Optimal strong Mal'cev conditions for omitting type 1 in locally finite varieties

Keith Kearnes, Petar Marković, and Ralph McKenzie

Abstract. We show that the class of locally finite varieties omitting type $\mathbf{1}$ has the following properties. This class
(1) is definable by an idempotent, linear, strong Mal'cev condition in a language with one 4 -ary function symbol.
(2) is not definable by an idempotent, linear, strong Mal'cev condition in a language with only one function symbol of arity strictly less than 4 .
(3) is definable by an idempotent, linear, strong Mal'cev condition in a language with two 3 -ary function symbols.
(4) is not definable by an idempotent, linear, strong Mal'cev condition in a language with function symbols of arity less than 4 unless at least two of the symbols have arity 3 .

1. Introduction

In [12], W. Taylor identified the weakest nontrivial idempotent Mal'cev condition, namely the one we now call "existence of a Taylor term". The class of locally finite varieties having a Taylor term was characterized in other ways by Hobby and McKenzie in [7], namely it is the class of locally finite varieties omitting type $\mathbf{1}$ and it is also the class of locally finite varieties with a weak difference term. More recently [9] and [1] have useful new Mal'cev conditions equivalent to Taylor's for locally finite varieties.

The most surprising recent result on this topic was the discovery of M. Siggers [11] that the property of omitting type $\mathbf{1}$ is equivalent to a strong Mal'cev condition for locally finite varieties. Siggers proved that the class of locally finite varieties omitting type $\mathbf{1}$ is definable within the class of all locally finite varieties as the subclass of varieties with a 6 -variable Taylor term. To do this, he used a result of P. Hell and J. Nešetřil from [5]. In this note we strengthen Siggers' result to obtain optimal strong Mal'cev conditions for omitting type 1 using the generalization of the Hell-Nešetřil theorem that was proved by L. Barto, M. Kozik and T. Niven in [2]. The strong Mal'cev conditions expressing the omission of type $\mathbf{1}$ are those of Theorem 2.2 and Corollaries 3.1 and 3.2 , while the optimality of the conditions is established in Theorem 3.4.

[^0]By a strong Mal'cev condition we mean a finite set of identities in some language.

Informally, a strong Mal'cev condition is realized in an algebra \mathbf{A} (or variety \mathcal{V}) if there is a way to interpret the function symbols appearing in the condition as term operations of \mathbf{A} (or \mathcal{V}) so that the identities in the Mal'cev condition become true equations in \mathbf{A} (or \mathcal{V}).

More formally, let \mathcal{L} be a language and let $X=\left(x_{1}, x_{2}, \ldots\right)$ be a sequence of distinct variables. For each function symbol f of \mathcal{L} of arity n, call the term $f\left(x_{1}, \ldots, x_{n}\right)$, whose variables are the first n variables of X, an elementary \mathcal{L} term. Let Σ be a strong Mal'cev condition in the language \mathcal{L}. We say that Σ is realized in a clone \mathcal{C} (of an algebra or variety) if for each n-ary function symbol f of \mathcal{L} it is possible to assign to the elementary term $f\left(x_{1}, \ldots, x_{n}\right)$ an n-ary element of \mathcal{C} in such a way that the assignment extends to a homomorphism of the \mathcal{L}-term algebra over X into \mathcal{C} such that Σ is a subset of the kernel of that homomorphism. (In the case where \mathcal{C} is the clone of a variety \mathcal{V} we will write $f\left(x_{1}, \ldots, x_{n}\right) \mapsto t^{\mathcal{V}}$ to indicate that the elementary term $f\left(x_{1}, \ldots, x_{n}\right)$ has been assigned $t^{\mathcal{V}}$, where $t^{\mathcal{V}}$ denotes the \mathcal{V}-equivalence class of the n-ary \mathcal{V}-term t.)

An operation f on a set A is idempotent if $f(x, x, \ldots, x)=x$ for all $x \in A$. A strong Mal'cev condition Σ is idempotent if it asserts the idempotence of each of its function symbols, i. e., if $\Sigma \models f(x, x, \ldots, x) \approx x$ for each function symbol f appearing in Σ. A term t is linear if it involves at most one function symbol. An identity $s \approx t$ is linear if both s and t are linear. A strong Mal'cev condition is linear if its identities are linear. The strong Mal'cev conditions considered in this paper are idempotent and linear.

An idempotent strong Mal'cev condition Σ is called a Taylor condition unless it can be realized in every variety, equivalently, if it cannot be realized in the variety of sets. (In practice the property of being a Taylor condition is established by showing that Σ cannot be realized in a way where all the function symbols of Σ interpret as projection operations.) If, moreover, the language \mathcal{L} of Σ has exactly one operation symbol, say f, then in a realization defined by $f\left(x_{1}, \ldots, x_{n}\right) \mapsto t^{\mathcal{V}}$ of Σ in a variety \mathcal{V}, the term t is called a Taylor term for \mathcal{V}.

The definitions and basic results of universal algebra can be found in the textbooks [4] and [10], while type 1 and similar notions of tame congruence theory are defined and developed in the monograph [7].

2. 'Omitting type 1' expressed with one 4 -ary term

To prove the result from the title of this section, we need some graphtheoretic definitions which we take from [6] and modify to allow for symmetric edges. A directed graph, or digraph, is just a relational structure with signature consisting of one binary relation; elements of the universe are called vertices, while elements of the relation are called edges. A vertex x is a source
when $x \in V-\pi_{2}(E)$, and x is a sink when $x \in V-\pi_{1}(E)$. An oriented path p in a directed graph $G=(V, E)$ is a pair of finite sequences, one of vertices $v_{0}, v_{1}, \ldots, v_{n}$ and one of edges $e_{1}, e_{2}, \ldots, e_{n}, n \geq 0$, so that for all i, $e_{i}=v_{i-1} v_{i}$ or $e_{i}=v_{i} v_{i-1}$. The edges of the former kind are called forward edges of p and the edges of the latter kind are backward edges of p. A path p is closed if $v_{0}=v_{n}$. The equivalence relation on V which is the reflexive closure of the relation " u and v are endpoints of some oriented path" is called weak connectedness. The difference between the number of forward edges and the number of backward edges of an oriented path p is called algebraic length of p, written $A l(p)$. The algebraic length of a component C of weak connectedness of a digraph is the least $n>0$ so that there exists a closed oriented path p in C such that $A l(p)=n$, or 0 if no such path exists.

A useful special case of the main result of [2] is the Loop Lemma:
Lemma 2.1. (Theorem 8.1 of [2]) If a digraph without sources and sinks is compatible with a weak near-unanimity operation and has a weakly connected component of algebraic length 1, then this component contains a loop.

Theorem 2.2. A locally finite variety \mathcal{V} omits type $\mathbf{1}$ iff there exists a 4-ary term t such that
(1) $\mathcal{V} \vDash t(x, x, x, x) \approx x$ and
(2) $\mathcal{V} \models t(x, y, z, y) \approx t(y, z, x, x)$.

Proof. (\Leftarrow) Item (2) is not satisfied by any projection operation, hence together with (1) implies that t is a Taylor term. This is enough to establish that \mathcal{V} omits type 1 (see [7], Lemma 9.4 and Theorem 9.6).
(\Rightarrow) Let \mathcal{W} be the idempotent reduct of \mathcal{V}, which is the variety whose clone is the clone of idempotent term operations of \mathcal{V} and whose fundamental operations are the distinct elements of this clone. \mathcal{W} is a locally finite, idempotent variety. If there is a 4-ary term t for \mathcal{W} such that $\mathcal{W} \models t(x, y, z, y) \approx$ $t(y, z, x, x)$, then there is also a term t for \mathcal{V} such that $\mathcal{V} \models t(x, x, x, x) \approx x$ and $\mathcal{V} \models t(x, y, z, y) \approx t(y, z, x, x)$.

According to [9], \mathcal{V} has a weak near-unanimity term $w\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and since w is an idempotent \mathcal{V}-term, then \mathcal{W} also has a weak near-unanimity term. Now let $\mathbf{F}=\mathbf{F}_{\mathcal{W}}(x, y, z)$ and let \mathbf{E} be the subalgebra of \mathbf{F}^{2} generated by $\{\langle x, y\rangle,\langle y, z\rangle,\langle z, x\rangle,\langle y, x\rangle\}$. Clearly, the first and second projections of \mathbf{E} are both equal to all of \mathbf{F}, as we can get any element of F by applying the appropriate 3 -variable \mathcal{W}-term to the first three generators of \mathbf{E}. Therefore, \mathbf{E} is subdirect in \mathbf{F}^{2}, and this means that the digraph $G=(F, E)$ with vertex set F and edge set E is without sources and sinks. Moreover, as the weak near-unanimity term w is among the fundamental operations of the variety \mathcal{W}, E is invariant under the weak near-unanimity operation $w^{\mathbf{F}}$ applied coordinatewise. Finally, the (weakly connected) component of G containing x, y and z has algebraic length 1 as it contains the path $x \leftarrow y \rightarrow z \rightarrow x$. According to Lemma 2.1, the component of G containing x, y and z must
contain a loop $a \rightarrow a$. So, there must exist a term operation t of \mathcal{W} such that $t^{\mathbf{E}}(\langle x, y\rangle,\langle y, z\rangle,\langle z, x\rangle,\langle y, x\rangle)=\langle a, a\rangle$, which means that $t^{\mathbf{F}}(x, y, z, y)=a=$ $t^{\mathbf{F}}(y, z, x, x)$. But this forces the 3 -variable identity $t(x, y, z, y) \approx t(y, z, x, x)$ to hold in \mathcal{W}.

3. Optimal strong Mal'cev conditions

If one desires to express the property of omitting type $\mathbf{1}$ in locally finite varieties via a Taylor condition that uses only 2 -variable identities, a number of such conditions can be derived from the condition of Theorem 2.2. Probably the most intriguing is the following

$$
t(x, x, x, x) \approx x, t(x, y, x, y) \approx t(y, x, x, x) \quad \text { and } \quad t(y, x, x, x) \approx t(x, x, y, y)
$$

which, after reversing the order of variables $e(z, y, x, w):=t(w, x, y, z)$, becomes

$$
\begin{equation*}
e(x, x, x, x) \approx x \quad \text { and } \quad e(y, y, x, x) \approx e(y, x, y, x) \approx e(x, x, x, y) \tag{1}
\end{equation*}
$$

If the equations above stipulated that furthermore $e(y, y, x, x) \approx x$, then this would be the 3 -edge term of [3], a condition equivalent to all subuniverses of \mathbf{A}^{n} having at most $O\left(n^{2}\right)$ many generators. In accordance with terminology of [9], we call the condition (1) the weak 3-edge term. We state the observation of this paragraph as a corollary to Theorem 2.2:

Corollary 3.1. A locally finite variety \mathcal{V} omits type 1 iff it has a weak 3 -edge term.

Proof. The paragraph preceding the statement of the corollary explains how to derive from Theorem 2.2 that a locally finite variety omitting type $\mathbf{1}$ has a weak 3-edge term. To prove the converse, just note that the equations (1) can not be satisfied by any projection.

Corollary 3.1 may be viewed as a refinement of Theorem 2.2, in that the identities involve fewer variables. A different refinement of Theorem 2.2, involving terms of smaller arity, was observed by Miklós Maróti [8]:

Corollary 3.2. A locally finite variety \mathcal{V} omits type $\mathbf{1}$ iff it has ternary terms p and q such that $\mathcal{V} \models p(x, x, x) \approx x \approx q(x, x, x)$ and
(1) $\mathcal{V}=p(x, y, y) \approx q(y, x, x) \approx q(x, x, y)$ and
(2) $\mathcal{V} \mid=p(x, y, x) \approx q(x, y, x)$.

Proof. If \mathcal{V} omits type $\mathbf{1}$, then it has a 4 -ary term t as described in Theorem 2.2. Then $p(x, y, z):=t(x, x, y, z)$ and $q(x, y, z):=t(x, y, z, z)$ satisfy the required identities. Conversely, the given identities for p and q cannot be realized by projections, so they force \mathcal{V} to omit type $\mathbf{1}$. (Argument: If p and q are projections, then the identities in (1) force q to be second projection and p to be first projection. But this is incompatible with the identity in (2).)

Now we turn to proving that there are no idempotent, linear, strong Mal'cev conditions for omitting type $\mathbf{1}$ in strictly simpler languages than those we have given in Theorem 2.2 and Corollaries 3.1 and 3.2.

Lemma 3.3. Let Σ be an idempotent, linear, strong Mal'cev condition in a language \mathcal{L}, and let Σ_{0} be the set of all linear consequences of Σ that involve no function symbols of arity strictly less than 3. Either
(1) Σ and Σ_{0} are realized by the same varieties, or
(2) $\Sigma \models q(x, y) \approx q(y, x)$ for some binary function symbol q of \mathcal{L}.
(Or both.)
Proof. We may assume that the symbols of \mathcal{L} are only those that appear in Σ. No 0-ary function symbols appear in Σ, since Σ is idempotent, so the language \mathcal{L} has finitely many function symbols, all of arity at least 1 .

Let \mathcal{F}_{0} be the set of function symbols of arity at least 3 and let $f_{i}, 0 \leq i<m$, be the remaining binary and unary function symbols. Let $\mathcal{F}_{i+1}=\mathcal{F}_{i} \cup\left\{f_{i}\right\}$. Let Σ_{i} be the linear consequences of Σ that involve only the function symbols in \mathcal{F}_{i}. (When $i=0$ we are repeating the original definition of Σ_{0}.) Then

$$
\Sigma_{0} \subseteq \Sigma_{1} \subseteq \cdots \subseteq \Sigma_{m}
$$

and Σ_{m} is logically equivalent to Σ. If Σ_{0} is inconsistent (i. e. if $\Sigma_{0} \models x \approx y$), then so are the supersets Σ_{i}. Conversely, if $\Sigma_{m}(\equiv \Sigma)$ is inconsistent, then the definitions of the Σ_{i} guarantee that $x \approx y$ belongs to each of them. This situation, where Σ and all Σ_{i} are inconsistent, is a case where Item (1) of the theorem holds, so for the rest of the proof we assume that all Σ 's are consistent.

Any realization of Σ is a realization of Σ_{m} and hence also a realization of each of the subsets Σ_{i}. The proof of the theorem will be effected by showing that, conversely, if the obstruction $\Sigma \models q(x, y) \approx q(y, x)$ is avoided, then for each i any realization of Σ_{i} in a variety \mathcal{V} can be lifted to a realization of Σ_{i+1} in the same variety. Consequently, if the obstruction is avoided, then any realization of Σ_{0} can be lifted to a realization of $\Sigma_{m}(\equiv \Sigma)$. There are only two essentially different cases: one where \mathcal{F}_{i+1} is obtained from \mathcal{F}_{i} by adding a unary function symbol f_{i} and the other where it is obtained by adding a binary function symbol f_{i}.

We alert the reader that in order to lift a realization of Σ_{i} to a realization of Σ_{i+1} we shall first define a subset $\Sigma_{i+1}^{\circ} \subseteq \Sigma_{i+1}$ that is formally simpler yet logically equivalent to the whole set Σ_{i+1}. We shall lift a given realization of Σ_{i} to a realization of the subset Σ_{i+1}°, then use the logical equivalence of Σ_{i+1}° with Σ_{i+1} to declare the lift to Σ_{i+1}° to be a realization of Σ_{i+1}.
Case 1. $\left(\mathcal{F}_{i+1}=\mathcal{F}_{i} \cup\left\{f_{i}\right\}\right.$ where $f_{i}=: p$ is unary. $)$ Each realization of Σ_{i} in a variety \mathcal{V} can be lifted to a realization of Σ_{i+1} in \mathcal{V}.

Any identity in $\Sigma_{i+1}-\Sigma_{i}$ must involve p on one side or on both sides, hence must be of one of the forms:
(1.a) $p(v) \approx t$ where t is a linear term whose function symbols are from \mathcal{F}_{i} or
(1.b) $p(u) \approx p(v)$ where u, v are (not necessarily distinct) variables.

Moreover, since the original set Σ was idempotent, it follows that each Σ_{j} is also idempotent, so $p(v) \approx v$ must be in Σ_{i+1} for each variable v.

Suppose that some identity $p(v) \approx t$ of the form (1.a) belongs to $\Sigma_{i+1}-\Sigma_{i}$, so that both $p(v) \approx t$ and $p(v) \approx v$ belong to $\Sigma_{i+1}-\Sigma_{i}$. Since the set $\{p(v) \approx t, p(v) \approx v\}$ is logically equivalent to $\{v \approx t, p(v) \approx v\}$, and $v \approx t$ already belongs to Σ_{i} (since $\Sigma \mid=\Sigma_{i+1} \models v \approx t$ and all symbols of $v \approx t$ belong to \mathcal{F}_{i}), we may delete the identity $p(v) \approx t$ from the set Σ_{i+1} as part of the process of creating the subset Σ_{i+1}°. After such deletion Σ_{i+1}° remains logically equivalent to Σ_{i+1}.

Now suppose that some (1.b)-type identity $p(u) \approx p(v)$ belongs to $\Sigma_{i+1}-\Sigma_{i}$. Since Σ_{i+1} is consistent and contains both $p(u) \approx u$ and $p(v) \approx v$ it follows that $u=v$, and therefore that our (1.b)-type identity is the tautology $p(u) \approx p(u)$. This shows that we may further delete all (1.b)-type identities from Σ_{i+1} as part of the process of creating Σ_{i+1}°. After such deletion Σ_{i+1}° remains logically equivalent to Σ_{i+1}.

We have deleted some identities in $\Sigma_{i+1}-\Sigma_{i}$ from Σ_{i+1} to create Σ_{i+1}°. In the end, $\Sigma_{i+1}^{\circ}-\Sigma_{i}$ consists only of identities of the form $p(v) \approx v$, and these are the only identities in Σ_{i+1}° involving p. Hence the assignment $p\left(x_{1}\right) \mapsto x_{1}^{\mathcal{V}}$ extends the given realization of Σ_{i} to a realization of Σ_{i+1}°. Since Σ_{i+1}° is logically equivalent to Σ_{i+1}, this is also a realization of Σ_{i+1}.

Case 2. $\left(\mathcal{F}_{i+1}=\mathcal{F}_{i} \cup\left\{f_{i}\right\}\right.$ where $f_{i}=: q$ is binary.) If $\Sigma_{i+1} \not \vDash q(x, y) \approx q(y, x)$, then each realization of Σ_{i} in a variety \mathcal{V} can be lifted to a realization of Σ_{i+1} in \mathcal{V}.

Any identity in $\Sigma_{i+1}-\Sigma_{i}$ must involve q, hence must be of one of the forms:
(2.a) $q(u, v) \approx t$ where t is a linear term whose function symbols are from \mathcal{F}_{i}.
(2.b) $q(u, v) \approx q(w, x)$ where u, v, w, x are (not necessarily distinct) variables.

Moreover, $q(v, v) \approx v$ must be in Σ_{i+1} for each variable v, since each Σ_{j} is idempotent.

Using the same type of argument we used in Case 1, as part of the creation of Σ_{i+1}° we may delete from Σ_{i+1} all identities of the form $q(v, v) \approx t$ where t is a linear term that is not a variable. (By "the same type of argument" we mean an argument that involves the logical equivalence of $\{q(v, v) \approx t, q(v, v) \approx v\}$ and $\{v \approx t, q(v, v) \approx v\}$.) After this adjustment, the identities remaining in $\Sigma_{i+1}^{\circ}-\Sigma_{i}$ at the present moment have the forms: $q(v, v) \approx v$ for all variables v, along with
(3.a) $q(u, v) \approx t$ where $u \neq v$ and t is a linear term whose function symbols are from \mathcal{F}_{i}.
(3.b) $q(u, v) \approx q(w, x)$ where $u \neq v$ and $w \neq x$

We discuss (3.b) first. We delete tautologies of the form $q(u, v) \approx q(u, v)$ during the (continued) creation of Σ_{i+1}°. We do not have identities like $q(u, v) \approx$
$q(v, u)$ in Σ_{i+1} by the assumption of Case 2 . So, if there are any more (3.b)type identities $q(u, v) \approx q(w, x)$ in Σ_{i+1}, then some variable appears on only one side of the equation. If, for example, one such variable is w, then by variable replacement w / x we find that $q(u, v) \approx q(x, x)$ is in Σ_{i+1}. But then $q(u, v) \approx x$ and $x \approx q(w, x)$ belong to Σ_{i+1}. The consistency of Σ_{i+1} forces $v=x$, hence the set $\{q(u, v) \approx q(w, x), q(x, x) \approx x\}$ is logically equivalent to $\{q(w, x) \approx x, q(x, x) \approx x\}$. We may therefore delete the only remaining (3.b)-type identities $q(u, v) \approx q(w, x)$ from Σ_{i+1} during the creation of Σ_{i+1}°. (The identities $q(w, x) \approx x$, and $q(x, x) \approx x$ remain in Σ_{i+1}°.)

We are now at a point where the only identities left in $\Sigma_{i+1}^{\circ}-\Sigma_{i}$ are those expressing the idempotence of q and possibly some (3.a)-type identities $q(u, v) \approx t$ where $u \neq v$ and t is a linear term whose function symbols are from \mathcal{F}_{i}.

If $\Sigma_{i+1}^{\circ}-\Sigma_{i}$ fails to contain even one identity of form (3.a), $q(u, v) \approx t$, then we interpret q in \mathcal{V} so that it is binary first projection, i. e. $q\left(x_{1}, x_{2}\right) \mapsto x_{1}^{\mathcal{V}}$.

Assume that $\Sigma_{i+1}^{\circ}-\Sigma_{i}$ contains at least one (3.a)-type identity, $q(u, v) \approx t$, where t is a variable or $t=f\left(v_{1}, \ldots, v_{n}\right)$ is a function symbol $f \in \mathcal{F}_{i}$ applied to variables v_{i}. By variable replacement we may even assume that the distinct variables u and v are actually x_{1} and x_{2} (so the identity is $q\left(x_{1}, x_{2}\right) \approx t$). Replacing each other variable appearing in t with x_{1} or x_{2} arbitrarily we obtain t^{\prime}, a term that is a variable in $\left\{x_{1}, x_{2}\right\}$ or is f applied to variables in $\left\{x_{1}, x_{2}\right\}$. Since $q\left(x_{1}, x_{2}\right) \approx t^{\prime}$ is a substitution instance of $q\left(x_{1}, x_{2}\right) \approx t$, it also belongs to Σ_{i+1}, and in fact to Σ_{i+1}°. The assignment $q\left(x_{1}, x_{2}\right) \mapsto\left(t^{\prime}\right)^{\mathcal{V}}$ is an unambiguous interpretation of q, since if t^{\prime} and s^{\prime} are linear terms whose function symbols are from \mathcal{F}_{i}, whose variables are from $\left\{x_{1}, x_{2}\right\}$, and where $q\left(x_{1}, x_{2}\right) \approx t^{\prime}$ and $q\left(x_{2}, x_{2}\right) \approx s^{\prime}$ are both in $\Sigma_{i+1}^{\circ} \subseteq \Sigma_{i+1}$, then $t^{\prime} \approx s^{\prime}$ is in Σ_{i}, so $\left(t^{\prime}\right)^{\mathcal{V}}=\left(s^{\prime}\right)^{\mathcal{V}}$.

It remains to show that this assignment of the elementary term $q\left(x_{1}, x_{2}\right)$ to a \mathcal{V}-equivalence class of binary \mathcal{V}-terms defines a realization of Σ_{i+1}°. If $\Sigma_{i+1}^{\circ}-\Sigma_{i}$ contains no identity of form (3.a) or (3.b) (so it only contains those of the form $q(v, v) \approx v$), then the only restriction on the interpretation of the function symbol q is that it be idempotent. We have interpreted q as binary first projection in this case, so the restriction is satisfied. Otherwise $\Sigma_{i+1}^{\circ}-$ Σ_{i} contains some (3.a)-type identities $q(u, v) \approx t$, no (3.b)-type identities, and identities $q(v, v) \approx v$ expressing idempotence. We have interpreted q unambiguously so that the identities of the form $q(u, v) \approx t$ will hold. The identities expressing the idempotence of q are consequences of these. (If t is a variable, this is immediately clear, while if $t=f\left(v_{1}, \ldots, v_{n}\right)$ then the idempotence of f is one of the identities in Σ_{i}, so the identities of the form $q(v, v) \approx v$ also hold.)

This shows that any given realization of Σ_{i} can be lifted to Σ_{i+1}°. Such a lift is also a realization of the logically equivalent set Σ_{i+1}.

Theorem 3.4. If Σ is an idempotent, linear, strong Mal'cev condition defining (within the class of locally finite varieties) the class of varieties omitting type $\mathbf{1}$, then Σ involves at least one function symbol of arity at least 4 or at least two functions symbols of arity at least 3 .

Proof. We prove that if (i) Σ is an idempotent, linear, strong Mal'cev condition, (ii) Σ does not involve at least one function symbol of arity at least 4 or at least two functions symbols of arity at least 3 , and (iii) Σ is realizable in the 2-element semilattice, in the 2-element group, and in the 3-element group, then (iv) Σ must also be realizable by the 2 -element set. (I. e., Σ can be modeled by projections.)

Assume not. Our first step will be to simplify Σ.
Simplification 1. If Σ cannot be modeled by projections, then the set consisting of substitution instances of the identities from Σ in which all variables are replaced by variables from the set $\{x, y\}$, will also be a set of identities involving the same function symbols that cannot be modeled by projections. Therefore we assume that Σ uses only the variables x and y.

Simplification $2 . \Sigma$ cannot contain any identity of the form $q(x, y) \approx q(y, x)$, since this identity is not true for any idempotent binary term operation of the 2-element group. Thus, according to Lemma 3.3, we may assume that all function symbols in Σ have arity at least 3 . (The lemma allows us to replace Σ with Σ_{0} without altering the class of realizations.) If there is more than one function symbol of arity at least 3 , then the theorem is proved. If there is at least one function symbol whose arity is at least 4, then the theorem is proved. Hence we may assume that Σ involves exactly one function symbol r and that its arity is 3 .

Simplification 3. In any identity of Σ other than one asserting the idempotence of r we may replace any occurrence of $r(v, v, v)$ with v. Therefore we assume that $r(v, v, v)$ only occurs in the identity $r(v, v, v) \approx v$.

Now the proof begins for simplified Σ. Our first step will be to show that Σ contains no identity of the form $r\left(v_{1}, v_{2}, v_{3}\right) \approx v$ other than one asserting the idempotence of r. (Without loss of generality, we assume $v=x$, in which case we are claiming that $r(x, x, x) \approx x$ is the only identity in Σ of the specified form.) Since Σ is realized by the 2-element semilattice \mathbf{S}, any such identity in Σ would imply that $r^{\mathbf{S}}$ does not depend on the positions where $v_{i}=y$. The term operation $r^{\mathbf{S}}$ cannot depend on only one variable (as it would be a projection and the set of identities Σ is not satisfied by any projection), hence at least two of the v_{i} must be x. On the other hand, at least one of the v_{i} must be y, since we have assumed that $r\left(v_{1}, v_{2}, v_{3}\right) \approx x$ is different from $r(x, x, x) \approx x$. This shows that (after permuting variables if necessary) the identity $r\left(v_{1}, v_{2}, v_{3}\right) \approx x$ may be assumed to be $r(x, x, y) \approx x$. The realization of Σ in the 2 -element group \mathbf{G} requires $r^{\mathbf{G}}(x, y, z)=\alpha x+\beta y+\gamma z$ for some choice of coefficients $\alpha, \beta, \gamma \in \mathbb{Z}_{2}$ so that $\mathbf{G} \models r^{\mathbf{G}}(x, x, y)=x=r^{\mathbf{G}}(x, x, x)$.

These identities force $\gamma=0$ and $\{\alpha, \beta\}=\{0,1\}$, which in turn forces $r^{\mathbf{G}}$ to be a projection, a contradiction.

This means that all identities in Σ, other than the idempotence of r, are of the form $r\left(u_{1}, u_{2}, u_{3}\right) \approx r\left(v_{1}, v_{2}, v_{3}\right)$ with $\left\{u_{1}, u_{2}, u_{3}\right\}=\{x, y\}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Moreover, the parity of the number of x 's is the same among u_{1}, u_{2}, u_{3} as among v_{1}, v_{2}, v_{3}, since that is a feature of the linear identities satisfied by the unique ternary, idempotent, non-projection term operation $r(x, y, z)=x+y+z$ of the 2 -element group.

The remaining case is when (without loss of generality) each identity in Σ that is not asserting the idempotence of r has exactly one y on each side. For every position i there is an identity r (variables) $\approx r$ (variables) $\in \Sigma$ where x appears in the i th position on the left and y appears in the i th position on the right. This forces Σ to syntactically imply $r(x, x, y) \approx r(x, y, x) \approx r(y, x, x)$; that is, Σ implies the assertion that r is a 3 -ary weak near-unanimity term. But now Σ cannot be realized in the 3 -element group.

References

[1] L. Barto and M. Kozik, Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem, Log. Meth. in Comp. Sci. 8, no. 1 (2012), paper 7.
[2] L. Barto, M. Kozik and T. Niven, The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell), SIAM J. on Comput. 38, no. 5 (2009), 1782-1802.
[3] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote and R. Willard, Varieties with few subalgebras of powers, Trans. Amer. Math. Soc. 362, no. 3 (2010), 1445-1473.
[4] S. Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York-Berlin, 1981.
[5] P. Hell and J. Nešetřil, On the complexity of H-colouring, J. Combin. Theory B 48 (1990), 92-100.
[6] P. Hell, J. Nešetřil and X. Zhu, Duality and Polynomial Testing of Tree Homomorphisms, Trans. Amer. Math. Soc. 348, no. 4 (1996), 1281-1297.
[7] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Mem. Amer. Math. Soc. 76, American Mathematical Society, Providence, RI, 1988.
[8] M. Maróti, unpublished, see http://www.karlin.mff.cuni.cz/ ical/presentations/Valeriote.pdf, page 17.
[9] M. Maróti and R. McKenzie, Existence theorems for weakly symmetric operations, Algebra Universalis 59, no. 3-4 (2008), 463-489.
[10] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties. Vol. I, The Wadsworth \& Brooks/Cole Mathematics Series, Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, CA, 1987.
[11] M. Siggers, A Strong Mal'cev Condition for Varieties Omitting the Unary Type, Algebra Universalis 64, no. 1 (2010), 15-20.
[12] W. Taylor, Varieties obeying homotopy laws, Canad. J. Math. 29 (1977), 498-527.

Keith Kearnes

Department of Mathematics, University of Colorado, Boulder, CO 80309-0395 USA
e-mail: kearnes@euclid.colorado.edu

Department of Mathematics and Informatics, University of Novi Sad, Serbia e-mail: pera@dmi.uns.ac.rs

Ralph McKenzie
Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA e-mail: ralph.n.mckenzie@vanderbilt.edu

[^0]: Key words and phrases: Mal'cev condition, variety, Taylor term, weak near-unanimity term, tame congruence theory, unary type.

 The second author was supported by the grant no. 174018 of the Ministry of Education and Science of Serbia.

