € Gor 2([0,T) : R™) to equation

Ou(t,z) = (A = V)u(t,z) + f(t,u(t,x)), u(0,z) = up(z). (33)

Moreover, if potential V' is of log-log type, then the solution to equation (33)
is unique in Gor 12([0,7) : R™).

Proof. Let € < g9 be fixed. Consider the approximated equation
Opue(t,x) = (A = Vo)ue(t,z) + f(t,uc(t, 7)), ue(0,2) = uoe (). (34)

As we have shown in Theorem 2 (i), (S:). defined by (15) is an element of
SE ) ([0,00) : L(L*(R™))).
For every fixed ¢ € (0, 1) the classical solution to (34) exists and satisfies

us(t, ) = Se(t)upe () +/0 Se(t —8)f(s,us(s,x))ds, t €[0,T), z € R". (35)

Let us show that (u.). € o1 g2 ([0,T) : R™).
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First,
uc(t,w) = | Ealt:z = y)uoc(y)dy
] B s - Vo i (36)
+ /Ot - E.(t—s,x —y)f(s,uc(s,y))ds, (t,z) € [0,T) x R".
Therefore,

t
Juc(t, )2 < ||En(tv')HL1Hu0€HL2+/ [En(t = s, )2 [[Ve()llzoe llue(s, )|l L2ds

n / VEn(t — s, |t | £ (5, (s, ) | ods

A

< fuoellze + /0 IVl llue(s, )l 2 ds
t

+ /Lo(s) ue(s, || 2ds, t € [0,T),
0

ie.,

lete(t, )22 = Ilugell 2 exp ( / <Hv5<->uLoo+Lo<s>>ds):0<ea>, as e 0,

(37)
uniformly for ¢ € [0,T), for some a € R, since V is of logarithmic type.

Note, uge € H?(R") and inequality (31) imply the moderate bound for
lluwoe()|lza. Therefore, the same procedure as above, with || - ||z4 instead of
Il - || 72, gives the moderate bound for ||uc(t,-)| 4.

Differentiating (36) with respect to some spatial variable, we have

Op;ue(t,z) = En(t,y)0z,uoe(r — y) dy
Rn
t
+/ En(t — 5,9)00, (Vel — y)us(s, x — ) dy ds
Rn

t
+ / En(t — s,9)0x, f(s,ucs(s,x — y))dyds,
0 Jrn

= E (t,9) 0, uoe (T — y) dy 55)
+ / RnE 5.0) (00 Vel — 1)u(s5, 7 — 1)
+ Vele = )0 u(sw —y)) dy ds

+ / Eult — 5,9)00uf (5, u=(5, 2 — 1)) On11c (s, — y)dyds,
Rn
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for (t,x) € [0,T) x R™. Young’s inequality implies

O et gr < 1B(t, )20 (Ol
b [ 1B 510V i s
IV e 1rels, Ol 2) ds
b [ 1Bt = 5100 o D e e, s,
t
SH%MHMH+/W%%OMN%@NW

b VA 1, e(s, )l =) ds
t
—FALKW%%(MHM

uniformly for ¢ € [0,7"). This implies

0 et )l <(astoc Ol + [ 102Vl oo s, ) 12)
0
-wmémwmmm+mwnm»emj»

Using the facts that sup;cjo 1) [|ue(t, )|/ 2 has the moderate bound and that V'
is of logarithmic type we obtain the moderate bound for supco 7) [|0,ue(t, )l 2"

Since |0z, u0e ()| 2+ and supyepo 7y [lus(t, -)|| L+ have moderate bounds (the first
one by inequality (31) and the second one by the previous step), the same
procedure gives us the moderate bound for sup,c( 7 [0z, us(t, )| 4, too.

After another differentiation, one can obtain the moderateness bounds also.
Let us show the uniqueness of the solution.

Note that if potential V' is of log-log type (as assumed for the uniqueness)
then from (37) follows that solution to equation (33) is of logarithmic type.

Let u. and v., be solutions to equation (34). Denote G. = u. — v. and define

9e(t, z) = /01 Ouf(t,ous(t,x) + (1 — o)ve(t,z)) do, t € [0,T), v € R".

Then, G. is a solution to equation
0Ge(t,z) = (A = Vo)Ge(t, z) + go(t, 2)G:(t, x) + N(t, z),
(Ge(0,2))e = (Noe(x))e € Ng2(R"™), € < e,

where (N:): € No1 12([0,T) : R™). From the definition of g, conditions given
on the function f and the fact that v and v are both of logarithmic type it
follows that

lge (8, )l 22 < C (fuellz2 + [lvellz2) = Ologe™), t € 0,T).



SEMIGROUPS ... HEAT EQUATION ... 19

Let Vie = Vo — g, € < €9. Then function V is of logarithmic type. Now,

Gulta) = [ Bultoa =) Nos(y)dy
+/ Eult — 5,2 — y)Vie () Ge(s, y)dyds (39)
”

t
+/ E,(t—s,z—vy)f(s,G:(s,y))ds, (t,x) € [0,T) x R",
0 JRm

for € < gp. This implies

16t sz <VECEon Nl + [ 1Bt = 0 Wie Ol Gelo, s
[ B 505 Gl s
Wl + [ WieOle Gl s

t
+/amw&wwmwwemn,
0

and

|G (t, )l L2 = (| Noel| 2 exp (/0 (IVie()l[ e + Lo(s)) dS) = 0(e"),

uniformly for ¢ € [0,T'), for every a € R, since (No-(2)): € Ny2(R"™) and V; is
of logarithmic type. Therefore, the solution is unique in G 72([0,7) : R™). [

Proposition 6. Letn <3, T >0,V € H>*®(R"), ug = § (thus up. = %nQS(g),
e € (0,1)) and a function f : [0,T) x R™ — R"™ satisfy first two conditions of

Then, there exists a function u(t,z) € L*([0,T) : R™) satisfying equation
Owu(t,z) = (A = V)u(t,x) + f(t,u(t,x)), u(0,z) = up(z).
in the sense of distributions.

Proof. As in (36)-(37) but with the L!-norm instead of L?-norm (where it ap-
pears) we have

HUEHL17 HaﬁvquHLl < const, € € (07 1)

By Rellich lemma this implies the existence of an L'-convergent sequence (ue,, ), .
Denote by u € L'([0,T] x R") its limit. It has a subsequence converging to u
almost everywhere. By (35) we have

ue(t,x) = Ep(t, x) / RnE (t—s,z—y)V(y)u(s,y)dyds

/ RnE —s,x—y)f(s,u(s,y))ds, (t,x) €[0,T) x R".

Now it is easy to see that u is a distribution solution to the equation. O
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