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Abstract. We show that the class of locally finite varieties omitting type 1 has the

following properties. This class
(1) is definable by an idempotent, linear, strong Mal’cev condition in a language with

one 4-ary function symbol.

(2) is not definable by an idempotent, linear, strong Mal’cev condition in a language
with only one function symbol of arity strictly less than 4.

(3) is definable by an idempotent, linear, strong Mal’cev condition in a language with

two 3-ary function symbols.
(4) is not definable by an idempotent, linear, strong Mal’cev condition in a language

with function symbols of arity less than 4 unless at least two of the symbols have
arity 3.

1. Introduction

In [12], W. Taylor identified the weakest nontrivial idempotent Mal’cev

condition, namely the one we now call “existence of a Taylor term”. The class

of locally finite varieties having a Taylor term was characterized in other ways

by Hobby and McKenzie in [7], namely it is the class of locally finite varieties

omitting type 1 and it is also the class of locally finite varieties with a weak

difference term. More recently [9] and [1] have useful new Mal’cev conditions

equivalent to Taylor’s for locally finite varieties.

The most surprising recent result on this topic was the discovery of M. Sig-

gers [11] that the property of omitting type 1 is equivalent to a strong Mal’cev

condition for locally finite varieties. Siggers proved that the class of locally

finite varieties omitting type 1 is definable within the class of all locally finite

varieties as the subclass of varieties with a 6-variable Taylor term. To do this,

he used a result of P. Hell and J. Nešetřil from [5]. In this note we strengthen

Siggers’ result to obtain optimal strong Mal’cev conditions for omitting type

1 using the generalization of the Hell-Nešetřil theorem that was proved by

L. Barto, M. Kozik and T. Niven in [2]. The strong Mal’cev conditions ex-

pressing the omission of type 1 are those of Theorem 2.2 and Corollaries 3.1

and 3.2, while the optimality of the conditions is established in Theorem 3.4.

Key words and phrases: Mal’cev condition, variety, Taylor term, weak near-unanimity

term, tame congruence theory, unary type.
The second author was supported by the grant no. 174018 of the Ministry of Education

and Science of Serbia.



2 Keith Kearnes, Petar Marković, and Ralph McKenzie Algebra univers.

By a strong Mal’cev condition we mean a finite set of identities in some

language.

Informally, a strong Mal’cev condition is realized in an algebra A (or variety

V) if there is a way to interpret the function symbols appearing in the condition

as term operations of A (or V) so that the identities in the Mal’cev condition

become true equations in A (or V).

More formally, let L be a language and let X = (x1, x2, . . .) be a sequence

of distinct variables. For each function symbol f of L of arity n, call the term

f(x1, . . . , xn), whose variables are the first n variables of X, an elementary L-

term. Let Σ be a strong Mal’cev condition in the language L. We say that Σ is

realized in a clone C (of an algebra or variety) if for each n-ary function symbol

f of L it is possible to assign to the elementary term f(x1, . . . , xn) an n-ary

element of C in such a way that the assignment extends to a homomorphism

of the L-term algebra over X into C such that Σ is a subset of the kernel of

that homomorphism. (In the case where C is the clone of a variety V we will

write f(x1, . . . , xn) 7→ tV to indicate that the elementary term f(x1, . . . , xn)

has been assigned tV , where tV denotes the V-equivalence class of the n-ary

V-term t.)

An operation f on a set A is idempotent if f(x, x, . . . , x) = x for all x ∈ A.

A strong Mal’cev condition Σ is idempotent if it asserts the idempotence of

each of its function symbols, i. e., if Σ |= f(x, x, . . . , x) ≈ x for each function

symbol f appearing in Σ. A term t is linear if it involves at most one function

symbol. An identity s ≈ t is linear if both s and t are linear. A strong Mal’cev

condition is linear if its identities are linear. The strong Mal’cev conditions

considered in this paper are idempotent and linear.

An idempotent strong Mal’cev condition Σ is called a Taylor condition

unless it can be realized in every variety, equivalently, if it cannot be realized

in the variety of sets. (In practice the property of being a Taylor condition

is established by showing that Σ cannot be realized in a way where all the

function symbols of Σ interpret as projection operations.) If, moreover, the

language L of Σ has exactly one operation symbol, say f , then in a realization

defined by f(x1, . . . , xn) 7→ tV of Σ in a variety V, the term t is called a Taylor

term for V.

The definitions and basic results of universal algebra can be found in the

textbooks [4] and [10], while type 1 and similar notions of tame congruence

theory are defined and developed in the monograph [7].

2. ‘Omitting type 1’ expressed with one 4-ary term

To prove the result from the title of this section, we need some graph-

theoretic definitions which we take from [6] and modify to allow for symmetric

edges. A directed graph, or digraph, is just a relational structure with sig-

nature consisting of one binary relation; elements of the universe are called

vertices, while elements of the relation are called edges. A vertex x is a source
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when x ∈ V − π2(E), and x is a sink when x ∈ V − π1(E). An oriented

path p in a directed graph G = (V,E) is a pair of finite sequences, one of

vertices v0, v1, . . . , vn and one of edges e1, e2, . . . , en, n ≥ 0, so that for all i,

ei = vi−1vi or ei = vivi−1. The edges of the former kind are called forward

edges of p and the edges of the latter kind are backward edges of p. A path p is

closed if v0 = vn. The equivalence relation on V which is the reflexive closure

of the relation “u and v are endpoints of some oriented path” is called weak

connectedness. The difference between the number of forward edges and the

number of backward edges of an oriented path p is called algebraic length of p,

written Al(p). The algebraic length of a component C of weak connectedness

of a digraph is the least n > 0 so that there exists a closed oriented path p in

C such that Al(p) = n, or 0 if no such path exists.

A useful special case of the main result of [2] is the Loop Lemma:

Lemma 2.1. (Theorem 8.1 of [2]) If a digraph without sources and sinks is

compatible with a weak near-unanimity operation and has a weakly connected

component of algebraic length 1, then this component contains a loop. �

Theorem 2.2. A locally finite variety V omits type 1 iff there exists a 4-ary

term t such that

(1) V |= t(x, x, x, x) ≈ x and

(2) V |= t(x, y, z, y) ≈ t(y, z, x, x).

Proof. (⇐) Item (2) is not satisfied by any projection operation, hence together

with (1) implies that t is a Taylor term. This is enough to establish that V
omits type 1 (see [7], Lemma 9.4 and Theorem 9.6).

(⇒) Let W be the idempotent reduct of V, which is the variety whose

clone is the clone of idempotent term operations of V and whose fundamental

operations are the distinct elements of this clone. W is a locally finite, idem-

potent variety. If there is a 4-ary term t for W such that W |= t(x, y, z, y) ≈
t(y, z, x, x), then there is also a term t for V such that V |= t(x, x, x, x) ≈ x

and V |= t(x, y, z, y) ≈ t(y, z, x, x).

According to [9], V has a weak near-unanimity term w(x1, x2, . . . , xn), and

since w is an idempotent V-term, then W also has a weak near-unanimity

term. Now let F = FW(x, y, z) and let E be the subalgebra of F2 generated

by {〈x, y〉, 〈y, z〉, 〈z, x〉, 〈y, x〉}. Clearly, the first and second projections of E

are both equal to all of F, as we can get any element of F by applying the

appropriate 3-variable W-term to the first three generators of E. Therefore,

E is subdirect in F2, and this means that the digraph G = (F,E) with vertex

set F and edge set E is without sources and sinks. Moreover, as the weak

near-unanimity term w is among the fundamental operations of the variety

W, E is invariant under the weak near-unanimity operation wF applied co-

ordinatewise. Finally, the (weakly connected) component of G containing x,

y and z has algebraic length 1 as it contains the path x ← y → z → x.

According to Lemma 2.1, the component of G containing x, y and z must
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contain a loop a→ a. So, there must exist a term operation t of W such that

tE(〈x, y〉, 〈y, z〉, 〈z, x〉, 〈y, x〉) = 〈a, a〉, which means that tF(x, y, z, y) = a =

tF(y, z, x, x). But this forces the 3-variable identity t(x, y, z, y) ≈ t(y, z, x, x)

to hold in W. �

3. Optimal strong Mal’cev conditions

If one desires to express the property of omitting type 1 in locally finite

varieties via a Taylor condition that uses only 2-variable identities, a number

of such conditions can be derived from the condition of Theorem 2.2. Probably

the most intriguing is the following

t(x, x, x, x) ≈ x, t(x, y, x, y) ≈ t(y, x, x, x) and t(y, x, x, x) ≈ t(x, x, y, y),

which, after reversing the order of variables e(z, y, x, w) := t(w, x, y, z), be-

comes

e(x, x, x, x) ≈ x and e(y, y, x, x) ≈ e(y, x, y, x) ≈ e(x, x, x, y). (1)

If the equations above stipulated that furthermore e(y, y, x, x) ≈ x, then this

would be the 3-edge term of [3], a condition equivalent to all subuniverses of

An having at most O(n2) many generators. In accordance with terminology

of [9], we call the condition (1) the weak 3-edge term. We state the observation

of this paragraph as a corollary to Theorem 2.2:

Corollary 3.1. A locally finite variety V omits type 1 iff it has a weak 3-edge

term.

Proof. The paragraph preceding the statement of the corollary explains how

to derive from Theorem 2.2 that a locally finite variety omitting type 1 has a

weak 3-edge term. To prove the converse, just note that the equations (1) can

not be satisfied by any projection. �

Corollary 3.1 may be viewed as a refinement of Theorem 2.2, in that the

identities involve fewer variables. A different refinement of Theorem 2.2, in-

volving terms of smaller arity, was observed by Miklós Maróti [8]:

Corollary 3.2. A locally finite variety V omits type 1 iff it has ternary terms

p and q such that V |= p(x, x, x) ≈ x ≈ q(x, x, x) and

(1) V |= p(x, y, y) ≈ q(y, x, x) ≈ q(x, x, y) and

(2) V |= p(x, y, x) ≈ q(x, y, x).

Proof. If V omits type 1, then it has a 4-ary term t as described in Theorem 2.2.

Then p(x, y, z) := t(x, x, y, z) and q(x, y, z) := t(x, y, z, z) satisfy the required

identities. Conversely, the given identities for p and q cannot be realized

by projections, so they force V to omit type 1. (Argument: If p and q are

projections, then the identities in (1) force q to be second projection and p to

be first projection. But this is incompatible with the identity in (2).) �



Vol. 00, XX Optimal strong Mal’cev conditions for omitting type 1 5

Now we turn to proving that there are no idempotent, linear, strong Mal’cev

conditions for omitting type 1 in strictly simpler languages than those we have

given in Theorem 2.2 and Corollaries 3.1 and 3.2.

Lemma 3.3. Let Σ be an idempotent, linear, strong Mal’cev condition in a

language L, and let Σ0 be the set of all linear consequences of Σ that involve

no function symbols of arity strictly less than 3. Either

(1) Σ and Σ0 are realized by the same varieties, or

(2) Σ |= q(x, y) ≈ q(y, x) for some binary function symbol q of L.

(Or both.)

Proof. We may assume that the symbols of L are only those that appear in Σ.

No 0-ary function symbols appear in Σ, since Σ is idempotent, so the language

L has finitely many function symbols, all of arity at least 1.

Let F0 be the set of function symbols of arity at least 3 and let fi, 0 ≤ i < m,

be the remaining binary and unary function symbols. Let Fi+1 = Fi ∪ {fi}.
Let Σi be the linear consequences of Σ that involve only the function symbols

in Fi. (When i = 0 we are repeating the original definition of Σ0.) Then

Σ0 ⊆ Σ1 ⊆ · · · ⊆ Σm,

and Σm is logically equivalent to Σ. If Σ0 is inconsistent (i. e. if Σ0 |= x ≈ y),

then so are the supersets Σi. Conversely, if Σm (≡ Σ) is inconsistent, then

the definitions of the Σi guarantee that x ≈ y belongs to each of them. This

situation, where Σ and all Σi are inconsistent, is a case where Item (1) of the

theorem holds, so for the rest of the proof we assume that all Σ’s are consistent.

Any realization of Σ is a realization of Σm and hence also a realization of

each of the subsets Σi. The proof of the theorem will be effected by showing

that, conversely, if the obstruction Σ |= q(x, y) ≈ q(y, x) is avoided, then for

each i any realization of Σi in a variety V can be lifted to a realization of Σi+1

in the same variety. Consequently, if the obstruction is avoided, then any

realization of Σ0 can be lifted to a realization of Σm (≡ Σ). There are only

two essentially different cases: one where Fi+1 is obtained from Fi by adding

a unary function symbol fi and the other where it is obtained by adding a

binary function symbol fi.

We alert the reader that in order to lift a realization of Σi to a realization

of Σi+1 we shall first define a subset Σ◦i+1 ⊆ Σi+1 that is formally simpler yet

logically equivalent to the whole set Σi+1. We shall lift a given realization of

Σi to a realization of the subset Σ◦i+1, then use the logical equivalence of Σ◦i+1

with Σi+1 to declare the lift to Σ◦i+1 to be a realization of Σi+1.

Case 1. (Fi+1 = Fi ∪ {fi} where fi =: p is unary.) Each realization of Σi in

a variety V can be lifted to a realization of Σi+1 in V.

Any identity in Σi+1−Σi must involve p on one side or on both sides, hence

must be of one of the forms:

(1.a) p(v) ≈ t where t is a linear term whose function symbols are from Fi or
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(1.b) p(u) ≈ p(v) where u, v are (not necessarily distinct) variables.

Moreover, since the original set Σ was idempotent, it follows that each Σj is

also idempotent, so p(v) ≈ v must be in Σi+1 for each variable v.

Suppose that some identity p(v) ≈ t of the form (1.a) belongs to Σi+1−Σi,

so that both p(v) ≈ t and p(v) ≈ v belong to Σi+1 − Σi. Since the set

{p(v) ≈ t, p(v) ≈ v} is logically equivalent to {v ≈ t, p(v) ≈ v}, and v ≈ t

already belongs to Σi (since Σ |= Σi+1 |= v ≈ t and all symbols of v ≈ t belong

to Fi), we may delete the identity p(v) ≈ t from the set Σi+1 as part of the

process of creating the subset Σ◦i+1. After such deletion Σ◦i+1 remains logically

equivalent to Σi+1.

Now suppose that some (1.b)-type identity p(u) ≈ p(v) belongs to Σi+1−Σi.

Since Σi+1 is consistent and contains both p(u) ≈ u and p(v) ≈ v it follows that

u = v, and therefore that our (1.b)-type identity is the tautology p(u) ≈ p(u).

This shows that we may further delete all (1.b)-type identities from Σi+1 as

part of the process of creating Σ◦i+1. After such deletion Σ◦i+1 remains logically

equivalent to Σi+1.

We have deleted some identities in Σi+1 −Σi from Σi+1 to create Σ◦i+1. In

the end, Σ◦i+1 − Σi consists only of identities of the form p(v) ≈ v, and these

are the only identities in Σ◦i+1 involving p. Hence the assignment p(x1) 7→ xV1
extends the given realization of Σi to a realization of Σ◦i+1. Since Σ◦i+1 is

logically equivalent to Σi+1, this is also a realization of Σi+1.

Case 2. (Fi+1 = Fi∪{fi} where fi =: q is binary.) If Σi+1 6|= q(x, y) ≈ q(y, x),

then each realization of Σi in a variety V can be lifted to a realization of Σi+1

in V.

Any identity in Σi+1−Σi must involve q, hence must be of one of the forms:

(2.a) q(u, v) ≈ t where t is a linear term whose function symbols are from Fi.

(2.b) q(u, v) ≈ q(w, x) where u, v, w, x are (not necessarily distinct) variables.

Moreover, q(v, v) ≈ v must be in Σi+1 for each variable v, since each Σj is

idempotent.

Using the same type of argument we used in Case 1, as part of the creation

of Σ◦i+1 we may delete from Σi+1 all identities of the form q(v, v) ≈ t where t is

a linear term that is not a variable. (By “the same type of argument” we mean

an argument that involves the logical equivalence of {q(v, v) ≈ t, q(v, v) ≈ v}
and {v ≈ t, q(v, v) ≈ v}.) After this adjustment, the identities remaining in

Σ◦i+1 − Σi at the present moment have the forms: q(v, v) ≈ v for all variables

v, along with

(3.a) q(u, v) ≈ t where u 6= v and t is a linear term whose function symbols are

from Fi.

(3.b) q(u, v) ≈ q(w, x) where u 6= v and w 6= x

We discuss (3.b) first. We delete tautologies of the form q(u, v) ≈ q(u, v)

during the (continued) creation of Σ◦i+1. We do not have identities like q(u, v) ≈
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q(v, u) in Σi+1 by the assumption of Case 2. So, if there are any more (3.b)-

type identities q(u, v) ≈ q(w, x) in Σi+1, then some variable appears on only

one side of the equation. If, for example, one such variable is w, then by

variable replacement w/x we find that q(u, v) ≈ q(x, x) is in Σi+1. But then

q(u, v) ≈ x and x ≈ q(w, x) belong to Σi+1. The consistency of Σi+1 forces

v = x, hence the set {q(u, v) ≈ q(w, x), q(x, x) ≈ x} is logically equivalent

to {q(w, x) ≈ x, q(x, x) ≈ x}. We may therefore delete the only remaining

(3.b)-type identities q(u, v) ≈ q(w, x) from Σi+1 during the creation of Σ◦i+1.

(The identities q(w, x) ≈ x, and q(x, x) ≈ x remain in Σ◦i+1.)

We are now at a point where the only identities left in Σ◦i+1 − Σi are

those expressing the idempotence of q and possibly some (3.a)-type identi-

ties q(u, v) ≈ t where u 6= v and t is a linear term whose function symbols are

from Fi.

If Σ◦i+1−Σi fails to contain even one identity of form (3.a), q(u, v) ≈ t, then

we interpret q in V so that it is binary first projection, i. e. q(x1, x2) 7→ xV1 .

Assume that Σ◦i+1−Σi contains at least one (3.a)-type identity, q(u, v) ≈ t,
where t is a variable or t = f(v1, . . . , vn) is a function symbol f ∈ Fi applied

to variables vi. By variable replacement we may even assume that the distinct

variables u and v are actually x1 and x2 (so the identity is q(x1, x2) ≈ t).

Replacing each other variable appearing in t with x1 or x2 arbitrarily we

obtain t′, a term that is a variable in {x1, x2} or is f applied to variables in

{x1, x2}. Since q(x1, x2) ≈ t′ is a substitution instance of q(x1, x2) ≈ t, it

also belongs to Σi+1, and in fact to Σ◦i+1. The assignment q(x1, x2) 7→ (t′)V is

an unambiguous interpretation of q, since if t′ and s′ are linear terms whose

function symbols are from Fi, whose variables are from {x1, x2}, and where

q(x1, x2) ≈ t′ and q(x2, x2) ≈ s′ are both in Σ◦i+1 ⊆ Σi+1, then t′ ≈ s′ is in

Σi, so (t′)V = (s′)V .

It remains to show that this assignment of the elementary term q(x1, x2)

to a V-equivalence class of binary V-terms defines a realization of Σ◦i+1. If

Σ◦i+1−Σi contains no identity of form (3.a) or (3.b) (so it only contains those

of the form q(v, v) ≈ v), then the only restriction on the interpretation of the

function symbol q is that it be idempotent. We have interpreted q as binary

first projection in this case, so the restriction is satisfied. Otherwise Σ◦i+1 −
Σi contains some (3.a)-type identities q(u, v) ≈ t, no (3.b)-type identities,

and identities q(v, v) ≈ v expressing idempotence. We have interpreted q

unambiguously so that the identities of the form q(u, v) ≈ t will hold. The

identities expressing the idempotence of q are consequences of these. (If t

is a variable, this is immediately clear, while if t = f(v1, . . . , vn) then the

idempotence of f is one of the identities in Σi, so the identities of the form

q(v, v) ≈ v also hold.)

This shows that any given realization of Σi can be lifted to Σ◦i+1. Such a

lift is also a realization of the logically equivalent set Σi+1. �
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Theorem 3.4. If Σ is an idempotent, linear, strong Mal’cev condition defining

(within the class of locally finite varieties) the class of varieties omitting type 1,

then Σ involves at least one function symbol of arity at least 4 or at least two

functions symbols of arity at least 3.

Proof. We prove that if (i) Σ is an idempotent, linear, strong Mal’cev condi-

tion, (ii) Σ does not involve at least one function symbol of arity at least 4 or

at least two functions symbols of arity at least 3, and (iii) Σ is realizable in

the 2-element semilattice, in the 2-element group, and in the 3-element group,

then (iv) Σ must also be realizable by the 2-element set. (I. e., Σ can be

modeled by projections.)

Assume not. Our first step will be to simplify Σ.

Simplification 1. If Σ cannot be modeled by projections, then the set con-

sisting of substitution instances of the identities from Σ in which all variables

are replaced by variables from the set {x, y}, will also be a set of identities

involving the same function symbols that cannot be modeled by projections.

Therefore we assume that Σ uses only the variables x and y.

Simplification 2. Σ cannot contain any identity of the form q(x, y) ≈ q(y, x),

since this identity is not true for any idempotent binary term operation of the

2-element group. Thus, according to Lemma 3.3, we may assume that all

function symbols in Σ have arity at least 3. (The lemma allows us to replace

Σ with Σ0 without altering the class of realizations.) If there is more than

one function symbol of arity at least 3, then the theorem is proved. If there

is at least one function symbol whose arity is at least 4, then the theorem is

proved. Hence we may assume that Σ involves exactly one function symbol r

and that its arity is 3.

Simplification 3. In any identity of Σ other than one asserting the idempo-

tence of r we may replace any occurrence of r(v, v, v) with v. Therefore we

assume that r(v, v, v) only occurs in the identity r(v, v, v) ≈ v.

Now the proof begins for simplified Σ. Our first step will be to show that Σ

contains no identity of the form r(v1, v2, v3) ≈ v other than one asserting the

idempotence of r. (Without loss of generality, we assume v = x, in which case

we are claiming that r(x, x, x) ≈ x is the only identity in Σ of the specified

form.) Since Σ is realized by the 2-element semilattice S, any such identity

in Σ would imply that rS does not depend on the positions where vi = y.

The term operation rS cannot depend on only one variable (as it would be

a projection and the set of identities Σ is not satisfied by any projection),

hence at least two of the vi must be x. On the other hand, at least one of the

vi must be y, since we have assumed that r(v1, v2, v3) ≈ x is different from

r(x, x, x) ≈ x. This shows that (after permuting variables if necessary) the

identity r(v1, v2, v3) ≈ x may be assumed to be r(x, x, y) ≈ x. The realization

of Σ in the 2-element group G requires rG(x, y, z) = αx + βy + γz for some

choice of coefficients α, β, γ ∈ Z2 so that G |= rG(x, x, y) = x = rG(x, x, x).
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These identities force γ = 0 and {α, β} = {0, 1}, which in turn forces rG to

be a projection, a contradiction.

This means that all identities in Σ, other than the idempotence of r, are of

the form r(u1, u2, u3) ≈ r(v1, v2, v3) with {u1, u2, u3} = {x, y} = {v1, v2, v3}.
Moreover, the parity of the number of x’s is the same among u1, u2, u3 as

among v1, v2, v3, since that is a feature of the linear identities satisfied by the

unique ternary, idempotent, non-projection term operation r(x, y, z) = x+y+z

of the 2-element group.

The remaining case is when (without loss of generality) each identity in Σ

that is not asserting the idempotence of r has exactly one y on each side. For

every position i there is an identity r(variables) ≈ r(variables) ∈ Σ where x

appears in the ith position on the left and y appears in the ith position on the

right. This forces Σ to syntactically imply r(x, x, y) ≈ r(x, y, x) ≈ r(y, x, x);

that is, Σ implies the assertion that r is a 3-ary weak near-unanimity term.

But now Σ cannot be realized in the 3-element group. �
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