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1 Introduction

A large class of stochastic processes which appear in applications can not be
defined in a classical way. One of the best known examples of a such process
is certainly the white noise process which happened to be a good model of
fluctuating phenomena frequently appearing in dynamic systems. White noise
was first correctly defined in connection with the theory of generalized functions
(distributions) and the concept of white noise as generalized stochastic process
has proved to be a very useful mathematical idealization. The generalized
stochastic processes have been at first introduced in [5], [16]. But working
with generalized stochastic processes involves distribution spaces which are not
suitable for multiplication and thus for dealing with nonlinear stochastic partial
differential equations. One of the possible approaches in solving stochastic
differential equations uses the Wick product as it is done in [6]. Another one,
as in paper [13], uses the weighted L2-spaces.

In order to overcome the multiplication problem, in this paper we use the
theory of Colombeau-type generalized functions spaces (see [2], [4]). This is also
done in papers [11], [12], [14] and in similar way in paper [1]. More precisely,
we use Colombeau-type algebras constructed in [3] and the energy inequality
for wave equation (see [8] and references in it).

The first part of the paper is devoted to one-dimensional nonlinear stochastic
wave equations of the form

(0} —2)U+F(U)-S=0,
Uli=o = A, 0;Uli=0 = B,

where A, B and S are certain Colombeau generalized stochastic processes on
R and R2, respectively, and the function F' is smooth, polynomially bounded
together with all its derivatives and such that F'(0) = 0.

Oberguggenberger and Russo considered in [11] a one-dimensional nonlinear
stochastic wave equation but in the case when the nonlinear part F'is a Lipschitz
function with an additive generalized stochastic process. A Colombeau solution
is constructed and the limiting behavior of the representing net is obtained.

Here, since we are not dealing with F' which is Lipschitz, we use a so-called
regularization of the function F' and instead of the original equation, which



we call nonregularized, we consider the corresponding regularized equation ob-
tained by substituting the function F' by a family of smooth Lipschitz functions
F,, for € € (0,1). We prove existence and uniqueness of the solution to the
regularized equation. Finally, we are interested in questions under what condi-
tions given on initial data the solution to the regularized equation is also the
solution to the nonregularized one.

In the second part of the paper we are interested in 3-dimensional cubic and
subcubic stochastic wave and Klein-Gordon equations containing Colombeau
generalized stochastic processes. We consider four different cases depending
on the growth rates of L?-norms of the initial data as well as of L>-norms of
Colombeau generalized stochastic processes which are added to or multiplied
with the nonlinear part.

Suppose that A, B, S, S and S, are certain Colombeau generalized stochas-
tic processes and that f and g are globally Lipschitz functions, polynomially
bounded together with all their derivatives and such that f(0) = ¢g(0) = 0.

The first type of equation we are interested in is

(0} — AU +U?. 5 =0,
U|{t=0} = A, atU|{t:0} = B.

The second type of equation is

(O} =AU +U-S+U?=0,
U‘{t:(]} - A, 8tU‘{t:O} - B

Then we consider the equation

@2 — AU +U+U3+8=0,
U’{t:O} = A4, 8tU‘{t:0} = B.

Finally, we are interested in equations of the form

(02 — AU + f(U)S1 + g(U) + Sz = 0,
Ulg=oy = A, 0U|y—0y = B.

In all four cases solutions, considered as Colombeau generalized stochastic
processes, are obtained and proved to be unique. Conditions under which we
have those unique solutions are different for every equation and that is the
reason why we consider them separately.

2 Notation and basic definitions

At the beginning we recall some basic facts from classical stochastic analysis.
Let (©,%, 1) be a probability space. A weakly measurable mapping

X:Q =D (RY

is called a generalized stochastic process on R,



For each fixed function ¢ € D(R?), the mapping Q — R defined by
w = (X (w), ¢)

is a random variable.
The space of generalized stochastic processes will be denoted by D, (R?).
The characteristic functional of a process X is

Cx(e) = [ XD du(w), o € DY)

We take as probability space the space of tempered distributions Q = &’(R%)
and for X the Borel o-algebra generated by the weak topology. Then there is a
unique probability measure p on (£2,3) such that

. ~ L2
/ HX@R) gy(0) = ¢ 2wy, e S(RY).

This is a well known result following from the Bochner-Minlos theorem (we
refer to [5] or [6]). White noise process W : Q — D'(R%) is the identity mapping

(W(w),9) = (w, ), p € DRY).

It is a generalized Gaussian process with mean zero and variance

B(W(9)2) = ]2z

where E denotes expectation.

Let us now recall the facts from Colombeau generalized functions theory
that we need here. A detailed study of these spaces and their properties one
can find in [2], [4], [9] and [10].

Let O be an open subset of R™. We consider the following spaces:

£(0) is the space of all mappings G : (0,1) x O — C such that

G(e,:) = G € C*(0), € > 0.
E([0,T) x R™) is the space of all G. € £(]0,T) x R™) with the property that
for all T'> 0 and « € Njj there exists N € N such that

10“Gell Loo (jo,7)xRP) = 0= M).
We say that ||0“G.||Le is moderate or that it has a moderate bound.
Np([0,T) x R™) is the space of all G. € £([0,T) x R™) with the property
that for all 7' > 0, o € Nj and a € R

||3aGs||Lw([0,T)an) = 0(e").

We say that ||0“G.||= is negligible.
Spaces &,([0,T) x R™) and N,([0,T) x R™) are algebras and N, ([0,T) x R™)
is an ideal of &, ([0,7") x R™).



The factor algebra
Gp([0,T) x R™) = &,([0,T) x R™)/N,([0,T) x R™)

is called the algebra of Colombeau generalized functions of bounded type.

Similarly we define the spaces &(R™), Np(R™) and G,(R™).

Let us remark that f(g) = O(e’) means that |f(¢)| < conste® and f(e) =
0(£?) means lim f()e=® = 0.

e—0

In [3] the following construction is given.

E22([0,T) x R™) is the algebra of all G, € £([0,T") x R™) with the property
that for all 7' > 0 and o € Njj there exists N € N such that

10°Gell 2 (jo.1)xmm) = O(e™M).

Again, we say that |[0*G.||;2 is moderate or that it has a moderate bound.
Nao([0,T) x R™) is the algebra of all G, € £([0,T") x R™) with the property
that for all 7' > 0, o € Nj and a € R

10“Gell 20,1y xrm) = O(7).

We say that ||0“G.||12 is negligible.
As above, we define

92,2([0,T) X Rn) = 5272([0,T) X Rn)/N272([0,T) X Rn).

One can similarly define spaces £ 2(R"), Na2(R™) and Go 2(R™).

Let @ denote [0,7) x O or O. The proof that N3 2(Q) is an ideal of £ 2(Q) is
given in paper [3]. Sobolev embedding theorems give that £ 2(Q) C &(Q) and
No2(Q) C Nyp(Q). Thus there exists a canonical mapping Go2(Q) — Gi(Q).
Also, this means that in Go 2(Q) instead of the L2-norm on the strip [0,7) x R"
one can use the L>®-norm on [0, 7)) and the L?norm on R™ and vice versa.

Definition 1 A Gj,-Colombeau generalized stochastic process on a probability
space (2,5, 1) is a mapping U : Q — Gp(Q) such that there exists a function
U:(0,1) x Q x Q — R with the following properties:

1) For fized € € (0,1), (z,w) — Ule, x,w) is jointly measurable in Q x 2.
2) e = Ul(e,-,w) belongs to &(Q) almost surely in w € Q, and it is a represen-
tative of U(w).

By gl?(Q) we denote the algebra of Gp-Colombeau generalized stochastic
processes on 2.

Definition 2 A G o-Colombeau generalized stochastic process on a probability
space (2,3, 1) is a mapping U : Q@ — Go2(Q) such that there exists a function
U:(0,1) x Q@ x Q — R with the following properties:

1) For fized € € (0,1), (z,w) — Ule, z,w) is jointly measurable in Q x .
2) e = Ule,-,w) belongs to E22(Q) almost surely in w € Q, and it is a repre-
sentative of U(w).

By QQQ(Q) we denote the algebra of Ga 2-Colombeau generalized stochastic
processes on 2.

In the sequel the variable € will be written as a subindex and U, will always
denote a representative of U.



3 One-dimensional nonlinear stochastic
wave equation

3.1 Preliminary constructions

Consider the problem
(1) (02 — U + F(U) - S =0,

(2) Ult=o = A, 0Uli=0 = B,
where A and B are G 2-Colombeau generalized stochastic processes on R, that
is, A,B € QSQ(R), and S € g§%2([0,T) x R) is a Gg2-Colombeau generalized
stochastic process on R? with compact support. We suppose that the function
F' is smooth, polynomially bounded together with all its derivatives and that
F(0) = 0. We look for a solution U € QSQ([O,T) X R).

We substitute F' by a family of smooth functions F;, ¢ € (0,1), which is
called the regularization of F. This is done in the following way.

We choose the smooth function F, with the property that there exists a net
a. such that for every a € Ny there exist ¢g € (0,1) and m® € N such that

F.(y) = F(y), for |y| < a., € < &g

IDYFe(y)l[ L = Olag™).

£

In the sequel we shall denote m = supj,<; m®.

Denote by F = [F.], where F. € 55?2([0,T) x R) has the properties as
above. Then, instead of the nonregularized equation (1)-(2), we consider the
regularized one

3) (OF —RU+ FU)-S =0,
(4) Ulft=oy = A, 0iU|p—0y = B,

where S = [S:] € G ([0,T) x R) and A, B € G5 (R).

Note that for U,V € 55?2([0,T) x R) such that U, — V. € NQS?Q([O,T) x R),
we have that F(U,) — F(V.) € NQS?Q([O,T) x R).
3.2 Regularized wave equation

Before giving the main result of this section we prove the following lemma which
we shall often use in the sequel. The function space norms with subscripts like
L?, H! are always meant to signify L?(R"), H!(R") and so as in the sequal.

Lemma 1 (/8]) Let u € C1([0,T)) x H*(R™) be a solution to equation
Ut — Ugz = [
Then

(5) 10ru(®)[ L2 < [[(0:u(0), Vu(0))] L2 +/0 1f(s)ll 2 dls,
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and
© Tl <wax(t,6) (1000 + Ol + [ 176)1ads).
Proof. jFrom [15]
1@ru(t), Vu(®))ll L2 < [(0:u(0), Vu(0))[| 2 +/0 1/ (8)ll 2ds,
and (5) immediately follows. But
u(t) = u(0) +/O Oyu(s)ds.
Thus

lu@®) e < [u(©)z + /0 100u(s) | 2 s

IN

[u(0)]| 2 + ¢ (8ru(0), Vu(0))] 2 +/0 /Os 1 ()l L2drds

IN

[u(0)][ 2 + ¢ (8ru(0), Vu(0))] 2 +t/0 1/ (s)ll 2dls.

Therefore (6) follows and the proof is completed.

In sequel we denote v = max(1,T).

Theorem 1 Assume that the net a. used in the reqularization of the function
F', has the property

(7) aezo((logefl)ﬁ) .

Then, for every T > 0, a solution to problem (3)-(4) almost surely exists
in 932([O,T) x R). Additionally, if the stochastic process S € Q%([O,T) x R)
satisfies

(®) 18052 = o ((log="1) ).

then the obtained solution is almost surely unique in QQQ([O, T) x R).

Proof. As it is usual in the Colombeau framework, we consider problem (3)-(4)
given by the representatives

(9) (atQ - aa%)Ua + Fe(Ua) ' Sa =0,
(10) Ue‘{t:O} = A, 8tU6’{t:0} = B,

where S € 5292([0,T) x R) and A., B: € 5292(]1%).

In the sequel w € 2 and ¢ € (0,1) will be fixed. Note that F. is globally
Lipschitz for each fixed €. Thus Cauchy problem (9)-(10) has a unique solution
U.. The mapping (x,t,w) — Us(z,t,w) is jointly measurable in (z,t) and w for
every fixed . This conclusion follows by applying successive approximations



method and using the fact that a continuous mapping of a measurable function
is also measurable.
By Lemma 1 we have that

max ([|0:Ue(t) || 2, | U ()| 1)

T
(10Ul + 100l + [ IFU(5)5.5) o)

IN

IN

T
(10Ul + 10Ol + [ NPTl 105 o)

IN

T
(1000l z2 + [Ve(0) 1 + T / ' Se(3)] ads ), £ < T

We immediately obtain the moderate bound for sup;c(o 7y |U(#) || -

Note that, for fixed w € Q, S; € £22([0,T) x R) C &([0,T") x R); that gives
us the &-property of the regularized stochastic process S, which will be used
in the considerations that follow.

In order to obtain moderate bounds for higher order derivatives of U., we
differentiate equation (9) with respect to the spatial variable z and obtain

(11) (0 — 02)0,U. + FL(U.)0,U.S. + F.(U.)d,S- = 0.
Energy inequality gives
||(at:vU€aamU€)(t)HL2 < H(athsaamUE)(O)HL?

T T
+ /0 | F2 (U (5))0:Us (5)S2 (s) | ods + /0 | F (U (5))9, S-(5) | 2 ds
T
< (Ol 9maU2)(0) 12 + /0 VL (U(3)) | e 00U (3)]] 211 S=(5) [ e s
T
" /0 | Fe(Ue ()l 1 02S2(5) | 2ds
T
< 1(OhUer 00U (O) 12 + /0 a10aUe (5)]| 2 1= (5) | o s

T
+ / 019, 25| 2 ds.
0

Since S; € &([0,T) x R) and supycpo 1) [|0:Ue()]| 2 is moderate, we obtain
that sup,co 7 [|0z2Us(t)[| 2 is moderate, too.
Differentiating equation (11) we obtain

(02 — 02)0,,U. + F'(U.)(0,U.)%S- + F/(U.) 04U S-
+2F5I(U€)a:vUeais + F.(U:)0zySe = 0.

Similarly as above, by using Sobolev embedding theorems, we get
H (atmmUsa ammmUe)(t) HL2 S H (atmmUsa ammmUe)(O) HL2

T T
b [ I U @U6) S eds + [ FUL(6))00sUe(5)S1(9) 12
0 0

7



T T
Lo / | F (U (5))02Ux ()95 = (5) | s + / | Fo (U (5))Bra S (3)] s
0 0

IN

T
|GraaUs, D U2)(O)] 2 + / VE? (U ()] 1 10U () |24 |52 )| o s
T
4 / VE2 U (3)) 20 1526 | . |0 U (3) ] 2l
T
Lo / VU (3)) 1= 100U (5) 12 9 S- ()| 1 s
T
4 /0 | F (U (3)) 0 1002 S=(5) | 2
T
< H(atheaameE)(O)HL? +C/ astHaxUE(s)H%hHSe(S)HL‘X’dS
0

T
+ /O ag*[|Se(8)l| oo [|0zaUe(s) | L2 ds

T T
+ 2/ a?\lamss(S)llLooHamUs(S)HL?dS+/ || OzzSe(5) | L2 ds.
0 0

Using the same argument as above we obtain that sup,c(o 1y [|0z22Us (t)][ 2
is moderate.

In order to obtain moderate bounds for the L?-norm of the m-th order
derivative of U,, 07'U,, we only have to give bounds of the term that contains
the highest order derivative of U, because in all other terms derivatives of order
at most m—2 appear. Their L>-norms are bounded by L?- norms of derivatives
of order at most m — 1 which are moderate from the previous step.

The term that contains the derivative of order m — 1 (highest order deriva-
tive) is of the form

T
/ | F(U2(5)04m DU (5) | e ds.
0

Now we have

T T
| IR G s < [ IO 10 VU 1nds
T
< [ 1o ) s
0

Since we have from the previous step that supc(o 1) H&gm_l)UE (t)|| 2 has a
moderate bound, the moderate bound for the L?-norm of an arbitrary order
derivative follows.

Derivatives of U, with respect to the time variable ¢ can be estimated by
derivatives of U. with respect to the spatial variable x by using the equation
which we solve and by differentiating it. This argument will be also used in
the uniqueness proof without particular mentioning. Thus, we proved that
U. € 55?2([0,T) x R), ie., U = [U] € QSQ([O,T) x R) is solution to problem
(3)-(4).



Let us show that this solution is unique in QSQ([O,T) x R), i.e. that for
given two solutions to equation (9), Uje, Use € 5292([0, T) x R), their difference
Us := Uy — Use belongs to N55([0,T) x R).

The following holds:

(12) (0 — 92)Ue + (F=(Ure) — Fo(Us2))S:= + N = 0,
Ua‘t:O - N157 815(75’15:0 - N267

where Nyc, No. € ./\/'2532(]1%) and N, € J\/'Q%([O,T) x R).
Using Lemma 1 we obtain

max (|0 (t)] . [0-(0) 1)

T T
< A (IVarllze 4 Wil + [ INolads [ I(Fu(Us) = Ful022)S.] ods)
0 0
T T 5 B
< (Il il + [N pds 4 [ PO iUl 52l )
T
<

T
< A(IVaclze 4 Wil + [ [Nolzads + [ a2l s o).
0 0

for some U, € (min(Uie, Use ), max(Ure, Use)).

Since S; satisfies (8) and the net a. satisfies (7), Gronwall’s type inequality
implies that supe(o 7 [|Uz(t)|| g1 is negligible.

Let us consider higher order derivatives of U, and show that their L?-norms
are also negligible. For that purpose we differentiate equation (12) with respect
to the spatial variable x. We obtain

(0} — 03)0,U. + FL(U1.)0,U1.Se — FL(Use)0,Us.S:
+(F5(U15) — FE(U%))amSE + 0, N: = 0.

Energy inequality gives
T
10.0(8) [ 11 < 1[0 Noz, O N1 |2 + / ERAE
0
T
+ / |FA(U12)0, U1 — FL(U2)0pUse | o< |1 S: || p2dls
0
T
+ / | F(U12)0,Une — F(Use)0Use | <1 S: || p2dls
0
T ~ —
+ /0 AP AP ERA R
T T B
< @ N BN+ [ 10N pads + [ a0 .l s
0 0

T T
+ / al' |Uell oo |02 Use[| oo |52 || L2 ds + Cl/ al? |Uel| Lo~ |0z Sc|| r2ds
0 0

T T
10 NocsOaaNio) iz + [ 02N zods + ([ 0,0 s 15 o
0 0

IN

T T
b [ a0Vl oS zads + [ a0 025 2.
0 0

9



where U. € (min(Uye, Use ), max(Use, Use)).

;From the previous step we have that sup,c( 1) 102U (t)|| 12 is negligible.
Since a. and S satisfy relations (7) and (8), respectively, Gronwall’s inequality
implies that supco 7 1022Ue(t) |12 is negligible, too. Similarly, one can show
that the L2- norm of an arbitrary order derivative of U, is negligible.

Thus the proof is completed.

Remark 1 In particular, one could choose the stochastic process St to be smoothed

white noise such that
. .1 .
e (Were (7)) e

1
he = ———,
/log e~1
and & is a monnegative net of smooth, compactly supported cut-off functions

converging to the identity. The cut-off procedure is necessary to obtain L>-
moderate properties of the above function Wk.

where

3.3 The regularized and the nonregularized equation

Theorem 2 Let G, a primitive function of F, be nonnegative and G(0) = 0.
Let the Colombeau generalized stochastic process S € QSQ(R) be monnegative
and depend only on the variable x, i.e., there exists a representative S of S
such that Sc(z) > 0, for all € small enough and x € R. Suppose that

(13) | Bl 2 + || Ac|| gt = o(ac), ase — 0,

where a. is the corresponding net used in the reqularization of the function F.
Then, for every T > 0, the solution to the regularized equation (3)-(4) is
also the solution to the nonregularized equation (1)-(2).

Proof. Standard energy estimates procedure gives
1
30 [ (O )2 + UL 0) + GulUel )5 (a) ) = 0.

Since G > 0, by using the procedure given in the proof of Lemma 1, one
can see that

max (14U (2. 00l ) < v (1Belle + [ Aclan ).
Using (13) and
U)oy < CNU@) | 1) € 10,T),
for some C' > 0, we obtain
U@l oo () < e, t €[0,T).
Thus,

and the proof is completed.

10



Remark 2 In particular, one can take the stochastic process S in Theorem
2 to be positive noise which depends only on the spatial variable x and with
the corresponding growth property. Positive noise ([6]) is generalized stochastic
process with representative

. 1
exp (W . = 3l € E(R),

where W is the white noise. Again, one uses the cut-off procedure in order to
obtain L?-moderate properties of the above function. The same assertion holds.

4 3-dimensional stochastic wave and

Klein-Gordon equations
In this section we consider the 3-dimensional stochastic cubic and subcubic
wave and Klein-Gordon equations containing Colombeau generalized stochastic
processes. There are four different cases depending on growth rates of the

L2-norms of the initial data as well as on the L°®-norms of the Colombeau
generalized stochastic processes.

4.1 Cubic wave equation with nonnegative stochastic process

We consider the problem

(14) (0} = NU+U?- S =0,
(15) Ulpi=oy = A, 0:U|p—0y = B,

where we suppose that A, B € ggz(Rf’)) are Gpo-Colombeau generalized sto-
chastic processes such that

(16) 1Bellge + 14 = o ((10g="1) ") |

and S € g?(Rg) is nonnegative Gp-Colombeau generalized stochastic process
which depends only on the variable x and such that

(17) I8:l1 20 = o ((10ge™1)""?).

Theorem 3 Let the stochastic processes A, B € 932(R3) satisfy condition (16)

and S € Q?(R:S) be a nonnegative stochastic process that depends only on the
variable x and satisfies (17). Then, for every T > 0, problem (14)-(15) has a
unique solution almost surely in ngg([O, T) x R3).

Proof. In the sequel w € Q and ¢ € (0, 1) will be fixed.
Problem (14,15) given by the representatives reads

(18) (0} = NU. +U2-S. =0,
(19) Ue‘{t:O} = A, 8tU6’{t=0} = B,

11



where A., B: € 52?2 (R3) satisfy (16) and S. € &(R3) is nonnegative and satis-
fies (17).

Using the nonnegativity of a primitive of the nonlinear term, similarly as in
Lemma 1,

max (||0:Ue(8)l| L2, [Ue(®)l 1) < 7<||3tUe(0)HL2 + ||U€(0)HH1>

and we immediately obtain the moderate bound for sup;c(o 1y [|Us ()| 1. More-

over, supycio,7) [|[Ue(t) || = o0 ((log 6_1)1/4>.

As we remarked in the previous section, derivatives of U, with respect to
time variable ¢ can be estimated by derivatives of U, with respect to the spatial
variables by using the equation which we solve and by differentiating it. This
is the reason why we shall estimate only the space derivatives.

In order to obtain moderate bounds for L?-norms of higher order derivatives
of U., we differentiate equation (18) with respect to some spatial variable and
obtain

(20) (0} — N)VU. + 3U2VU.S. + U3VS. = 0.

Energy inequality and Sobolev embedding theorems give
1(0:VU, V2U:) (1) 2 < (0 VU, V2UL)(0)]| 2

T T
+ 3/ HUEQ(S)VUE(S)SaHLQdS—i—/ U2 (5)V Se|| 12ds
0 0

IN

T
10V U=, V2UL) (0)]| .2 +3/0 U= ()76 IV Ue ()l s [ Sl 2~ ds

T
T / 1U=(8) 261V S || = ds
0

1(6:VU., V?U)(0)] 2

B T T
= O [ NIV S e+ [ W0 198

Here and in the sequel C will denote some positive real. The first term in
the right-hand side has the moderate bound. From the previous step and the
fact that S. € &(R3) we obtain that the third term has the moderate bound.

Also, we know that supcjo 1y [|Us(t)||gn = o ((log 8*1)1/4>. Using all those
arguments as well as (17), one can apply Gronwall’s inequality and obtain the

moderate bound for sup;¢o 1) V22U (t)]| 12
By another differentiation with respect to some spatial variable we obtain

(07 — A)V2U. + 6U.(VU.)*S. + 3U2V?U.S. + 6U2VU.VS. + UV?S. = 0.
Similarly as above one can get
10 V20U, VU (D)l 2 < [1(8:V?Ue, V2U:)(0)] .2

T
L6 /O 1U=()]| 6 IV U= ()26 1= o s

12



T
+ 3/0 U= ()20 V2Ue () | 2| Sel| v s

T T
L6 /O 1U=() |26 IV U=(8) 6 Ve | oo s + /O U (5) 26 | V255 | = ds

IN

T
@20, TV 012 + O /0 1U=(3) s | VU=(8) |20 | S v s
T 2 2
4 /0 1U=() 1232 1V 2U2 ()| 21155 | e s

T T
[ IO IV ISl eds + [ 10 s 925, ).

Since supyc(o, 7y [[VU: ()| 12 and supyepo 1) |V2U.(t)| 2 have moderate bounds
we obtain the moderate bound for supye(o 7y [|[V2U-(t)| 2.

Similarly, one can obtain moderate bounds for L?-norms of higher order
derivatives of U.. Thus, we have just proved that U. € 52?2([0,T) x R3), i.e.,
U=[U] e QSQ([O,T) x R3) is a solution to problem (14)-(15).

Let us show that this solution is unique in QSQ([O,T) x R3), i.e. that for
given two solutions to equation (18), Ui, Use € 55?2([0, T) xR3), their difference
Ue := Uy — Use belongs to N5%([0,T) x R?). The following holds:

(21) (atz - A)ge + (Uf’e - U235)S€ + Ne =0,
U€|t=0 = le—:a atUiz-:|t=0 = N2€a

where Nyc, No. € ./\/'2532(]1%3) and N € NQS?Q([O,T) x R3).
Using Lemma 1 and Sobolev embedding theorems we obtain

T
max ([|0;U (1) 2, [|U=(t) | 1) < 7(\|N2e||L2 + [Nl +/0 [N (5)| L2 ds

T —
b [ IO + Uielo)Uaels) + UR() US| 2
0

IN

T

(I8l + il + [ N3 s
T
[ Qe + NN Va3 25 + N0 E) 1155215
T
< (1Nl + Il + [ 1N )
T

+ € [ (106 + 1016 W0 (9 s + 1025 ) 10 s e .

. _iny1/4)
Since we know that sup,cpop) |Uie(t)||g = 0<(10g6 1 / ), i € {1,2},
and ||S¢||p~ =0 ((log 6_1)1/2>, by using Gronwall’s inequality we obtain that

SUPyeo,1) |U=(t)|| 1 is negligible. )
Let us consider higher order derivatives of U. and show that their L?-norms
are also negligible. For that purpose we differentiate equation (21) with respect
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to some spatial variable and obtain
(07 — A)VU: + (BULVU e — 3U5.VUs) S- + (UL — U3.) VS: + VN: = 0.

Energy inequality and Sobolev embedding theorems give
T
0V T, V2O 02 < (TN, 2N+ [ [VN(3) 2
0
T
+ 3 [ URIVULS) — UR () TUuls) 2 s
0
T
[ IO + Ures)as(s) + UR () U(s) 12 VS s
0
T
< T Noes VN2 + [ (VN2
0
T
+ 3 [ UR)VUL(S) - UR () TVl 21 s
0
T
+ 3 [ JUR)VUL(S) — UR () TUaul5) 2 s
0
T
[ (0o + 1016681025+ N0 10l
T
< ITNoes VN2 + [ (9N 1o
0
T —
+ o3 /O 101 ()26 VU ()] 0 1S | e s
T
43 [ 10106) = Uaes)) (Ure(s) + Vo)) Ve ()15l .
0
T
o [ (0 + 1036 U9+ Vs ()] I 9 e
T
< ITNoes VN zz + [ (9N 1o
0
T ) B
+ O [ I 19T 1 e
T —
IO W0l + [V ) 2) [ 9V (9 a1 e

T
+ /0 (HUle(S)H?p+HUla(S)HHlHU2e(S)HH1+HU25(8)H?{1)HUeHHlHVSeHLwdS)-

Using similar arguments as above we obtain that sup,c( 1) IV2U()]| 12 is
negligible. Similarly, one can show that the L?-norms of all derivatives of U,
are negligible. That concludes the proof.

Remark 3 Note that any Colombeau stochastic generalized process S can be
reqularized in such way that estimate (17) holds. This remark could be added
after each further assertion when we need estimates on a stochastic term.

14



4.2 Cubic wave equation with multiplicative stochastic process

We consider the problem

(22) (O} = NU+U-S+U? =0,
(23) Ulgi=oy = A, 0:Uly—0y = B,

where the stochastic processes A, B € QSZ (R3) are such that

(24) 1Bellze + A = o ((loge™)"?),

and S € Gi¥([0,T) x R3) is such that

1
(25) I1Sc]|ze =0 <10g (loge™) 2T> .

Theorem 4 Let the Gy o-Colombeau generalized stochastic processes A, B €
QQQ(R?’) satisfy condition (24) and the Gy-Colombeau stochastic process S €
GSH([0,T) x R3) satisfy (25). Then, for every T > 0, problem (22)-(23) has a
unique solution almost surely in QSQ([O, T) x R3).

Proof. In the sequel w € 2 and ¢ € (0, 1) will be fixed.
We consider problem (22)-(23) given by the representatives:

(26) (07 — AU+ U.-S. +U2 =0,
(27) Ua‘{t:O} = A, atUe‘{t:O} = B,

where A., B € 55?2@1%3) satisfy (24) and S. € ([0, T) x R?) satisfies (25).
Again, by using a procedure like in the proof of Theorem 3, we obtain

max ([|0;Ue ()| 2, |Ue(8) | z21)

T

< (10Ul + 100 + [ I05)5.5) )
T

< (102 + 10Ol + [ 1V121(5) =)
T

< (0] 2 + U=l + /O 1= ()l 15-(5) | s )

Since (25) holds, Gronwall’s inequality implies the moderate bound for

_1\1/2
SUPyco,7) |Ue(t)]| 1. Moreover, SUDyeo,7) NWU)]| r =0 <(log€ 1) / )
In order to obtain moderate bounds for L?-norms of higher order derivatives
of U., we differentiate equation (26) with respect to some spatial variable and
obtain

(28) (07 — N)VU. + VU.S. + U.VS, + 3U2VU, = 0.

15



Energy inequality and Sobolev embedding theorems give

H(atVUm V2Ue)(t)HL2

IN

T
(@YU, V2U)(0) 2 + /0 VU (5)S.(s)] 2 ds

T T
s [ VS s +3 [ 026U eds
0 0

IN

T
1(0eV Ue, V2Ue)(0)]] 2 +/O IVU:()ll L2 [|S=(8) || L= ds

T T
T /O 1U=() 122 |V Se(8) o ds + C /0 1U-() 2 [ VU (5) s .

Since supyejo, 1y [|Us ()|l g = 0 <(log e 1) 1/2) Gronwall’s inequality gives the

moderate bound for sup,cp 1) V22U (t)]| 12
By another differentiation with respect to some spatial variable we obtain

(07 — A)V2U. + V2U.S. + 2VU.VS. + U.V?S. + 6U.(VU.)* + 3U>V?U. = 0.
Similarly as above one can get

1(0:V?U:, V2U) (1) .2

IN

T
18V, V3UL)(0)]| 2 + / 172U ()] 12115-(5) | oo s
0
T T
Lo / IVU(8) | 211V S<(5) | o ds + / 1U=(5) 122 V252 ()| o ds
0 0
T T
L6 / 1U-() 116 IV U (5) 2o ds + 3 / 1U=(5) 20 VU (5) | 2 ds

T
< NOVOLTTIO + [ 19205 189
0
T T
0 [ VOIS + [ 1068 s
0 0

T T
([ Wl VO s + [ 0N Bel0(6) )

Since sup;c(o.) [|U(t) || 72, supsejo ) [|U(E)l 1 and supiepo 1) IV2U:(t)]] 2
have moderate bounds, sup,cp r) |V3U.(t)|| ;2 has a moderate bound, too.

Similarly, one can obtain the moderate bounds for L?-norms of higher order
derivatives of U.. Thus, we have just proved that U. € 85?2([0,T) x R3), i.e.,
U=1[U]e€ ngg([O,T) x R3) is solution to problem (22)-(23).

Let us show that this solution is unique in ngg([O,T ) x R3), i.e. that for
given two solutions to equation (26), Ui., U € 5532([0, T) xR3), their difference
U. := Uy — Use belongs to N54([0,T) x R?).

The following holds:

(29) (0} = NU. +U.S. + U —Us + N. =0,
Ue‘t:O - N167 athe’t:O - N2€7
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where Nyc, No. € ./\/’2532(]1%3) and N € NQS?Q([O,T) x R3).
Using the fact that

VT = U3l 1U1e = Usell 16 | U, + UreUse + Ul

<
< el (102l + 10l Uzl + 102617 )

similarly as above we obtain

max (|| (0¢Uel| 2, Ul )

T T
< (1Nl + Wl + [N+ [ 10 1529 5)
T
€ [ (1016 s+ W0l [V s+ N0 ) ) 10 ) s

Gronwall’s inequality implies that sup,¢jo r) |U:()|| g1 is negligible. Simi-
larly, one can show that the L?-norms of all derivatives of U, are negligible.
Again, in both the existence and the uniqueness proof, derivatives of U, with
respect to the time variable ¢ can be estimated by derivatives of U, with respect
to spatial variables by using the equation which we solve and by differentiating
it. Thus, the proof is completed.
4.3 Klein-Gordon equation with additive stochastic process
We consider the problem
(30) (0} = NU+U+U?+ 5 =0,
(31) U’{t:O} = A7 8tU‘{t:0} = B7

where the stochastic processes A, B € QQQ (R3) satisfy
_1y1/2
(32) 1Bellge + 1A = o ((10g="1)""?) |

and S € ggfz([o, T) x R3) is such that

v 1/2
(33) I8cl1se = 0 ((tog="")""*)
and
(34) S. has a compact support.

Theorem 5 Let the Gy o-Colombeau generalized stochastic processes A, B €
QQQ(R:S) and S € QSQ([O,T) x R3) satisfy conditions (32) and (33)-(34), respec-
twely. Then, for T > 0, the problem (30)-(31) has a unique solution almost
surely in QSQ([O,T) x R3).

Proof. In the sequel w € 2 and ¢ € (0, 1) will be fixed.
We consider problem (30)-(31) given by the representatives:

(35) (0} —NVU.+U.+U2+5.=0

17



(36) U€|{t=0} = A, 8tU€|{t=0} = B,

where A., B; € EgQ(R?’) satisfy (32) and S; € 55?2([0,T) x R3) satisfies condi-
tions (33) and (34).
Like in the beginning of the proof of Theorem 3

T
max (1002 0= Ol) < 7 (10U O+ 1V 0+ [ 15 ).

The moderate bound for sup;cjo 7 [Us(t)|| g1 immediately follows. Moreover,

supieio;r) U= (0) i = o ((loge=)"?).

In order to obtain moderate bounds for L?-norms of higher order derivatives
of U., we differentiate equation (35) with respect to some spatial variable and

obtain
(37) (0} — A)VU. + VU, + 3U2VU. + VS, = 0.

Energy inequality and Sobolev embedding theorems give
T
10V U, V2U) (1)l 2 < [[(8:VUe, V2UL)(0)]| 2 +/ IVU:(s)| 2ds
0

T T
+ 3/ HUg(s)VUe(s)Hdes—i—/ IV S.(s)||2ds
0 0

IN

T
1OV, V2U.)(0)] 12 + /0 VU (3)] 2 ds

T T
e / 1U=() 122 IV U ()] s s + / IV (5) | 2 ds.
0 0

Using supsejo, 1y [|U=(0)[| gn = 0 ((log 5*1)1/2> one can apply Gronwall’s in-

equality and obtain the moderate bound for supsefo 7y [|V2Us(#)]| 2.
By another differentiation with respect to some spatial variable we obtain

(0% — A)V2U. + V32U, + 6U.(VU.)? + 3U2V?U. + V%5, = 0.
Similarly as above one can get

(@20, VUL ()] 2 < (G720, VUL) (0) 12
T T
= [ IO s+ € [0l VU0 s

T T
o [ IO IV ns) + [ 1925 (5.

Using the same argument as above and applying that supcjo 1y [|[Us() || g1
and supyc(o 1y [|VUe(t)|| g1 have moderate bounds we obtain the moderate bound
for supye (o7 [VEU-(t)|| 2

Similarly, one can obtain the moderate bounds for L?-norms of higher order
derivatives of U.. Thus, we have just proved that U, € 55?2([0,T) x R3), i.e.,
U=1[U]e€ QSQ([O,T) x R3) is a solution to problem (30)-(31).

18



Let us show that this solution is unique in QSQ([O,T) x R3), i.e. that for
given two solutions to equation (35), Ui, U € 5292([0, T) xR3), their difference
U, := Uy, — Uy, belongs to ./\/25?2([0, T) x R3). The following holds:

(38) (07 — AU +U. + UL — U3 + N. =0,
Ue’t:O = N167 at[ja’t:O - N257

where N1, Na- € N§5L(R?) and N. € N54([0,T) x R3).
As above

maX(Hat[jeuLQaH(jefHHl)
T T
< (1Nl + Il + [ 1N s+ [ 10G0) o)

T
+ C/O (1T ($)F + 101 () 1 [ U2e ()]l + 102 () 172) 11Uz (5) ] 1 s

Since supe(o 1) |Uic ()|l gn = 0 ((log 6_1)1/2>, i =1,2, one can again apply
Gronwall’s inequality and obtain that sup,c( 7 |U:()|| g1 is negligible. Simi-
larly, one can show that L?-norms of all derivatives of U, are negligible.

As in the previous cases, in both the existence and the uniqueness proof,
derivatives of U, with respect to the time variable ¢ can be estimated by deriv-
atives of U, with respect to spatial variables by using the equation which we

solve and by differentiating it. Thus, the proof is completed.

4.4 Stochastic wave equation with Lipschitz nonlinearities

Let f and g be globally Lipschitz functions, polynomially bounded together
with all their derivatives and such that f(0) = ¢g(0) = 0.
Consider the problem

(39) (07 — AU + f(U)S1 +g(U) + S2 = 0,
(40) U’{t:O} = A7 atU’{t:O} = B7

where A, B € gg Q(Rg) are G o-Colombeau generalized stochastic processes.
The G-Colombeau generalized stochastic process S1 € G*([0,T) x R?) is such
that

(41) [S1el|zoe = 0 (loge™),

and the Gy 2-Colombeau generalized stochastic process S € 932([0,T) x R3)
has compact support.

Theorem 6 Suppose that the stochastic processes A and B belong to QSQ (R3),
Sy € G0, T) x R3) satisfies condition (41) and that Sz € QSQ([O,T) x R3)
has compact support. Let f and g be globally Lipschitz functions, polynomially
bounded together with all their derivatives and such that f(0) = g(0) = 0.

Then, for every T > 0, problem (39)-(40) has a unique solution almost surely
in G$%([0,T) x R?).
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Proof. In the sequel w € 2 and ¢ € (0, 1) will be fixed.
We consider problem (39)-(40) given by the representatives:

(42) (0} — A)U: + f(U:)S1e + g(Us) + Soc = 0,
(43) Uz—:|{t:0} = A, atUz-:|{1t:0} = B,

where A, B. € ESQ(Rg), S € EH[0,T) x R?) and Sy € 52?2([0,T) x R3)
satisfy the conditions given in the statement of the Theorem.
Using Lemma 1

max ([[0:Ue ()| 22, [|U=(#)l| 1)

T
’7(”825U€(0)HL2 + 1U=(0)] 1 +/ 1f (Ue(s)l 21| S1e(8) | oo dis
0

IN

" /OTnga(s))HLQdH /OTHSZE(S),,LMS)

< Y0U(0)[| 2 + [[Ue(0) | 2 +C</OTHUg(s)HLQHSlE(s)HLwds
T R CABTIy (TN

< A6U(0)[ 2 + U (0)][ 1 +C</OT||U€(S)HH1HSIE(S)HLoods

T T
s [0 s+ [ 1826 ads).
0 0

where we have used the Lipschitz property of the functions f and g and Sobolev
embedding theorems.
Since the regularized stochastic process Si. satisfies (41) one can apply
Gronwall’s inequality and obtain the moderate bound for supcpo 7y [|Ue (t)]| g1 -
In order to obtain moderate bounds for L?-norms of higher order derivatives
of U., we differentiate equation (42) with respect to some spatial variable and
obtain

(0} — N)VU. + f/(U)VUS1e + f(U)VSie + ¢ (U)VU. + VSs. = 0.
Energy inequality and Sobolev embedding theorems give

10V U, V2U) (1)l .2

T
10V Uz, V2UL)(0) |2 +/0 1" (U () |os VU () 2] S1e (8) | Lo ds

IN

_l’_

T
PGS P ERET P

T T
4 /0 19 Ue(s) = VU (5) | s + /O 1V.S2(5) | 2dls

IN

T
OV, T2 2+ C( [ VU)o IS1e ()1

T T T
[ 10Nl T8 ameds + [ VU sads + [ [VS2c(s)|z2ds).
0 0 0

_l’_
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Applying that sup,c(o 1) [|U(t)[ 2 and supsejo 1y [[VUe()]| 2 have moderate
bounds we obtain the moderate bound for sup,¢y 1) V22U (t)]| 12
By another differentiation with respect to some spatial variable we obtain

(02 — NV2U. + f"(U)(VUL)2S1e + f(U)V2U.S1e + 2 (U.) VUV S
+f(U)V2S1e + ¢"(U)(VUL)? + ¢ (U) VAU, + V2Sy. = 0.

Similarly as above one can get

10 V2UL, V2U:) ()2 < 1(8:V2Ue, V2UE)(0)]| 2

T
+ /0 1F" (Ue(s)) o= VU () 12 181 (5) [ 2o ds
T
+ /0 1 (Ue()llz= V2 Ue(5) 221 S1e (5) | Low s
T
+ 2/0 1" U () Lo [VU(8)[[ 22 [V S ()| Lo ds
T T
+ /0 ”f(Ua(s))”LQHVQSle(S)”LOOdS+/O lg" (U=(5)) o= IV U=(5)) 12 ds

T T
+ /O Hg'(Ue(S))HLooHVQU»:(S)HmdS+/0 IV2 52z (s) | 2 ds

IN

T
OV, 0Oz + € (14 [ IV IV i 16 (9]

T T
/ IV2Ue(3) 12 181 (3) | oo s + / IVU(8) 1221V S1e(5) | o ds
0 0

+

T T
4 /0 1U=(3) 102 | V281 (3) | oo s + /O (14 [T ()| [VU=(5)) 21 ds

T T
+ / HVQUE(S)HdeS—i-/ HVQSQQ(S)HLst)7
0 0

for some q1,qo € N.

Using similar arguments as we did above we obtain the moderate bound
for sup,¢jo 1) |V3U.(t)|| 2. Similarly, one can obtain the moderate bounds for
L?-norms of higher order derivatives of U,. Thus, we have just proved that
U. € 5292([0,T) xR3), ie., U=[U.] € g¥2([O,T) x R3) is a solution to problem
(39)-(40).

Let us show that this solution is unique in QSQ([O,T ) x R3), i.e. that for
given two solutions to equation (42), Ui., Use € 5292([0, T) xR3), their difference
U, := Uy — Uy, belongs to ./\/25?2([0, T) x R3). The following holds:

(44) (atQ - A)UE + (f(Ule) - f(UZE)) Sle + g(Ule) - g(UQE) + Ne - 07
Ue’t:O - N157 at[ja‘t:O - N257

where N1z, Na- € N§5L(R?) and N. € N54([0,T) x R3).
By Lemma 1

T
e (10002100 ) < 2(INeclz2 + Nl + [ IVl
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T
b [ IO = SVl 181 s
0

_l’_

T
| la(Uie(6)) = Vs () 1205)
N3 + [ Niel
T T T
+ o[ V@l + [ I IS e ds + [ 105 ds).

where we have used the Lipschitz property of the functions f and g and Sobolev
embedding theorems.

IN

Since Si. satisfies condition (41) one can apply Gronwall’s inequality and
obtain that sup,c(o7) [Ue(t)|| 1 is negligible.
By differentiating (44) with respect to some spatial variable we obtain

(8152 - A)VU:E + (f,(Ula)VUla - f/(UZE)VUZE) Sla
+ (f(Ula) - f(UQa)) vsla + g/(Ule)VUle - g/(UZE)VUQa + VNa =0.

Again, energy inequality and Sobolev embedding theorems give

T
10V 0., V20.) (1)1 12 < 18V T, V20-)(0) 12 + / IV N (s) ods
T
+ /0 | £ (U1(5))VU1e(s) = f'(U1c(3)) VU2 (5) || 12 ]| S1e (8) || Lo ds
T
" / 1 (U1 (5)) V0 (5) — f/ (Une (3) VU (8)]| 2| S1c (5) oo s
T
" / 1 (Ue(5)) = F(Tae(3)) 2]V S1e(8) | oo ds
T
" /0 19/ (Ve () VUL (5) — o (Use(3)) VU (5)]| ol
T
T /0 16/ (Usc(8))VUse(5) — o (Une(5)) VUse (8)]| 2l
T
< (@O, V2O)(0)]| 1 + /0 IV N (s) | 2ds
T —
b [P VO 1815 s
0
T
T / 1/ (U1e(8)) = F Use())l| 4 [V U ()] 1 |1S1e (5) = s
T B T B
b Cp [ IOV aeds + [ I Urels))lw 90205
0 0

T
+ / 9" (U1e(s)) = g (U2e ()| 14 |V Uas (5) [ pads
0

IN

T
OV T2 + [ 19N 2
T —
+ 0 [ IV 151 (91
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T

4 / 1T ()1 511 IV U (5) 1 1S (5) v s
T B T 3

+ / 10-(5)]12 1V S1e (5) | o s + / IVT(5)] 2ds
0 0

T
[ N0 VU 3) i)

where Cy is Lipschitz constant for function f.

Similarly, one can show that the L?-norms of all derivatives of U, are negli-

gible. Derivatives of U, with respect to the time variable ¢ can be estimated by
derivatives of U, with respect to spatial variables by using the equation which
we solve and differentiating it. Thus, the proof is completed.
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