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1 Introduction

The classical theory of semigroups (see [8]) has been developed in order to
find solutions to evolution equations and systems. But there is a broad class
of classically non-solvable equations and systems, particularly ones where non-
linear operations (such as multiplication) occur. One of possible ways is to
use a Colombeau-like theory of generalized functions spaces, which is in fact a
multiplicative algebra (see [1], [3], [4] or [5]). Up to our knowledge, the first
attempt is made in [2]. In [6] the theory of Cy-semigroups is combined with
the above spaces of generalized functions. In this paper we are using uniformly
continuous semigroups which are more suitable to work with, but have a big dis-
advantage: differentiation is not a bounded operator. Thus operators involving
differentiation can not determine uniformly continuous semigroups.

On the other hand, there exists the notion of a regularized derivative (see
[4] and [9]) which substitutes the derivative with a bounded integral operator.
This is the main point of our attempt, we will now solve equations with such
objects using the well developed theory of semigroups of bounded operators.

One should mention that this paper is just a beginning of investigations
leading to applications on some classes of nonlinear PDE’s.

2 Basic spaces

Let (E,| - || ) be a Banach space and L(E) the space of all linear continuous
mappings F — E.
SE s ([0,00): L(E)) is the space of nets

Se:[0,00) = L(E), € € (0,1)

differentiable with respect to ¢t € [0, 00), with the property that for every 7' > 0
there exist N € N, M > 0 and ¢y € (0,1) such that

(6]

& .0

(1) sup < Me™N, e < e, a€{0,1}.

te[0,T)

L(E)

It is an algebra with respect to composition of operators.
SN ([0,00):L(E)) is the space of nets

N;:[0,00) = L(E), € € (0,1)



differentiable with respect to ¢ € [0, 00), with the property that for every 7" > 0
and a € R there exist M > 0 and ¢y € (0,1) such that

(6%

dt—aNE(t)

(2) sup < Me®, e <egg, a€{0,1}.

te[0,T)

L(E)

One can easily see that it is an ideal of SE ;. Thus, Colombeau-type space can

be defined as SEay ((0.00):£(E))
SG ([0,00): L(E)) = 51\]}4(%,3:2(13)) .

Elements of SG ([0,00):L(E)) will be denoted as S = [S:| where S; is a
representative of the class.

Similarly, one can define following spaces:
SE(E) is the space of nets of linear continuous mappings

A.:E — E, € (0,1)

with the property that there exist constants N € N, M > 0 and ¢ € (0, 1) such
that
(3) | Acll ey < Me™™, € < eo.

SN(E) is the space of nets of linear continuous mappings
A.:E - E, € (0,1)

with the property that for every a € R there exist M > 0 and g9 > 0 such that

(4) | Aellcm) < Me?, € < €.
Now,
_ SEnu(E)
SG(E) = SN(E)

Elements of SG(E) will be denoted as A = [A.] where A, is a representative
of the class.

In the last section of the paper we will need the following spaces:

Enm ([0,00): LP(R™)) is the space of nets of functions

Ge:[0,00) x R* — C, G.(t,-) € LP(R"), for every t € [0, ),

with the property that for every T' > 0 there exist C > 0, N € Nand n > 0
such that
sup ||ataGa(ta ')HLT’ < CgiNa a € {Oa 1}a e<n.
te[0,T)
N ([0,00): LP(R"™)) is the space of nets of functions G, € &y ([0, 00): LP(R™))
with the property that for every T'> 0 and a € R there exist C' > 0 and n > 0
such that

sup ||8?G6(ta ')”L" < C&_a’ a € {0’ 1}’ e<n.
t€[0,T)



Define the quotient space

G 10,00 (7) = RSy

In similar way, by omitting ¢-variable, one can define spaces &y (LP(R™)),
N (LP(R™)) and G (LP(R™)).

Let us note that the above spaces are not algebras with respect to multi-
plication (which is the case for the original definition of generalized function
spaces).

3 Colombeau semigroups

Definition 1 S € SG([0,00):L(E)) is called a uniformly continuous Colom-
beau semigroup if it has a representative S¢ which is a uniformly continuous
semigroup for every € small enough

(1) Se(0) = 1.

(i) Sec(t1 +t2) = Se(t1)Se(t2), for every ti,ta > 0.

(iti) limy o [|S: () — I = 0.

Proposition 1 Let S. and S. be representatives of a uniformly continuous
Colombeau semigroup S, with infinitesimal generators A., and A, respectively,

for € small enough. Then A, — A, € SN(E).

Proof. We have

= T (5.0~ S.0)

t=0

Since S; — S = N, € SN ([0, 00): L(E)) we have that for every a € R there
exists M > 0 such that

for £ small enough.
It implies that for every a € R there exists M > 0 such that

2 (5.0 - 5.0)

|A: — AL|| < Me®
for & small enough. Thus, A, — A, € SN(E) and the proof is completed. I
Definition 2 A € SG(E) is called the infinitesimal generator of a uniformly

continuous Colombeau semigroup S € SG ([0,00):L(E)) if A. is the infinitesi-
mal generator of the representative Se, for every e < €y, €9 € (0,1).



Definition 3 Let h. be a positive net satisfying he < €~ '. It is said that
A € SG(E) is of he-type if there exist its representative A, such that

(5) | Acllz(my = O(he), € — 0.

A G ([0,00): LP(R™)) is said to be of h.-type if there exists its representative G
such that
|Gel|Le = O(he), € — 0.

In the classical theory of semigroups of bounded linear operators the follow-
ing theorem holds.

Theorem 1 (/8], Theorem 1.2) A linear operator A is the infinitesimal gener-
ator of a uniformly continuous semigroup if and only if A is a bounded linear
operator.

In our case the following lemma holds.

Lemma 1 Every A € SG(E) of h.-type, where h, < C'log %, is the infinitesi-
mal generator of some T € SG ([0,00): L(E)).

Proof. According to Theorem 1 every bounded operator A, is the infinitesimal
generator of the uniformly continuous semigroup

Tg(t) — etAE — i (tAs)n.

n!
n=0

Let us show that (%), € SEum ([0,00): L(E)). We have that

o [[tA|" = 1
IT(8)]| < ZO s MZO —(tho)" = M.
n— n—=

1
Since h, < C'log — we have that
€
sup || T:(t)|| < Me™"€,
t€[0,T)

for € small enough. Since
ETE (t) == Ag,
for every e small enough, we have

d 1
— = < -<
| 0] =14 < 1ot < e

for every such e, i.e., (Tz). € SEn ([0,00): L(E)). Thus, the proof is completed.
O

Proposition 2 Let A be the infinitesimal generator of a uniformly continuous

Colombeau semigroup S, and B be the infinitesimal generator of a uniformly
continuous Colombeau semigroup T. If A= B, then S =1T.

4



Proof. Let N, = A, — B, € SN (E). We have

d

E(Ss(t) - Tfs(t))aj = As(Ss(t) - Ts(t))x + NETE(t)x'

Duhamel principle and S, (0) = 7,(0) = I imply

(S.(t) — To(t))z = /0 S.(t — s)N.T.(s)zds.

One can easily show that ||S:(t) — T.(¢)|| < Ce?, for every real a, because
N, € SN(E). The same bounds for ¢t-derivative of S, (t) —T.(t) can be obtained
by a successive differentiation of the above term. O

4 Differential equations with regularized derivatives

Definition 4 Let o € Nj. Regularized a-th derivative of a generalized function
G, is defined by the representative

(6) %G = G % %Py,

where ¢p (x) = hiP(zhe), ¢(y) = d1(y1) - --- - d1(yn), ¢1 € C(R), ¢1(§) > 0
and [ ¢1(€)dé = 1.

For definition and some basic properties of regularized derivatives we refer
to [9] and [4].

Lemma 2 Suppose that f € L2(R") and let h. be a net from Definition 4.
Then

105 fllz2 < Coabl|IflL2-

Proof. For f € L?(R") we have

o f

Lo = I *0%n gz < Afllze - 10%n. Iz -

Note that
00nlls = [ 1% (2 (ch))| da

= hptlel o, [0%9) (zhe)| dz

= ple /R 10°0(y)| dy = K07l s < Cpah.

This implies the assertion. [J

Using the spaces introduced at the end of Section 2 one can prove the
following theorem.



1/(2m)
Theorem 2 Let ug € G (L*(R")), n < 3, and h, = <log g) . Let A €
SG (L*(R"™)) be represented by the nets of operators

(7) A=Y aacl@) OF, aq € LO(RY),

la|<m

Ao L2(R") — L2(R"),

1\ 1/2
where a, € G(L*®(R™)) is of (log —) -type. The generalized function u €
€

G([0,00) : L2(R™)), represented by u.(t) = S.(t)uo., S(t) € SG ([0, 00): L*(R")),
is the Colombeau semigroup generated by A, which uniquely solves the Cauchy
problem

(¥ Lult) = Ault)

u(0) = up € G(L*(R™)).
Proof. Using Lemma 2,

lAcue @z < Y llaaell=llOf ue(®)ll2

laj<m

1\ /2 1\ lel/2m)
e (1) X Coa (1062) ol

la|<m

IN

IN

1
Clog —lue(t)ll2-

By Lemmas 1 and 2, A € SG(L?(R")) is the infinitesimal generator of some
S € SG([0,00) : L(L*(R"))). By well known classical results it follows that
ue (t) = Se(t)uge solves

d
Eus(t) = Acuc(t), ue(0) = uge,

for every e small enough.
Let us show that this solution is unique in G([0, 00): L2 (R™)).
The function w, := u. — v, satisfies

d
ZWe(t) = Acw. (2) + Ne(t), we(0) = wo,

where N, (t) € N([0,00):L%(R")) and wp. € N(L?(R")). Then

t
(9) we () = S (t)wos + /0 S.(t — $)Na(s) ds,
and

t
[[we (#)llz2 < [ISe (#)woell 2 +/O 15e (¢ — s)Ne(s)|z2ds t € [0, 00),
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from where we obtain the N-bound for ||w.(t)||z2-
Equation (4) implies

d
lzwe@)lize < [[Acwe(@)l|z2 + [INe (@) |2
Since, as we showed in previous step, ||we(t)||z> has the A-bound and N(t) €
N([0,T): L*(R™)) we obtain that || 4w, (t)||;2 has the A'-bound, too.

Thus, w. := u; —v. € N([0,00): L2(R")). O
Definition 5 The solution ue of the problem (8) introduced in Theorem 2 is
called generalized solution of the equation

d Q
—u(t) = D aa(-)0%u(t)

laj<m

with regularized derivatives.

Appendix

The authors are gratefull to the referee for patience and great help in prepara-
tion of the manuscript.
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