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Abstract. We prove that for any variety V, the existence of an edge-term (defined in
[1]) and Jónsson terms is equivalent to the existence of a near-unanimity term. We also
characterize the idempotent Maltsev conditions which are defined by a system of linear
absorption equations and which imply congruence distributivity.

1. Introduction and notation

This note is about a very special kind of Maltsev condition that a variety V may
satisfy, namely the existence of a term t(x1, . . . , xm) satisfying in V a system of
equations εi, 1 ≤ i ≤ n in two variables x and y, where εi is

t(a1(i), . . . ,am(i)) ≈ x

and each aj(i) ∈ {x, y}. Each Maltsev condition of this kind is specified by an n×m
matrix (aj(i)) of x’s and y’s, or by a sequence a1, . . . ,am of members of {x, y}n (the
columns of the matrix). It is easy to see that this Maltsev condition is non-trivial—
i.e., is not satisfied by the variety of sets—precisely in case aj ∈ {x, y}n − {x}n for
1 ≤ j ≤ m.

Two classical examples of Maltsev conditions of this kind are A. Maltsev’s orig-
inal condition, expressed in the equations t(x, y, y) ≈ x and t(y, y, x) ≈ x; and the
existence of an m-ary near-unanimity term, expressed in the system of equations
t(x, . . . , x, y, x . . . x) ≈ x (where the lone y takes each of the m possible positions).
A term t obeying any non-empty system of equations of the kind we are consid-
ering, over a variety V, is idempotent over V, by which we mean that it obeys the
equation t(x, . . . , x) ≈ x over V. The equations σ ≈ τ we are considering are lin-
ear absorption equations, meaning that τ is a variable x (any variable occuring in
σ is “absorbed” into x), and neither σ nor τ contains an explicit composition of
operations (they are “linear” terms).

A Maltsev condition given by a set Σ of equations is called idempotent iff for
each operation symbol f appearing in Σ, the equation f(x, . . . , x) ≈ x is implied by
Σ. We believe it is an interesting open question whether every variety that satisfies
some non-trivial idempotent Maltsev condition consisting of absorption equations
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must satisfy a non-trivial Maltsev condition of the kind we consider here, namely a
condition defined by finitely many linear absorption equations in two variables and
one operation symbol.

This kind of Maltsev condition has already been considered at length in [1] where
a variety satisfying a non-trivial such condition is said to have a “cube term”. The
following definition comes from that paper.

Definition 1.1. Let Γ = {a1, . . . ,am} be a non-void subset of {x, y}n−{x}n. For
a variety V, and a V-term t = t(x1, . . . , xm), we say that t is a Γ-special cube term
for V if t satisfies in V the equations εi, 1 ≤ i ≤ n, where εi is

t(a1(i), . . . ,am(i)) ≈ x.

When Γ = {x, y}n−{x}n, we call such a term just an (n-dimensional) cube term
for V. When Γ consists precisely of all the vectors in {x, y}n−{x}n which have one
value equal to y and one more vector which is equal to y at the first two positions
and to x elsewhere, this is called an (n-dimensional) edge term for V. Finally, when
Γ consists exactly of all the vectors in {x, y}n − {x}n which have one value equal
to y, this is just a near-unanimity term. We will call the equations εi the defining
equations of the term t.

We note that when ∅ 6= Γ ⊆ Γ′ ⊆ {x, y}n − {x}n, every variety with a Γ-special
cube term t also has a Γ′-special cube term t′. (One can construct t′ by adding
“dummy variables” to t.) Thus every variety that has a Γ-special cube term, where
Γ ⊆ {x, y}n − {x}n, has also an n-dimensional cube term.

In the paper [1] it was proved that V has an n-dimensional edge term iff it has
an n-dimensional cube term. Thus, if V has a Γ-special cube term for some Γ, then
it has a cube term and an edge term of the same dimension. When V = V(A) for
some finite algebra A, the condition to have a cube term was proved in [1] to be
equivalent to V having few subpowers (the logarithm of the number of subuniverses
of An is bounded from above by a polynomial in n and |A|). The same paper
contains a proof that a congruence distributive variety V has an n-dimensional
edge term iff it has an n-ary near-unanimity term.

It is our purpose in this note to present an alternative proof of the same fact
(without the precise dimension), with several other equivalent conditions proved.
We believe this alternative proof is interesting and contains some novel ideas that
might be useful elsewhere.

Now we need a few technical definitions:

Definition 1.2. Let Γ = {a1, . . . ,am} ⊆ {x, y}n−{x}n. We define a matrix M(Γ)
with n rows and m columns to be M(Γ)(i, j) = 0 when aj(i) = x and M(Γ)(i, j) = 1
when aj(i) = y.

Definition 1.3. Let Γ be as above. We say that Γ satisfies the divisibility property
when

(1) there exists a linear combination of rows of M(Γ) with integer coefficients
which is equal in Zm to a constant row of k, where k is a positive integer
and
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(2) for each prime divisor p of k there exists a linear combination of rows of
M(Γ) with positive integer coefficients such that each entry in the resulting
row (in Zm) is congruent to 1 modulo p.

Definition 1.4. [5] Let S be a subset of Aκ. We say S is totally symmetric if for
any a ∈ S and any permutation π ∈ Sym(κ), we have that aπ ∈ S, where aπ(i) :=
a(π−1(i)). Clearly, if a subalgebra of Aκ has a totally symmetric generating set,
then it is totally symmetric.

We assume that the reader is familiar with basic notions and results of univer-
sal algebra. Good textbooks are [2] and [6]. For the Abelian algebras, the term
condition and congruence modular varieties, see [3].

2. Main result

Theorem 2.1. The following are equivalent, for a variety V:

(1) V is congruence distributive and admits an edge term t.
(2) V admits a Γ-special cube term s such that the corresponding Maltsev con-

dition is not satisfied by any nontrivial module over any ring.
(3) V admits a Γ-special cube term s such that the corresponding Maltsev condi-

tion is not satisfied by any nontrivial vector space over the field of rationals
Q and not satisfied by any nontrivial vector space over the field Zp for any
prime p.

(4) V admits a Γ-special cube term s such that Γ satisfies the divisibility prop-
erty.

(5) V admits a near-unanimity term.

Proof. (1) ⇒ (2) : Let t = t(x1, x1, . . . , xm) be the edge term for V. Let p1(x, y, z),
. . . , pk(x, y, z) be Jónsson terms for V witnessing that V is congruence distributive
(see [4]). We can assume that k is even. Thus V satisfies the equations

pi(x, y, x) ≈ x for 1 ≤ i ≤ k

p1(x, y, y) ≈ x

pi(x, x, y) ≈ pi+1(x, x, y) for i odd, 1 ≤ i < k

pi(x, y, y) ≈ pi+1(x, y, y) for i even, 2 ≤ i < k

pk(x, y, y) ≈ y .

We define a sequence of terms s0, . . . , sk. We put s0 = t, and given si−1 =
si−1(z1, . . . , zn), then define

si = si−1(pi(z1, z2, z3), . . . , pi(z3n−2, z3n−1, z3n)).

Call the term s′ := sk. It has l = m3k many variables. Now define

s := s′(s′(z1, . . . , zl), . . . , s′(zl(l−1)+1, . . . , zl2)) ,
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the term obtained by replacing all variables in s′ by instances of s′ with different
variables. Let the absorption equations s(u1, . . . ,u`2) ≈ x in two variables, u ∈
{x, y}n, satisfied by s in V be S = {ε1, . . . , εn}.

Now, from the fact that we get t as identification of blocks of variables of s′

and therefore of s as well, the defining equations of t must be consequences of the
equations in S. Therefore s is a Γ-special cube term with defining equations S;
and analogously, s′ is a Γ′-special cube term with defining equations S′. Moreover,
each of the pi can also be obtained by identifying variables of s, even of s′, and
therefore some of the equations in S express the fact that for all i, pi(x, y, x) = x,
that p1(x, y, y) = x and that pk(y, x, x) = x.

It remains to show that no non-trivial module has a term operation satisfying
all equations in the set S. Assume that there is a module M with a term operation
that models S. We write sM for this operation. For 1 ≤ i ≤ k, let qi(x, y, z) the
term obtained from s by identification of variables that equals pi(x, y, z) in V. Let
qM
i be the term operation of M obtained from sM by the same identification of

variables. We shall show that qM
1 , . . . , qM

k are Jónsson operations for M. Since no
non-trivial module has term operations that satisfy Jónsson’s equations, this will
be a contradiction. The contradiction will complete our proof of (1) ⇒ (2).

The equations qi(x, y, x) ≈ x, q1(x, y, y) ≈ x and qk(y, x, x) ≈ x belong to the set
S, and so they hold in 〈M, sM〉. We show that 〈M, sM〉 |= q1(x, x, y) ≈ q2(x, x, y).
The same argument will establish each of the other Jónsson equations for 〈M, sM〉.
To this end, for 0 ≤ j ≤ l, define a V-term

hj(x, y, z) = s′(q1(x, y, z), . . . , q1(x, y, z), q2(x, y, z), . . . , q2(x, y, z))

(the first j instances of variables of s′ are replaced by q1(x, y, z), while the re-
maining ones are replaced by q2(x, y, z)). Replacing each occurence of a qi(x, y, z)
in hj by the V-term which is s′ applied to a certain sequence of the variables
{x, y, z} and which equals qi(x, y, z) in V, we obtain a term mj(x, y, z) that is
V-equivalent to hj(x, y, z) and has the form of s applied to an appropriates se-
quence of variables drawn from {x, y, z}. Note that m0(x, y, z) = q2(x, y, z) and
mk(x, y, z) = q1(x, y, z) identically. We are going to prove that

〈M, sM〉 |= mj(x, x, y) ≈ mj+1(x, x, y)

for all 0 ≤ j < l from which we conclude that 〈M, sM〉 models

q1(x, x, y) = mk(x, x, y) ≈ m0(x, x, y) = q2(x, x, y) .

So let 0 ≤ j < l. Since s′ is a Γ′-special cube term, there exists an absorption
equation in two variables ε : s′(z1, . . . , zl) ≈ x (each zi is either x or y) such
that zj+1 = y. Therefore, by substituting all y in ε by q2(x, x, y) we obtain the
same result x (by the Substitution Rule of equational logic), and so we have a new
absorption equation. Replacing in this new equation the occurrence of q2(x, x, y)
which is in place of zj+1 by q1(x, x, y), we get a second new absorption equation.
These equations can be rewritten naturally as two members of S, εi1 and εi2 (εi2 ∈ S
since εi1 ∈ S and V |= q2(x, x, y) ≈ q1(x, x, y)). So, in particular, the equality of
the two terms on the left hand side of these two equations is derivable from S. The
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equality of these terms can be expressed as a valid equation of 〈M, sM〉 in the form

M |= sM(u1, . . . , ul2) ≈ sM(v1, . . . , vl2)

where ui, vi ∈ {x, y} and ui 6= vi only for some i in the range lj + 1 ≤ i ≤ l(j + 1).
Since M is an Abelian algebra, an application of the term condition to the displayed
equation yields that M |= mj(x, x, y) ≈ mj+1(x, x, y), as we desired.

(2) ⇒ (3) is immediate.

(3) ⇒ (4) : Assume that V has a Γ-special cube term t = t(x1, . . . , xm) and the
defining equations of t cannot be modelled in any nontrivial vector space over the
rational field, or the field Zp for any prime p. Notice that a term t(x1, . . . , xm) in
any nontrivial vector space over a field F must have the form

t =
m∑

i=1

bixi,

where bi are elements of the field. To say that the equation εi (from the Definition
1.1) holds in this vector space is equivalent to saying that the sum of all coefficients
bj such that aj(i) = y is equal to 0, while the sum of the remaining bj is equal to
1. Let Yi = {j|aj(i) = y}. Therefore, the vector space will have a term satisfying
all of the equations εi iff the system of equations

m∑
j=1

bj = 1

∑
j∈Y1

bj = 0

...∑
j∈Yn

bj = 0

has a solution in Fm.
We claim that such a solution of the above system of equations will exist iff the

row vector 1 := 〈1, 1, . . . , 1〉 ∈ Fm is not in the subspace of Fm generated by the
row vectors of M(Γ). If a solution exists, then the row vector 1 obviously can’t be
in the subspace of Fm generated by the row vectors of M(Γ), as this would imply
that 0 = 1 in F. On the other hand, if the row 1 is not in the subspace of Fm

generated by the row vectors of M(Γ), and the rank of M(Γ) is r, then the matrix
of the above system of equations has the rank r + 1. Consider the augmented
matrix of the system (with the added column of results). It also has the rank r +1,
because if we take a square submatrix M ′ which contains the column of results, it
will be regular iff the first row (the row 1) is included in M ′ and the submatrix
of M ′ obtained by deleting the first row and last column is regular. But, this is
a square submatrix of M(Γ), so it must have dimension at most r. Therefore, by
Kronecker-Capelli’s theorem, the system has a solution.
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The converse of the above Claim implies that when the Maltsev condition cor-
responding to a Γ-special cube term t fails in some nontrivial vector space over Q,
then there exist rational numbers q1, . . . , qn such that

n∑
i=1

qiχYi
(1) =

n∑
i=1

qiχYi
(2) = · · · =

n∑
i=1

qiχYi
(m) = 1,

where χYi
is the characteristic function of the set Yi. Let k be the least common

multiple of the denominators of all the rationals qi and let mi = qik. Then the last
system of equations implies that there are integers mi such that

n∑
i=1

miχYi(1) =
n∑

i=1

miχYi(2) = · · · =
n∑

i=1

miχYi(m) = k,

the first condition of the divisibility property.
The second condition is obtained by an analogous argument, with F = Zp, for

each prime divisor p of k.
(4) ⇒ (5) : Let V be a variety admitting a Γ-special cube term t which satisfies

the divisibility property. We may assume V is idempotent, otherwise just take
the idempotent reduct of the V-free algebra in a countable set of free generators
(considered as a clone on itself) and generate a variety V ′. If we prove V ′ has a
near-unanimity term, then the result for V follows.

Let F = F(x, y) be the free algebra in V freely generated by {x, y}. Let yi,
i ∈ ω be the elements of Fω such that yi(i) = y and yi(j) = x, for j 6= i and let
G ≤ Fω be the subalgebra generated by {yi : i ∈ ω}. It is easy to see that V has
a near-unanimity term iff G contains the vector x which is constantly equal to x.
In order to prove that this is so, we shall establish a series of claims about G. The
first one should be obvious.

Claim 1. G is a totally symmetric subpower of F; and for every a ∈ G and all but
finitely many i ∈ ω, a(i) = x.

•
Let H be the subalgebra of Fω consisting of all functions that take the value x for

all but finitely many integers i ∈ ω. Thus G ≤ H. For elements a ∈ H, we adopt
the notation a = aj1

1 aj2
2 . . . ajl

l to mean that a(i) = ar when
∑r−1

s=1 js < i ≤
∑r

s=1 js,
while a(i) = x when

∑l
s=1 js < i. Now we can define “concatenation”, an operation

on H by:
ab = aj1

1 aj2
2 . . . ajl

l bk1
1 bk2

2 . . . bkr

l

when a = aj1
1 aj2

2 . . . ajl

l and b = bk1
1 bk2

2 . . . bkr

l . Although G is not closed under
“concatenation”, we will use it as a notational shortcut.

Without loss of generality, assume that the first row of M(Γ) is of the form
〈0, . . . , 0, 1, . . . , 1〉, where the first s elements are 0, and the remaining m − s are
1. We can assume that s > 0, for if s = 0 then V |= x ≈ y and V certainly has a
near-unanimity term. For 1 ≤ i ≤ s, we define ui ∈ F to be t(x, . . . , x, y, x, . . . , x)
(y is at the ith position in t). By the definition of Γ-special cube terms, there must
exist at least one defining equation ε of t such that on the left hand side of ε at
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the ith position of t there is y (otherwise the ith member of Γ would be in {x}n).
We define vi ∈ F to be the result of t applied to a tuple of x’s and y’s equal to the
tuple on the left hand side of ε, except at the ith position, where it is equal to x.

Claim 2. For each tuple a = ar1
1 · · · arl

l ∈ G, all 1 ≤ i ≤ s and all j ≥ 0, the tuple
auj

iv
j
i is also in G.

Given i, let ε be the defining equation used to define vi. We apply the term t in
G to a tuple of y1, y2 and y3’s, so that y1’s are in the positions where xs are in ε,
y2 is in the ith position and y3’s are in the remaining positions of t. The resulting
element of G is, obviously, yuivi. Because of the total symmetry of G, the tuples
of the form xpyxquivi ∈ G. Now, a = p(y1, . . . ,yr) for some term p and r ∈ ω.
Therefore,

p(yxr−1uivi, . . . , x
j−1yxr−juivi, . . . , x

r−1yuivi) = auivi.

Now we can inductively prove that if auj
iv

j
i ∈ G, then auj

iv
j
i uivi ∈ G, and then

because of total symmetry of G, we get auj+1
i vj+1

i ∈ G. •
Now we fix k ∈ ω to be the number from the first condition of the divisibility

property of t.

Claim 3. If auk
i ∈ G, or avk

i ∈ G, then a ∈ G. Also, if a ∈ G, then auk
i ∈ G and

avk
i ∈ G.

To prove the first sentence of this Claim, let us first rephrase the first condition
of the divisibility property: We know that there exist two finite sequences of the
defining equations of t, S+ and S− (equations can be repeated in each sequence),
such that the sum of occurrences of variable y at any coordinate of t in S+ is by k
greater than the sum of occurrences of y at the same coordinate in S−. Let there
be nj many y’s at the jth coordinate of t in the sequence S− (hence, clearly, there
are nj + k many y’s at the jth coordinate of t in the sequence S+).

Assume auk
i ∈ G. Let the length of the word representing a be α, and let β and

γ be the lengths of the sequences of equations S+ and S−, respectively. By the
Claim 2, elements a′j of the form au

nj+k
i v

nj

i ∈ G, for all 1 ≤ j ≤ m. We can also
use the total symmetry of G to insert any number of letters x between the letters
of the word representing a′j and still obtain a word representing an element of G.
Therefore, aj ∈ G, where we define aj by:

• for 1 ≤ l ≤ α, aj(l) = a(l),
• for α < l ≤ α + β, aj(l) = ui if the (l − α)th equation of S+ has y at the

jth coordinate of t and aj(l) = x otherwise,
• for α + β < l ≤ α + β + γ, aj(l) = vi if the (l − α − β)th equation of S−

has y at the jth coordinate of t and aj(l) = x otherwise, and
• for α + β + γ < l, aj(l) = x.

We claim that t(a1, . . . ,am) = a. Clearly, by the idempotence, t(a1, . . . ,am)(l) =
a(l) for 1 ≤ l ≤ α or α + β + γ < l. For the remaining coordinates l we use the
substitutions y 7→ ui and y 7→ vi and the fact that S+ and S− consist of defining
equations of t to obtain t(a1, . . . ,am)(l) = x = a(l). To finish the proof of the first
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sentence of this Claim, just notice that we can interchange ui and vi in the above
proof.

The second sentence of the Claim follows from the first one and the fact that if
a ∈ G, then by the Claim 2, auk

i vk
i ∈ G. •

We denote by P (l) the property of a positive integer l that for all finite sequences
a in F, a ∈ G iff aul

i ∈ G. The above Claim proves P (k).

Claim 4. For any positive integer l such that l|k and any prime q|l, if P (l), then
P (l/q).

To prove this Claim we use the second part of the divisibility property, for the
prime q. We restate this condition similarly as in the previous Claim, and state
that there exists a finite sequence of defining equations of t (we again are allowing
repetition of equations), S+, such that for each position j of the term t, the variable
y occurs kjq + 1 many times at the jth position of t, for some integer kj ≥ 0.
Consider the sequence S′ of the defining equations of t which is equal to l/q many
copies of the sequence S+ concatenated. The sequence S′ has the property that
the variable y occurs kj l + (l/q) many times at the jth position of t.

Now assume that aui

l
q∈ G. Then for 1 ≤ j ≤ m, a′j = au

kj l+
i

l
q∈ G, by P (l).

Also assume that the length of the word representing a is α and the length of the
sequence S′ is β. Analogously as in the proof of the previous Claim, we use the
total symmetry of G to “insert” letters x in the appropriate places in the word for
a′j to get that aj ∈ G, where aj is defined by:

• for 1 ≤ r ≤ α, aj(r) = a(r),
• for α < r ≤ α + β, aj(r) = ui if the (r − α)th equation of S′ has y at the

jth coordinate of t and aj(r) = x otherwise,
• for α + β < r, aj(r) = x.

We claim that t(a1, . . . ,am) = a. Clearly, by the idempotence, t(a1, . . . ,am)(r)
= a(r) for 1 ≤ r ≤ α or α + β < r. For the remaining coordinates r we use the
substitutions y 7→ ui and the fact that S′ consists of defining equations of t to
obtain t(a1, . . . ,am)(r) = x = a(r).

To finish the proof of this Claim just notice that if a ∈ G, then aul
i ∈ G by P (l)

and then by the already proved direction of P (l/q) applied q− 1 times, aui

l
q∈ G.•

From the last Claim, it is obvious that P (1) holds. Notice that

t(y1,y2, . . . ,ys,ys+1,ys+1, . . . ,ys+1) = u1u2 . . . us ∈ G.

As we have proved that we can “erase” ui (and i ≤ s was any fixed index), we
deduce that the constant tuple x ∈ {x}ω is also in G. This means that for some
large l, there exists a term p such that p(y1, . . . ,yl) = x, and that means that the
equations of the form p(x, . . . , x, y, x, . . . , x) = x (y is in any position) hold in F.
As F(x, y) is the V-free algebra, this means that p is an l-ary near-unanimity term
for V.

(5) ⇒ (1) is a consequence of the fact that a near-unanimity term implies both
the edge term (see [1]) and congruence distributivity. •
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We are able to prove that (1) ⇒ (5) directly, as well. This other proof, on the
other hand, fails to give us the useful criterion (4) which recognizes exactly which Γ-
special cube terms imply congruence distributivity, and is less aesthetically pleasing.
The reader can find this other proof in [1]). We quote the exact result below:

Theorem 2.2. A variety V is congruence distributive and has a k + 1-ary edge
term t iff V has a k-ary near-unanimity term s (k ≥ 3).

•
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