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1 Introduction

A large class of stochastic processes which appear in applications can not be
defined in a classical way. One of the best known examples of a such process
is certainly the white noise process which happened to be a good model of
fluctuating phenomena frequently appearing in dynamic systems. White noise
was first correctly defined in connection with the theory of generalized functions
(distributions) and the concept of white noise as generalized stochastic process
has proved to be a very useful mathematical idealization. The generalized
stochastic processes have been at first introduced in [5], [16]. But working
with generalized stochastic processes involves distribution spaces which are not
suitable for multiplication and thus for dealing with nonlinear stochastic partial
differential equations. One of the possible approaches in solving stochastic
differential equations uses the Wick product as it is done in [6]. Another one,
as in paper [13], uses the weighted L2-spaces.

In order to overcome the multiplication problem, in this paper we use the
theory of Colombeau-type generalized functions spaces (see [2], [4]). This is also
done in papers [11], [12], [14] and in similar way in paper [1]. More precisely,
we use Colombeau-type algebras constructed in [3] and the energy inequality
for wave equation (see [8] and references in it).

The first part of the paper is devoted to one-dimensional nonlinear stochastic
wave equations of the form

(∂2
t − ∂2

x)U + F (U) · S = 0,

U |t=0 = A, ∂tU |t=0 = B,

where A, B and S are certain Colombeau generalized stochastic processes on
R and R

2, respectively, and the function F is smooth, polynomially bounded
together with all its derivatives and such that F (0) = 0.

Oberguggenberger and Russo considered in [11] a one-dimensional nonlinear
stochastic wave equation but in the case when the nonlinear part F is a Lipschitz
function with an additive generalized stochastic process. A Colombeau solution
is constructed and the limiting behavior of the representing net is obtained.

Here, since we are not dealing with F which is Lipschitz, we use a so-called
regularization of the function F and instead of the original equation, which
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we call nonregularized, we consider the corresponding regularized equation ob-
tained by substituting the function F by a family of smooth Lipschitz functions
Fε, for ε ∈ (0, 1). We prove existence and uniqueness of the solution to the
regularized equation. Finally, we are interested in questions under what condi-
tions given on initial data the solution to the regularized equation is also the
solution to the nonregularized one.

In the second part of the paper we are interested in 3-dimensional cubic and
subcubic stochastic wave and Klein-Gordon equations containing Colombeau
generalized stochastic processes. We consider four different cases depending
on the growth rates of L2-norms of the initial data as well as of L∞-norms of
Colombeau generalized stochastic processes which are added to or multiplied
with the nonlinear part.

Suppose that A, B, S, S1 and S2 are certain Colombeau generalized stochas-
tic processes and that f and g are globally Lipschitz functions, polynomially
bounded together with all their derivatives and such that f(0) = g(0) = 0.

The first type of equation we are interested in is

(∂2
t −△)U + U3 · S = 0,

U |{t=0} = A, ∂tU |{t=0} = B.

The second type of equation is

(∂2
t −△)U + U · S + U3 = 0,

U |{t=0} = A, ∂tU |{t=0} = B.

Then we consider the equation

(∂2
t −△)U + U + U3 + S = 0,

U |{t=0} = A, ∂tU |{t=0} = B.

Finally, we are interested in equations of the form

(∂2
t −△)U + f(U)S1 + g(U) + S2 = 0,

U |{t=0} = A, ∂tU |{t=0} = B.

In all four cases solutions, considered as Colombeau generalized stochastic
processes, are obtained and proved to be unique. Conditions under which we
have those unique solutions are different for every equation and that is the
reason why we consider them separately.

2 Notation and basic definitions

At the beginning we recall some basic facts from classical stochastic analysis.
Let (Ω,Σ, µ) be a probability space. A weakly measurable mapping

X : Ω → D′(Rd)

is called a generalized stochastic process on R
d.
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For each fixed function ϕ ∈ D(Rd), the mapping Ω → R defined by

ω → 〈X(ω), ϕ〉

is a random variable.
The space of generalized stochastic processes will be denoted by D′

Ω(R
d).

The characteristic functional of a process X is

CX(ϕ) =

∫

ei〈X(ω),ϕ〉dµ(ω), ϕ ∈ D(Rd).

We take as probability space the space of tempered distributions Ω = S ′(Rd)
and for Σ the Borel σ-algebra generated by the weak topology. Then there is a
unique probability measure µ on (Ω,Σ) such that

∫

ei〈X(ω),ϕ〉dµ(ω) = e
− 1

2
‖ϕ‖2

L2(Rd) , ϕ ∈ S(Rd).

This is a well known result following from the Bochner-Minlos theorem (we
refer to [5] or [6]). White noise process Ẇ : Ω → D′(Rd) is the identity mapping

〈Ẇ (ω), ϕ〉 = 〈ω,ϕ〉, ϕ ∈ D(Rd).

It is a generalized Gaussian process with mean zero and variance

E(Ẇ (ϕ)2) = ‖ϕ‖2L2(Rd),

where E denotes expectation.
Let us now recall the facts from Colombeau generalized functions theory

that we need here. A detailed study of these spaces and their properties one
can find in [2], [4], [9] and [10].

Let O be an open subset of Rn. We consider the following spaces:
E(O) is the space of all mappings G : (0, 1) ×O → C such that

G(ε, ·) = Gε ∈ C∞(O), ε > 0.

Eb([0, T )×R
n) is the space of all Gε ∈ E([0, T )×R

n) with the property that
for all T > 0 and α ∈ N

n
0 there exists N ∈ N such that

‖∂αGε‖L∞([0,T )×Rn) = O(ε−N ).

We say that ‖∂αGε‖L∞ is moderate or that it has a moderate bound.
Nb([0, T ) × R

n) is the space of all Gε ∈ E([0, T ) × R
n) with the property

that for all T > 0, α ∈ N
n
0 and a ∈ R

‖∂αGε‖L∞([0,T )×Rn) = O(εa).

We say that ‖∂αGε‖L∞ is negligible.
Spaces Eb([0, T )×R

n) and Nb([0, T )×R
n) are algebras and Nb([0, T )×R

n)
is an ideal of Eb([0, T )× R

n).
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The factor algebra

Gb([0, T ) × R
n) = Eb([0, T ) × R

n)/Nb([0, T ) × R
n)

is called the algebra of Colombeau generalized functions of bounded type.
Similarly we define the spaces Eb(R

n), Nb(R
n) and Gb(R

n).
Let us remark that f(ε) = O(εb) means that |f(ε)| ≤ const εb and f(ε) =

o(εb) means lim
ε→0

f(ε)ε−b = 0.

In [3] the following construction is given.
E2,2([0, T )×R

n) is the algebra of all Gε ∈ E([0, T )×R
n) with the property

that for all T > 0 and α ∈ N
n
0 there exists N ∈ N such that

‖∂αGε‖L2([0,T )×Rn) = O(ε−N ).

Again, we say that ‖∂αGε‖L2 is moderate or that it has a moderate bound.
N2,2([0, T )×R

n) is the algebra of all Gε ∈ E([0, T )×R
n) with the property

that for all T > 0, α ∈ N
n
0 and a ∈ R

‖∂αGε‖L2([0,T )×Rn) = O(εa).

We say that ‖∂αGε‖L2 is negligible.
As above, we define

G2,2([0, T )× R
n) = E2,2([0, T ) ×R

n)/N2,2([0, T ) × R
n).

One can similarly define spaces E2,2(R
n), N2,2(R

n) and G2,2(R
n).

Let Q denote [0, T )×O or O. The proof that N2,2(Q) is an ideal of E2,2(Q) is
given in paper [3]. Sobolev embedding theorems give that E2,2(Q) ⊂ Eb(Q) and
N2,2(Q) ⊂ Nb(Q). Thus there exists a canonical mapping G2,2(Q) → Gb(Q).
Also, this means that in G2,2(Q) instead of the L2-norm on the strip [0, T )×R

n

one can use the L∞-norm on [0, T ) and the L2-norm on R
n and vice versa.

Definition 1 A Gb-Colombeau generalized stochastic process on a probability
space (Ω,Σ, µ) is a mapping U : Ω → Gb(Q) such that there exists a function
U : (0, 1) ×Q× Ω → R with the following properties:

1) For fixed ε ∈ (0, 1), (x, ω) → U(ε, x, ω) is jointly measurable in Q× Ω.

2) ε → U(ε, ·, ω) belongs to Eb(Q) almost surely in ω ∈ Ω, and it is a represen-
tative of U(ω).

By GΩ
b (Q) we denote the algebra of Gb-Colombeau generalized stochastic

processes on Ω.

Definition 2 A G2,2-Colombeau generalized stochastic process on a probability
space (Ω,Σ, µ) is a mapping U : Ω → G2,2(Q) such that there exists a function
U : (0, 1) ×Q× Ω → R with the following properties:

1) For fixed ε ∈ (0, 1), (x, ω) → U(ε, x, ω) is jointly measurable in Q× Ω.

2) ε → U(ε, ·, ω) belongs to E2,2(Q) almost surely in ω ∈ Ω, and it is a repre-
sentative of U(ω).

By GΩ
2,2(Q) we denote the algebra of G2,2-Colombeau generalized stochastic

processes on Ω.

In the sequel the variable ε will be written as a subindex and Uε will always
denote a representative of U .
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3 One-dimensional nonlinear stochastic

wave equation

3.1 Preliminary constructions

Consider the problem

(∂2
t − ∂2

x)U + F (U) · S = 0,(1)

U |t=0 = A, ∂tU |t=0 = B,(2)

where A and B are G2,2-Colombeau generalized stochastic processes on R, that
is, A,B ∈ GΩ

2,2(R), and S ∈ GΩ
2,2([0, T ) × R) is a G2,2-Colombeau generalized

stochastic process on R
2 with compact support. We suppose that the function

F is smooth, polynomially bounded together with all its derivatives and that
F (0) = 0. We look for a solution U ∈ GΩ

2,2([0, T ) × R).
We substitute F by a family of smooth functions Fε, ε ∈ (0, 1), which is

called the regularization of F . This is done in the following way.
We choose the smooth function Fε with the property that there exists a net

aε such that for every α ∈ N0 there exist ε0 ∈ (0, 1) and mα ∈ N such that

Fε(y) = F (y), for |y| ≤ aε, ε < ε0

‖DαFε(y)‖L∞ = O(amα

ε ).

In the sequel we shall denote m = sup|α|≤1m
α.

Denote by F̃ = [Fε], where Fε ∈ EΩ
2,2([0, T ) × R) has the properties as

above. Then, instead of the nonregularized equation (1)-(2), we consider the
regularized one

(∂2
t − ∂2

x)U + F̃ (U) · S = 0,(3)

U |{t=0} = A, ∂tU |{t=0} = B,(4)

where S = [Sε] ∈ GΩ
2,2([0, T )× R) and A,B ∈ GΩ

2,2(R).

Note that for Uε, Vε ∈ EΩ
2,2([0, T )×R) such that Uε − Vε ∈ NΩ

2,2([0, T )×R),

we have that F̃ (Uε)− F̃ (Vε) ∈ NΩ
2,2([0, T )× R).

3.2 Regularized wave equation

Before giving the main result of this section we prove the following lemma which
we shall often use in the sequel. The function space norms with subscripts like
L2, H1 are always meant to signify L2(Rn), H1(Rn) and so as in the sequal.

Lemma 1 ([8]) Let u ∈ C1([0, T )) ×H2(Rn) be a solution to equation

utt − uxx = f.

Then

‖∂tu(t)‖L2 ≤ ‖(∂tu(0),∇u(0))‖L2 +

∫ t

0
‖f(s)‖L2ds,(5)
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and

‖u(t)‖H1 ≤ max(1, t)
(

‖∂tu(0)‖L2 + ‖u(0)‖H1 +

∫ t

0
‖f(s)‖L2ds

)

.(6)

Proof. ¿From [15]

‖(∂tu(t),∇u(t))‖L2 ≤ ‖(∂tu(0),∇u(0))‖L2 +

∫ t

0
‖f(s)‖L2ds,

and (5) immediately follows. But

u(t) = u(0) +

∫ t

0
∂tu(s)ds.

Thus

‖u(t)‖L2 ≤ ‖u(0)‖L2 +

∫ t

0
‖∂tu(s)‖L2ds

≤ ‖u(0)‖L2 + t‖(∂tu(0),∇u(0))‖L2 +

∫ t

0

∫ s

0
‖f(r)‖L2drds

≤ ‖u(0)‖L2 + t‖(∂tu(0),∇u(0))‖L2 + t

∫ t

0
‖f(s)‖L2ds.

Therefore (6) follows and the proof is completed.

In sequel we denote γ = max(1, T ).

Theorem 1 Assume that the net aε used in the regularization of the function
F , has the property

aε = o
(

(

log ε−1
)

1
2m

)

.(7)

Then, for every T > 0, a solution to problem (3)-(4) almost surely exists
in GΩ

2,2([0, T ) × R). Additionally, if the stochastic process S ∈ GΩ
2,2([0, T ) × R)

satisfies

‖Sε‖L2 = o
(

(

log ε−1
)

1
2

)

,(8)

then the obtained solution is almost surely unique in GΩ
2,2([0, T ) × R).

Proof. As it is usual in the Colombeau framework, we consider problem (3)-(4)
given by the representatives

(∂2
t − ∂2

x)Uε + Fε(Uε) · Sε = 0,(9)

Uε|{t=0} = Aε, ∂tUε|{t=0} = Bε,(10)

where Sε ∈ EΩ
2,2([0, T ) ×R) and Aε, Bε ∈ EΩ

2,2(R).
In the sequel ω ∈ Ω and ε ∈ (0, 1) will be fixed. Note that Fε is globally

Lipschitz for each fixed ε. Thus Cauchy problem (9)-(10) has a unique solution
Uε. The mapping (x, t, ω) → Uε(x, t, ω) is jointly measurable in (x, t) and ω for
every fixed ε. This conclusion follows by applying successive approximations
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method and using the fact that a continuous mapping of a measurable function
is also measurable.

By Lemma 1 we have that

max (‖∂tUε(t)‖L2 , ‖Uε(t)‖H1)

≤ γ
(

‖∂tUε(0)‖L2 + ‖Uε(0)‖H1 +

∫ T

0
‖Fε(Uε(s))Sε(s)‖L2ds

)

≤ γ
(

‖∂tUε(0)‖L2 + ‖Uε(0)‖H1 +

∫ T

0
‖Fε(Uε(s))‖L∞‖Sε(s)‖L2ds

)

≤ γ
(

‖∂tUε(0)‖L2 + ‖Uε(0)‖H1 + T

∫ T

0
amε ‖Sε(s)‖L2ds

)

, t < T.

We immediately obtain the moderate bound for supt∈[0,T ) ‖Uε(t)‖H1 .
Note that, for fixed ω ∈ Ω, Sε ∈ E2,2([0, T )×R) ⊂ Eb([0, T )×R); that gives

us the Eb-property of the regularized stochastic process Sε which will be used
in the considerations that follow.

In order to obtain moderate bounds for higher order derivatives of Uε, we
differentiate equation (9) with respect to the spatial variable x and obtain

(∂2
t − ∂2

x)∂xUε + F ′
ε(Uε)∂xUεSε + Fε(Uε)∂xSε = 0.(11)

Energy inequality gives

‖(∂txUε, ∂xxUε)(t)‖L2 ≤ ‖(∂txUε, ∂xxUε)(0)‖L2

+

∫ T

0
‖F ′

ε(Uε(s))∂xUε(s)Sε(s)‖L2ds+

∫ T

0
‖Fε(Uε(s))∂xSε(s)‖L2ds

≤ ‖(∂txUε, ∂xxUε)(0)‖L2 +

∫ T

0
‖F ′

ε(Uε(s))‖L∞‖∂xUε(s)‖L2‖Sε(s)‖L∞ds

+

∫ T

0
‖Fε(Uε(s))‖L∞‖∂xSε(s)‖L2ds

≤ ‖(∂txUε, ∂xxUε)(0)‖L2 +

∫ T

0
amε ‖∂xUε(s)‖L2‖Sε(s)‖L∞ds

+

∫ T

0
amε ‖∂xSε(s)‖L2ds.

Since Sε ∈ Eb([0, T ) × R) and supt∈[0,T ) ‖∂xUε(t)‖L2 is moderate, we obtain
that supt∈[0,T ) ‖∂xxUε(t)‖L2 is moderate, too.

Differentiating equation (11) we obtain

(∂2
t − ∂2

x)∂xxUε + F ′′
ε (Uε)(∂xUε)

2Sε + F ′
ε(Uε)∂xxUεSε

+2F ′
ε(Uε)∂xUε∂xSε + Fε(Uε)∂xxSε = 0.

Similarly as above, by using Sobolev embedding theorems, we get

‖(∂txxUε, ∂xxxUε)(t)‖L2 ≤ ‖(∂txxUε, ∂xxxUε)(0)‖L2

+

∫ T

0
‖F ′′

ε (Uε(s))(∂xUε(s))
2Sε(s)‖L2ds+

∫ T

0
‖F ′

ε(Uε(s))∂xxUε(s)Sε(s)‖L2ds
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+ 2

∫ T

0
‖F ′

ε(Uε(s))∂xUε(s)∂xSε(s)‖L2ds+

∫ T

0
‖Fε(Uε(s))∂xxSε(s)‖L2ds

≤ ‖(∂txxUε, ∂xxxUε)(0)‖L2 +

∫ T

0
‖F ′′

ε (Uε(s))‖L∞‖∂xUε(s)‖
2
L4‖Sε(s)‖L∞ds

+

∫ T

0
‖F ′

ε(Uε(s))‖L∞‖Sε(s)‖L∞‖∂xxUε(s)‖L2ds

+ 2

∫ T

0
‖F ′

ε(Uε(s))‖L∞‖∂xUε(s)‖L2‖∂xSε(s)‖L∞ds

+

∫ T

0
‖Fε(Uε(s))‖L∞‖∂xxSε(s)‖L2ds

≤ ‖(∂txxUε, ∂xxxUε)(0)‖L2 + C

∫ T

0
am2
ε ‖∂xUε(s)‖

2
H1

‖Sε(s)‖L∞ds

+

∫ T

0
amε ‖Sε(s)‖L∞‖∂xxUε(s)‖L2ds

+ 2

∫ T

0
amε ‖∂xSε(s)‖L∞‖∂xUε(s)‖L2ds+

∫ T

0
amε ‖∂xxSε(s)‖L2ds.

Using the same argument as above we obtain that supt∈[0,T ) ‖∂xxxUε(t)‖L2

is moderate.
In order to obtain moderate bounds for the L2-norm of the m-th order

derivative of Uε, ∂
m
x Uε, we only have to give bounds of the term that contains

the highest order derivative of Uε because in all other terms derivatives of order
at mostm−2 appear. Their L∞-norms are bounded by L2- norms of derivatives
of order at most m− 1 which are moderate from the previous step.

The term that contains the derivative of order m− 1 (highest order deriva-
tive) is of the form

∫ T

0
‖F ′

ε(Uε(s))∂
(m−1)
x Uε(s)‖L2ds.

Now we have
∫ T

0
‖F ′

ε(Uε(s))∂
(m−1)
x Uε(s)‖L2ds ≤

∫ T

0
‖F ′

ε(Uε)‖L∞‖∂(m−1)
x Uε(s)‖L2ds

≤

∫ T

0
amε ‖∂(m−1)

x Uε(s)‖L2ds.

Since we have from the previous step that supt∈[0,T ) ‖∂
(m−1)
x Uε(t)‖L2 has a

moderate bound, the moderate bound for the L2-norm of an arbitrary order
derivative follows.

Derivatives of Uε with respect to the time variable t can be estimated by
derivatives of Uε with respect to the spatial variable x by using the equation
which we solve and by differentiating it. This argument will be also used in
the uniqueness proof without particular mentioning. Thus, we proved that
Uε ∈ EΩ

2,2([0, T ) × R), i.e., U = [Uε] ∈ GΩ
2,2([0, T ) × R) is solution to problem

(3)-(4).
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Let us show that this solution is unique in GΩ
2,2([0, T ) × R), i.e. that for

given two solutions to equation (9), U1ε, U2ε ∈ EΩ
2,2([0, T ) × R), their difference

Ūε := U1ε − U2ε belongs to NΩ
2,2([0, T ) × R).

The following holds:

(∂2
t − ∂2

x)Ūε + (Fε(U1ε)− Fε(U2ε))Sε +Nε = 0,(12)

Ūε|t=0 = N1ε, ∂tŪε|t=0 = N2ε,

where N1ε, N2ε ∈ NΩ
2,2(R) and Nε ∈ NΩ

2,2([0, T )× R).
Using Lemma 1 we obtain

max
(

‖∂tŪε(t)‖L2 , ‖Ūε(t)‖H1

)

≤ γ
(

‖N2ε‖L2 + ‖N1ε‖H1 +

∫ T

0
‖Nε‖L2ds +

∫ T

0
‖(Fε(U1ε)− Fε(U2ε))Sε‖L2ds

)

≤ γ
(

‖N2ε‖L2‖N1ε‖H1 +

∫ T

0
‖Nε‖L2ds+

∫ T

0
‖F ′

ε(Ũε)‖L∞‖Ūε‖L∞‖Sε‖L2ds
)

≤ γ
(

‖N2ε‖L2 + ‖N1ε‖H1 +

∫ T

0
‖Nε‖L2ds +

∫ T

0
amε C‖Ūε‖H1‖Sε‖L2ds

)

,

for some Ũε ∈ (min(U1ε, U2ε),max(U1ε, U2ε)).
Since Sε satisfies (8) and the net aε satisfies (7), Gronwall’s type inequality

implies that supt∈[0,T ) ‖Ūε(t)‖H1 is negligible.

Let us consider higher order derivatives of Ūε and show that their L2-norms
are also negligible. For that purpose we differentiate equation (12) with respect
to the spatial variable x. We obtain

(∂2
t − ∂2

x)∂xŪε + F ′
ε(U1ε)∂xU1εSε − F ′

ε(U2ε)∂xU2εSε

+(Fε(U1ε)− Fε(U2ε))∂xSε + ∂xNε = 0.

Energy inequality gives

‖∂xŪε(t)‖H1 ≤ ‖(∂xN2ε, ∂xxN1ε)‖L2 +

∫ T

0
‖∂xNε‖L2ds

+

∫ T

0
‖F ′

ε(U1ε)∂xU1ε − F ′
ε(U1ε)∂xU2ε‖L∞‖Sε‖L2ds

+

∫ T

0
‖F ′

ε(U1ε)∂xU2ε − F ′
ε(U2ε)∂xU2ε‖L∞‖Sε‖L2ds

+

∫ T

0
‖F ′

ε(Ũε)‖L∞‖Ūε‖L∞‖∂xSε‖L2ds

≤ ‖(∂xN2ε, ∂xxN1ε)‖L2 +

∫ T

0
‖∂xNε‖L2ds+

∫ T

0
amε ‖∂xŪε‖L∞‖Sε‖L2ds

+

∫ T

0
amε ‖Ūε‖L∞‖∂xU2ε‖L∞‖Sε‖L2ds + C1

∫ T

0
am2
ε ‖Ūε‖L∞‖∂xSε‖L2ds

≤ ‖(∂xN2ε, ∂xxN1ε)|L2 +

∫ T

0
‖∂xNε‖L2ds+ C

(

∫ T

0
amε ‖∂xŪε‖H1‖Sε‖L2ds

+

∫ T

0
amε ‖∂xŪε‖L2‖∂xU2ε‖L∞‖Sε‖L2ds+

∫ T

0
am2
ε ‖Ūε‖H1‖∂xSε‖L2ds

)

,
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where Ũε ∈ (min(U1ε, U2ε),max(U1ε, U2ε)).
¿From the previous step we have that supt∈[0,T ) ‖∂xŪε(t)‖L2 is negligible.

Since aε and Sε satisfy relations (7) and (8), respectively, Gronwall’s inequality
implies that supt∈[0,T ) ‖∂xxŪε(t)‖L2 is negligible, too. Similarly, one can show

that the L2- norm of an arbitrary order derivative of Ūε is negligible.
Thus the proof is completed.

Remark 1 In particular, one could choose the stochastic process Sε to be smoothed
white noise such that

Ẇε =

(

Ẇ ∗
1

hε
φ

(

·

hε

))

ξε,

where

hε =
1

2m
√

log ε−1
,

and ξε is a nonnegative net of smooth, compactly supported cut-off functions
converging to the identity. The cut-off procedure is necessary to obtain L2-
moderate properties of the above function Ẇε.

3.3 The regularized and the nonregularized equation

Theorem 2 Let G, a primitive function of F , be nonnegative and G(0) = 0.
Let the Colombeau generalized stochastic process S ∈ GΩ

2,2(R) be nonnegative
and depend only on the variable x, i.e., there exists a representative Sε of S
such that Sε(x) ≥ 0, for all ε small enough and x ∈ R. Suppose that

‖Bε‖L2 + ‖Aε‖H1 = o(aε), as ε → 0,(13)

where aε is the corresponding net used in the regularization of the function F .
Then, for every T > 0, the solution to the regularized equation (3)-(4) is

also the solution to the nonregularized equation (1)-(2).

Proof. Standard energy estimates procedure gives

1

2
∂t

∫

(

(∂tUε(x, t))
2 + (∂xUε(x, t))

2 +Gε(Uε(x, t))Sε(x)
)

dx = 0.

Since Gε ≥ 0, by using the procedure given in the proof of Lemma 1, one
can see that

max (‖∂tUε(t)‖L2 , ‖Uε(t)‖H1) ≤ γ
(

‖Bε‖L2 + ‖Aε‖H1

)

.

Using (13) and

‖Uε(t)‖L∞(R) ≤ C‖Uε(t)‖H1(R), t ∈ [0, T ),

for some C > 0, we obtain

‖Uε(t)‖L∞(R) ≤ aε, t ∈ [0, T ).

Thus,
Fε(Uε) = F (Uε),

and the proof is completed.
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Remark 2 In particular, one can take the stochastic process S in Theorem
2 to be positive noise which depends only on the spatial variable x and with
the corresponding growth property. Positive noise ([6]) is generalized stochastic
process with representative

exp

(

Ẇ ∗ ϕε −
1

2
‖ϕε‖

2
L2

)

∈ E(R),

where Ẇ is the white noise. Again, one uses the cut-off procedure in order to
obtain L2-moderate properties of the above function. The same assertion holds.

4 3-dimensional stochastic wave and

Klein-Gordon equations

In this section we consider the 3-dimensional stochastic cubic and subcubic
wave and Klein-Gordon equations containing Colombeau generalized stochastic
processes. There are four different cases depending on growth rates of the
L2-norms of the initial data as well as on the L∞-norms of the Colombeau
generalized stochastic processes.

4.1 Cubic wave equation with nonnegative stochastic process

We consider the problem

(∂2
t −△)U + U3 · S = 0,(14)

U |{t=0} = A, ∂tU |{t=0} = B,(15)

where we suppose that A,B ∈ GΩ
2,2(R

3) are G2,2-Colombeau generalized sto-
chastic processes such that

‖Bε‖L2 + ‖Aε‖H1 = o
(

(

log ε−1
)1/4

)

,(16)

and S ∈ GΩ
b (R

3) is nonnegative Gb-Colombeau generalized stochastic process
which depends only on the variable x and such that

‖Sε‖L∞ = o
(

(

log ε−1
)1/2

)

.(17)

Theorem 3 Let the stochastic processes A,B ∈ GΩ
2,2(R

3) satisfy condition (16)

and S ∈ GΩ
b (R

3) be a nonnegative stochastic process that depends only on the
variable x and satisfies (17). Then, for every T > 0, problem (14)-(15) has a
unique solution almost surely in GΩ

2,2([0, T ) × R
3).

Proof. In the sequel ω ∈ Ω and ε ∈ (0, 1) will be fixed.
Problem (14,15) given by the representatives reads

(∂2
t −△)Uε + U3

ε · Sε = 0,(18)

Uε|{t=0} = Aε, ∂tUε|{t=0} = Bε,(19)
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where Aε, Bε ∈ EΩ
2,2(R

3) satisfy (16) and Sε ∈ EΩ
b (R

3) is nonnegative and satis-
fies (17).

Using the nonnegativity of a primitive of the nonlinear term, similarly as in
Lemma 1,

max (‖∂tUε(t)‖L2 , ‖Uε(t)‖H1) ≤ γ
(

‖∂tUε(0)‖L2 + ‖Uε(0)‖H1

)

and we immediately obtain the moderate bound for supt∈[0,T ) ‖Uε(t)‖H1 . More-

over, supt∈[0,T ) ‖Uε(t)‖H1 = o
(

(

log ε−1
)1/4

)

.

As we remarked in the previous section, derivatives of Uε with respect to
time variable t can be estimated by derivatives of Uε with respect to the spatial
variables by using the equation which we solve and by differentiating it. This
is the reason why we shall estimate only the space derivatives.

In order to obtain moderate bounds for L2-norms of higher order derivatives
of Uε, we differentiate equation (18) with respect to some spatial variable and
obtain

(∂2
t −△)∇Uε + 3U2

ε∇UεSε + U3
ε∇Sε = 0.(20)

Energy inequality and Sobolev embedding theorems give

‖(∂t∇Uε,∇
2Uε)(t)‖L2 ≤ ‖(∂t∇Uε,∇

2Uε)(0)‖L2

+ 3

∫ T

0
‖U2

ε (s)∇Uε(s)Sε‖L2ds +

∫ T

0
‖U3

ε (s)∇Sε‖L2ds

≤ ‖(∂t∇Uε,∇
2Uε)(0)‖L2 + 3

∫ T

0
‖Uε(s)‖

2
L6‖∇Uε(s)‖L6‖Sε‖L∞ds

+

∫ T

0
‖Uε(s)‖

3
L6‖∇Sε‖L∞ds

≤ ‖(∂t∇Uε,∇
2Uε)(0)‖L2

+ C
(

∫ T

0
‖Uε(s)‖

2
H1‖∇Uε(s)‖H1‖Sε‖L∞ds+

∫ T

0
‖Uε(s)‖

3
H1‖∇Sε‖L∞ds

)

.

Here and in the sequel C will denote some positive real. The first term in
the right-hand side has the moderate bound. From the previous step and the
fact that Sε ∈ Eb(R

3) we obtain that the third term has the moderate bound.

Also, we know that supt∈[0,T ) ‖Uε(t)‖H1 = o
(

(

log ε−1
)1/4

)

. Using all those

arguments as well as (17), one can apply Gronwall’s inequality and obtain the
moderate bound for supt∈[0,T ) ‖∇

2Uε(t)‖L2 .
By another differentiation with respect to some spatial variable we obtain

(∂2
t −△)∇2Uε + 6Uε(∇Uε)

2Sε + 3U2
ε∇

2UεSε + 6U2
ε∇Uε∇Sε + U3

ε∇
2Sε = 0.

Similarly as above one can get

‖(∂t∇
2Uε,∇

3Uε)(t)‖L2 ≤ ‖(∂t∇
2Uε,∇

3Uε)(0)‖L2

+ 6

∫ T

0
‖Uε(s)‖L6‖∇Uε(s)‖

2
L6‖Sε‖L∞ds
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+ 3

∫ T

0
‖Uε(s)‖

2
L∞‖∇2Uε(s)‖L2‖Sε‖L∞ds

+ 6

∫ T

0
‖Uε(s)‖

2
L6‖∇Uε(s)‖L6‖∇Sε‖L∞ds+

∫ T

0
‖Uε(s)‖

3
L6‖∇

2Sε‖L∞ds

≤ ‖(∂t∇
2Uε,∇

3Uε)(0)‖L2 + C
(

∫ T

0
‖Uε(s)‖H1‖∇Uε(s)‖

2
H1‖Sε‖L∞ds

+

∫ T

0
‖Uε(s)‖

2
H2‖∇

2Uε(s)‖L2‖Sε‖L∞ds

+

∫ T

0
‖Uε(s)‖

2
H1‖∇Uε(s)‖H1‖∇Sε‖L∞ds+

∫ T

0
‖Uε(s)‖

3
H1‖∇

2Sε‖L∞ds
)

.

Since supt∈[0,T ) ‖∇Uε(t)‖L2 and supt∈[0,T ) ‖∇
2Uε(t)‖L2 have moderate bounds

we obtain the moderate bound for supt∈[0,T ) ‖∇
3Uε(t)‖L2 .

Similarly, one can obtain moderate bounds for L2-norms of higher order
derivatives of Uε. Thus, we have just proved that Uε ∈ EΩ

2,2([0, T ) × R
3), i.e.,

U = [Uε] ∈ GΩ
2,2([0, T ) × R

3) is a solution to problem (14)-(15).

Let us show that this solution is unique in GΩ
2,2([0, T ) × R

3), i.e. that for

given two solutions to equation (18), U1ε, U2ε ∈ EΩ
2,2([0, T )×R

3), their difference

Ūε := U1ε − U2ε belongs to NΩ
2,2([0, T ) × R

3). The following holds:

(∂2
t −△)Ūε + (U3

1ε − U3
2ε)Sε +Nε = 0,(21)

Ūε|t=0 = N1ε, ∂tŪε|t=0 = N2ε,

where N1ε, N2ε ∈ NΩ
2,2(R

3) and Nε ∈ NΩ
2,2([0, T ) × R

3).
Using Lemma 1 and Sobolev embedding theorems we obtain

max
(

‖∂tŪε(t)‖L2 , ‖Ūε(t)‖H1

)

≤ γ
(

‖N2ε‖L2 + ‖N1ε‖H1 +

∫ T

0
‖Nε(s)‖L2ds

+

∫ T

0
‖
(

U2
1ε(s) + U1ε(s)U2ε(s) + U2

2ε(s)
)

ŪεSε‖L2ds
)

≤ γ
(

‖N2ε‖L2 + ‖N1ε‖H1 +

∫ T

0
‖Nε(s)‖L2ds

+

∫ T

0

(

‖U1ε(s)‖
2
L6 + ‖U1ε(s)‖L6‖U2ε(s)‖L6 + ‖U2ε(s)‖

2
L6

)

‖Ūε‖L6‖Sε‖L∞ds
)

≤ γ
(

‖N2ε‖L2 + ‖N1ε‖H1 +

∫ T

0
‖Nε(s)‖L2ds

)

+ C

∫ T

0

(

‖U1ε(s)‖
2
H1 + ‖U1ε(s)‖H1‖U2ε(s)‖H1 + ‖U2ε(s)‖

2
H1

)

‖Ūε‖H1‖Sε‖L∞ds.

Since we know that supt∈[0,T ) ‖Uiε(t)‖H1 = o
(

(

log ε−1
)1/4

)

, i ∈ {1, 2},

and ‖Sε‖L∞ = o
(

(

log ε−1
)1/2

)

, by using Gronwall’s inequality we obtain that

supt∈[0,T ) ‖Ūε(t)‖H1 is negligible.

Let us consider higher order derivatives of Ūε and show that their L2-norms
are also negligible. For that purpose we differentiate equation (21) with respect

13



to some spatial variable and obtain

(∂2
t −△)∇Ūε +

(

3U2
1ε∇U1ε − 3U2

2ε∇U2ε

)

Sε +
(

U3
1ε − U3

2ε

)

∇Sε +∇Nε = 0.

Energy inequality and Sobolev embedding theorems give

‖(∂t∇Ūε,∇
2Ūε)(t)‖L2 ≤ ‖(∇N2ε,∇

2N1ε)‖L2 +

∫ T

0
‖∇Nε(s)‖L2ds

+ 3

∫ T

0
‖U2

1ε(s)∇U1ε(s)− U2
2ε(s)∇U2ε(s)‖L2‖Sε‖L∞ds

+

∫ T

0
‖
(

U2
1ε(s) + U1ε(s)U2ε(s) + U2

2ε(s)
)

Ūε(s)‖L2‖∇Sε‖L∞ds

≤ ‖(∇N2ε,∇
2N1ε)‖L2 +

∫ T

0
‖∇Nε(s)‖L2ds

+ 3

∫ T

0
‖U2

1ε(s)∇U1ε(s)− U2
1ε(s)∇U2ε(s)‖L2‖Sε‖L∞ds

+ 3

∫ T

0
‖U2

1ε(s)∇U2ε(s)− U2
2ε(s)∇U2ε(s)‖L2‖Sε‖L∞ds

+

∫ T

0

(

‖U1ε(s)‖
2
L6 + ‖U1ε(s)‖L6‖U2ε(s)‖L6 + ‖U2ε(s)‖

2
L6

)

‖Ūε‖L6‖∇Sε‖L∞ds

≤ ‖(∇N2ε,∇
2N1ε)‖L2 +

∫ T

0
‖∇Nε(s)‖L2ds

+ 3

∫ T

0
‖U1ε(s)‖

2
L6‖∇Ūε(s)‖L6‖Sε‖L∞ds

+ 3

∫ T

0
‖ (U1ε(s)− U2ε(s)) (U1ε(s) + U2ε(s))∇U2ε(s)‖L2‖Sε‖L∞ds

+ C1

∫ T

0

(

‖U1ε(s)‖
2
H1 + ‖U1ε(s)‖H1‖U2ε(s)‖H1 + ‖U2ε(s)‖

2
H1

)

‖Ūε‖H1‖∇Sε‖L∞ds

≤ ‖(∇N2ε,∇
2N1ε)‖L2 +

∫ T

0
‖∇Nε(s)‖L2ds

+ C
(

∫ T

0
‖U1ε(s)‖

2
H1‖∇Ūε(s)‖H1‖Sε‖L∞ds

+

∫ T

0
‖Ūε(s)‖H1 (‖U1ε(s)‖H1 + ‖U2ε(s)‖H1) ‖∇U2ε(s)‖H1‖Sε‖L∞ds

+

∫ T

0

(

‖U1ε(s)‖
2
H1 + ‖U1ε(s)‖H1‖U2ε(s)‖H1 + ‖U2ε(s)‖

2
H1

)

‖Ūε‖H1‖∇Sε‖L∞ds
)

.

Using similar arguments as above we obtain that supt∈[0,T ) ‖∇
2Ūε(t)‖L2 is

negligible. Similarly, one can show that the L2-norms of all derivatives of Ūε

are negligible. That concludes the proof.

Remark 3 Note that any Colombeau stochastic generalized process S can be
regularized in such way that estimate (17) holds. This remark could be added
after each further assertion when we need estimates on a stochastic term.
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4.2 Cubic wave equation with multiplicative stochastic process

We consider the problem

(∂2
t −△)U + U · S + U3 = 0,(22)

U |{t=0} = A, ∂tU |{t=0} = B,(23)

where the stochastic processes A,B ∈ GΩ
2,2(R

3) are such that

‖Bε‖L2 + ‖Aε‖H1 = o
(

(

log ε−1
)1/2

)

,(24)

and S ∈ GΩ
b ([0, T ) × R

3) is such that

‖Sε‖L∞ = o
(

log
(

log ε−1
)

1
2T

)

.(25)

Theorem 4 Let the G2,2-Colombeau generalized stochastic processes A,B ∈
GΩ
2,2(R

3) satisfy condition (24) and the Gb-Colombeau stochastic process S ∈

GΩ
b ([0, T ) × R

3) satisfy (25). Then, for every T > 0, problem (22)-(23) has a
unique solution almost surely in GΩ

2,2([0, T ) × R
3).

Proof. In the sequel ω ∈ Ω and ε ∈ (0, 1) will be fixed.
We consider problem (22)-(23) given by the representatives:

(∂2
t −△)Uε + Uε · Sε + U3

ε = 0,(26)

Uε|{t=0} = Aε, ∂tUε|{t=0} = Bε,(27)

where Aε, Bε ∈ EΩ
2,2(R

3) satisfy (24) and Sε ∈ EΩ
b ([0, T ) ×R

3) satisfies (25).
Again, by using a procedure like in the proof of Theorem 3, we obtain

max (‖∂tUε(t)‖L2 , ‖Uε(t)‖H1)

≤ γ
(

‖∂tUε‖L2 + ‖Uε(0)‖H1 +

∫ T

0
‖Uε(s)Sε(s)‖L2ds

)

≤ γ
(

‖∂tUε‖L2 + ‖Uε(0)‖H1 +

∫ T

0
‖Uε(s)‖L2‖Sε(s)‖L∞ds

)

≤ γ
(

‖∂tUε‖L2 + ‖Uε(0)‖H1 +

∫ T

0
‖Uε(s)‖H1‖Sε(s)‖L∞ds

)

.

Since (25) holds, Gronwall’s inequality implies the moderate bound for

supt∈[0,T ) ‖Uε(t)‖H1 . Moreover, supt∈[0,T ) ‖Uε(t)‖H1 = o
(

(

log ε−1
)1/2

)

.

In order to obtain moderate bounds for L2-norms of higher order derivatives
of Uε, we differentiate equation (26) with respect to some spatial variable and
obtain

(∂2
t −△)∇Uε +∇UεSε + Uε∇Sε + 3U2

ε∇Uε = 0.(28)
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Energy inequality and Sobolev embedding theorems give

‖(∂t∇Uε,∇
2Uε)(t)‖L2

≤ ‖(∂t∇Uε,∇
2Uε)(0)‖L2 +

∫ T

0
‖∇Uε(s)Sε(s)‖L2ds

+

∫ T

0
‖Uε(s)∇Sε(s)‖L2ds+ 3

∫ T

0
‖U2

ε (s)∇Uε(s)‖L2ds

≤ ‖(∂t∇Uε,∇
2Uε)(0)‖L2 +

∫ T

0
‖∇Uε(s)‖L2‖Sε(s)‖L∞ds

+

∫ T

0
‖Uε(s)‖L2‖∇Sε(s)‖L∞ds+ C

∫ T

0
‖Uε(s)‖

2
H1‖∇Uε(s)‖H1ds.

Since supt∈[0,T ) ‖Uε(t)‖H1 = o
(

(

log ε−1
)1/2

)

Gronwall’s inequality gives the

moderate bound for supt∈[0,T ) ‖∇
2Uε(t)‖L2 .

By another differentiation with respect to some spatial variable we obtain

(∂2
t −△)∇2Uε +∇2UεSε + 2∇Uε∇Sε + Uε∇

2Sε + 6Uε(∇Uε)
2 + 3U2

ε∇
2Uε = 0.

Similarly as above one can get

‖(∂t∇
2Uε,∇

3Uε)(t)‖L2

≤ ‖(∂t∇
2Uε,∇

3Uε)(0)‖L2 +

∫ T

0
‖∇2Uε(s)‖L2‖Sε(s)‖L∞ds

+ 2

∫ T

0
‖∇Uε(s)‖L2‖∇Sε(s)‖L∞ds+

∫ T

0
‖Uε(s)‖L2‖∇2Sε(s)‖L∞ds

+ 6

∫ T

0
‖Uε(s)‖L6‖∇Uε(s)‖

2
L6ds + 3

∫ T

0
‖Uε(s)‖

2
L∞‖∇2Uε(s)‖L2ds

≤ ‖(∂t∇
2Uε,∇

3Uε)(0)‖L2 +

∫ T

0
‖∇2Uε(s)‖L2‖Sε(s)‖L∞ds

+ 2

∫ T

0
‖∇Uε(s)‖L2‖∇Sε(s)‖L∞ds+

∫ T

0
‖Uε(s)‖L2‖∇2Sε(s)‖L∞ds

+ C
(

∫ T

0
‖Uε(s)‖H1‖∇Uε(s)‖

2
H1ds+

∫ T

0
‖Uε(s)‖

2
H2‖Uε(s)‖H2ds

)

.

Since supt∈[0,T ) ‖Uε(t)‖H2 , supt∈[0,T ) ‖Uε(t)‖H1 and supt∈[0,T ) ‖∇
2Uε(t)‖L2

have moderate bounds, supt∈[0,T ) ‖∇
3Uε(t)‖L2 has a moderate bound, too.

Similarly, one can obtain the moderate bounds for L2-norms of higher order
derivatives of Uε. Thus, we have just proved that Uε ∈ EΩ

2,2([0, T ) × R
3), i.e.,

U = [Uε] ∈ GΩ
2,2([0, T ) × R

3) is solution to problem (22)-(23).

Let us show that this solution is unique in GΩ
2,2([0, T ) × R

3), i.e. that for

given two solutions to equation (26), U1ε, U2ε ∈ EΩ
2,2([0, T )×R

3), their difference

Ūε := U1ε − U2ε belongs to NΩ
2,2([0, T ) × R

3).
The following holds:

(∂2
t −△)Ūε + ŪεSε + U3

1ε − U3
2ε +Nε = 0,(29)

Ūε|t=0 = N1ε, ∂tŪε|t=0 = N2ε,
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where N1ε, N2ε ∈ NΩ
2,2(R

3) and Nε ∈ NΩ
2,2([0, T ) × R

3).
Using the fact that

‖U3
1ε − U3

2ε‖L2 ≤ ‖U1ε − U2ε‖L6‖U2
1ε + U1εU2ε + U2

2ε‖L3

≤ ‖Ūε‖H1

(

‖U1ε‖
2
H1 + ‖U1ε‖H1‖U2ε‖H1 + ‖U2ε‖

2
H1

)

,

similarly as above we obtain

max
(

‖(∂tŪε‖L2 , ‖Ūε‖H1

)

≤ γ
(

‖N2ε‖L2 + ‖N1ε‖H1 +

∫ T

0
‖Nε(s)‖L2ds+

∫ T

0
‖Ūε(s)‖L2‖Sε(s)‖L∞ds

)

+ C

∫ T

0

(

‖U1ε(s)‖
2
H1 + ‖U1ε(s)‖H1‖U2ε(s)‖H1 + ‖U2ε(s)‖

2
H1

)

‖Ūε(s)‖H1ds.

Gronwall’s inequality implies that supt∈[0,T ) ‖Ūε(t)‖H1 is negligible. Simi-

larly, one can show that the L2-norms of all derivatives of Ūε are negligible.
Again, in both the existence and the uniqueness proof, derivatives of Uε with

respect to the time variable t can be estimated by derivatives of Uε with respect
to spatial variables by using the equation which we solve and by differentiating
it. Thus, the proof is completed.

4.3 Klein-Gordon equation with additive stochastic process

We consider the problem

(∂2
t −△)U + U + U3 + S = 0,(30)

U |{t=0} = A, ∂tU |{t=0} = B,(31)

where the stochastic processes A,B ∈ GΩ
2,2(R

3) satisfy

‖Bε‖L2 + ‖Aε‖H1 = o
(

(

log ε−1
)1/2

)

,(32)

and S ∈ GΩ
2,2([0, T ) × R

3) is such that

‖Sε‖L∞ = o
(

(

log ε−1
)1/2

)

(33)

and
Sε has a compact support.(34)

Theorem 5 Let the G2,2-Colombeau generalized stochastic processes A,B ∈
GΩ
2,2(R

3) and S ∈ GΩ
2,2([0, T )×R

3) satisfy conditions (32) and (33)-(34), respec-
tively. Then, for T > 0, the problem (30)-(31) has a unique solution almost
surely in GΩ

2,2([0, T ) × R
3).

Proof. In the sequel ω ∈ Ω and ε ∈ (0, 1) will be fixed.
We consider problem (30)-(31) given by the representatives:

(∂2
t −△)Uε + Uε + U3

ε + Sε = 0(35)
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Uε|{t=0} = Aε, ∂tUε|{t=0} = Bε,(36)

where Aε, Bε ∈ EΩ
2,2(R

3) satisfy (32) and Sε ∈ EΩ
2,2([0, T ) × R

3) satisfies condi-
tions (33) and (34).

Like in the beginning of the proof of Theorem 3

max (‖∂tUε(t)‖L2 , ‖Uε(t)‖H1) ≤ γ
(

‖∂tUε(0)‖L2+‖Uε(0)‖H1+

∫ T

0
‖Sε(s)‖L2ds

)

.

The moderate bound for supt∈[0,T ) ‖Uε(t)‖H1 immediately follows. Moreover,

supt∈[0,T ) ‖Uε(t)‖H1 = o
(

(

log ε−1
)1/2

)

.

In order to obtain moderate bounds for L2-norms of higher order derivatives
of Uε, we differentiate equation (35) with respect to some spatial variable and
obtain

(∂2
t −△)∇Uε +∇Uε + 3U2

ε∇Uε +∇Sε = 0.(37)

Energy inequality and Sobolev embedding theorems give

‖(∂t∇Uε,∇
2Uε)(t)‖L2 ≤ ‖(∂t∇Uε,∇

2Uε)(0)‖L2 +

∫ T

0
‖∇Uε(s)‖L2ds

+ 3

∫ T

0
‖U2

ε (s)∇Uε(s)‖L2ds+

∫ T

0
‖∇Sε(s)‖L2ds

≤ ‖(∂t∇Uε,∇
2Uε)(0)‖L2 +

∫ T

0
‖∇Uε(s)‖L2ds

+ C

∫ T

0
‖Uε(s)‖

2
H1‖∇Uε(s)‖H1ds+

∫ T

0
‖∇Sε(s)‖L2ds.

Using supt∈[0,T ) ‖Uε(t)‖H1 = o
(

(

log ε−1
)1/2

)

one can apply Gronwall’s in-

equality and obtain the moderate bound for supt∈[0,T ) ‖∇
2Uε(t)‖L2 .

By another differentiation with respect to some spatial variable we obtain

(∂2
t −△)∇2Uε +∇2Uε + 6Uε(∇Uε)

2 + 3U2
ε∇

2Uε +∇2Sε = 0.

Similarly as above one can get

‖(∂t∇
2Uε,∇

3Uε)(t)‖L2 ≤ ‖(∂t∇
2Uε,∇

3Uε)(0)‖L2

+

∫ T

0
‖∇2Uε(s)‖L2ds+ C

(

∫ T

0
‖Uε(s)‖H1‖∇Uε(s)‖

2
H1ds

+

∫ T

0
‖Uε(s)‖

2
H1‖∇

2Uε(s)‖H1ds
)

+

∫ T

0
‖∇2Sε(s)‖L2ds.

Using the same argument as above and applying that supt∈[0,T ) ‖Uε(t)‖H1

and supt∈[0,T ) ‖∇Uε(t)‖H1 have moderate bounds we obtain the moderate bound

for supt∈[0,T ) ‖∇
3Uε(t)‖L2 .

Similarly, one can obtain the moderate bounds for L2-norms of higher order
derivatives of Uε. Thus, we have just proved that Uε ∈ EΩ

2,2([0, T ) × R
3), i.e.,

U = [Uε] ∈ GΩ
2,2([0, T ) × R

3) is a solution to problem (30)-(31).

18



Let us show that this solution is unique in GΩ
2,2([0, T ) × R

3), i.e. that for

given two solutions to equation (35), U1ε, U2ε ∈ EΩ
2,2([0, T )×R

3), their difference

Ūε := U1ε − U2ε belongs to NΩ
2,2([0, T ) × R

3). The following holds:

(∂2
t −△)Ūε + Ūε + U3

1ε − U3
2ε +Nε = 0,(38)

Ūε|t=0 = N1ε, ∂tŪε|t=0 = N2ε,

where N1ε, N2ε ∈ NΩ
2,2(R

3) and Nε ∈ NΩ
2,2([0, T ) × R

3).
As above

max
(

‖∂tŪε‖L2 , ‖Ūε‖H1

)

≤ γ
(

‖N2ε‖L2 + ‖N1ε‖H1 +

∫ T

0
‖Nε(s)‖L2ds+

∫ T

0
‖Ūε(s)‖L2ds

)

+ C

∫ T

0

(

‖U1ε(s)‖
2
H1 + ‖U1ε(s)‖H1‖U2ε(s)‖H1 + ‖U2ε(s)‖

2
H1

)

‖Ūε(s)‖H1ds.

Since supt∈[0,T ) ‖Uiε(t)‖H1 = o
(

(

log ε−1
)1/2

)

, i = 1, 2, one can again apply

Gronwall’s inequality and obtain that supt∈[0,T ) ‖Ūε(t)‖H1 is negligible. Simi-

larly, one can show that L2-norms of all derivatives of Ūε are negligible.
As in the previous cases, in both the existence and the uniqueness proof,

derivatives of Uε with respect to the time variable t can be estimated by deriv-
atives of Uε with respect to spatial variables by using the equation which we
solve and by differentiating it. Thus, the proof is completed.

4.4 Stochastic wave equation with Lipschitz nonlinearities

Let f and g be globally Lipschitz functions, polynomially bounded together
with all their derivatives and such that f(0) = g(0) = 0.

Consider the problem

(∂2
t −△)U + f(U)S1 + g(U) + S2 = 0,(39)

U |{t=0} = A, ∂tU |{t=0} = B,(40)

where A,B ∈ GΩ
2,2(R

3) are G2,2-Colombeau generalized stochastic processes.

The Gb-Colombeau generalized stochastic process S1 ∈ GΩ
b ([0, T ) × R

3) is such
that

‖S1ε‖L∞ = o
(

log ε−1
)

,(41)

and the G2,2-Colombeau generalized stochastic process S2 ∈ GΩ
2,2([0, T ) × R

3)
has compact support.

Theorem 6 Suppose that the stochastic processes A and B belong to GΩ
2,2(R

3),

S1 ∈ GΩ
b ([0, T ) × R

3) satisfies condition (41) and that S2 ∈ GΩ
2,2([0, T ) × R

3)
has compact support. Let f and g be globally Lipschitz functions, polynomially
bounded together with all their derivatives and such that f(0) = g(0) = 0.
Then, for every T > 0, problem (39)-(40) has a unique solution almost surely
in GΩ

2,2([0, T ) × R
3).
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Proof. In the sequel ω ∈ Ω and ε ∈ (0, 1) will be fixed.
We consider problem (39)-(40) given by the representatives:

(∂2
t −△)Uε + f(Uε)S1ε + g(Uε) + S2ε = 0,(42)

Uε|{t=0} = Aε, ∂tUε|{t=0} = Bε,(43)

where Aε, Bε ∈ EΩ
2,2(R

3), S1ε ∈ EΩ
b ([0, T ) × R

3) and S2ε ∈ EΩ
2,2([0, T ) × R

3)
satisfy the conditions given in the statement of the Theorem.

Using Lemma 1

max (‖∂tUε(t)‖L2 , ‖Uε(t)‖H1)

≤ γ
(

‖∂tUε(0)‖L2 + ‖Uε(0)‖H1 +

∫ T

0
‖f(Uε(s))‖L2‖S1ε(s)‖L∞ds

+

∫ T

0
‖g(Uε(s))‖L2ds+

∫ T

0
‖S2ε(s)‖L2ds

)

≤ γ‖∂tUε(0)‖L2 + ‖Uε(0)‖H1 + C
(

∫ T

0
‖Uε(s)‖L2‖S1ε(s)‖L∞ds

+

∫ T

0
‖Uε(s)‖L2ds+

∫ T

0
‖S2ε(s)‖L2ds

)

≤ γ‖∂tUε(0)‖L2 + ‖Uε(0)‖H1 + C
(

∫ T

0
‖Uε(s)‖H1‖S1ε(s)‖L∞ds

+

∫ T

0
‖Uε(s)‖H1ds +

∫ T

0
‖S2ε(s)‖L2ds

)

,

where we have used the Lipschitz property of the functions f and g and Sobolev
embedding theorems.

Since the regularized stochastic process S1ε satisfies (41) one can apply
Gronwall’s inequality and obtain the moderate bound for supt∈[0,T ) ‖Uε(t)‖H1 .

In order to obtain moderate bounds for L2-norms of higher order derivatives
of Uε, we differentiate equation (42) with respect to some spatial variable and
obtain

(∂2
t −△)∇Uε + f ′(Uε)∇UεS1ε + f(Uε)∇S1ε + g′(Uε)∇Uε +∇S2ε = 0.

Energy inequality and Sobolev embedding theorems give

‖(∂t∇Uε,∇
2Uε)(t)‖L2

≤ ‖(∂t∇Uε,∇
2Uε)(0)‖L2 +

∫ T

0
‖f ′(Uε(s))‖L∞‖∇Uε(s)‖L2‖S1ε(s)‖L∞ds

+

∫ T

0
‖f(Uε(s))‖L2‖∇S1ε(s)‖L∞ds

+

∫ T

0
‖g′(Uε(s))‖L∞‖∇Uε(s)‖L2ds+

∫ T

0
‖∇S2ε(s)‖L2ds

≤ ‖(∂t∇Uε,∇
2Uε)(0)‖L2 + C

(

∫ T

0
‖∇Uε(s)‖L2‖S1ε(s)‖L∞ds

+

∫ T

0
‖Uε(s)‖L2‖∇S1ε(s)‖L∞ds+

∫ T

0
‖∇Uε(s)‖L2ds+

∫ T

0
‖∇S2ε(s)‖L2ds

)

.
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Applying that supt∈[0,T ) ‖Uε(t)‖L2 and supt∈[0,T ) ‖∇Uε(t)‖L2 have moderate

bounds we obtain the moderate bound for supt∈[0,T ) ‖∇
2Uε(t)‖L2 .

By another differentiation with respect to some spatial variable we obtain

(∂2
t −△)∇2Uε + f ′′(Uε)(∇Uε)

2S1ε + f ′(Uε)∇
2UεS1ε + 2f ′(Uε)∇Uε∇S1ε

+f(Uε)∇
2S1ε + g′′(Uε)(∇Uε)

2 + g′(Uε)∇
2Uε +∇2S2ε = 0.

Similarly as above one can get

‖(∂t∇
2Uε,∇

3Uε)(t)‖L2 ≤ ‖(∂t∇
2Uε,∇

3Uε)(0)‖L2

+

∫ T

0
‖f ′′(Uε(s))‖L∞‖∇Uε(s)‖

2
H1‖S1ε(s)‖L∞ds

+

∫ T

0
‖f ′(Uε(s))‖L∞‖∇2Uε(s)‖L2‖S1ε(s)‖L∞ds

+ 2

∫ T

0
‖f ′(Uε(s))‖L∞‖∇Uε(s)‖L2‖∇S1ε(s)‖L∞ds

+

∫ T

0
‖f(Uε(s))‖L2‖∇2S1ε(s)‖L∞ds+

∫ T

0
‖g′′(Uε(s))‖L∞‖∇Uε(s))‖

2
H1ds

+

∫ T

0
‖g′(Uε(s))‖L∞‖∇2Uε(s)‖L2ds+

∫ T

0
‖∇2S2ε(s)‖L2ds

≤ ‖(∂t∇
2Uε,∇

3Uε)(0)‖L2 + C
(

(1 +

∫ T

0
‖Uε(s)‖

q1
H2)‖∇Uε(s)‖

2
H1‖S1ε(s)‖L∞ds

+

∫ T

0
‖∇2Uε(s)‖L2‖S1ε(s)‖L∞ds+

∫ T

0
‖∇Uε(s)‖L2‖∇S1ε(s)‖L∞ds

+

∫ T

0
‖Uε(s)‖L2‖∇2S1ε(s)‖L∞ds+

∫ T

0
(1 + ‖Uε(s)‖

q2
H2)‖∇Uε(s))‖

2
H1ds

+

∫ T

0
‖∇2Uε(s)‖L2ds+

∫ T

0
‖∇2S2ε(s)‖L2ds

)

,

for some q1, q2 ∈ N.
Using similar arguments as we did above we obtain the moderate bound

for supt∈[0,T ) ‖∇
3Uε(t)‖L2 . Similarly, one can obtain the moderate bounds for

L2-norms of higher order derivatives of Uε. Thus, we have just proved that
Uε ∈ EΩ

2,2([0, T )×R
3), i.e., U = [Uε] ∈ GΩ

2,2([0, T )×R
3) is a solution to problem

(39)-(40).
Let us show that this solution is unique in GΩ

2,2([0, T ) × R
3), i.e. that for

given two solutions to equation (42), U1ε, U2ε ∈ EΩ
2,2([0, T )×R

3), their difference

Ūε := U1ε − U2ε belongs to NΩ
2,2([0, T ) × R

3). The following holds:

(∂2
t −△)Ūε + (f(U1ε)− f(U2ε))S1ε + g(U1ε)− g(U2ε) +Nε = 0,(44)

Ūε|t=0 = N1ε, ∂tŪε|t=0 = N2ε,

where N1ε, N2ε ∈ NΩ
2,2(R

3) and Nε ∈ NΩ
2,2([0, T ) × R

3).
By Lemma 1

max
(

‖∂tŪε(t)‖L2 , ‖Ūε(t)‖H1

)

≤ γ
(

‖N2ε‖L2 + ‖N1ε‖H1 +

∫ T

0
‖Nε(s)‖L2ds
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+

∫ T

0
‖f(U1ε(s))− f(U2ε(s))‖L2‖S1ε(s)‖L∞ds

+

∫ T

0
‖g(U1ε(s))− g(U2ε(s))‖L2ds

)

≤ γ‖N2ε‖L2 + ‖N1ε‖H1

+ C
(

∫ T

0
‖Nε(s)‖L2ds+

∫ T

0
‖Ūε(s)‖H1‖S1ε(s)‖L∞ds+

∫ T

0
‖Ūε(s)‖H1ds

)

,

where we have used the Lipschitz property of the functions f and g and Sobolev
embedding theorems.

Since S1ε satisfies condition (41) one can apply Gronwall’s inequality and
obtain that supt∈[0,T ) ‖Ūε(t)‖H1 is negligible.

By differentiating (44) with respect to some spatial variable we obtain

(∂2
t −△)∇Ūε +

(

f ′(U1ε)∇U1ε − f ′(U2ε)∇U2ε

)

S1ε

+(f(U1ε)− f(U2ε))∇S1ε + g′(U1ε)∇U1ε − g′(U2ε)∇U2ε +∇Nε = 0.

Again, energy inequality and Sobolev embedding theorems give

‖(∂t∇Ūε,∇
2Ūε)(t)‖L2 ≤ ‖(∂t∇Ūε,∇

2Ūε)(0)‖L2 +

∫ T

0
‖∇Nε(s)‖L2ds

+

∫ T

0
‖f ′(U1ε(s))∇U1ε(s)− f ′(U1ε(s))∇U2ε(s)‖L2‖S1ε(s)‖L∞ds

+

∫ T

0
‖f ′(U1ε(s))∇U2ε(s)− f ′(U2ε(s))∇U2ε(s)‖L2‖S1ε(s)‖L∞ds

+

∫ T

0
‖f(U1ε(s))− f(U2ε(s))‖L2‖∇S1ε(s)‖L∞ds

+

∫ T

0
‖g′(U1ε(s))∇U1ε(s)− g′(U1ε(s))∇U2ε(s)‖L2ds

+

∫ T

0
‖g′(U1ε(s))∇U2ε(s)− g′(U2ε(s))∇U2ε(s)‖L2ds

≤ ‖(∂t∇Ūε,∇
2Ūε)(0)‖L2 +

∫ T

0
‖∇Nε(s)‖L2ds

+

∫ T

0
‖f ′(U1ε(s))‖L∞‖∇Ūε(s)‖L2‖S1ε(s)‖L∞ds

+

∫ T

0
‖f ′(U1ε(s))− f ′(U2ε(s))‖L4‖∇U2ε(s)‖L4‖S1ε(s)‖L∞ds

+ Cf

∫ T

0
‖Ūε(s)‖L2‖∇S1ε(s)‖L∞ds+

∫ T

0
‖g′(U1ε(s))‖L∞‖∇Ūε(s)‖L2ds

+

∫ T

0
‖g′(U1ε(s))− g′(U2ε(s))‖L4‖∇U2ε(s)‖L4ds

≤ ‖(∂t∇Ūε,∇
2Ūε)(0)‖L2 +

∫ T

0
‖∇Nε(s)‖L2ds

+ C
(

∫ T

0
‖∇Ūε(s)‖L2‖S1ε(s)‖L∞ds
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+

∫ T

0
‖Ūε(s))‖H1‖∇U2ε(s)‖H1‖S1ε(s)‖L∞ds

+

∫ T

0
‖Ūε(s)‖L2‖∇S1ε(s)‖L∞ds+

∫ T

0
‖∇Ūε(s)‖L2ds

+

∫ T

0
‖Ūε(s)‖H1‖∇U2ε(s)‖H1ds

)

,

where Cf is Lipschitz constant for function f .
Similarly, one can show that the L2-norms of all derivatives of Ūε are negli-

gible. Derivatives of Uε with respect to the time variable t can be estimated by
derivatives of Uε with respect to spatial variables by using the equation which
we solve and differentiating it. Thus, the proof is completed.
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