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Abstract

The axial vibrations of a viscoelastic rod with a body attached to its end are investigated.
The problem is modeled by the constitutive equations with fractional derivatives as well as
with the perturbations involving a bounded noise and a white noise process. Weak solutions
for the equations given below in two cases of constitutive equations as well as their stochastic
moments are determined.

1 Introduction

In many engineering application one is faced
with axially loaded viscoelastic rods. Often, the
load that is applied at the one end of the rod has
two components: the deterministic one and the
stochastic one that we call noise. The determin-
istic part may come from the own weight of the
system (for example the weight of the bridge that
is supported by a rod) while the stochastic part
may come form additional load (wind, or traf-
fic over the bridge, for example). The stochas-
tic component coming for the traffic is bounded,
since no matter for how long we wait, there will
be no load of arbitrary large intensity. In this pa-
per we want to model axially loaded viscoelastic
rod subjected to both unbounded and bounded
stochastic noise.

Thus consider a viscoelastic rod, fixed at one
end and loaded by a force of intensity F at its free
end. Suppose that the density of the rod is small
so that the inertial forces are negligible with re-
spect to the force F . The equations describing
the motion of the rod free end, in dimensionless
form, reads (see [7] for details and for the case

when the inertial forces are not neglected)∫ 1

0

φσ (γ)0Dγ
t σ(t)dγ

=

∫ 1

0

φε(γ)0Dγ
t y(t)dγ, (1)

d2

dt2
y(t)+σ(t)=F (t), t>0, (2)

σ(0)=0, y(0)=y0,
d

dt
y(0)=v0. (3)

The equations above are considered in a weak
(distributional) sense; F contains both determin-
istic and stochastic perturbations, while the con-
stitutive equation (1), representing mechanical
model, is considered in the following two cases:

Case 1. φσ(γ)=δ(γ), φε(γ)=ω2δ(γ)+λbγ , γ∈
[0,1], b>0, λ>0,
Case 2. φσ(γ)=aγ , φε(γ)=λbγ , γ∈[0,1], b≥a>
0, λ>0.

The forcing term F has the form F (t)=
f0(t)+ξ(t)+BẆ (t), t≥0. The function f0 is a
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deterministic part which is a locally integrable
function on R, such that f0(t)=0, t<0, and
it is of exponential growth for positive argu-
ment: |f0(t)|≤Cekt, t>0, for some k>0, C>0.
Further, ξ represents so-called bounded noise
(namely, the cosine function of the Wiener pro-
cess), B is a constant and Ẇ is the white noise
process. Note that Ẇ involves shock-type per-
turbations, while ξ involves bounded perturba-
tions. We assume that the bounded noise and
the white noise are independent stochastic pro-
cesses.

As in [10], we consider a bounded noise ξ(t)
in the form

ξ(t)=AZ(t)=Acos
(
ωt+ηW̃ (t)+θ

)
, t≥0, (4)

originated from the system

ξ(t)=AcosZ(t),

dZ(t)=ωdt+ηdW̃ (t), Z(0)=θ,

where A is the amplitude of the noise, constant
η is the noise intensity, constant ω is the fre-
quency, W̃ is the standard Wiener process and
the phase angle θ is a random variable, inde-
pendent of the history of the Wiener process W̃ ,
uniformly distributed in the interval [0,2π]. The
bounded noise ξ is a stationary process (see [10]).
Therefore, it has some convenient properties con-
cerning stochastic moments.

Our intention in this paper is to investigate
axial random forces in the right hand side of (2).
In the special case when the rod is elastic, i.e.
φσ=φε, system (1)-(3) reduces to a problem of
forced vibrations of a light elastic rod with the
body attached to the free end.

Initial conditions (3) specify that the system
rod-body is in the rest in the initial time instant.
Actually, in this paper we will consider the initial
conditions y(0)=0 and d

dty(0)=0.
We will find the solution to (1)-(3) so that

(2) is satisfied in a weak sense, that is, in the
sense of distributions. Let us explain this. Fol-
lowing Schwartz (see [16], [17] or any other book
with the theory of distributions), we denote by
D=D(R) the space of smooth functions ϕ on R

so that supp ϕ (the closure of the set where ϕ 6=0)
is a compact set. We supply D with the usual
convergence structure and denote by D′=D′(R)
its dual, the space of continuous linear function-
als on D. The solutions to (1)-(3) which will be
determined, are continuous functions and their
first derivatives are supported by [0,∞), i.e. their
supports are contained in the interval [0,∞).
Their second derivatives satisfy (2) in the weak
sense. More precisely, y and σ are weak solutions
to (2) if, for every φ∈D,〈

d2

dt2
y(t)+σ(t),φ(t)

〉
=

∫ t

0

(y(t)+σ(t))φ′(t)dt=〈F (t),φ(t)〉.

So, in the sequel equation (2) will be always
considered in the weak sense and functions are
considered as distributions equal zero in (−∞,0).

The case with the general initial data y0

and v0 can be always written in the form with
the zero initial data. It can be done by the
change of variables y(t)=y0H(t)+v0t++Y (t),
where H is the Heaviside’s function and t+=tH,
t∈R. Indeed, substituting y′′=y0δ

′+v0δ+Y ′

and 0D
γ
t y=0D

γ
t Y +0D

γ
tH+0D

γ
t t+ into (1) and

(2), and calculating 0D
γ
tH and 0D

γ
t t+ one ob-

tains ∫ 1

0

φσ (γ)0Dγ
t σ(t)dγ

=

∫ 1

0

φε(γ)0Dγ
t Y (t)dγ,

d2

dt2
Y (t)+σ(t)=F̃ (t), t>0,

σ(0)=0, Y (0)=0,
d

dt
Y (0)=0,

where F̃=−y0δ
′−v0δ−c1t1−γ−c2t2−γ+F , for

some constants c1 and c2. Thus, one can take
the zero initial data without loosing on general-
ity.

Stochastic vibration of a similar system has
been studied in [12], where both F and material
density ρ, are assumed to have deterministic and
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stochastic parts. We shall treat a viscoelastic rod
instead of elastic one and we shall assume that
ρ=0.

Due to the fact that F involves the white
noise process, we find the solutions as elements
of S ′+

(
R,L2(dW )

)
. That means the following. If

we denote by dW the white noise measure over
(Ω,BΩ),Ω=S ′(R), BΩ is the Borel algebra gener-
ated by the weak topology of the Schwartz space
of rapidly decreasing functions S(R), L2(dW ) is
the white noise space of L2-functions over Ω with
respect to the measure dW and S ′+

(
R,L2(dW )

)
denotes the space of continuous liner functionals
T , S(R)3θ 7→T (θ)∈L2(dW ) supported by [0,∞),
that is of vector-valued tempered distributions
T with by supp T⊂[0,∞). The action of T∈
S ′+
(
R,L2(dW )

)
is given by

〈T,ϕ〉=T (ϕ)∈L2(dW ), ϕ∈S (R),

so that T (ϕ)=0, for ϕ equals zero on [0,∞).
The expectation of the solution to (1)-(3) is

the classical solution of the stochastically unper-
turbed system (A=B=0) under the assumption
f0∈L1

loc(R), suppf⊂[0,∞).
The paper is organized as follows. Our model

is described in the continuation of this introduc-
tion. Section 2 deals with the fundamental so-
lution to (1)-(3), that is with F equals Dirac’s
delta distribution δ. We separately analyze two
cases of the constitutive equations. Section 3 is
devoted to the solution of the quoted system with
the stochastic forcing term F , while the stochas-
tic moments of solutions are given in Section 4.
The concrete numerical example is presented in
Section 5. The proofs of the main results are
provided in the appendix.

1.1 Model

Consider a viscoelastic rod of length L in the
natural (undeformed) state. Suppose that one
end of the rod is fixed. Let m be the mass of a
body attached to the free end of the rod. At the
initial time moment t=0, as well as during the
motion, the x̄ axis coincides with the axis of the
rod. Let x∈[0,L] denote a position of a material

point of a rod at the initial time t=0. The posi-
tion of this point at the time t>0 is x+u(x,t),
where u denotes displacement of the point (see
[8]). We consider the motion of attached body,
in the case of light rod (the mass of the rod is
much smaller than m). The equations that de-
scribe this motion are (1)-(3).

Recall that σ denotes the (dimensionless)
stress in the rod, y(t)=u(L,t), t>0, is the dis-
placement of the free end of the rod, i.e., the
displacement of the attached body, F is the force
applied to the body and φσ and φε are consti-
tutive functions, or distributions describing the
properties of a rod. For the derivation of (1)-(3)
see [2]. Note that we use 0Dγ

t to denote the left
Riemann-Liouville fractional derivative operator
of order γ∈(0,1):

0Dγ
t y(t):=

d

dt

(
t−γ

Γ(1−γ)
∗y(t)

)
, t>0.

Γ is the Euler gamma function and ∗ is the convo-
lution. In the case of f,g∈L1

loc, suppf,g⊂[0,∞),
it is defined by

(f ∗g)(t):=

∫ t

0

f (τ)g(t−τ)dτ, t>0,

We refer to [11, 13, 15] for some basic definitions
and properties of the fractional calculus.

The choice of the constitutive functions or
Schwartz distributions φσ and φε is not com-
pletely arbitrary. Namely, it must be checked
whether φσ and φε satisfy the restrictions fol-
lowing from the Second Law of Thermodynam-
ics. The restrictions are obtained in [3, 4, 6]. We
refer to [6] for a systematic review of restrictions
on parameters if φσ and φε.

2 Fundamental solution of
the system (1)-(3)

We investigate the system (1)-(3) in both cases,
Case 1 and Case 2, given in the Introduction.
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2.1 Case 1

Here we consider the system (1)-(3) with the con-
stitutive functions φσ(γ)=δ(γ), φε(γ)=ω2δ(γ)+
λbγ , γ∈[0,1], b>0, λ>0, and with the initial data
y0=0, v0=0. One obtains

d2

dt2
y(t)+ω2y(t)+λ

∫ 1

0

bγ0D
γ
t y(t)dγ=F (t) (5)

y(0)=0,
d

dt
y(0)=0.

Theorem 1 Under the assumptions listed above
there exists the fundamental solution P to (5),
i.e. the solution to (5) with F=δ. For t>0, P
is given by

P (t)=

2e−αtcos(βt)Re

(
1

2s1+ b
ln(bs1)−

bs1−1
s1 ln2(bs1)

)

+2e−αtcos(βt)Im

(
1

2s1+ b
ln(bs1)−

bs1−1
s1 ln2(bs1)

)

+

∫ ∞
0

λ(bξ+1)e−ξt dξ(
(ξ2+ω2)ln(bξ)−λ(bξ+1)

)2
+(ξ2+ω2)2π2

,

(6)

and P (t)=0 for t≤0. Here s1,2=−α±βi are
the only zeros of the function g1(s):=s2+ω2+
λ bs−1

ln(bs) .

Remark 1 Note that P is a continuous function
in [0,∞) as well as its first derivative. But, the
second (classical) derivative of P does not exist
at t=0.

2.2 Case 2

Now we investigate the relevant system (1)-(3)
with a different choice of constitutive functions
φσ(γ)=aγ , φε(γ)=λbγ , γ∈[0,1], b≥a>0, λ>0.
Again, we consider the case with zero initial

data. Thus, we consider∫ 1

0

aγ0D
γ
t σ(t) dγ

=λ

∫ 1

0

bγ0D
γ
t y(t) dγ,

d2

dt2
y(t)+σ(t)=F (t), t>0, (7)

σ(0)=0, y(0)=0,
d

dt
y(0)=0.

Theorem 2 Let P and Q be given as follows.
First, P (t)=0, for t<0, and

P (t)=2e−αt
(
cos(βt)Re(A1)+cos(βt)Im(A1)

)
−λβ ln(a/b)·

∫ ∞
0

(bξ+1)(aξ+1)e−ξt

A2
dξ,

(8)

for t≥0, where

A1 :=
1

2s1+λβ
(

ln(b/a)
ln2(bs1)

bs1−1
as1−1−

ln(bs1)
ln(as1)

a−b
(as1−1)2

)
A2 :=

(
(ξ2+ω2)(aξ+1)ln(bξ)+λ(bξ+1)ln(aξ)

)2
+
(
(ξ2+ω2)(aξ+1)+λβ(bξ+1)

)2
π2

Now, s1,2=−α±βi are the only zeroes of the

function g1(s)=s2+ω2+λβ ln(as)
ln(bs) ·

bs−1
as−1 .

Next, Q(t)=0, for t<0, and

Q(t)=(φ1∗φ2)(t), for t≥0,

φ1(t)=δ(t)+ln
a

b

∫ ∞
0

tu−1b−ua

Γ(u)
du,

φ2(t)=
(a
b

)2

δ(t)+
b2−a2

a4
sinh

t

a
. (9)

Then P and Q determine the fundamental solu-
tion to (7):

σ=λP ∗Q, d2

dt2
P+λP ∗Q=δ,

P and Q determine the fundamental solution to
(7).

Remark 2 Note that P and Q have continuous
second derivatives in [0,∞).
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3 Equations with forcing
term F

Now we solve (1)-(3) with F=f0+ξ+B Ẇ ,
where f0 is the deterministic part of the force
F , ξ is the bounded noise satisfying (4), B is
a constant and Ẇ is the white noise process.
If B=0 then rare but arbitrarily large pertur-
bations are excluded and only small perturba-
tions, represented by the bounded noise ξ, are
considered. As mentioned in the introduction,
the bounded noise process and the white noise
process are assumed to be independent. Also, f0

has the form as in the introduction.

3.1 Case 1

Equation (5) now reads

d2

dt2
y(t)+ω2y(t)+λ

∫ 1

0

bγ0D
γ
t y(t)dγ

=f0(t)+AcosZ(t)+B Ẇ (t),

dZ

dt
=ω+η ˙̃W (t), t>0, (10)

y(0)=0,
dy

dt
(0)=0, Z(0)=θ,

where random variable θ is uniformly distributed
in the interval [0,2π] and it is independent of
the Wiener process W̃ . Recall, the amplitude
of the bounded noise is denoted by A, η denotes
the noise intensity and ω is the frequency around
which the bounded noise appears. As we already
mention, Z can be immediately written in an ex-
plicit form (4), Z(t)=cos(ωt+ηW̃ (t)+θ).

Theorem 3 Under the assumptions given
above, there exists the weak solution to the sys-
tem (10) and it is given by y(t)=0, for t<0,

and

y(t)=(f0+AcosZ(t)+B Ẇ (t))∗P (t)

=

∫ t

0

P (t−s)f0(s)ds

+A

∫ t

0

P (t−s)cosZ(s)ds

+B

∫ t

0

P (t−s)dW (t), t≥0, (11)

with P is given by (6).

Remark 3 The simpler form of problem (1)-
(3) with the same bounded noise in pertur-
bation of F and with no white noise pertur-
bation (B=0) was studied in [10] but in the
case when φσ=δ(γ), φε=ω[δ(γ)+εδ(γ−µ)]+
2εβδ(1−γ), γ∈[0,1], ε=const, β=const. An-
other special case was treated in [9] where φσ=
δ(γ), φε=ω2δ(γ)+εδ(γ−µ) and A=0, B 6=0.

3.2 Case 2

Equation (7) now reads∫ 1

0

aγ0D
γ
t σ(t) dγ=λ

∫ 1

0

bγ0D
γ
t y(t) dγ,

d2

dt2
y(t)+σ(t)=f0(t)+AcosZ(t)+B Ẇ (t),

dZ

dt
=ω+η ˙̃W (t), t>0, (12)

σ(0)=0, y(0)=0,
d

dt
y(0)=0, Z(0)=θ.

Here we have used the same notation as in the
previous case and all the assumptions listed in
the previous case are still valid.

Theorem 4 Under the assumptions given
above, there exists a weak solution to the sys-
tem (12) and it is given by, for t≥0,

y(t)=
(
f0+AcosZ(t)+B Ẇ (t)

)
∗P (t),

σ(t)=λy(t)∗Q(t)=λ(f0∗P ∗Q)(t)

+λ(AcosZ∗P ∗Q)(t)

+λ(B Ẇ ∗P ∗Q)(t),
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where P and Q are given by (8) and (9), respec-
tively, and y(t)=σ(t)=0, for t<0.

Note that the functions y,y′,σ and σ′ are con-
tinuous, for t≥0.

4 Stochastic moments of the
solution

We consider the first and the second (stochastic)
moments of the solutions.

4.1 Case 1

The solution to the problem in consideration y
is given by (11) and therefore its expectation is

E(y(t))=(f0∗P )(t)

+E((ξ∗P )(t))+E((BẆ ∗P )(t))

=(f0∗P )(t)+E

(∫ t

0

ξ(s)P (t−s)ds
)

+BE

(∫ t

0

P (t−s)dW (s)

)
=(f0∗P )(t)+

∫ t

0

P (t−s)E(ξ(s))ds,

where P given by (6).
In the calculation above we have used the well

known fact that the expectation of the Itô inte-
gral

∫ t
0
P (t−s)dW (s) equals zero.

As mentioned in the introduction, ξ(t)
is a stationary stochastic process and there-
fore its mean E(ξ(t)) is a constant and its
auto-covariance function Kξ(t,s)=E(ξ(t)ξ(s))−
E(ξ(t))E(ξ(s)) is a function of the difference of
the arguments, i.e., a function of t−s.

Now, using the fact that the expectation of
the bounded noise ξ is a constant, one has

E(ξ(t))=E(ξ(0))=E
[
Acos

(
ηW̃ (0)+θ

)]
=E(A cosθ)=A E(cosθ)

=A

∫ 2π

0

1

2π
cosxdx=0,

where we have used that W̃ (0)=0 and that θ is
uniformly distributed over the interval [0,2π].

Thus,

E(y(t))=f0(t)∗P (t).

We see that the solution is unbiased, i.e., the
expectation of the solution equals to the solution
of the corresponding deterministic equations ob-
tained by replacing stochastic elements by theirs
expectations.

The second moment of the solution, for t≥0,
is

E(y2(t))=E
(

((f0∗P )(t))
2
)

+E
(

((ξ∗P )(t))
2
)

+E

((
(BẆ ∗P )(t)

)2
)

=(f0(t)∗P (t))
2
+E

((∫ t

0

P (t−s)ξ(s)ds
)2
)

+B2E

((∫ t

0

P (t−s)dW (s)

)2
)

+2(f0(t)∗P (t))E

(∫ t

0

P (t−s)ξ(s)ds
)

+2(f0(t)∗P (t))E

(∫ t

0

P (t−s)dW (s)

)
+2E(ξ(t)∗P (t))E

(∫ t

0

P (t−s)dW (s)

)
=(f0(t)∗P (t))

2
+E

((∫ t

0

P (t−s)ξ(s)ds
)2
)

+B2

∫ t

0

P 2(t−s) ds,

where we have used that the bounded noise ξ and
the white noise Ẇ are independent and that, for
t≥0,

E

(∫ t

0

P (t−s)dW (s)

)
=0,(∫ t

0

P (t−s)ξ(s)
)

=0,

E

((∫ t

0

P (t−s)dW (s)

)2
)

=

∫ t

0

P 2(t−s)ds.
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In order to calculate the second moment of the
solution y(t) it remains to investigate the second
moment of the convolution ξ(t)∗P (t):

E

((∫ t

0

P (t−s)ξ(s)ds
)2
)

=E

(∫ t

0

P (t−s)ξ(s)ds·
∫ t

0

P (t−u)ξ(u)du

)
=

∫ t

0

∫ t

0

P (t−s)P (t−u)E(ξ(s)ξ(u))dsdu.

For the auto-correlation function of the bounded
noise ξ we refer to [10]. It is given by

E(ξ(s)ξ(u))=
1

2
A2cos(ω(s−u))e−

η2

2 |s−u|, (13)

for s>0, u>0. Note that, since the bounded
noise ξ is a mean zero process, the auto-
correlation function and the auto-covariance
function coincide. Further, both of them are the
functions only of the difference of the argument
which is, as mentioned, the well known property
of stationary processes.

Now, by using (13) one obtains, for t≥0,

E

((∫ t

0

P (t−s)ξ(s)ds
)2
)

=

∫ t

0

∫ t

0

P (t−s)P (t−u)
1

2
A2cos(ω(s−u))

·e−
η2

2 |s−u|dsdu:=I1(P ), (14)

which is well defined integral.
Finally, the second moment of the solution is

E(y(t))=(f0∗P (t))
2

+B2

∫ t

0

P 2(t−s)ds+I1(P ).

Thus, the dispersion of the solution is finite,
i.e.,

D(y(t))=E(y2(t))−E2(y(t))

=B2

∫ t

0

P 2(t−s)ds+I1(P ).

4.2 Case 2

The solution to the problem in consideration is
given in Theorem 4.

The expectation of the solution is

E(y(t))=(f0∗P )(t)+E((ξ∗P )(t))

+E
(

(BẆ ∗P )(t)
)

=(f0∗P )(t), t≥0,

E(σ(t))=λE((f0∗P ∗Q)(t))

+λE((ξ∗P ∗Q)(t))

+λE
(

(BẆ ∗P ∗Q)(t)
)

=λ(f0∗P ∗Q)(t),

where P and Q are given by (8) and (9), respec-
tively. Thus, the solution is again unbiased.

The second moment of the solution is, simi-
larly as in the Case 1,

E(y2(t))=(f0∗P (t))
2
+B2

∫ t

0

P 2(t−s)ds+I1(P ),

and

E(σ2(t))=λ2((f0∗P ∗Q)(t))
2

+λ2

∫ t

0

(P ∗Q)2(t−s)ds

+λ2I1(P ∗Q),

where I1 is defined in (14).

The dispersion of the solution is finite, i.e.,
for t≥0,

D(y(t))=

∫ t

0

P 2(t−s)ds+I1(P ),

and

D(σ(t))=

∫ t

0

(P ∗Q)2(t−s)ds+λ2I1(P ∗Q).
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5 Numerical example

We consider a special case of a rod described
by (10) with the following values of parameters:
ω2=1, A=0, B=0.1, f=1,λ=1, b=0.5. The so-
lution is given by (11) with P determined by
(6). In the next Figure we show the results. The
line with ∗ represents the fundamental solution
without the noise, while the thin line represents
the solution with noise. It is obtained by using
Matlab procedure for simulating stochastic inte-
gration.

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 1: The solution (11) for ω2=1, A=0,
B=0.1, f≡1, λ=1, b=0.5

6 Conclusion

We studied systems (10) and (12) that corre-
spond to the axially loaded, distributed order
viscoelastic rod with a mass attached at its end.
The axial force has deterministic unbounded and
bounded stochastic parts. The existence of weak
solutions is proved and their properties are ex-
amined. We showed that the solutions are unbi-
ased and that their dispersions are finite. Also
we presented a numerical example in which we
show that the stochastic part of the load pro-
duces displacements that are comparable with
the fundamental ones.

7 Appendix: Proofs of the
theorems

Proof of the Theorem 1
In order to solve (5), we use the Laplace

transform method. Recall that the Laplace
transform of y∈L1

loc( R), y≡0 in (−∞,0] and
|y(t)|≤cekt, t>0, for some k>0, is defined by

ŷ(s)=L[f (t)](s):=

∫ ∞
0

y(t)e−stdt, Re(s)>k

and analytically continued into the appropriate
domain D.

Applying formally the Laplace transform to
(5) with F=δ, we obtain

(s2+ω2)ŷ(s)+λŷ(s)

∫ 1

0

(bs)γaγdγ=1.

Thus, the Laplace transform of the fundamental
solution is

g(s)=
1

s2+ω2+λ bs−1
ln(bs)

, s∈D,

where D is the appropriate domain excluding the
half-line (∞,0] and the poles of the function.

Let us now find the locations of poles for g,

i.e. zeros of the function g1(s)=s2+ω2+λ
bs−1

ln(bs)
.

(Note that it does not have a singularity in the
point s=1/b.)

Put C=CR∪C1∪Cr∪C2, CR={s: s=
Reiφ, φ∈[−π,π]}, C1={s: s=−t+0i, t∈[r,R]},
Cr={s: s=reiφ, φ∈[−π,π]}, and C2={s: s=
−t−0i, t∈[r,R]}, with r>0 arbitrary small and
R>0 arbitrary large. The change of the argu-
ment of g1(s) as s is moving along the curve CR
is the same as the change for the function s2 in-
stead of g1 (since R is large) and that is 4π. The
change of the argument along Cr is obviously
zero, since g1(s)≈ω2 for small r. Also, g1 moves
close to the positive side of real axis as s lies at
C1 and C2, so the change of the argument along
these two curves is zero. Thus, g1(s) has only
two zeros in the complex plane that are conju-
gate to each other, in addition. Let us denote
them by s1,2.
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In order to find out where the zeros lie,
let us calculate the change of argument over
the contour C̃=CR∪C1∪Cr∪C2, CR={s: s=
Reiφ, φ∈[−π/2,π/2]}, C1={s: s=ti, t∈[r,R]},
Cr={s: s=reiφ, φ∈[−π/2,π/2]}, and C2={s:
s=−ti, t∈[r,R]}, with r>0 arbitrary small and
R>0 arbitrary large. As above, the change of
the argument over CR is 2π and zero over Cr.
Substitution of g1 into C1 and C2 and direct cal-
culation show that the change of the argument
over each of these contours is −π, and the change
of the argument for g1 over the complete contour
C is thus zero. That means that a real part of
these zeros is negative.

Thus the function g(s) is holomorphic for
Re(s)>0 as well as sg(s) and s2g′(s) being
bounded in the same half-plane. So, by Corollary
2.5.2 in [1], there exists a continuous function P
equals zero in (−∞,0) having the function g as
its Laplace transform. That function is a funda-
mental solution of (5).

One can use the Bromwich contour in order
to get an inverse Laplace transform of g. De-
note by Cγ the right-handed part of the contour
C intersected by the line Im(s)=γ>0. Keeping
the same notation as there, we have the con-
tour Cγ=Iγ∪CR∪C1∪Cr∪C2, where CR now
denotes the intersected part of old CR and Iγ
is the intersected part of the line Im(s)=γ.

The solution P is the limit

P (t)= lim
R→∞,r→0

1

2πi

∫
Iγ

estg(s)ds,t>0.

We have, for t>0,∫
Iγ

estg(s)ds

=2πi
(

Res
( est

f(s)
,s1

)
+Res

( est

f(s)
s2

))
−
∫
CR

estg(s)ds−
∫ −r
−R

esξg(ξ+0i)dξ

+

∫
Cr

estg(s)ds+

∫ −r
−R

esξg(ξ−0i)dξ.

The integrals over Cr and CR vanish in the limit,
s1,2 are (conjugate) poles of the first order, and,

for t≥0,

P (t)=

2∑
j=1

esjt

2sj+
b

ln(bsj)
− bsj−1

sj ln2(bsj)

+
1

2πi

∫ ∞
0

e−ξtdξ

ξ2+ω2−λ bξ+1
ln(bξ)−πi

.

− 1

2πi

∫ ∞
0

e−ξtdξ

ξ2+ω2−λ bξ+1
ln(bξ)+πi

.

If we put s1=−α+βi, s2=−α−βi, α>0, we ob-
tain that P (t)=0, t<0, and that it is given by
(6).

Proof of the Theorem 2
System (7) was treated in [5] in a similar

manner as we did here investigating the Case 1.
Again, we denote by P the fundamental solution
and by g its Laplace transform. We have

g(s)=
1

s2+ω2+λβ ln(as)
ln(bs)

bs−1
as−1

, s∈D, (15)

where D is the appropriate domain excluding the
half-line (∞,0] and the poles of the function.

This function has two conjugate zeros s1,2=
−α±βi, α>0. Further, P has been explicitly
calculated and it is given by (8). Note that (7)
and (15) imply

σ̂=λg(s)
ln(as)

ln(bs)

bs−1

as−1
, s∈D,

so that

σ(t)=λP (t)∗Q(t), t≥0,and Q(t)=0, t<0,

where (see [5]) Q is given by (9).

Proof of the Theorem 3
We will show that (11) is satisfied in the weak

sense.
Let h∈L1

loc, such that h=0 for t<0. We know
that

0D
γ
t h(t)=

d

dt
(f1−γ∗h)(t), t>0,

where

f1−γ(t)=
1

Γ(1−γ)
t−γ+ , t>0.
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This implies∫ 1

0

bγ0D
γ
t h(t)dγ

=
d

dt

∫ 1

0

bγ (f1−γ∗h)(t)dγ, t>0.

Now, denoting

f̌1−γ(t)=f1−γ(−t),

one obtains, for φ∈D,〈
d

dt

∫ 1

0

bγ (f1−γ∗h)(t)dγ,φ(t)

〉
=−

∫ 1

0

bγ 〈(f1−γ∗h)(t),φ′(t)〉dγ

=

〈
h(t),

∫ 1

0

bγ
(
f̌1−γ∗φ′

)
(t)dγ

〉
. (16)

Let h=P ∗BẆ . By (16) one obtains〈 d2

dt2
(P ∗BẆ )(t)+ω2 ·(P ∗BẆ )(t)

+λ

∫ 1

0

bγ0D
γ
t (P ∗BẆ )(t)dγ,φ(t)

〉
=
〈

(P ∗BẆ )(t),
d2

dt2
φ(t)+ω2φ(t)

+λ

∫ 1

0

bγ
(
f̌1−γ∗φ′

)
(t)dγ

〉
=
〈
BẆ (t),P̌ ∗

( d2

dt2
φ+ω2φ

+λ

∫ 1

0

bγ
(
f̌1−γ∗φ′

)
(t)dγ

)
(t)
〉

=
〈
BẆ (t),

〈( d2

dt2
P̌+ω2P̌

+λ

∫ 1

0

bγ
d

dt

(
P̌ ∗f1−γ

)
dγ
)

(t−u),φ(u)
〉〉

=
〈
BẆ (t),

〈( d2

dt2
P̌+ω2P̌

+λ

∫ 1

0

bγ0D
γ
t P̌ dγ

)
(t−u),φ(u)

〉〉
=
〈
BẆ (t),(δ̌∗φ)(t)

〉
=
〈
BẆ (t),φ(t)

〉
=B

∫ ∞
0

φ(t)dW (t),

where we have used that P is a fundamental so-
lution to (5) and that P̌ ∗f̌1−γ∗φ′= d

dt (P̌ ∗f̌1−γ)∗
φ= d

dt P̌f ∗φ, with Pf=P ∗f1−γ .

All the operations above are justified by the
fact that supp φ is compact and by the definition
and the properties of Itô integral for the white
noise measure. Especially, the Fubini’s Theorem
is used several times in the calculations above.

Similar (even simpler) calculations gives

〈 d2

dt2
(P ∗f0)(t)+ω2 ·(P ∗f0)(t)

+λ

∫ 1

0

bγ0D
γ
t (P ∗f0)(t)dγ,φ(t)

〉
=
〈
f0,φ

〉
,

and, by the same procedure one gets〈 d2

dt2
(P ∗AcosZ)(t)+ω2 ·(P ∗AcosZ)(t)

+λ

∫ 1

0

bγ0D
γ
t (P ∗AcosZ)(t)dγ,φ(t)

〉
=
〈
AcosZ,φ

〉
.

Thus, knowing that ξ(t)=AcosZ(t), t>0, we
proved that〈 d2

dt2
(P ∗(f0+ξ+Ẇ ))(t)+ω2(P ∗(f0+ξ+Ẇ ))(t)

+λ

∫ 1

0

bγ0D
γ
t (P ∗(f0+ξ+Ẇ ))(t)dγ,φ(t)

〉
=
〈
f0+ξ+Ẇ ,φ

〉
,

i.e. that (11) is a weak solution to (10). Actu-
ally, we know more: f0∗P is the classical solution
to the system (1)-(3) for F=f0.

Proof of the Theorem 4

By a direct substitution of the above expres-
sions we get∫ 1

0

aγ0D
γ
t σ(t) dγ

−λ
∫ 1

0

bγ0D
γ
t y(t) dγ=0, t>0,
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in the strong sense. By using the same argument
and notation as in the stochastic Case 1 one ob-
tains, for φ∈D,

〈 d2

dt2
(BẆ ∗P )(t)+λ(BẆ ∗P ∗Q)(t),φ(t)

〉
=
〈 d2

dt2
(BẆ ∗P )(t),φ(t)

〉
+
〈
λ(BẆ ∗P ∗Q)(t),φ(t)

〉
=
〈

(BẆ ∗P )(t),
d2

dt2
φ(u)

〉
+
〈

(BẆ ∗P )(t),λQ̌∗φ(t)
〉

=
〈
BẆ (t),P̌ ∗ d

2

dt2
(u)φ

〉
+
〈
BẆ (t),

〈
λP̌ ∗Q̌(t−u),φ(u)

〉〉
=
〈
BẆ (t),

〈( d2

dt2
P̌+λP̌ ∗Q̌

)
(t−u),φ(u)

〉〉
=
〈
BẆ (t),(δ̌∗φ)(t)

〉
=
〈
BẆ (t),φ(t)

〉
.

In the similar manner, one obtains

〈 d2

dt2
(f0∗P )(t)+λ(f0∗P ∗Q)(t),φ(t)

〉
=
〈
f0(t),φ(t)

〉
, and〈 d2

dt2
(AcosZ∗P )(t)+λ(AcosZ∗P ∗Q)(t),φ(t)

〉
=
〈
AcosZ(t),φ(t)

〉
.

Thus, the proof is completed.
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