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Abstract. The aim of this paper is to prove that there is no finite basis for the
equations satisfied by tournaments. This solves a problem posted in Müller, Nešetřil
and Pelant [9].

0. Introduction

By a tournament we mean a directed graph with loops, such that for any two
distinct vertices a and b exactly one of the two cases, either a → b or b → a, takes
place.

For any tournament T we can define multiplication on T by setting ab = ba = b
whenever a → b. With respect to this multiplication, T becomes a groupoid (a
universal algebra with one binary operation). Moreover, T is uniquely determined
by this multiplication. As it is easy to see, the class of groupoids obtained from
tournaments in this natural way is just the class of commutative groupoids satisfy-
ing ab ∈ {a, b} for all a and b. (One could equivalently say: commutative groupoids,
every subset of which is a subgroupoid.) Because of the one-to-one correspondence,
we will identify tournaments with their corresponding groupoids. So, a tournament
is a commutative groupoid satisfying ab ∈ {a, b} for all a and b. For a tournament T ,
we have a → b if and only if ab = b.

A complete bibliography on algebraic representations of tournaments would in-
clude the papers [2], [3], [4], [5], [8] and [9].

One can easily check that tournaments satisfy, for example, the following equa-
tions:

(1) xx = x
(2) xy = yx
(3) x((xy)(xz)) = (xy)(xz)
(4) ((xy)z)y = ((xz)y)z
(5) ((xy)(xz))((xy)(yz)) = (xy)z

(On the other hand, the associative law is not satisfied.) It is natural to ask whether
a list of equations like this one is complete in the sense that any equation, satisfied
in all tournaments, would be derivable. Our main result, Theorem 3, states that
not only the five-item list is not complete, but there is no finite complete list of
equations for tournaments at all. That question has been first formulated in Müller,
Nešetřil and Pelant [9].
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1. Universal algebraic background

For the basics of universal algebra, the reader is referred to either [7] or [1]. We
are going to recall here only a few facts that are essential for the proof of our main
result.

A variety is a class of (general) algebras of the same similarity type that can be
defined by a set of equations. A variety is called finitely based if there is a finite set
B of equations satisfied in V , such that every equation satisfied in V is a (logical)
consequence of B. An arbitrary class of algebras (such as the class of tournaments)
is called finitely based if it generates a finitely based variety.

A variety is said to be locally finite if any finitely generated algebra in V is finite.
A variety is locally finite if and only if its free algebras on n generators, for any
positive integer n, are all finite.

For a variety V and a positive integer n, we denote by V n the variety of algebras
determined by the equations in at most n variables that are satisfied in V . In this
way we obtain a chain of varieties for any given variety V :

V 1 ⊇ V 2 ⊇ V 3 ⊇ · · · ⊇ V.

It is not difficult to see that an algebra belongs to V n if and only if all its subalgebras
generated by at most n elements belong to V .

One can easily prove that a locally finite variety V of algebras of a finite similarity
type is finitely based if and only if V = V n for at least one positive integer n.

In order to be able to apply this characterization to the variety of groupoids
generated by tournaments, we need to know that the variety is locally finite. This
will follow from the following observation.

Lemma 1. Let K be a class of finite algebras of a finite similarity type, closed
under forming of subalgebras. The variety V generated by K is locally finite if and
only if for every positive integer n there are, up to isomorphism, only finitely many
n-generated algebras in K.

Proof. If V is locally finite, then (for any n) the free n-generated algebra in V is
finite, so it has (up to isomorphism) only finitely many homomorphic images; these
include all the n-generated algebras in V .

In order to prove the converse, denote by Fn the algebra of terms over a set
of n variables, and by E the set of all the ordered pairs (t, s) of elements of Fn

that represent an equation t = s satisfied in V . Then E is a congruence of Fn and
Fn/E is the free n-generated algebra in V . An equation in n variables belongs to
E if and only if it is satisfied in all algebras in K, but we only need to check the
at most n-generated ones. If the set S of the n-generated algebras in K is finite
(it is sufficient to consider just the nonisomorphic ones), then E has only finitely
many blocks, since every block is uniquely determined by a function, assigning to
any algebra A ∈ S and any interpretation of the n variables in A an element of A;
consequently, the free algebra Fn/E is finite. ¤

The variety generated by tournaments will be denoted by T.

Corollary 2 (Crvenković and Marković [2]). The variety T is locally fi-
nite. ¤

Because of the lack of associativity, we need to distinguish between expressions
like (xy)z and x(yz). In order to avoid using too many parentheses, let us make
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the following convention: if parentheses are missing, they are always assumed to be
grouped to the left. So, for example, xy(z(uv)t) stands for (xy)((z(uv))t).

2. The variety T is not finitely based

Theorem 3. For every n ≥ 3 there exists a groupoid Mn with n+2 elements such
that Mn belongs to Tn but not to Tn+1. Consequently, the variety T (the variety
generated by tournaments) is not finitely based.

Proof. Put Mn = {a, b0, . . . , bn} and define commutative and idempotent multipli-
cation on Mn by

(1) ab1 = b0,
(2) abi = bi for i ≤ n− 1 and i 6= 1,
(3) abn = a,
(4) bibi+1 = bi for i < n− 1,
(5) bnbn−1 = bn,
(6) bibj = bmax(i,j) for |i− j| ≥ 2 and i, j < n,
(7) bnbi = bi for i < n− 1;

the other cases are given by commutativity and idempotency (see also Fig. 1).
Define terms t1, s1, t2, s2, . . . , tn, sn in n + 1 variables x, y1, . . . , yn as follows:

(1) t1 = y1 and s1 = xy1;
(2) ti = si−1yi and si = ti−1yi for 2 ≤ i ≤ n− 1;
(3) tn = tn−1yn−3yntn−1 and sn = sn−1yn−3yntn−1 if n ≥ 4, while t3 =

t2s1y3t2 and s3 = s2s1y3t2 if n = 3.

Finally, put t = s1tnsntn(xtn) and s = t(s1tn).
We are going to prove that the equation t = s is satisfied in any tournament.

There will be no confusion if we do not distinguish between a term and its value in
a tournament under an interpretation. We distinguish two cases:

If s1 = x, then
t = xtnsntn(xtn)

and
s = xtnsntn(xtn)(xtn) = xtnsntn(xtn) = t.

The other case is s1 = y1. Then we have t1 = s1, t2 = s2, . . . , tn = sn. Conse-
quently,

(∗) t = y1tn(xtn) and s = y1tn(xtn)(y1tn);

clearly, these two values are equal.
So, t = s in every tournament under any interpretation.
This means that the equation t = s is satisfied in T. On the other hand, we are

going to show that the equation is not satisfied in the groupoid Mn. Consider the
interpretation x → a, yi → bi. By induction on i = 1, . . . , n we can see that ti → bi

and si → bi−1. So, t → a and s → b0. Since a 6= b0, the equation t = s is not
satisfied in Mn.

We have proved that the groupoid Mn does not belong to T. Since it is generated
by n+1 elements, it follows that it does not belong to Tn+1. In order to prove that
it belongs to Tn, it is sufficient to show that every subgroupoid of Mn generated
by at most n elements belongs to T.
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If we remove either a or b1 from Mn, we obtain a subtournament. If we remove b0,
we must remove either a or b1 in order to obtain a subgroupoid. So, it is sufficient
to prove that, for any i = 2, . . . , n, Mn − {bi} is a subgroupoid belonging to T.
One can easily check that there are two congruences C1 and C2 of Mn − {bi} with
trivial intersection, such that both factors (Mn−{bi})/C1 and (Mn−{bi})/C2 are
tournaments: C1 is the congruence generated by (a, b0) and C2 is the congruence
generated by (b1, b0). (It is easy to see that {a, b0} and {bi−1, . . . , b0} are the only
non-singleton blocks of C1 and C2, respectively.) Consequently, Mn − {bi} is a
subdirect product of two tournaments (its factor groupoids by C1 and C2) and
hence belongs to T. ¤

3. Generalization to directed graphs

The one-to-one correspondence between tournaments and commutative groupoids
satisfying ab ∈ {a, b} can be naturally extended to a one-to-one correspondence be-
tween arbitrary directed graphs with loops (i.e., reflexive binary relations) and
arbitrary groupoids satisfying ab ∈ {a, b} for all a and b: we set ab = b if a → b,
and ab = a in the other case. These groupoids are called quasitrivial in some pa-
pers, e.g., in [6]. Here we will call them digraphs and identify them with directed
graphs with loops. Digraphs are precisely the groupoids such that every subset is
a subgroupoid. For two elements of a digraph, a → b if and only if ab = b.

The variety generated by digraphs will be denoted by D. This variety is again
locally finite, according to Lemma 1. The proof of Theorem 3 works, with the same
algebras Mn, even for this non-commutative case. There are only two changes to
be made:

First of all, replace the definition of s1 with s1 = xy1x. The second change is
that the equality of t and s in (∗) is not as clear as in the commutative case. But
it is again true. It follows from the fact that if s1 = y1, then xy1 = y1x = y1 and
the implication

xy = yx = y =⇒ (yz)(xz)(yz) = (yz)(xz)

is true in any digraph, which can be easily verified.
So, we know that also digraphs have no finite basis for their equations. In fact,

we have proved more:

Theorem 4. Let V be any variety contained in D and containing T. Then V is
not finitely based. ¤
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