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1 Introduction

By a tournament we mean a directed graph (T,→) such that whenever x, y
are two distinct elements of T , then precisely one of the two cases, either
x→ y or y → x, takes place. There is a one-to-one correspondence between
tournaments and commutative groupoids satisfying ab ∈ {a, b} for all a and b:
set ab = a if and only if a→ b. This makes it possible to identify tournaments
with their corresponding groupoids and employ algebraic methods for their
investigation.

So, an equivalent definition is: A tournament is a commutative groupoid,
every subset of which is a subgroupoid. For two elements a and b of a
tournament, we set a→ b if and only if ab = a.

The aim of this paper is to investigate the the variety of groupoids gen-
erated by tournaments. This variety will be denoted by T. We have started
the investigation in our previous paper [9], in which it is proved that the
variety is not finitely based. Here we will find a four-element base for the
three-variable equations of T, and proceed to investigate subdirectly irre-
ducible algebras in T. Our main effort will be focused on an attempt to find
a positive solution to a conjecture, which has several equivalent formulations:

Conjecture 1. (1) Every subdirectly irreducible algebra in T is a tourna-
ment.

(2) Every finite, subdirectly irreducible algebra in T is a tournament.
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(3) If A is a subalgebra of a direct product of finitely many finite tourna-
ments, then every subdirectly irreducible homomorphic image of A is
a tournament.

(4) T is the same as the quasi-variety Tq generated by tournaments.

(5) For every quasi-equation φ which is valid in all tournaments, there is
a finite set Γ of equations true in all tournaments such that Γ ` φ.

(6) For every A ∈ Tq and a, b ∈ A and congruence ψ of A, we have
(θ(a, ab)∨ψ)∧ (θ(b, ab)∨ψ = ψ. (Here θ(a, b) denotes the congruence
generated by (a, b).)

The equivalence of these various formulations is easy to see. (Use the
fact that the variety T is locally finite; this has been proved in [9].) We have
not been able to prove the conjecture. We will prove here that it is true in
various special cases.

For any n ≥ 1, let Tn denote the variety generated by all n-element
tournaments, and let Tn denote the variety determined by the at most n-
variable equations of tournaments. So, Tn ⊆ Tn+1 ⊆ T ⊆ Tn+1 ⊆ Tn for
all n.

Our proof in [9] relied on the construction of an infinite sequence Mn

(n ≥ 3) with the following properties: Mn is subdirectly irreducible, |Mn| =
n+ 2 and Mn ∈ Tn −Tn+1. These algebras will play an important role also
in the present paper. They are defined as follows. Mn = {a, b0, . . . , bn}; the
commutative and idempotent multiplication is defined by

ab1 = b0,
abi = bi for i ≤ n− 1 and i 6= 1,
abn = a,
bibi+1 = bi for i < n− 1,
bnbn−1 = bn,
bibj = bmax(i,j) for |i− j| ≥ 2 and i, j < n,
bnbi = bi for i < n− 1.

Here we will need to take one more similar algebra under consideration.
We denote it by J3. It is defined as follows. J3 = {a, b0, b1, b2, b3}; au1 = u0;
u0 → u1 → u2 → u0, a→ u3 → u1 → u2 → a and u2 → u3 → u0.

We will prove later that J3 is a subdirectly irreducible algebra belonging
to T3 −T4.
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Conjecture 2. Every subdirectly irreducible algebra from T3 is either a tour-
nament or contains a subalgebra isomorphic to either J3 or Mn for some
n ≥ 3.

This conjecture is even stronger than the more interesting Conjecture 1.
However, it may happen that it would be easier to prove it in this form.
We are also going to confirm this stronger conjecture in some special cases.
We were able to verify, making use of a computer program, that it is true
for all algebras with at most ten elements. (It turns out that there are
18399858 isomorphism types of subdirectly irreducible ten-element algebras
in T3; 8874054 of them are not tournaments.)

We denote by Fn the free groupoid in T on n generators.

Theorem 3. Fn is a free groupoid on n generators in Tn, as well as in Tn.

Proof. Denote by A the free groupoid in Tn on n generators, by B the free
groupoid in Tn on n generators and by h the canonical homomorphism of B
onto A. All we need to do is to check that h is an isomorphism. Let a, b be
two elements of B such that h(a) = h(b). If f is a homomorphism of B into
a tournament, then f(B) is an at most n-element tournament, so that there
exists a homomorphism g of A into f(B) with f = gh; we get f(a) = f(b).
This means that the equation a ≈ b is satisfied in all tournaments, and thus
a = b.

2 Three-variable equations of tournaments

Theorem 4. The following five equations are a base for the equational theory
of T3:

(1) xx = x
(2) xy = yx
(3) xy · x = xy
(4) (xy · xz)(xy · yz) = xyz

The free groupoid F3 has 15 elements

a = x d = xy g = yzx j = xy · xz m = yxzx = yzxz
b = y e = xz h = xzy k = yx · yz n = zxyx = zyxy
c = z f = yz i = xyz l = zx · zy o = xyzy = xzyz

The commutative multiplication is shown in the table given below. Moreover,
the following equations are consequences of (1),. . . ,(4):
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(5) (xy · xz)x = xy · xz
(6) (xy · xz) · yz = xyzy
(7) xyzy = xzyz
(8) (yzx)(xy · xz) = xy · xz
(9) xzyxz = xyz

(10) yzx · xyzy = yzx
(11) yzx · xzy = zyxy
(12) yzx · xy = zyxy
(13) (xy · xz)(zyxy) = xy · xz
(14) yxzx · zyxy = xy · xz
(15) (xy · xz)(xyzy) = xyzy
(16) xy · zxyx = zxyx
(17) (xy · xz)(yxzx) = xy · xz
(18) x(xy · yz) = yzx
(19) (yzx)(yx · yz) = yzx
(20) xy · yxzx = xy · xz

a b c d e f g h i j k l m n o

a a d e d e g g n m j g g m n g
b d b f d h f n h o h k h h n o
c e f c i e f m o i i i l m i o
d d d i d j k n n i j k n j n k
e e h e j e l m h m j m l m j l
f g f f k l f g o o o k l l k o
g g n m n m g g n m j g g m n g
h n h o n h o n h o h k h h n o
i m o i i m o m o i i i l m i o
j j h i j j o j h i j i h j j o
k g k i k m k g k i i k g m k k
l g h l n l l g h l h g l l n l
m m h m j m l m h m j m l m j l
n n n i n j k n n i j k n j n k
o g o o k l o g o o o k l l k o

Proof.Put X = xy, Y = xz and Z = yz; LS is the left and RS is the
right side of the equation to be proved.
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(5) LS =(4) ((xy · xz)(xy · x))((xy · xz)(xz · x)) =(3) ((xy · xz) · xy)((xy ·
xz) · xz) =(3) (xy · xz)(xy · xz) =(1) RS.

(6) LS = XY Z =(4) (XY · XZ)(XY · Y Z) =(3) ((XY · XZ)(XY ·
Y Z))(XY ·XZ) =(3) ((XY ·XZ)(XY ·Y Z))((XY ·XZ) ·XZ) =(1,3) ((XY ·
XZ)(XY ·(XY ·Y Z)))((XY ·XZ)(XZ ·XZ)) =(3) ((XY ·XZ)((XY ·X)(XY ·
(XY · Y Z))))((XY · XZ)((XZ · X)(XZ · Z))) =(3,4) ((XY · XZ)((XY ·
xyy)(XY · xzy)))((XY · XZ)((XZ · xyy)(XZ · yzy))) =(4) (((xy · xz)(xy ·
yz))((xy ·xz)y))(((xy ·xz)(xy · yz))((xy · yz)y)) =(4) ((xy ·xz)(xy · yz))y =(4)

RS.
(7) LS =(6) (xy · xz) · yz =(2) (xz · xy) · zy =(6) RS.
(8) LS =(4) (yz ·yx)(yz ·zx) ·(xy ·xz) =(2) (ZX ·ZY ) ·XY =(6) ZY XY =

(xy · (xz · yz)) · xz =(6) zyxy · xz =(7) zxyx · xz =(7) (yx · zx)x =(5) RS.
(9) LS =(4) (xzyx·xz)(xzyx·xzyz) =(7) (x(xz·xy))(x(xz·y)·z(xz·y)) =(5)

(xz ·xy)(x(xz ·y)·z(xz ·y)) =(4) (xz ·xy)(((xz ·y)(xz ·x)·((xz ·y)·yx))((xz ·y)(z ·
xz) · ((xz ·y) ·yz))) =(3) (xz ·xy)(((xz ·y) ·yx)((xz ·y) ·yz)) =(4) (xy ·xz)((xy ·
(xy·xz)(yz ·xz))(yz ·(xy·xz)(yz ·xz))) = XY ·(X(XY ·Y Z)·(XY ·Y Z)Z) =(7)

XY ·((Y Z ·(X(Y ·Y Z)))(XY ·(Z(Y ·XY )))) =(3) XY ·((X ·Y Z)(Z ·XY )) =
(xy · xz)((xy · (xz · yz))(yz · (xy · xz))) =(7) (X · Y Z)(XY · (Z(X · Y Z))) =(7)

((X ·Y Z) ·XY ) ·X(Z ·XY ) =(7) (X ·Y Z) ·X(XY ·XZ) =(5) (X ·Y Z)(XY ·
XZ) =(8) XY ·XZ = (xy · xz)(xy · yz) =(4) RS.

(10) LS =(4,6) (zy ·xz)(zy · yx) · (zy · (xz ·xy)) = (ZY ·ZX)(Z ·Y X) =(8)

ZY ·XZ = (yz · xz)(xy · yz) =(5) RS.
(11) LS =(4) (yx·yz)(zx·zy)·(xy ·xz)(zx·zy) = (XZ ·Y Z)(XY ·Y Z) =(5)

ZY ·X = (yz · xz) · xy =(6) RS.
(12) LS =(9) yzxxyx · yzx =(3) yzxyx · yzx =(7) zxyxx · yzx =(3) zxyx ·

yzx =(7) zyxy · yzx =(3) RS.
(13) LS =(6) (xy·(xz·zy))(xy·xz) =(12) ((yz·xz)·xy)·xz =(6) zyxy·xz =(7)

zxyx · xz =(7) (yx · zx)x =(5) RS.
(14) LS =(6) (zx · (yz · yx))(xy · (zx · zy)) =(11) ((yz · xz) · xy) · xz =(12)

((yz · xz) · xy)(xy · xz) =(6) (zyxy)(xy · xz) =(13) RS.
(15) LS =(6) (xy · xz)(yz · (xy · xz)) =(3) yz · (xy · xz) =(6) RS.
(16) LS =(9) zxyxxyx·zxyx =(3) zxyxyx·zxyx =(3,4) zxyx·zxyx =(1) RS.
(17) LS = (X ·xz)(Xz ·x) =(11) X(x ·zX) =(7) (zx ·X)x = (zx ·xy)x =(5)

RS.
(18) LS =(7) ((y · yz)x) · yz =(3) RS.
(19) LS =(12) (yx · yz)x =(18) RS.
(20) LS =(7) (zx · xy)x =(5) RS.
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Now that the equations are proved, we can start to build the free groupoid
on three generators x, y, z. Equations (1),. . . ,(20) imply that the fifteen terms
a, . . . , o multiply among each other, with respect to the equational theory of
T3, as in the table. Consequently, the free groupoid can have no more than
fifteen elements. Clearly, a, . . . , f are distinct from each other and from
each of the elements g, . . . , o. The last nine elements are also distinct from
each other: one can easily check that the terms behave differently on the
three-element cycle.

Lemma 5. Let A ∈ T3 and let a, b, c ∈ A. Then:

(1) If ab→ c, then a, b, c generate a semilattice.

(2) If ab→ c→ a, then bc = ab.

(3) If a→ c→ ab, then c→ b.

(4) If a→ c and b→ c, then ab→ c.

(5) If a → c → b and a, b, c, ab are four distinct elements, then the sub-
groupoid generated by a, b, c either contains just these four elements
and c → ab, or else it contains precisely five elements a, b, c, ab, ab · c
and a→ ab · c→ b.

Proof. Each of these situations generates a congruence in Fn, and the
congruence can be easily described from the multiplication table of the fifteen
element free groupoid given above.

Lemma 6. In every algebra from T, if a → c1 → . . . → cn → b, then
a→ abcn . . . c1.

Proof. We have to prove the quasiequation

xz1 = x&z1z2 = z1& . . .&zny = zn =⇒ xyzn . . . z1x = x.

As it is easy to see, the quasiequation is equivalent to the equation

(yzn . . . z1x)y(yzn)(yznzn−1) . . . (yzn . . . z1)(yzn . . . z1x) = yzn . . . z1x

in all algebras from T. It is easy to check that the quasiequation is satisfied
by all tournaments. From this the result follows.
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3 Quasitournaments

By a quasitournament we mean a graph (A,→) where→ is a binary relation
satisfying the following three conditions:

(1) a→ a for all a ∈ A;

(2) if a→ b and b→ a, then a = b;

(3) for any pair a, b of elements of A there exists an element c ∈ A such
that c → a, c → b and whenever c′ is an element with c′ → a and
c′ → b, then c′ → c.

Clearly, the element c in the last condition is uniquely determined. We will
denote it by ab. In this way, every quasitournament becomes a groupoid
satisfying

(1) xy = yx,

(2) xx = x,

(3) x · xy = xy,

(4) xz = z&yz = z =⇒ xy · z = z.

On the other hand, it is easy to check that every groupoid satisfying these
four quasiequations is a quasitournament with respect to the relation → de-
fined by a→ b if and only if ab = b, and this is a one-to-one correspondence
between quasitournaments and the groupoids satisfying the four quasiequa-
tions. We will identify the two classes. So, the class of quasitournaments is
a quasivariety; it will be denoted by Q.

Lemma 7. We have T ⊂ T3 ⊂ T′ ⊂ Q, where T′ is the variety determined
by the following four equations:

(1) xy = yx,

(2) xx = x,

(3) x · xy = xy,

(4) ((xz · y)x)z = xy · z.

The variety generated by Q is equal to T2.

Proof. The first assertions are easy to see. In order to prove the last,
it is sufficient to show that the free groupoids in T2 are quasitournaments.
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Clearly, T2 is the variety of commutative idempotent groupoids satisfying
(xy)y = xy.

Let X be a nonempty set. Denote by F the free commutative groupoid
over X. If u, v are two elements of F , we say that u is a subterm of v if
v = uw1 . . . wn for some w1, . . . , wn ∈ F (n ≥ 0). Denote by G the set of
all elements of F that contain no subterm uu or (uv)v (for any u, v ∈ F ).
Define a binary operation ∗ on G as follows: if u = v, then u ∗ v = u; if
v = uw for some w, then u ∗ v = v; if u = vw for some w, then u ∗ v = u; in
all other cases, put u ∗ v = uv. It is easy to prove that G is a commutative
and idempotent groupoid satisfying (xy)y = xy with respect to ∗. From this
it follows that the groupoid is free in the variety determined by the three
equations, i.e., in T2. By the construction of G, G is a quasitournament.

Two elements a, b of a quasitournament A are said to be comparable if
either a→ b or b→ a. So, a quasitournament is a tournament if and only if
it contains no pair of incomparable elements.

For a quasitournament A and two elements a, b ∈ A, write a ≤ b if there
exists a path from a to b; write a ∼ b if a ≤ b and b ≤ a. So, ≤ is a
quasiordering and ∼ is an equivalence on A.

Lemma 8. Let A ∈ T3. Then ≤ is a compatible quasiordering, ∼ is a
congruence of A and the factor A/ ∼ is a semilattice; actually, ∼ is just the
least congruence of A such that the factor is a semilattice.

Proof. Compatible means that a ≤ b implies ac ≤ bc; for this, it is
sufficient to prove that a → b implies ac ≤ bc. If ab = a, then ac = aca =
abca = baca = bcac→ bca→ bc.

Consequently, ∼ is a congruence. Due to the equation (9), the factor
A/ ∼ satisfies xy · z = xz · y; together with commutativity, this implies
associativity. We have proved that A/ ∼ is a semilattice. Clearly, every
congruence, the factor by which is a semilattice, contains ∼.

Lemma 9. Let A be a quasitournament and θ be a congruence of A such
that whenever x, y are two incomparable elements with xθxy, then xθy. Let
B be a block of θ, a, b ∈ B, and c ∈ A−B. Then:

(1) a→ c if and only if b→ c;

(2) c→ a if and only if c→ b;

(3) if a, c are incomparable, then ac = bc.
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Proof. (1) Let a → c. We have acθbc, so that aθbc and bc /∈ B; conse-
quently, (b, c) /∈ θ. If b, c are incomparable, we get a contradiction by the
assumption. So, b, c are comparable and then bθbc implies b = bc.

(2) Let c → a. We have acθbc, so that cθbc and bc /∈ B. The rest is
similar as in case 1.

(3) We have ac /∈ B, acθbc and ac → a, so bc → a by (1). Since also
bc → c, we get bc → ac. We have ac → a, so ac → b by (2). Since also
ac→ c, we get ac→ bc. Now bc→ ac→ bc imply ac = bc.

Theorem 10. Let A be a subdirectly irreducible quasitournament which is
not a tournament, and θ be its monolith. Then only two cases are possible:
Either there are two incomparable elements a, b ∈ A with (a, ab) ∈ θ or else
θ has a single non-singleton block B and B is a simple quasitournament.

Proof. Let the first case not apply, so that the assumptions of Lemma 9
are satisfied. Take a nontrivial block B of θ. By Lemma 9, it can be easily
verified that B2 ∪ id is a congruence of A and also that if α is a congruence
of B, then α ∪ id is a congruence of A. From this it follows that B is the
only non-singleton block of θ and that B is simple.

4 Subdirectly irreducibles come in quadru-

ples

Lemma 11. Let A be a finite subdirectly irreducible algebra in T3, and let
α be its monolith. Then either A contains a zero element 0 and A − {0} is
a subdirectly irreducible subalgebra of A, or else (a, b) ∈ α and a 6= b imply
a ≤ x for any x ∈ A.

Proof. If ∼= id, then A is a semilattice, so it is a two-element semilattice
and we have the first case. Now assume that ∼ is not the identity; hence
α ⊆∼. Denote by B the least block of ∼. If |B| > 1, then B2 ∪ id is a
nontrivial congruence, α ⊆ B2∪id and we have the second case. Let B = {0}
for an element 0. Clearly, 0 is the zero element of A. If A/ ∼ contains two
different atoms C and D, then (C ∪ {0})2 ∪ id and (D ∪ {0})2 ∪ id are two
congruences contradicting the subdirect irreducibility. Hence, there exists
precisely one atom C of A/ ∼. But then, A − {0} is a subalgebra and the
restriction of α to A− {0} is the monolith of A− {0}.
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Given a quasitournament A, we denote by A∗ the quasitournament ob-
tained from A by adding a new zero element (element 0 such that x0 = 0 for
all x) and we denote by A∗ the quasitournament obtained from A by adding
a unit.

Lemma 12. There is a one-to-one correspondence, given by A 7→ A∗, be-
tween all finite, at least three-element subdirectly irreducible algebras in T3

without zero and all finite, at least three-element subdirectly irreducible alge-
bras in T3 with zero. The algebras A and A∗ generate the same variety.

Proof. Since A∗ is a homomorphic image of the direct product of A with
the two-element chain, the algebras A and A∗ generate the same variety. The
rest is an easy consequence of Lemma 11.

It should be clear what we mean by the term obtained from a given term
t by deleting all variables from a given proper subset X of v(t); by v(t) we
denote the set of the variables contained in t. Let us denote this term by
t−X . One can easily prove that an equation u ≈ v is satisfied in A∗ if and
only if v(u) = v(v) and u−X ≈ v−X is satisfied in A for any proper subset X
of v(u).

Lemma 13. There is a one-to-one correspondence, given by A 7→ A∗, be-
tween all finite, at least three-element subdirectly irreducible algebras in T3

without unit and all finite, at least three-element subdirectly irreducible alge-
bras in T3 with unit. We have A ∈ T if and only if A∗ ∈ T, and also A ∈ Tn

if and only if A∗ ∈ Tn for any n ≥ 3.

Proof. Let A ∈ T (or A ∈ Tn, respectively); we are going to prove that
the same holds for A∗. Let u ≈ v be an arbitrary equation (an equation in at
most variables, respectively) which is satisfied in any tournament. Clearly,
v(u) = v(v). For any proper subset X of v(u), the equation u−X ≈ v−X is
satisfied in all tournaments, because for any tournament T , T ∗ is also a tour-
nament; consequently, these equations are satisfied in A. This means that
u ≈ v is satisfied in A∗. But then, A∗ belongs to T (or to Tn, respectively).
The rest is an easy application of Lemma 11.

Theorem 14. All subdirectly irreducible algebras of cardinality ≥ 3 in T (and
also in Tn for any n ≥ 3) can be partitioned into quadruples A,A∗, A

∗, A∗∗
where A is a subdirectly irreducible algebra without zero and without unit.

Proof. It follows from the preceding lemmas.
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5 Subdirectly irreducible algebras with just

one incomparable pair

Lemma 15. The algebra J3 is subdirectly irreducible and belongs to T3−T4.

Proof. Define terms si, ti in variables x, y1, y2, y3 by

(1) s1 = xy1 and t1 = y1;

(2) s2 = t1y2 and t2 = s1y2;

(3) s3 = t2y3y1xy3 and t3 = s2y3y1xy3;

(4) s4 = xy1t3s3(xt3) and t4 = s(xy1t3).

Making use of the fact that in a tournament we must have either xy1 = x or
xy1 = y1, it is easy to see that the equation s = t is true in all tournaments
and hence in any algebra of T. On the other hand, it is not true in J3:
under the interpretation x 7→ a and yi 7→ bi, we have s 7→ a while t 7→ u0.
Consequently, J3 does not belong to T. Since it is generated by four elements,
it cannot belong to T4. By Theorem 4, it belongs to T3.

Theorem 16. Let A ∈ T3 be a subdirectly irreducible algebra containing
precisely one two-element subset {a, b} with ab /∈ {a, b}. Then A contains a
subalgebra isomorphic to either J3 or Mn for some n ≥ 3. Consequently, A
does not belong to T.

Proof. Suppose that A contains neither J3 nor Mn. By an a-sequence we
will mean a finite sequence u0, u1, . . . , un of elements of A such that n ≥ 0,
u0 = ab, u1 = a (if n ≥ 1) and for every i ≥ 2, one of two cases takes place:
either ui−2 → ui → ui−1 or ui−1 → ui → ui−2. A sequence with the same
properties, except that u1 = b, will be called a b-sequence. An a-sequence is
said to be minimal if there is no shorter a-sequence with the same endpoint.

Claim1. Let u0, u1, . . . , un be a minimal a-sequence with n ≥ 2. Then
u1 → u2 → u0 and u2 → b.

Proof. Since the a-sequence is minimal, u2 6= a and hence either b → u2
or u2 → b. If u0 → u2 → u1, then bu2 = u0 by Lemma 5(2), so that u0 is
either b or u2, a contradiction. Consequently, the other case, u1 → u2 → u0,
must take place. By Lemma 5(3), u2 → b.

Claim2. Let u0, . . . , un be a minimal a-sequence such that n ≥ 2 and
u0, . . . , ui, b is not a-admissible for any i ≤ n. Then un−1 → un, un → ui for
all i ≤ n− 2, and un → b.
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Proof. For n = 2 this is due to Claim 1. Let n > 2 and suppose that
the assertion has been proved for all numbers in {2, . . . , n − 1}. If b → un,
then un−1 → b → un, so that the sequence u0, . . . , un, b is a-admissible,
a contradiction with the assumption. We get un → b. If a → un, then
ab → un by the minimality of n and a = bunaun = bauna = ab gives us a
contradiction. Hence un → a. By the minimality of n, un → u0, . . . , un →
un−2. From un → un−2 we get un−1 → un, since either un−1 → un → un−2 or
un−2 → un → un−1 must take place.

Claim3. The element b is not an endpoint of any a-sequence.
Proof. Suppose, on the contrary, that there exists a minimal a-sequence

u0, . . . , un, b. Clearly, n ≥ 3. By Claim 2, we have u0 → u1 → . . . → un−1,
uj → ui whenever 0 ≤ i < i + 2 ≤ j ≤ n − 1, and ui → b for all 2 ≤ i < n.
From un−1 → b we get un−1 → b→ un. If un−2 → un → un−1, then ui → un
for all i ≤ n−2 by the minimality of n, and {b, u0, . . . , un} is a subalgebra of
A isomorphic to Mn, a contradiction, So, only the case un−1 → un → un−2
remains to be considered. By the minimality of n, un → ui for all i ≤ n− 2.
But then, the elements b, u0, u1, u2, u3 form a subalgebra isomorphic to J3, a
contradiction.

Claim4. Where Ca denotes the set of endpoints of all a-sequences,
Ea = C2

a ∪ id is a congruence of A; we have b /∈ Ca.
Proof. By Claim 3, b /∈ Ca. Let p, q ∈ Ca and r be an element such

that p → r → q. We need to prove that r ∈ Ca. There exist two minimal
a-sequences u0, . . . , un = p and v0, . . . , vm = q. If neither u0, . . . , un, r nor
v0, . . . , vm, r is an a-sequence, then un → r, un−1 → r, . . . , u0 → r and r →
vm, r → vm−1, . . . , r → v0, a contradiction.

Claim5. Where Cb denotes the set of endpoints of all b-sequences,
Eb = C2

b ∪ id is a congruence of A; we have a /∈ Cb.
Proof. It is a symmetric version of Claim 4.
Claim6. The two congruences Ea and Eb of A are nontrivial, while their

intersection is the identity. Consequently, A is not subdirectly irreducible.
Proof. We have (a, ab) ∈ Ea and (b, ab) ∈ Eb. If Ea ∩Eb 6= id, then there

is an element in Ca ∩ Cb. Suppose there is such an element r. There are a
minimal a-sequence u0, . . . , un = r and a minimal b-sequence v0, . . . , vm = r.
Clearly, we cannot have n = m = 2. Hence {un−1, vm−1} 6= {a, b} and we
have either un−1 → vm−1 or vm−1 → un−1. Consider, for example, the case
un−1 → vm−1. Then it is easy to see that u0, . . . , um = r = vn, vn−1, . . . , v1 is
an a-sequence ending with b, a contradiction.
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6 A few lemmas

Lemma 17. Let A ∈ T3, let B be a subgroupoid of A such that B2 ∪ idA

is a congruence of A, and let θ be a congruence of B. Then θ ∪ idA is a
congruence of A.

Proof. We must prove that aθb implies either ac = bc or acθbc for any
c ∈ A. Let ac 6= bc. Then the elements a, b, ac, bc all belong to B. Put e = ac,
f = bc, g = af , h = be and l = ac · bc. Since all these elements belong to B,
we have aeθbe, afθbf , aelθbel and aflθbfl, i.e., eθh, gθf , lθh and gθl (this
can be checked from the multiplication table of F3). By transitivity of θ,
eθf , i.e., acθbc.

Lemma 18. Let A ∈ T3 be a subdirectly irreducible algebra such that the
monolith of A is B2 ∪ idA for a block B. Then B is simple.

Proof. Use Lemma 17.

Lemma 19. Let A be a finite, subdirectly irreducible algebra in T3, with
monolith µ. Let S be a union of non-singleton blocks of A, and denote by U
the union of all non-singleton blocks of A. Suppose that for any x ∈ A and
s ∈ S, either xs ∈ S or |x(s/µ)| = 1. Then either s = ∅ or S = U .

Proof. The condition says that S2 ∪ id is a congruence. This congruence
must be either identity, or contain µ.

Lemma 20. There is no finite, subdirectly irreducible algebra in T3 with
precisely two non-singleton blocks of its monolith.

Proof. Suppose the monolith has precisely two non-singleton blocks S1

and S2. If S1S2 = Si for some i, then Lemma 19 gives contradiction with
S = Si. If S1S2 /∈ {S1, S2}, then Lemma 19 gives contradiction with S =
S1.

7 Strongly connected algebras

A quasitournament A is said to be strongly connected if for any a, b ∈ A
there exists a path a = a0 → a1 → . . .→ an = b.

Lemma 21. Let A ∈ T3, let B be a subgroupoid of A such that b ∈ B and
b ≤ a imply a ∈ B, and let θ be a congruence of B. Then θ ∪ idA is a
congruence of A.
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Proof. Clearly, B2 ∪ idA is a congruence, so we can apply Lemma 21.

Lemma 22. Let A ∈ T3 be subdirectly irreducible. Then every subgroupoid
B of A such that b ∈ B and b ≤ a imply a ∈ B, is subdirectly irreducible. In
particular, the least block of ∼A is subdirectly irreducible.

Proof. It follows from Lemma 21.

Lemma 23. Let A ∈ T3 be such that the least block of ∼A is a tournament.
Then for every element a ∈ A−B, such that a is incomparable with at least
one element of B, there exists a unique element a′ ∈ B with the following
two properties:

(1) ax = a′ for any x ∈ B incomparable with a (in particular, a′ → a);

(2) y → a′ for any y ∈ B such that y → a.

Proof. Suppose ax1 6= ax2 for two elements x1, x2 ∈ B incomparable
with a. We have either ax1 → x2 or x2 → ax1. If ax1 → x2, then ax1 → x2
and ax1 → a imply ax1 → ax2 by the properties of a product. If x2 → ax1,
then x2 → ax1 → a implies ax1 → ax2 by Lemma 5(5). So, ax1 → ax2 in
any case. But then ax2 → ax1 by symmetry, and we get ax1 = ax2.

Take an arbitrary element x ∈ B which is incomparable with a, and put
a′ = ax. Let y ∈ B be such that y → a. The only alternative to y → a′

could be a′ → y, so suppose that. Since a′ = ax and a′ → y → a, we have
xy = a′. But xy is either x or y, so y = a′.

Lemma 24. Let A ∈ T3 be a finite, subdirectly irreducible algebra such that
the least block B of ∼A is a tournament. Then x → a for any x ∈ B and
any a ∈ A−B.

Proof. Suppose, on the contrary, that some element of A − B is incom-
parable with at least one element of B, and take a minimal (with respect
to ≤) such element a. Take an element x ∈ B incomparable with a and put
a′ = ax. If there is an element b such that B < b/ ∼< a/ ∼, then there is
one such element with b→ a (replace b with ab if necessary); we have x→ b
by the minimality of a, so that b→ a′ by Lemma 5(5), a contradiction. This
proves that a/ ∼ is an atom in A/ ∼. So by Lemma 22, it is sufficient to
assume that A = B ∪ (a/ ∼).

The set A−B can be partitioned into two subsets: the (possibly empty)
subset C of the elements c satisfying x → c for all x ∈ B, and the subset

14



D of the elements a for which the element a′ ∈ B, as in Lemma 23, exists.
Denote by θ the equivalence on A with blocks {x} ∪ {a ∈ D : a′ = x} for
x ∈ B (and singletons, corresponding to the elements of C). The following
two observations will imply that θ is a congruence of A.

Claim1. If c ∈ C and a ∈ D, then (ac)′ = a′. Proof. Since a′ → a and
a′ → c, we have a′ → ac. Since a′ → ac → a, we have x · ac = xa = a′ by
Lemma 5(2). If x → ac, then x → ac → a implies ac → a′ by Lemma 5(5),
a contradiction.

Claim2. If a, b ∈ D and a′ → b′, then (ab)′ = a′. Proof. Since
a′ → b′, we have ab′ = a′. By the definition of b′, a′ → b′ implies a′ → b. By
Theorem 4(9) we get ab · b′ = ab′bab′ = a′bab′ = a′ab′ = a′b′ = a′. It remains
to prove that ab and b′ are incomparable. If b′ → ab, then b′ → ab→ a gives
ab→ a′, a contradiction.

We conclude that θ is a congruence of A. This gives us a contradiction
with Lemma 11, since θ is nontrivial and θ ∩B2 = id.

Lemma 25. Let A ∈ T3 be a finite, subdirectly irreducible algebra without
zero, such that the least block of ∼A is a tournament. Then A is a tourna-
ment.

Proof. Suppose that A contains a pair of incomparable elements. By
Lemma 24, both elements must belong to A−B, where B is the least block
of ∼A. If A − B is a subgroupoid, then (A − B)2 ∪ idA is a congruence,
which is not possible. So, let ab ∈ B for some a, b ∈ A − B. For every
x ∈ B we have x → a and x → b and hence x → ab. Hence ab is the unit
element 1B of B. Hence ((A−B)∪{1B})2 ∪ idA is a congruence, and we get
a contradiction.

Theorem 26. Every finite, subdirectly irreducible algebra in T3 which is not
a tournament contains a strongly connected, subdirectly irreducible subalgebra
which is again not a tournament.

Proof. By Lemma 12 we can assume that the algebra has no zero element.
By Lemma 22 the least block of ∼ does the work, unless it is a tournament.
However, it is not a tournament by Lemma 25.

A quasitournament A is said to be rich if a → b → c implies that the
elements a, c are comparable, i.e., either a→ c or c→ a.

Lemma 27. Let A be a rich, strongly connected quasitournament and let a, b
be two incomparable elements of A. Then there exist elements c, d such that
a→ c→ d→ b, d→ a, b→ c, ab→ c and d→ ab.
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Proof. Denote by n the length of a shortest path leading either from a to
b or from b to a.

Let there be a path a = u0 → u1 → . . . → un = b. We have n ≥ 3,
because A is rich. Since A is rich, the elements ui, ui+2 are comparable for
any 0 ≤ i < i+2 ≤ n; by the minimality of n, ui+2 → ui. Suppose n ≥ 4. If n
is even, then un → un−2 → . . .→ u2 → u0 is a path from b to a, contradicting
the minimality of n. If n is odd, then un → un−2 → . . . → u1 → u2 → u0
gives the same contradiction. So, n = 3.

There is also a path of length 3 from b to a, namely, b → u1 → u2 → a.
So, the assumption that the path of length n went from a to b, was inessential.

Since u2 → a and u2 → b, we have u2 → ab. Since a → u1 and b → u1,
we have ab→ u1.

Lemma 28. Let A be a rich, strongly connected quasitournament and let
a1, . . . , an be an n-tuple of pairwise incomparable elements of A. Then there
exist elements b and c such that b→ ai → c for all i.

Proof. By induction on n. For n = 1 this is clear. Let n ≥ 2. By the
induction assumption, there are elements b′, c′ such that b′ → ai → c′ for all
i = 1, . . . , n− 1.

Let us prove first that there is an element c with c′ → c and an → c.
If c′ and an are incomparable, it follows from Lemma 27. We cannot have
c′ → an, since that would give, together with a1 → c′, the comparability of
an with a1 by the richness of A. So, if c′ and an are comparable, then an → c′

and we can take c = c′.
For i < n we have ai → c′ → c, so that c and ai are comparable. If c→ ai,

then it follows from an → c→ ai that ai, an are comparable, a contradiction.
Hence ai → c.

Put b = b′an. For i < n we have b → b′ → ai, so that ai, b are compa-
rable. If ai → b, then ai → b → an implies that ai, an are comparable, a
contradiction. Hence b→ ai.

Lemma 29. Let A be a finite, rich, strongly connected quasitournament.
Then there exist two distinct, comparable elements a, b ∈ A such that every
element of A is comparable to either a or b.

Proof. Let a1, . . . , an be a maximal n-tuple of pairwise incomparable
elements of A. By Lemma 28 there exist elements a, b such that a→ ai → b
for all i. Since a → a1 → b, the elements a, b are comparable. Let x be any
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element of A. By the maximality, x is comparable with ai for some i. If
x → ai, then x → ai → b implies that x, b are comparable. If ai → x, then
a→ ai → x implies that x, a are comparable.

8 Polynomials on pairs of elements

For a groupoid A, define a quasiordering ≤ on the set of ordered pairs of
elements of A in the following way: (c, d) ≤ (a, b) iff there is a unary poly-
nomial p of A such that p(a) = c and p(b) = d. Write (a, b) ∼ (c, d)
if (a, b) ≤ (c, d) ≤ (a, b). Write (c, d) < (a, b) if (c, d) ≤ (a, b) but not
(a, b) ≤ (c, d).

Theorem 30. Let A ∈ T and let a, b be two incomparable elements of A.
Then (a, ab) < (a, b) and (b, a) 6≤ (a, ab).

Proof. Clearly, (a, ab) ≤ (a, b). Suppose that there is a polynomial p
with p(a) = a and p(ab) = b. There are a term t(x, x2, . . . , xn) and elements
c2, . . . , cn ∈ A such that p(x) = t(x, c2, . . . , cn) for all x ∈ A. Define terms
ri, si (i = 0, 1, . . . ) in this way: r0 = x, s0 = y, ri+1 = t(ri, x2, . . . , xn) and
si+1 = t(risi, x2, . . . , xn).

Let T be a tournament and x 7→ a0, y 7→ b0, xi 7→ di be an interpretation
in T . Define ai, bi ∈ T by ri 7→ ai and si 7→ bi. Since all ai, bi belong to
{a0, b0, d2, . . . , dn}, there exist i, j with 0 ≤ i < j ≤ (n + 1)2 and (ai, bi) =
(aj, bj). Observe that if akbk = ak for some k, then am = bm for all m > k,
so that ai = bi and hence an2bn2 = bn2 . Since T is a tournament, the only
alternative to akbk = ak for some k is akbk = bk for all k, in which case we
also have an2bn2 = bn2 . Hence an2bn2 = bn2 in any case. This proves that
the equation rn2sn2 = sn2 is satisfied in all tournaments, and hence in A.
But in A, under the interpretation x, y, x2, . . . , xn 7→ a, b, c2, . . . , cn we have
risi 7→ ab and si 7→ b for all i, a contradiction.

In order to prove (b, a) 6≤ (a, ab), it is enough to replace the defini-
tion of ri, si with r0 = x, s0 = y, ri+1 = t(risi, x2, . . . , xn) and si+1 =
t(ri, x2, . . . , xn).

9 Subdirectly irreducible algebras in T3

We denote by C2 the two-element semilattice, and by C3 the three-element
tournament cycle.
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Theorem 31. The variety T3 has just three subdirectly irreducible algebras,
namely, C2, C3, and (C3)∗.

Proof. It is sufficient to prove that every finite, subdirectly irreducible
algebra S in T3 is isomorphic to one of the three algebras. Since T3 is
generated by C3, there exist a positive integer n, a subalgebra D of Cn

3 and
a congruence θ of D such that S is isomorphic to the factor D/θ. Take n to
be minimal with this property. Suppose n ≥ 2.

Denote by β the only cover of θ in the congruence lattice of D. We
will make use of tame congruence theory, as developed in [7]. It is clear
that the type of β/θ is either 4 or 5. Let U be a (β, θ)-minimal set and
(c, d) ∈ (β− θ)∩U2. Then either (c, cd) ∈ β− θ or (d, cd) ∈ β− θ. Applying
either the polynomial x 7→ xc or the polynomial x 7→ xd, we obtain a minimal
set Uc or Ud. Hence we can assume that d = cd.

Now U = e(D) for an idempotent polynomial e of D. Since (x, y) 7→
x ∗ y = e(xy) maps U2 onto U and c ∗ c = c and c ∗ d = d ∗ c = d ∗ d = d, it
follows that there is a pseudo-meet operation ∧ on U with c ∧ d = d. Thus
we have (c/θ) ∩ U = {c} and also cx = x for all x ∈ U .

Denote the elements of C3 by 0,1,2, with 0→ 2→ 1→ 0. We can assume
that c = 0n and thus U ⊆ {0, 1}n. It follows from tame congruence theory
that for any x, y ∈ D, (x, y) ∈ θ iff for every unary polynomial p, ep(x) = c
is equivalent to ep(y) = c.

Denote by d1, . . . , dz all the elements of D. Put c′ = (cd1)(cd2) . . . (cdz)
and c′′ = (c′d1)(c

′d2) . . . (c
′dz). For some k and l (and some ordering of the

indexes) we have c = 0n, c′ = 0k1n−k, c′′ = 0k1l2n−k−l and D ⊆ {0, 2}k ×
{0, 1}l × {0, 1, 2}n−k−l.

Claim1. If x, y ∈ D and x(i) = y(i) for all i ≥ k, then xθy. Indeed,
if (x, y) /∈ θ then there is a polynomial p such that, e.g., ep(x) = c and
ep(y) 6= c. Put q = ep(y). Now q(i) = c(i) for i ≥ k. Also, q ∈ U and hence
q(i) ∈ {0, 1} for i < k. Since q ∈ D, q(i) ∈ {0, 2} for i < k. Thus q = c, a
contradiction.

Claim2. k = 0, c′ = 1n and c′′ = 1l2n−l. This follows from Claim 1 by
the minimality of n.

Claim3. D ⊇ {0, 1}n ∪ ({1}l × {0, 1, 2}n−l). Since n was minimal, for
i < n there are x, y ∈ D such that (x, y) /∈ θ and x, y differ on i only. By the
characterization of θ, there is an element qi ∈ U ⊆ {0, 1}n such that qi differs
from c on i only. We must have qi = 0i10n−i−1. Then, by forming products,
D ⊇ {0, 1}n. Since 1n, 1l2n−l and 0n belong to D, it is not hard to see that
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also S ⊇ {1}l × {0, 1, 2}n−l.
Case 1: l = 0. Then D = Cn

3 . We can assume that the number of
components on which c differs from d is as small as possible. In that case
we are going to show that the two elements differ on one component only.
Indeed, suppose that there is an element q ∈ {0, 1}n different from both
c and d and such that cq = q and dq = d. We have q = qc β qd = d.
If qθd then e(q)θd and (c, e(q)) ∈ β − θ while e(q) ∈ {0, 1}n agrees with
e(c) = c at all i with q(i) = c(i), and agrees with e(d) = d at all i with
q(i) = d(i); i.e., e(q) = q and the minimality is contradicted. On the other
hand, if (q, d) ∈ β − θ then there exists a polynomial p such that ep(q) = c
iff ep(d) 6= c. These two elements agree more often than c, d do, and since
(c/θ)∩U = {c}, they are related by β − θ, again a contradiction. Hence c, d
differ on one component only and we can assume that d = 10n−1.

Now we will show that whenever x(0) = y(0) then xθy. Suppose that
x(0) = y(0) and (x, y) /∈ θ. Then (c, d) belongs to the join of θ with the
congruence generated by (x, y) and so there exist elements w0, w1, . . . , wm

such that w0 = c, wm = d and for every i < m either (wi, wi+1) ∈ θ or
wi(0) = wi+1(0). Replace wi by

w′i = wic(01n−1)(02n−1)c.

Then w′0 = c, w′m = d, {w′0, . . . , w′m} ⊆ {c, d} and for every i < m either
(w′i, w

′
i+1) ∈ θ or w′i = w′i+1. This means (c, d) ∈ θ, a contradiction.

We have shown that in Case 1, the homomorphism of D onto S factors
through the (first) projection of D onto C3. This contradicts the minimality
of n > 1.

Case 2: l 6= 0. Note that if x = p(y) for some non-constant polynomial p,
then x = yy1 . . . yz for some y1, . . . , yz ∈ D. Thus if in addition, y(i) = 1
for some i < l, then x(i) = 1 for the same i, since the restriction of D to l
is contained in {0, 1}l. Hence our characterization of θ implies that where
Q = D − {0l} × {0, 1, 2}n−l, we have Q×Q ⊆ θ.

It is impossible that Q/θ ∩ {0}l × {0, 1, 2}n−l 6= ∅. Because if this hap-
pened, then every element of D would be θ-equivalent to some element of
the subalgebra P = {0l}× {0, 1, 2}n−l. Then S would be isomorphic to P/θ′

where θ′ is the restriction of θ to P , contradicting the minimality of n.
Hence S is isomorphic to (P/θ′)∗.
We have proved that every finite subdirectly irreducible algebra in T3 is

either C2 or C3 or else contains zero. By Theorem 14 it follows that the only
subdirectly irreducibles are the three claimed ones.
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10 T is inherently non-finitely-generated

We use often the tournament Ln, which consists of n elements a0, . . . , an−1
with ai → aj iff either i = j or j = i+ 1 or i > j + 1.

Let Nn be the tournament Ln with two elements a and b adjoined where
ai → a→ b for all i < n, ai → b for all i < n− 1 and b→ an−1.

Theorem 32. If A is any groupoid with Nn ∈ HSP(A) then |A| ≥ n.
Hence the variety T is inherently non-finitely-generated.

Proof. We can assume that A is finite, D is a subalgebra of Ak, ϕ is
a homomorphism of D onto Nn, and k is minimum for the existence of D
and ϕ. Thus there exist f, g ∈ D such that ϕ(f) 6= ϕ(g) and f |k−1 = g|k−1.

The crucial property of Ln is that for any x 6= y and u 6= v in Ln there is
a translation (i.e., a polynomial p of the form p(w) = wr1r2 · · · rt) such that
{p(x), p(y)} = {u, v}. In fact, Ln is a simple algebra of type 3 and it follows
from a result in [7] that Ln must be a homomorphic image of a subalgebra
of A (actually, k = 1). But let’s just prove directly that |A| ≥ n.

From the two remarks above, there must exist fi, gi ∈ D such that
fi|k−1 = gi|k−1 and ϕ(fi) = a and ϕ(gi) = ai. Then put

f = f0f1 . . . fn−1, hi = f0 . . . fi−1gifi+1 . . . fn−1

and we have that all elements f, h0, . . . , hn−1 agree on k − 1 and ϕ(f) = a
while ϕ(hi) = ai.

These elements of D must all disagree at their last coordinate, hence A
has at least n+ 1 elements.

11 Simple algebras

Theorem 33. Every finite simple algebra in T is a tournament.

Proof. The relevant result from Hobby-McKenzie [7] is this. Let S be a
finite simple algebra of type 3 or 4. If S ∈ HSP(A1, . . . , Ak) and Ai and k
are finite, then S ∈ HS(Ai) for some i. The proof is as follows. We have
S ∼= D/θ where D has congruences η0, . . . , ηm such that

∧
{ηi : i ≤ m} = 0D

and D/ηi ∈ S(Aji). Now θ is a maximal congruence of D and the type of
(θ, 1D) is 3 or 4. Let M be any (θ, 1D)-minimal set in D. Then M = {a, b} is
a two-element set and M = e(D) for some unary polynomial e with e = e2.
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Moreover, for every (c, d) ∈ D2 − θ, there is a unary polynomial f with
{f(c), f(d)} = {a, b}. We can see that there is i with ηi ≤ θ. For if this fails,
then for every i, picking (ci, di) ∈ ηi − θ and fi({ci, di}) = M , we see that
(a, b) ∈ ηi. But this would hold for every i, forcing a = b. Thus for some i,
ηi ≤ θ. So S ∈ H(D/ηi), i.e., S ∈ HS(Aji).

Now when A is a tournament, we have that HS(A) = S(A) and every
member of HS(A) is a tournament. Thus we have completed a proof that
every finite simple algebra of type 3 or 4 in T is a tournament. (Such a
finite simple algebra must be a homomorphic image of a subdirect product
of finitely many tournaments, since T is locally finite.)

The variety T omits types 1 and 2, i.e., it has no non-trivial Abelian
congruences, or again, equivalently, it is congruence meet-semi-distributive.
All this follows in tame congruence theory since if a and b are two distinct
elements of an algebra in T then either {a, ab} or {b, ab} becomes a two-
element semilattice under the basic operation of the algebra.

Thus we have simple algebras only of types 3, 4, 5. It remains to see
that every finite simple algebra of type 5 in the variety T is a tournament.
To do this, I will show first that such an algebra must have a zero element
u, satisfying ux = u for all x.

Thus let S be a finite simple algebra of type 5 in T. This means that
the minimal sets are two-element sets on which some polynomial induces the
operation of a semilattice, but there is only one polynomial-induced semi-
lattice operation on a minimal set. Let {a, b} be one of the minimal sets
for S. Without losing generality, assume that a 6= ab. Then {a, ab} is a
minimal set since it is the image under f(x) = xa of {a, b}. Obviously x · y
is a semilattice operation on {a, ab} and so there is no polynomial q(x, y) of
S with q(a, a) = a, q(ab, ab) = ab, q(a, ab) = q(ab, a) = a. I claim that for
every minimal set {c, d} we have that cd ∈ {c, d}. The tool for proving this
is the above assertion involved in type 5 and the fact that {c, d} = f({a, b})
for some polynomial f . By induction on the complexity of f , we show that
f(a)f(ab) = f(ab).

So assume that f, g are polynomials with this property and that h(x) =
f(x)g(x). Note that for any element p we must have f(ab)p → f(a). For
where u = f(ab)p and v = f(ab)pf(a) we have (u, v) = (λf(ab), λf(a)) with
λ(x) = f(ab)px, but also (using the equation x(yz) = ((xy)(yz))((xz)(yz))
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of T:

v = {[f(ab)f(a)][f(ab)p]}{[f(ab)p][f(a)p]} = [f(ab)p][f(a)p]

u = f(ab)f(a)p = {[f(ab)f(a)][f(ab)p]}{[f(ab)f(a)][f(a)p]} = u[f(ab)(f(a)p)] = u{(f(ab)(f(a)p))([f(ab)p][f(a)p])}

and so where γ(x) = u{f(ab)(f(x)p)v} we have that (u, v) = (γ(a), γ(ab)).
Now if u 6= v then there is a polynomial τ with {τ(u), τ(v)} = {a, ab}. By
composing either with λf or with γ, we have a polynomial g such that g(a) =
ab and g(ab) = a, which would give that the set {a, ab} has the structure of
a Boolean algebra induced by polynomials, contradicting that the type is 5.
Thus u = v and we have that f(ab)p → f(a). Similary, g(ab)p → g(b). But
then f(ab)g(ab)→ f(a) and f(ab)g(ab)→ g(a), implying that h(ab)→ h(a)
as desired.

Now by Hobby-McKenzie [7], we have a compatible partial order ≤ on
S such that ab ≤ a (for the particular minimal set {ab, a}) and for every
minimal set {f(ab), f(a)} (f a polynomial), f(ab) ≤ f(a). Let u ∈ S be a
minimal element under this order. Let v be any element of S. We wish to
show that uv = u. Suppose not. Then we can assume that uv = v 6= u.
(Just replace v by uv.) There is a chain x0 = u, x1, . . . , xs = v where for
all i < s, {xi, xi+1} is a minimal set. There is i < s with uxi = u and
uxi+1 6= u. Then {u, uxi+1} is a minimal set {f(ab), f(a)} and since we’ve
seen that f(ab) → f(a), we have that f(ab) = uxi+1, f(a) = u, implying
that u 6= f(ab) ≤ u, contradicting the minimality of u.

Thus our algebra S has a zero element u.
Case 1: S − {u} is a subalgebra. Then since S is simple, it follows that

|S| = 2, so certainly S is a tournament.
Case 2: We have vw = u where v 6= u 6= w. Since S is simple, there

must be a sequence v = v0 → v1 → · · · → vq = w (else the congruence
generated by identifying w with u cannot make v equivalent to anything).
We can assume that v, w and v0, . . . are chosen so that q is minimal. Now
q > 2 by Theorem 16. By minimality, vvq−1 6= u. However (yx)(yz)→ y(xz)
is valid in our variety. Taking x = w, y = vq−1, z = v we get vvq−1 → u.
This is an obvious contradiction, showing that Case 2 cannot occur.

Thus the only finite simple algebra S in T of type 5 is the two-element
one.
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12 Conjecture: equivalent formulations

It seems to be a hard and interesting problem to determine whether the
variety T generated by tournaments is the same as the quasi-variety Tq gen-
erated by all tournaments. Since both classes are locally finite, the problem
can be formulated several ways: Is it true that whenever A is a subalgebra
of

∏
{Ti : 1 ≤ i ≤ n}, Ti finite tournaments, then every subdirectly irre-

ducible homomorphic image of A is a tournament? Is it true that every finite
si algebra in T is a tournament? Is it true that for every quasi-equation φ
which is valid in all tournaments, there is a finite set Γ of equations true in
all tournaments such that Γ ` φ?

Here we shall show that only very special φ need be considered. Write
θ(x, y) for the congruence generated by a pair (x, y) in an algebra A. Another
equivalent form of our problem: Is it true that for every A ∈ Tq and a, b ∈ A
and congruence ψ of A, we have that (θ(a, ab) ∨ ψ) ∧ (θ(b, ab) ∨ ψ = ψ?

By a clog I mean a system (a, b, c, d) of elements in an algebra A such
that a = ab 6= b and c = ca = cb and d = da = db. If A ∈ T′ and (a, b, c, d) is
a clog, then obviously (a, b) ∈ θ(c, b)∧ θ(d, b). By a linear polynomial of A, I
mean a function of the form f(x) = xa1 · · · an for some a1, · · · , an ∈ A. Write
(a, b) ≤1 (c, d) to denote that there exists a linear polynomial f for which
{f(c), f(d)} = {a, b}. Given elements a, b, c, d ∈ A and a clog (u, v, w, z)
in A, we say that this clog is a special clog for (a, b, c, d) iff (w, v) ≤1 (a, b)
and (z, v) ≤1 (c, d).

Lemma 34. Let A ∈ T3 and a, b, c, d ∈ A. Then θ(a, b) ∧ θ(c, d) 6= 0A iff
there exists a special clog for (a, b, c, d). In fact, if (e, f) ∈ θ(a, b) ∧ θ(c, d)
with e 6= f then there exists a special clog (u, v, w, z) for (a, b, c, d) with
(u, v) ∈ θ(e, f).

Proof. Suppose that 0A 6= λ ≤ θ(a, b) ∧ θ(c, d). We first show that
there exist u, v, w with u = uv 6= v, w = wv = wu, (w, v) ≤1 (a, b) and
(u, v) ∈ λ. We begin with the observation that, choosing any pair (u′, v′) ∈ λ
with u′ = u′v′ 6= v′ (there exists such a pair), there must exist some x0 =
v′, x1, . . . , xn = u′ where (xi, xi+1) ≤1 (a, b) for all i < n. Replacing xi by
xiv
′, we can assume that xi = xiv

′ for all i. We also assume that n is the least
positive integer for which there exists such a system x0 = v′, · · · , xn = u′.
with u′ = u′v′ 6= v′, (u′, v′) ∈ λ, (xi, xi+1) ≤1 (a, b).

If n = 1, then (u′, v′) = (x1, x0) ≤1 (a, b) and we can take (u, v, w) =
(u′, v′, u′). Also, if x1u

′ = x1 then we can take (u, v, w) = (u′, v′, x1). Now
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assume that n > 1 and x1u
′ 6= x1. Then replace u′, v′ by x1u

′, x1 and the
sequence x0, . . . , xn by y0, . . . , yn−1 where yi = x1xi+1. Since x1 = x1v

′ ≡
x1u

′(mod λ), we have contradicted the minimality of n.
So let (u, v, w) satisfy u = uv 6= v, (u, v) ∈ λ, w = wv = wu, (w, v) ≤1

(a, b). Since λ ≤ θ(c, d) there is a system x0 = v, x1 . . . , xn = u, for some
n, where (xi, xi+1) ≤1 (c, d). Again, we can assume that xiv = xi and that
n is minimal for the existence of a system (u, v, w, x0, . . . , xn) satisfying all
these conditions. If x1u = x1 then (u, v, w, x1) is a special (a, b, c, d) clog with
(u, v) ∈ λ, as desired. So assume that x1u 6= x1, which implies, of course,
that n > 1.

Case 1: x1w = x1w · x1u. In this case, replace u, v, w by x1u, x1, x1w
(noting that (x1w, x1) = (x1w, x1v) so that (x1w, x1) ≤1 (a, b)), and replace
x0, . . . xn by y0, . . . , yn−1 where yi = x1xi+1. This contradicts minimality of
n.

Case 2: x1w 6= x1w · x1u. Now x1w = x1w · x1v ≡ x1w · x1u (mod λ).
Also (x1w, x1w ·x1u) = (wux1 ·wux1, vux1 ·wux1) so that (x1w, x1w ·x1u) ≤1

(a, b). Replace u, v, w by x1w · x1u, x1w, x1w · x1u and replace x0, . . . , xn by
y0, . . . , yn−1 where yi = xi+1x1 · · ·x1w. This contradicts the minimality of
n.

Theorem 35. The following are equivalent:

(1) T = Tq.

(2) Let x, y, z, x1, x
′
1, . . . , xk, x

′
k, . . . be distinct variables and for every posi-

tive integer n, let tn(w) denote wx1 · · ·xn and t′n(w) denote wx′1 · · ·x′n.
Letting {u, v} = {y, yz} and {r, s} = {z, yz}, then T satisfies the
quasi-equations

x = xtn(v) ∧ tn(v) = t′n(s) ∧ tn(u) = tn(u)tn(v) = tn(u)x

∧t′n(r) = t′n(r)t′n(s) = t′n(r)x −→ x = tn(v) .

(3) With notation as above, for all n and A ∈ Tq and elements x, y, z, x1,
x′1, . . . in A, we have that the congruence on A generated by identifying
the two sides of every equation to the left of the arrow in the quasi-
equation above identifies x with tn(v).
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