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Abstract

We study the (non-uniform) quantified constraint satisfaction prob-
lem QCSP(H) as H ranges over semicomplete digraphs. We obtain
a complexity-theoretic trichotomy: QCSP(H) is either in P, is NP-
complete or is Pspace-complete. The largest part of our work is the
algebraic classification of precisely which semicomplete digraphs enjoy
only essentially unary polymorphisms, which is combinatorially inter-
esting in its own right.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems;
F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic; G.2.1 [Discrete Mathematics]: Combinatorics

General Terms: Design, Algorithms, Performance

1 Introduction

The quantified constraint satisfaction problem QCSP(B), for a fixed template
(structure) B, is a popular generalisation of the constraint satisfaction prob-
lem CSP(B). In the latter, one asks if a primitive positive sentence (the exis-
tential quantification of a conjunction of atoms) Φ is true on B, while in the
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former this sentence may be positive Horn (where universal quantification is
also permitted). Much of the theoretical research into CSPs is in respect of
a large complexity classification project – it is conjectured that CSP(B) is
always either in P or NP-complete [15]. This dichotomy conjecture remains
unsettled, although dichotomy is now known on substantial classes (e.g.
structures of size ≤ 3 [31, 9] and smooth digraphs [17, 2]). Various meth-
ods, combinatorial (graph-theoretic), logical and universal-algebraic have
been brought to bear on this classification project, with many remarkable
consequences. A conjectured delineation for the dichotomy was given in the
algebraic language in [10].

Complexity classifications for QCSPs appear to be harder than for CSPs.
Indeed, a classification for QCSPs will give a fortiori a classification for
CSPs (if B ] K1 is the disjoint union of B with an isolated element, then
QCSP(B ] K1) and CSP(B) are polynomially equivalent). Just as CSP(B)
is always in NP, so QCSP(B) is always in Pspace. However, no overarching
polychotomy has been conjectured for the complexities of QCSP(B), as B
ranges over finite structures, but the only known complexities are P, NP-
complete and Pspace-complete. It seems plausible that these complexities
are the only ones that can be so obtained (for more on this see [13]).

In this paper we study the complexity of QCSP(H), where H is a semi-
complete digraph, i.e. an irreflexive graph so that for each distinct vertices
xi and xj at least one of xixj or xjxi (and possibly both) is in E(H). We
prove that each such problem is either in P, is NP-complete or is Pspace-
complete. In some respects, our paper is a companion to the classifications
for partially reflexive forests [26] and partially reflexive cycles [23], how-
ever our work here differs in two important ways. Firstly, our classification
is a complete trichotomy instead of a partial classification between P and
NP-hard. Secondly, our classification uses the algebraic method to derive
hardness results, whereas in [26, 23] the main algebraic tool, surjective poly-
morphisms, appear only for tractability. Indeed, we believe our use of the
algebraic method here is the most complex so far for any QCSP trichotomy
complexity classification. The first published QCSP trichotomy appeared in
(the preprints of) [7] and used relatively straightforward application of the
algebraic method pioneered in the same paper. Subsequently, a combinato-
rial QCSP trichotomy appeared, essentially for irreflexive pseudoforests, in
[27]. The task to unite [27, 26, 23], with the spirit of [14], to a QCSP tri-
chotomy for partially reflexive pseudoforests, remains open-ended and ambi-
tious. Two other notable trichotomies have appeared in the QCSP literature
in the form of [3] and [4], though both are slightly unorthodox. The for-
mer deals with a variant of the QCSP, which allows for relativisation of the
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universal quantifier, and the latter deals with infinite equality languages.
Our work follows in the spirit of the CSP dichotomy for semicomplete

digraphs given long ago in [1]. What we uncover is that the semicomplete
digraphs with at most one cycle, whose CSPs are in P as per [1], beget
QCSPs which remain in P. However, of the semicomplete digraphs with
more than one cycle, whose CSPs are NP-complete, some produce QCSPs
of maximal complexity while others remain no more than NP-complete. Our
classification is as follows: if H is a semicomplete digraph then either

• H contains at most one cycle and QCSP(H) is in P, or

• H contains at least two cycles, a source and a sink and QCSP(H) is
NP-complete, or

• H contains at least two cycles, but not both a source and a sink, and
QCSP(H) is Pspace-complete.

The tractability results, membership for both P and NP, are relatively
straightforward and date back to the last author’s 2006 Ph.D. thesis [25].
Together with the complexity classification of the CSP for semicomplete di-
graphs, which was proved in [1], they justify the first two items of the above
complexity classification of the QCSP.

The natural trichotomy conjecture for the complexity of QCSP of semi-
complete digraphs was made (not in print), but repeated efforts to set-
tle it combinatorially failed. The present work arose from a discussion in
Dagstuhl about two related, more specific conjectures involving the algebraic
approach, which had always been deemed appropriate as semicomplete di-
graphs are cores for which all polymorphisms are surjective.

The first of these specific conjectures sought to deal with a large subclass
of the semicomplete digraphs, those with neither source nor sink (termed
smooth). The conjecture stated that all polymorphisms of smooth semicom-
plete digraphs with multiple cycles are essentially unary. The largest part of
our paper is in proving this conjecture. From the proof of our Theorem 3.3
it follows that the only smooth semicomplete finite digraphs with one cycle
are the 2-cycle and the 3-cycle. When this first conjecture is proved, apply-
ing [7] we get that for any smooth semicomplete digraph H which is not the
2-cycle nor the 3-cycle, QCSP(H) is Pspace-complete.

The remaining cases, after removing those in NP and the smooth ones,
are where there is more than one cycle and no source (dually resp., sink)
but there is a sink (dually resp., source) in the graph. W.l.o.g. we assume
that there is no source, but there is a sink in the graph. The remaining case
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is thus reduced to the digraph H built by iteratively adding m sinks to a
smooth semicomplete digraph H′ with multiple cycles. Suppose Kn is the
irreflexive n-clique and let K→mn be the same graph with m sinks iteratively
added. From the first conjecture and [30], Lemma 1.3.1 (b) follows that
Pol(H′) are contained in Pol(Kn), where n = |H′|. The second Dagstuhl
conjecture held that perhaps Pol(H) should be contained in Pol(K→mn ), and
that would be enough to prove Pspace-completeness for the corresponding
QCSP (using our Corollary 6.2 (ii), which was already known to us at the
time). This conjecture turned out to be false, but two substitute digraphs
for Kn in this position were found and between these three they cover all
cases. Thus, the Pspace-completeness follows in all remaining cases.

As previously stated, the bulk of our work is in proving all smooth semi-
complete digraphs with more than one cycle have only essentially unary
polymorphisms. It is easy to see this is not true for semicomplete digraphs
which have a source and/or a sink; for each of which a simple ternary es-
sential polymorphism may be given. Thus, we give a classification of the
semicomplete digraphs all of whose polymorphisms are essentially unary.
This could be the first part of a larger research program, beginning with
semicomplete digraphs, which may continue to larger classes. For example,
it is known precisely which smooth core digraphs have a weak near unanim-
ity polymorphism [2] and which digraphs enjoy Mal’cev [11].

An extended abstract of this paper, omitting most of the proofs, ap-
peared as [28]. We have significantly simplified the proofs for this journal
version. The paper is organised as follows: After this introductory section,
we give the definitions and terminology in the second section. The third
section proves the upper bounds of complexity for all cases which are not
Pspace-complete. The next three sections prove that the remaining cases are
Pspace-complete, by dealing first with the strongly connected semicomplete
digraphs in Section 4, then with smooth semicomplete digraphs in Section
5, and finally with all semicomplete digraphs in Section 6.

2 Preliminaries

Let [n] := {1, . . . , n}. All graphs in what follows are directed, that is just
a binary relation on a set. We denote digraphs by G, H, etc. and their
vertex and edge sets by V (.) and E(.), respectively, where we might omit
the (.) if this is clear. Note that any directed graph G has its dual G∂ .
This is obtained by reversing all edges. Then sources become sinks and vice
versa, in-degree of a vertex becomes its out-degree and so on. In fact, any
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statement and any proof can also be dualized. Rather than writing the same
proof twice, we just say ”dually” to indicate we use the dual argument to
prove the dual statement.

A digraph H is semicomplete if it is irreflexive (loopless) and for any
two distinct vertices i and j, at least one of ij and ji is an edge of H. If
E(H) never contains both ij and ji, then it is furthermore a tournament.
The equivalence relation of strong connectedness is defined in the usual way
and its equivalence classes will be called strong components. If the strong
component has one element, it is trivial, otherwise nontrivial. We start by
noting that, just like in the case of tournaments, in semicomplete graphs
the strong components can be linearly ordered, so that there is an edge out
of every vertex in a smaller strong component into every vertex of a larger
strong component (but never an edge going the other way, obviously).

The problems CSP(H) and QCSP(H) each take as input a sentence Φ,
and ask whether this sentence is true on H. For the former, the sentence
involves the existential quantification of a conjunction of atoms – primi-
tive positive (pp) logic. For the latter, the sentence involves the arbitrary
quantification of a conjunction of atoms – positive Horn (pH) logic. It is
well-known, for finite H, that CSP(H) and QCSP(H) are in NP and Pspace,
respectively.

The direct product G×H of two digraphs G and H has vertex set {(x, y) :
x ∈ V (G), y ∈ V (H)} and edge set {((x, u), (y, v)) : x, y ∈ V (G), u, v ∈
V (H), xy ∈ E(G), uv ∈ E(H)}. Direct products are (up to isomorphism)
associative and commutative. The kth power Gk of a graph G is G × . . .×G
(k times). A homomorphism from a graph G to a graph H is a function
h : V (G) → V (H) such that, if xy ∈ E(G), then h(x)h(y) ∈ E(H). A
k-ary polymorphism of a graph H is a homomorphism from Hk to H. A
polymorphism f is idempotent when, for all x, f(x, . . . , x) = x. We write
Pol(G) (Polid(G)) for the set of all (idempotent) polymorphisms of G. A
function f(x1, . . . , xn) depends on xi if there exist a1, . . . , an, a

′
i such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an). The es-

sential arity of f is the number of variables on which it depends.
A digraph is a core if all of its endomorphisms are automorphisms. All

finite semicomplete digraphs are cores, for which all polymorphisms are sur-
jective. For cores it is well-known the constants are pp-definable up to
automorphism. That is, if Hc is H with all constants named, and H is a
core, then CSP(H) and CSP(Hc) are poly time equivalent; and the same
applies to the QCSP. A similar argument, given in the algebraic language, is
in our Proposition 4.2, and the implication is that we may as well assume all
the polymorphisms of a semicomplete digraph H are idempotent (because
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this is true for Hc which is actually the structure we will be working on).
The now-celebrated algebraic approach to CSP rests on one half of a

Galois correspondence [5, 6, 16], where it is observed that the relations that
are invariant under (preserved by) the polymorphisms of H are precisely the
relations that are pp-definable in H. For QCSP, in [7], Theorem 3.16 and
Proposition 3.12, was obtained a similar characterisation substituting surjec-
tive polymorphisms for polymorphisms and pH for pp. The consequence of
this is that if the polymorphisms (resp., surjective polymorphisms) of H are
a subset of those of H′, then there is a poly time reduction from CSP(H′) to
CSP(H) (resp., QCSP(H′) to QCSP(H)); that is, the polymorphisms con-
trol the complexity. We will use another well-known special case of [5, 6, 16]:
a relation is invariant under all idempotent polymorphisms of H (i.e., it is
invariant under all polymorphisms of Hc, the digraph H augmented with all
one-element unary relations) iff it is pp-definable via the edge relation and
the constants.

Certain types of polymorphisms are important in the algebraic approach,
or are going to play a role in our paper, so we define them here. An op-
eration t : V n → V , where n ≥ 3 is a near-unanimity operation if, for all
x, y ∈ V , t(x, x, . . . , x, y) = t(x, x, . . . , x, y, x) = . . . = t(y, x, x, . . . , x) = x.
A ternary (n = 3) near-unanimity operation is called a majority opera-
tion. An operation d : V 3 → V is a Mal’cev operation if, for all x, y ∈ V ,
d(x, y, y) = d(y, y, x) = x. The main result of [20] proves that digraphs which
enjoy a Mal’cev polymorphism must also admit a majority polymorphism,
a property of digraphs not true in finite relational structures with more
complicated language than digraphs. Finally, w : V n → V , where n ≥ 2
is a weak near-unanimity operation if, for all x, y ∈ V , w(x, x, . . . , x, y) =
w(x, x, . . . , x, y, x) = . . . = w(y, x, x, . . . , x) and w(x, x, . . . , x) = x. If H is
a core digraph with no weak near-unanimity polymorphisms then CSP(H)
is NP-complete [10, 24]. Note that a near-unanimity operation is a weak
near-unanimity operation, so by the result of [20], if a digraph has no weak
near-unanimity polymorphisms, it has neither a Mal’cev nor near-unanimity
polymorphisms. That statement actually holds in all finite models, though
we care only about digraphs here. If the finite model has a Mal’cev polymor-
phism, then it has a weak near-unanimity polymorphism, though it might
have no near-unanimity polymorphism, by [19] and [24].

We summarize the impact of existence and non-existence of various poly-
morphisms:

Proposition 2.1. Let H be a core digraph. If H has a Mal’cev or a near-
unanimity polymorphism, then QCSP(H) is in P. If H has no weak near-
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unanimity polymorphism, then QCSP(H) is NP-hard and CSP(H) is NP-
complete. If H has only essentially unary polymorphisms, then QCSP(H) is
Pspace-complete. All these results also hold for Hc.

Proof. All of these follow from [7, 10, 24, 20].

If Φ is an input for QCSP(H) with quantifier-free part ϕ, then with this
we associate the digraph Gϕ whose vertices are variables of ϕ and edges are
given by the atoms in ϕ. If Φ is existential, i.e. also an input to CSP(H), then
the relationship between Φ and GΦ is that of canonical query to canonical
database [21].

In a digraph, a source (resp., sink) is a vertex with out-degree (resp.
in-degree) 0. A digraph with no sources or sinks is called smooth. In a
semicomplete graph, a source s (resp., sink t) satisfies, for all x 6= s (resp.,
x 6= t), xs /∈ E(H) and sx ∈ E(H) (resp., tx /∈ E(H) and xt ∈ E(H)).
A digraph may have multiple sources or sinks, but a semicomplete may
have at most one of each. If H is a digraph, then let H→j be H with,
iteratively, j sinks added (i.e. each time we add a sink we make it forward-
adjacent to each existing vertex). Let us label these added sinks, in order,
t1, . . . , tj (thus tj is the unique sink of H→j). Similarly, let H←j be H with
j sources added. We write H→ (resp., H←) for H→1 (resp., H←1). We
denote by a+ and a− the sets {x ∈ V : ax ∈ E} and {x ∈ V : xa ∈ E},
respectively. Also, for S ⊆ V , we write S+ for the union

⋃
{a+ : a ∈ S} and

dually S− =
⋃
{a− : a ∈ S}. The notation S∀+ (resp. S∀−) will stand for⋂

{a+ : a ∈ S} (resp.
⋂
{a− : a ∈ S}). By �H we denote the relation on V

defined by x �H y iff x− ⊆ y−.

Proposition 2.2. Let H = (V,→) be semicomplete. Then �H is a partial
order, �H has the largest element t iff t is a sink, and dually for least
elements and sources.

Proof. The relation �H is always reflexive and transitive since ⊆ is. In
semicomplete graphs, if x, y ∈ V (H) are distinct, then we have x ∈ y− \ x−
or y ∈ x− \ y−, so x− 6= y− and �H is antisymmetric.

If t is a sink, then t− = V \ {t}, and t is in no set of the form x−, so t is
clearly the greatest element in �H. Conversely, if t → x, then t ∈ x− and
since t /∈ t−, thus ¬x �H t, implying that t is not the largest element with
respect to �H.

We mention some special semicomplete graphs that will appear in the
paper. Kn is the irreflexive complete graph (clique) on vertex set [n]. DC3

is the directed 3-cycle. Let Tn be the transitive tournament on [n] with the
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natural order < corresponding to the edge relation (i.e. ij ∈ E(Tn) iff i < j).
Let Tn be Tn with the extant edge 1n augmented by n1, i.e. this becomes a
double-edge.

3 Complexity upper bounds

The results of this section date back to the third author’s Ph.D. [25] (avail-
able from his website) and are presented there combinatorially and in much
fuller detail. The first is very straightforward.

Proposition 3.1. Let H be a digraph with both a source s and a sink t,
then QCSP(H) is in NP.

Proof. Let Φ be an input to QCSP(H) with quantifier-free part ϕ. Suppose
ϕ has an atom vivj so that Φ quantifies vi universally, then Φ is a no-
instance since ϕ will never be satisfied when vi is evaluated as t. Dually,
we may assume ϕ has no atom vivj so that Φ quantifies vj universally; and
we find that Φ can not contain universally quantified variables involved in
atoms of ϕ. Thus, we may evaluate Φ as an input to CSP(H) in NP.

We now turn our attention to the poly time cases. It is well-known that
QCSP(K2) and QCSP(DC3) are in P, and there are various ways to see this.
One is to note that both K2 and DC3 admit a majority polymorphism (which
is the first projection in all non-majority evaluations of variables) and then
appeal to [7]. We are now interested in the semicomplete graphs K→j2 , K←j2 ,

DC→j3 and DC←j3 (for j > 0).

Proposition 3.2. For j ≥ 0, each of QCSP(K→j2 ), QCSP(K←j2 ), QCSP

(DC→j3 ) and QCSP(DC←j3 ), is tractable.

Proof. For j ≥ 0, we will give polynomial time reductions from QCSP
(K→j+1

2 ) to QCSP(K→j2 ) and for QCSP(DC→j+1
3 ) to QCSP(DC→j3 ). The

general result for QCSP(K→j2 ) and QCSP(DC→j3 ) follows by induction, and
the arguments for the other cases are clearly analogous.

We will make use of the game-theoretic interpretation of the QCSP. Let
Φ be an input for QCSP(H) with quantifer-free part ϕ; then the (Φ,H)-
game pitches Universal (male) against Existential (female). They play their
own type of variables according to the quantifier order of Φ, each evaluating
those variables on H. Once all the variables are evaluated, Existential wins
iff the resulting assignment is true of ϕ on H. It is plain to see that H |= Φ,
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i.e. Φ is a yes-instance of QCSP(H), iff Existential has a winning strategy
in the (Φ,H)-game.

(QCSP(K→j+1
2 ) to QCSP(K→j2 ).) Let Φ be an input for QCSP(K→j+1

2 )
and ϕ be its quantifier-free part. Suppose that xi is universally quanti-
fied in Φ and that xi is not a sink in Gϕ. Clearly, Φ is a no-instance of

QCSP(K→j+1
2 ) (witnessed when xi is evaluated as the sink). In this case

we set Ψ to be a fixed no-instance of QCSP(K→j2 ) (e.g. stating for all x, y
there is an edge xy). Otherwise, from ϕ we will build ψ by removing all
atoms xixj where the vertex of Gϕ associated with xj is a sink and both xi
and xj are existentially quantified in Φ. We now return the quantifiers of
Φ to ψ, omitting any variable that has fully disappeared, to create Ψ. We
claim K→j+1

2 |= Φ iff K→j2 |= Ψ and we will use a game-theoretic argument
to show this.

(Forwards: K→j+1
2 |= Φ implies K→j2 |= Ψ.) Recall from the definitions

the vertices t1, . . . , tj(, tj+1) which were added to K2 to make K→j2 (K→j+1
2 )

and that tj+1 is the sink of K→j+1
2 and tj is the sink of K→j2 . Suppose Exis-

tential has a winning strategy in the (Φ,K→j+1
2 )-game. We claim Existential

may win with exactly the same strategy in the (Ψ,K→j2 )-game, and to see
this it is enough to see that any vertex x ∈ Gϕ for which Existential played

tj+1 in the (Φ,K→j+1
2 )-game was removed when building Ψ.

(Backwards: K→j2 |= Ψ implies K→j+1
2 |= Φ.) Here, Existential builds a

winning strategy in the (Φ,K→j+1
2 )-game by augmenting her winning strat-

egy in the (Ψ,K→j2 )-game with the rule that any existential variable that
subsists in Φ but not in Ψ may be played as tj+1.

(QCSP(DC→j+1
3 ) to QCSP(DC→j3 ).) This case reads exactly as the pre-

vious with DC3 substituted everywhere for K2.

We will now prove which semicomplete digraphs are tractable and which
are NP -complete. The remainder of the paper proves that all other cases
are Pspace-complete.

Theorem 3.3. Let H be a semicomplete digraph. If H has at most one
directed cycle, then QCSP(H) is in P . If H has more than one directed
cycle, but also a source and a sink, then QCSP(H) is NP -complete.

Proof. If H has both a source and a sink, in particular if it has no cycles,
then by Proposition 3.1, QCSP(H) reduces to CSP(H). The complexity
of the CSP for semicomplete digraphs was classified in [1], and in the case
when H contains both a source and a sink it coincides with our assertion.
Assuming that H contains no sinks or no sources, it must contain at least
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one cycle. Note that any nontrivial strong component has at least one cycle,
the Hamiltonian cycle for that component. Moreover, any cycle of length 4
or more has a diagonal by semicompleteness, and therefore a smaller cycle
inside it. So, ”at most one cycle” means ”at most one nontrivial strong
component, of size ≤ 3”. The only semicomplete digraphs with just one
cycle and without a source are K2, DC3, K→j2 and DC→j3 , while the only
semicomplete digraphs with just one cycle and a source, but without a sink
are K←j2 and DC←j3 , all of which were dealt with in Proposition 3.2 and the
remarks preceding it.

4 Strongly connected case

This section proves that all strongly connected semicomplete digraphs not
covered by Theorem 3.3 induce Pspace-complete QCSP when they are tem-
plates. The section is divided in three parts. The initial part establishes
useful preliminary lemmas and states the actual result on polymorphisms
which we will prove and which will imply the desired Pspace-hardness result.
The first subsection is devoted to a subclass of strongly connected semicom-
plete digraphs which we call the P-graphs. P-graphs will serve both as a part
of our inductive base in the main proof, and also in the second subsection we
will use various ways the assumption that the digraph under consideration
is not a P-graph, since those have been dealt with in the first subsection.

The following easy lemma will be used a few times in the paper. It
was used in [2], but probably is folklore. Before we state it, we define
the following notation for tuples: (xiyjzk) = (x, . . . , x︸ ︷︷ ︸

i

, y, . . . , y︸ ︷︷ ︸
j

, z, . . . , z︸ ︷︷ ︸
k

).

Moreover, if f(x1, . . . , xn) is an operation and 1 ≤ i ≤ n, then fi(x, y) will
denote f(xi−1yxn−i).

Lemma 4.1. Let a set C of idempotent operations on the set A, |A| > 1, be
closed under identification of variables and contain no near-unanimity nor
Mal’cev operations and only the two projections among its binary operations.
Then for all f ∈ C with arity n > 0, there exists precisely one i such that
1 ≤ i ≤ n and fi(x, y) = y (and thus, fj(x, y) = x for all j 6= i, 1 ≤ j ≤ n).

Proof. Assume n > 2. If no such i exists, then f is a near-unanimity oper-
ation. On the other hand, if there were two such i′ < i′′, then m(x, y, z) :=
f(yi

′−1xyi
′′−i′−1zyn−i

′′
) would be a Mal’cev operation, since m(y, x, x) =

fi′(x, y) and m(x, x, y) = fi′′(x, y). The case n = 1 is trivial. If n = 2, the
opposite assumption yields x = y, contradicting |A| > 1. The parenthesized
remark follows from fj(x, y) = x or fj(x, y) = y for all j.
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All finite semicomplete digraphs are cores, since any endomorphism must
be injective by semicompleteness, and therefore an automorphism by finite-
ness. In the case of core digraphs, we can easily strengthen Theorem 5.2 of
[7], which states that for all finite digraphs G which have only essentially
unary surjective polymorphisms, QCSP(G) is Pspace-complete.

Proposition 4.2. For all finite core digraphs G which have no idempotent
polymorphisms other than projections, QCSP(G) is Pspace-complete.

Proof. If a core digraph has a k-ary polymorphism f , then α(x) := f(x,
x, . . . , x) is a unary polymorphism, so α is an automorphism (in particular,
this means that all polymorphisms of core digraphs are surjective). Define
g(x1, . . . , xk) to be α−1(f(x1, . . . , xk)). Clearly, g is an idempotent poly-
morphism of G. Moreover, g has the same essential arity as f , since α is
a bijective map, and thus any pair of n-tuples are mapped to distinct ele-
ments f iff they are mapped to distinct elements by α−1 ◦ f = g. Since g is
a projection, which is essentially unary, then f is also essentially unary, so
by Theorem 5.2 of [7], QCSP(G) is Pspace-complete.

When G is smooth and semicomplete, we will investigate the idempotent
polymorphisms of G and those are precisely the polymorphisms of Gc. So, the
new structure we will be working on is Gc, as announced in the Preliminaries
section. From the polymorphisms side, the idempotent polymorphisms of G
are the same as polymorphisms of Gc, so it makes no difference whether we
speak about one or the other. However, if we are trying to compute relations
compatible with all idempotent polymorphisms of G, those are precisely the
relations definable via primitive positive formulae (pp-definable) from all
one-element unary relations (constants) and the edge relation, i.e. from Gc.

In this section our goal is to prove

Theorem 4.3. If G is a strongly connected semicomplete digraph with more
than one cycle, then QCSP(G) is Pspace-complete.

and we will do it by proving that all strongly connected semicomplete di-
graphs with more than one cycle have no idempotent polymorphisms other
than the projections and then invoking Proposition 4.2.

We start by noting that, just like in the case of tournaments, in semi-
complete digraphs the strong components can be linearly ordered, so that
there is an edge out of every vertex in a smaller strong component into ev-
ery vertex of a larger strong component (but never an edge going the other
way, obviously). In case of strongly connected digraphs, this seems like a
non-issue since there is a single strong component, but it will arise in some
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subgraphs. For the rest of this section, G = (V,E) is a strongly connected
semicomplete digraph which is not a cycle.

Definition 4.4. Let L be a subset of V . We define the relation ≡L on V
by: u ≡L v iff

1. u+ ∩ L = v+ ∩ L and u− ∩ L = v− ∩ L, or

2. {u, v} ⊆ L.

The relation defined by just (1) is clearly an equivalence relation since
the equality is an equivalence relation. Thus, ≡L is the union of the relation
defined by (1) and L × L. To prove that ≡L is an equivalence relation, we
need to prove that no elements u ∈ L and v /∈ L can be ≡L-related. We
know that uv ∈ E or vu ∈ E, so u is either in v− ∩ L or in v+ ∩ L (or
both), but u is in neither of the sets u− ∩ L and u+ ∩ L. In particular, L is
a ≡L-class, which will be useful presently.

Lemma 4.5. Let L be a subset of V such that the induced subgraph on L
is strongly connected and let v be a vertex such that v+ ∩ L 6= ∅ 6= v− ∩ L.
If f is an n-ary idempotent polymorphism of G which is the first projection
on L, then f(v, a2, . . . , an) = v, where ai ∈ L ∪ {v} for all 2 ≤ i ≤ n.

Proof. Assume that f(v, a2, . . . , an) 6= v and that v is selected to have max-
imal |v− ∩ L| + |v+ ∩ L| among the vertices in V \ L which satisfy that
v+ ∩ L 6= ∅ 6= v− ∩ L and that there exist vertices ai ∈ L ∪ {v}, for all
2 ≤ i ≤ n, such that f(v, a2, . . . , an) 6= v.

So, let u = f(v, a2, . . . , an) 6= v. First we prove that u ≡L v. Let
a ∈ L. If v → a, then pick a′2, . . . , a

′
n ∈ L such that a′i = a if ai = v and

ai → a′i if ai ∈ L. We get u = f(v, a2, . . . , an) → f(a, a′2, . . . , a
′
n) = a.

Similarly, if a → v, then pick a′2, . . . , a
′
n ∈ L such that a′i = a if ai = v

and a′i → ai if ai ∈ L. We get a = f(a, a′2, . . . , a
′
n) → f(v, a2, . . . , an) = u.

So, we proved that v+ ∩ L ⊆ u+ ∩ L and v− ∩ L ⊆ u− ∩ L. Assume
that one of those subsets is proper. As we know u 6= v, and suppose that
u → v. Select b2, . . . , bn ∈ L such that bi → ai for all 2 ≤ i ≤ n. Then
f(u, b2, . . . , bn) → f(v, a2, . . . , an) = u, so we get that f(u, b2, . . . , bn) 6= u.
But this contradicts the choice of v, since ∅ 6= v+∩L ⊆ u+∩L, ∅ 6= v−∩L ⊆
u− ∩ L and |u− ∩ L| + |u+ ∩ L| > |v− ∩ L| + |v+ ∩ L|. The alternative is
that u− ∩L = v− ∩L and u+ ∩L = v+ ∩L. The case when v → u is proved
dually.

Let v1 := f(v, a2, . . . , an) and we know from above considerations that
v1 ≡L v, and v1 6= v. So, we may assume without loss of generality that
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v → v1. We denote by U the equivalence class v/ ≡L. Let us define a
sequence v0, v1, v2, . . . of elements of U recursively, and together with it n−1

more auxiliary sequences a
(i)
2 , a

(i)
3 ,. . . , a

(i)
n . We start with setting v0 := v,

fixing a Hamiltonian cycle C going through L, and define a
(0)
i := ai for all

2 ≤ i ≤ n. We define vi+1 := f(vi, a
(i)
2 , . . . , a

(i)
n ), and once vi+1 is known,

the auxiliary sequences for each j, 2 ≤ j ≤ n, are defined like this:

• If a
(i)
j = vi, then a

(i+1)
j := vi+1,

• if a
(i)
j ∈ L ∩ v−, then a

(i+1)
j := vi+1 and

• if a
(i)
j ∈ L \ v−, then we select a

(i+1)
j to be the next element along

the fixed Hamiltonian cycle for L, that is, the edge a
(i)
j a

(i+1)
j is in the

Hamiltonian cycle C.

To give a more informal idea of the proof in order to avoid getting lost
in notation, we are walking through U by the sequence v0, v1, ... while si-
multaneously walking through L along the Hamiltonian cycle with the pa-
rameters until we get a chance to jump with a parameter to the next v.
We know that initially all positions are evaluated as elements of L ∪ {v}
(v = v0), and this property continues, at the ith iteration all positions in
f(x1, x2, ..., xn) are evaluated as elements of L or as vi. However, we grad-
ually make more and more of them equal to vi. Eventually, we are going
to get that vk+1 = f(vk, a

k
2, a

k
3, ..., a

k
n) = f(vk, vk, ..., vk) = vk, which is a

contradiction since there should be an edge between them.
Now more formally, we prove by the induction on i that vi ∈ U , that

all a
(i)
j ∈ L ∪ {vi} and that vi → f(vi, a

(i)
2 , . . . , a

(i)
n ) = vi+1 (in particular,

vi 6= vi+1). All three claims hold for i = 0 by our choice of v and a2, . . . , an
and from the fact that v → v1.

Now assume that vk ∈ U , that all a
(k)
j ∈ L ∪ {vk} and that vk → vk+1.

We see that the proof of v1 ≡L v from the second paragraph applies in
proving that v+

k ∩ L ⊆ v+
k+1 ∩ L and v−k ∩ L ⊆ v−k+1 ∩ L, so vk+1 ∈ U .

We need to prove that a
(k)
j → a

(k+1)
j . If a

(k)
j = vk, then a

(k+1)
j = vk+1

and a
(k)
j → a

(k+1)
j follows from vk → vk+1 which is true by the inductive

assumption. If a
(k)
j ∈ v− ∩ L, then from vk ∈ U (in other words, vk ≡L v)

and from v−k ∩ L ⊆ v−k+1 ∩ L it follows that a
(k)
j ∈ v−k+1 ∩ L, hence a

(k)
j →

vk+1 = a
(k+1)
j . Finally, if a

(k)
j ∈ L\v−, then by definition a

(k)
j → a

(k+1)
j along

the Hamiltonian cycle. From the assumption that f is a polymorphism, we
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obtain that vk+1 = f(vk, a
(k)
2 , . . . , a

(k)
n )→ f(vk+1, a

(k+1)
2 , . . . , a

(k+1)
n ) = vk+2.

Therefore, vk+1 6= f(vk+1, a
(k+1)
2 , . . . , a

(k+1)
n ) = vk+2 by semicompleteness

and since all ak+1
i ∈ L∪{vk+1}, then by the maximality of |v−∩L|+ |v+∩L|

we get that v−k+1 ∩ L = v− ∩ L and v+
k+1 ∩ L = v+ ∩ L, so vk+1 ∈ U , which

completes the inductive proof.

We know that if ai 6= v, then the sequence a
(0)
i , a

(1)
i , a

(2)
i , . . . will contain

an element a
(k)
i which is in v−∩L, as this sequence is initially moving along

the Hamiltonian cycle for L, and at some point it must reach elements of the

nonempty subset L ∩ v−. Then a
(k+1)
i = vk+1 and that auxiliary sequence

will from that point on be equal to the main sequence, that is a
(j)
i = vj for

all j > k. This will eventually happen with all auxiliary sequences, with k
at most |L| − 1 (as by that time all members of L will have occurred in the

Hamiltonian cycle). So, we know that a
(|L|)
i = v|L| for all i. But then we

derive the final contradiction from v|L|+1 = f(v|L|, v|L|, . . . , v|L|) = v|L| by
idempotence of f , which is impossible since we proved that v|L| → v|L|+1.

The following definition shortens our notation and makes terminology a
little easier.

Definition 4.6. A subset L ⊆ V is nice if the induced subgraph on L is
strongly connected and all idempotent polymorphisms of G restrict to L as
projections.

Lemma 4.7. Let L be a nice subset of V and let v be a vertex such that
v+ ∩ L 6= ∅ 6= v− ∩ L. Then L ∪ {v} is nice.

Proof. It suffices to prove that if f is an n-ary idempotent polymorphism of
G which is the first projection on L, then f is the first projection on L∪{v}.
From Lemma 4.5 we know that we only have to prove that f(a1, a2, . . . , an) =
a1 where a1 ∈ L and the other ai are in L∪{v}. We will denote f(a1, . . . , an)
by u for shorter notation, and prove that u = a1. Let b1 be any vertex in
L∩ a+

1 and b2, . . . , bn ∈ L be such that ai → bi (they exist since the induced
subgraph on L is strongly connected, hence smooth, and since L ∩ v+ 6= ∅).
Therefore, f(a1, a2, . . . , an)→ f(b1, b2, . . . , bn) = b1, and hence ∅ 6= a+

1 ∩L ⊆
u+ ∩ L. Dually we prove that ∅ 6= a−1 ∩ L ⊆ u− ∩ L.

Now if u 6= a1, we already know that u is not equal to any other vertices
of L, since L \ {a1} = L ∩ (a+

1 ∪ a
−
1 ) = (L ∩ a+

1 ) ∪ (L ∩ a−1 ) ⊂ (L ∩ u+) ∪
(L ∩ u−) ⊆ u+ ∪ u−. From u 6= a1 we get that a1 → u or u → a1.
If a1 → u, we select b2, . . . , bn ∈ L such that ai → bi, and then we get
u = f(a1, a2, . . . , an) → f(u, b2, . . . , bn) = u (the last equality holds by
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Lemma 4.5, since u+ ∩ L 6= ∅ 6= u− ∩ L). This is a contradiction with the
assumption that G is loopless. The case when u→ a is dealt with dually.

Lemma 4.8. Let L = {a, b} be compatible with (i. e. closed under) the
idempotent polymorphisms of G and let a ↔ b. If v ∈ V \ L is such that
v+ ∩ L 6= ∅ 6= v− ∩ L then {a, b, v} is nice.

Proof. Let f be an n-ary idempotent polymorphism of G and let i ≤ n be
such that f(aibn−i) = a and f(ai−1bn−i+1) = b. Such an i must exist since,
by idempotence, f(anb0) = a and f(a0bn) = b. Since (aibn−i) → (bian−i)
in the digraph Gn, and {a, b} is closed under f , our assumption means also
that f(bian−i) = b and f(bi−1an−i+1) = a. Without loss of generality, we
can assume that a→ v and v → b.

Claim 1: f(ai−1vbn−i) = v. Also, (dually) f(bi−1van−i) = v.
Let u := f(ai−1vbn−i). Notice that a = f(bi−1an−i+1)→ f(ai−1vbn−i) =

u and u = f(ai−1vbn−i) → f(bian−i) = b, so we have proved a → u → b.
Let us consider cases:

Case 1: Let v → u. Define w := f(uian−i). We get u = f(ai−1vbn−i)→
f(uian−i) = w and a = f(aibn−i)→ f(uian−i) = w. Thus, w = f(uian−i)→
f(wn) = w, a contradiction.

Case 2: Suppose that u → v. Define w := f(bi−1un−i+1). We get
w = f(bi−1un−i+1) → f(ai−1vbn−i) = u and also w = f(bi−1un−i+1) →
f(ai−1bn−i+1) = b. Hence, w = f(wn) → f(bi−1un−i+1) = w, a contradic-
tion.

Since neither u → v nor v → u, it must be that u = v, that is v =
f(ai−1vbn−i). If we reverse all edges and transpose a and b, we obtain the
proof of the other statement.

Claim 2: For any tuple c ∈ {b, v}i−1,

f(cban−i) = b. (1)

Denote u := f(cban−i). We know that a = f(aibn−i) → f(cban−i) = u
and v = f(ai−1vbn−i)→ f(cban−i) = u. Assume that u 6= b.

If b → u, then u = f(cban−i) → f(un) = u, a contradiction. The
remaining possibility is that u→ b. But then a→ u→ b and we can apply
Claim 1 to u in place of v to obtain u = f(ai−1ubn−i) → f(cban−i) = u,
again a contradiction.

Dually, we also have for all c ∈ {a, v}i−1 that

f(cabn−i) = a. (2)
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Claim 3: For any tuple c ∈ {a, b}i−1,

f(cabn−i) = a and f(cban−i) = b. (3)

To see the first equation in Equation (3), fix any c ∈ {a, b}i−1 and let
d ∈ {b, v}i−1 be such that d(j) = b whenever c(j) = a, while d(j) = v

whenever c(j) = b. Now b
(1)
= f(dban−i) → f(cabn−i), so from f(cabn−i) ∈

{a, b} follows f(cabn−i) = a. The proof of the second equation in Equation
(3) is analogous, we just take the proof of the first equation, transpose a
and b, reverse all edges and use Equation (2) in place of Equation (1).

Claim 4: {a, b} is nice.
First note that if we take c = ai−1 in Equation (3), then we obtain

f(ai−1ban−i) = b. Take g(x1, . . . , xn) = f(x1, . . . , xi−1, xi+1, . . . , xn, xi) (g
is obtained from f by cyclically permuting the last n − i + 1 variables). g
is also an idempotent polymorphism of G and g(an−1b) = f(ai−1ban−i) = b,
while g(an) = a by idempotence. Hence, by Claim 3 applied to g we get that
for any c ∈ {a, b}n−1, g(ca) = a and g(cb) = b. In other words, g restricts
on {a, b} as the nth projection. But then, since f is obtained from g by a
permutation of coordinates, f restricts to {a, b} as the ith projection. Since
f was an arbitrarily chosen idempotent polymorphism of G, and since the
induced subgraph on {a, b} is strongly connected, this means that {a, b} is
nice.

Now Lemma 4.8 follows from Claim 4, v+ ∩ {a, b} 6= ∅ 6= v− ∩ {a, b} and
Lemma 4.7.

4.1 P-graphs

We start with some well-known definitions. A tournament is an irreflexive
digraph T such that for all distinct vertices x and y, exactly one of x → y,
y → x is an edge of T . That is, a tournament is a semicomplete digraph
without 2-cycles. A tournament is transitive (or a chain) if the edge relation
is a transitive relation, which means it is a strict linear order on the set
of all vertices. An intransitive tournament is locally transitive if for every
vertex v of the tournament the induced subgraphs on v+ and on v− are
transitive tournaments. We changed this definition from the standard one
by adding the word ”intransitive” (usually, but not in our paper, transitive
tournaments are locally transitive), since we are chiefly interested in the
intransitive locally transitive tournaments in this paper. A congruence of
a tournament (V,→) is an equivalence relation ρ on V such that for all
(x1, x2), (y1, y2) ∈ ρ such that (x1, y1) /∈ ρ, x1 → y1 iff x2 → y2. If ρ is a
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congruence of the tournament T = (V,→), then the factor tournament T /ρ
is the tournament (V/ρ,⇒), where a/ρ ⇒ b/ρ iff a/ρ 6= b/ρ and a → b.
More generally, in all semicomplete digraphs, we will write A ⇒ B, where
A,B are sets of vertices, to denote that a→ b and ¬b→ a for all a ∈ A and
b ∈ B.

We also introduce the interval notation for a digraph G = ({a1, . . . , an},
→) with the fixed Hamiltonian cycle a1 → a2 → . . . → an → a1: [ai, aj ]
is the set of all vertices that are traversed by the path which starts at ai,
ends at aj and uses only the directed edges of the Hamiltonian cycle, each
edge at most once (it is not going the full circle or more). For instance,
[a2, a1] = {a1, a2, . . . , an}, while [a1, a2] = {a1, a2}. We also define [ai, aj) :=
[ai, aj ] \ {aj}, (ai, aj ] := [ai, aj ] \ {ai} and (ai, aj) := [ai, aj ] \ {ai, aj}.

The following proposition can be found in [8]:

Proposition 4.9. If T is a locally transitive tournament and a, b are ver-
tices of T such that b ∈ a+, then b+ is a union of a terminal interval of the
chain a+ and an initial interval of the chain a−.

Proof. Since a+ is a chain and b ∈ a+, then a /∈ b+ and b+∩a+ is a terminal
chain in a+. If b+ ∩ a− = ∅, then we are done (empty set is an interval!).
Otherwise, if there exist c, d ∈ a− such that c→ d, c ∈ b− and d ∈ b+, then
a→ b→ d→ a and a, b, d ∈ c+, so T is not locally transitive.

Lemma 4.10. Let T = ({b1, . . . , bn},→) be a locally transitive tournament.
Then T is strongly connected, there exists a Hamiltonian cycle C = a1 →
a2 → . . . → an → a1, where {a1, . . . , an} = {b1, . . . , bn} and there exists
a function ϕT : {1, . . . , n} → {1, . . . , n} such that (all intervals are with
respect to the cycle C):

(i) For all i ∈ {2, 3, ..., n}, ϕT (i) 6∈ {i− 1, i} and also ϕT (1) 6∈ {1, n},

(ii) a+
i = (ai, aϕT (i)] and

(iii) aϕT (i+1) ∈ [aϕT (i), ai) and aϕT (1) ∈ [aϕT (n), an).

Proof. First note that T must be smooth. If T has a sink bi, then {b1, . . . , bn}
= b−i ∪ {bi}. Since the induced subgraph on b−i is transitive, then T must
be transitive, too, because it is obtained from b−i by adding a new great-
est element bi. An analogous argument proves that the locally transitive
tournaments can not have a source.

So assume that T is smooth. Let us define a1 = b1, then let b+1 =
{a2, a3, . . . , ak} so that the strict linear order induced by → on b+1 is a2 <
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a3 < . . . < ak (in particular, a1 → a2 → . . . → ak). Finally, let b−1 =
{ak+1, ak+2, . . . , an} and let the linear order induced by → on b−1 be ak+1 <
ak+2 < . . . < an (in particular, ak+1 → ak+2 → . . . → an → a1). Since ak
is not a sink, then a+

k is a nonempty initial segment of the chain ak+1 <
ak+2 < . . . < an, by Proposition 4.9. Therefore, ak → ak+1 and the ais form
a Hamiltonian cycle, as desired.

Now define ϕT : {1, . . . , n} → {1, . . . , n} so that aϕT (i) is the greatest

element (sink) in the transitive tournament on a+
i . Since ai−1 ∈ a−i and

aϕT (i) ∈ a+
i , the condition (i) of the statement of the Lemma holds. (ii)

holds by our choice of ϕT . Finally, (iii) is a consequence of (i) and the fact
that (ai+1, aϕ(i)] ⊆ a+

i+1.

In particular, since the locally transitive strongly connected tournament
T is semicomplete and from the definition above, we get

(iv) aϕT (i)+1 → ai, ai → ai+1, ¬ aϕT (i) → ai+1, and a+
i \ {ai+1} ⊆ a+

i+1

(where the addition here is modulo n, so n+ 1 = 1).
We will use the easier notation for a locally transitive tournament T

when the vertex set is {1, 2, . . . , n}, where we will understand, unless other-
wise stated, that the fixed Hamiltonian cycle is 1→ 2→ . . .→ n→ 1, and
ai = i, so we will have (ϕT (i) + 1) → i instead of aϕT (i)+1 → ai et cetera.
We illustrate the locally transitive tournaments on Figure 1.

ϕT (i)ϕT (i) + 1

i− 1

i

i+ 1

i+i−

Figure 1: A locally transitive tournament
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Definition 4.11. A locally transitive tournament T = ({1, . . . , n},→) is
regular iff n = 2k+1 for some positive integer k and for all 1 ≤ i < j ≤ 2k+1,
i→ j iff j − i ≤ k + 1 (otherwise j → i). In other words, in the unique (up
to isomorphism) regular locally transitive tournament with 2k + 1 vertices,
ϕT (i) = i+ k if i ≤ k + 1, and ϕT (i) = i− k − 1 if i > k + 1.

Lemma 4.12. Let T = ({1, . . . , n},→) be a locally transitive tournament
such that ϕT is a permutation of {1, . . . , n}. Then T is regular.

Proof. We first claim that ϕT (i+1) = ϕT (i)+1 (in this proof we repeatedly
use the addition modulo n, that is n+ 1 is actually 1, et cetera). We know
that ϕT (i + 1) is not in the interval [i, ϕT (i)] by Lemma 4.10 and since
ϕT is a permutation. Therefore, ϕT (i + 1) ∈ (ϕT (i), i) from which we
conclude (ϕT (i) + 1) ∈ (ϕT (i), ϕT (i + 1)]. Moreover, (i + 1) /∈ (ϕT (i), i)
since (i + 1) ∈ (i, ϕT (i)], so (ϕT (i) + 1) ∈ ((i + 1), ϕT (i + 1)] and thus
(i+ 1)→ (ϕT (i) + 1). Also, by (iv) proved after Lemma 4.10 we know that
ϕT (i)+1→ i. We just proved that ϕT (ϕT (i)+1) = i. Analogously as above
we get that ϕT (i) + 2 ∈ (ϕT (i) + 1, ϕT (ϕT (i) + 1)], but ϕT (ϕT (i) + 2) 6=
ϕT (ϕT (i) + 1) = i, so ϕT (i) + 2→ (i+ 1). Therefore, ϕT (i+ 1) = ϕT (i) + 1,
as desired. This implies that the out-degrees of all vertices are the same
number, say k, and since T is a tournament, the in-degree of any vertex is
therefore n − k − 1. Since the number of edges in any digraph is equal to
the sum of all out-degrees and also to the sum of all in-degrees, therefore to
kn and also to (n− k − 1)n, we get that k = n− k − 1, that is n = 2k + 1.
Therefore, we get that 1+ = {2, 3, . . . , k + 1}, so from ϕS(1) = k + 1 and
from ϕS(i + 1) = ϕS(i) + 1 for all i we get that S is the regular locally
transitive tournament with 2k + 1 vertices.

Definition 4.13. The semicomplete digraph GT = (V,E) will be called a P-
graph parametrized by the locally transitive tournament T = ({1, . . . , n},→
) if there exists a partition ρ of the vertex set V into nonempty subsets
A1, . . . , An such that for all i 6= j and all a ∈ Ai and b ∈ Aj , ab ∈ E iff i→ j
in T .

Informally, a P-graph is obtained from the locally transitive tournament
T by ”expanding” each vertex i into a semicomplete digraph Ai, where
between vertices a and b lying in distinct subgraphs Ai and Aj , respectively,
the edge is a → b iff i → j. In case a and b are in the same set Ai, no
assumptions are taken (other than semicompleteness).

Lemma 4.14. Let T = ({1, . . . , n},→) be a locally transitive tournament.
Then
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• ρ := kerϕT is a congruence of T ,

• T /ρ is a regular locally transitive tournament T ′,

• T is a P-graph parametrized by T ′, and

• every P-graph parametrized by T is also a P-graph parametrized by T ′.
Proof. ρ is an equivalence relation on {1, . . . , n} since it is the kernel of a
function. Let the equivalence classes of ρ be the sets A1, A2, . . . , Aw. From
ϕT (i) 6= ϕT (ϕT (i)) follows that i/ρ 6= ϕT (i)/ρ, that is, ϕT (i) is always
outside i/ρ.

Claim 1: Each Ai is [ai, bi] for some ai, bi ∈ {1, 2, . . . , n}.
Assume that i′ < j′ and (i′, j′) ∈ ρ, that is, ϕT (i′) = m = ϕT (j′). We

may find an isomorphic copy T0 = ({1, 2, . . . , n},⇒) by cyclically rotating
the names of vertices of T until m becomes n, and the vertices {i′, j′} become
{i, j}. We are in the case where i < j, ϕT ′(i) = ϕT0(j) = n, the new
tournament is locally transitive and the Hamiltonian cycle 1 → 2 → . . . →
n → 1 still satisfies the conclusions of Lemma 4.10. We have thus reduced
the claim to proving for all integers k ∈ (i, j) that ϕT0(k) = n, as this kind of
”convexity” of the ρ-classes implies that all those classes are intervals with
respect to the Hamiltonian cycle. From i < k < j and ϕT0(i) = ϕT0(j) = n
follows that i⇒ k ⇒ j and therefore we know at least that ϕT0(k) /∈ [i, j).

First assume for some integer k ∈ (i, j) that j ≤ ϕT0(k) < n and let us
select the least such k. Then either ϕT0(k) < n = ϕT0(k − 1), or ϕT0(k −
1) < k − 1, either of which implies that ϕT0(k) /∈ [ϕT0(k − 1), (k − 1)),
contradicting Lemma 4.10 (iii). Now we assume that 1 ≤ ϕT0(k) < i for
some integer k ∈ (i, j), and select the greatest integer k ∈ (i, j) for which
this condition holds. Therefore, ϕT0(k + 1) = n (since we just proved that
ϕT0(k + 1) /∈ (k, n)). But then ϕT0(k + 1) /∈ [ϕT0(k), k), which once again
contradicts Lemma 4.10 (iii). This final contradiction finishes the proof of
Claim 1.

Claim 2: If i → j for some i, j ∈ {1, 2, . . . , n} and (i, j) /∈ ρ, then for
all i′ ∈ i/ρ, i′ → j.

Indeed, from Claim 1 and ϕT (i) /∈ i/ρ we obtain for all i′ ∈ i/ρ that
(i, ϕT (i)] \ (i/ρ) = (i′, ϕT (i)] \ (i/ρ). Therefore, j ∈ (i, ϕT (i)] \ (i/ρ) implies
that also j ∈ (i′, ϕT (i)] \ (i/ρ), and since ϕT (i′) = ϕT (i), then i′ → j

Now we can prove that ρ is a congruence. If (i, j) /∈ ρ, and (i, i′), (j, j′) ∈
ρ, then from Claim 2 follows that if i → j, we get i′ → j. Now if j′ → i′,
by Claim 2 it would follow that j → i′, which contradicts the assumption
that T is a tournament, so the only remaining possibility is that i′ → j′.
Therefore, ρ is a congruence of T .
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Next, from the fact that ρ is a congruence follows that ρ is a partition
of the vertex set {1, 2, . . . , n} which satisfies all requirements of Definition
4.13, except that we must show that T /ρ is a locally transitive tournament.
We prove that for any i, if ϕT (i)/ρ = [a, b], then ϕT (i) = b, which follows
from i→ ϕT (i), the fact that ρ is a congruence and Lemma 4.10 (ii). From
|{ϕT (i) : 1 ≤ i ≤ n}| = |T /ρ| and the just proved fact that any class i/ρ
contains at most one element of the form ϕT (j) follows that the restriction
of ϕT to S = ϕT ({1, 2, . . . , n}) is a permutation of the set S. In particular,
the tournament T /ρ is isomorphic to the subgraph induced by T on S.

Now, let Ai = [ai, bi], that is, Ai ∩ S = {bi} and S′ = {b1, b2, . . . , bw}.
We want to prove that the subtournament T ′ induced by T on S is a locally
transitive tournament which satisfies the conclusion of Lemma 4.10 with
respect to the Hamiltonian cycle b1 → b2 → . . . → bw → b1. Clearly, b+i
and b−i are transitive in T , and are thus transitive in any subtournament. If
ϕT (bi) = bj , we get that b+i ∩S = (bi, bj ]∩S which equals the interval (bi, bj ]
in T ′. Thus bi+1 is the least element of the chain b+i in T ′, in particular
bi → bi+1 for all 1 ≤ i ≤ w. Hence T ′ is strongly connected, and thus
intransitive, so T ′ is locally transitive. From the proof of Lemma 4.10, we
get that Lemma 4.10 holds with respect to the Hamiltonian cycle b1 → b2 →
. . . → bw → b1. Finally, if i 6= j, then bi/ρ 6= bj/ρ and ϕT ′(bi) = ϕT (bi) 6=
ϕT (bj) = ϕT ′(bj). Therefore, ϕT ′ is injective, so it is a permutation, and T ′
is regular by Lemma 4.12. Finally, if G is a P-graph parametrized by T which
is in turn a P-graph parametrized by T ′, then ”compose” the expansion of
vertices of T ′ into T with the expansion of the vertices of T into G to prove
that G is a P-graph parametrized by T ′.

For proofs of the lemmas and theorem that follow till the end of the sub-
section, we introduce the following convention: all additions and subtrac-
tions are taken modulo n = 2k + 1, so whenever the result of an arithmetic
operation is outside [1, n], just add the appropriate integer multiple of n
to put it back into that interval. The regular locally transitive tournament
T = ({1, 2, . . . , 2k + 1},→) is also assumed to have the edge relation i→ j
iff 0 < j − i ≤ k (and j → i otherwise).

We recall a definition from [18] and a most useful theorem from the paper
[2]. A sequence of directed edges in a digraph is an oriented path when the
undirected graph obtained from it by disregarding orientation is a path. For
any oriented path α we define the algebraic length al(α) to be |{edges going
forward in α}| − |{edges going backward in α}|. For a digraph G = (V, ) we
put

al(G) = min {i > 0 : (∃ a closed path α) al(α) = i},
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whenever the set on the right hand side is non-empty and∞ otherwise. The-
orem 8.1 of [2] (sometimes dubbed the ’Loop Lemma’) states: If a smooth
digraph has algebraic length one and admits a weak near unanimity poly-
morphism then it contains a loop.

Lemma 4.15. Every idempotent polymorphism f of a regular locally tran-
sitive tournament T = ({1, 2, . . . , 2k + 1},→), where k > 1, is a projection.

Proof. Let f be a binary idempotent polymorphism of T . {i, i + 1}∀+ =
{i + 2, . . . , i + k} and {i, i + 1}∀− = {i − k + 1, . . . , i − 1} for all i, so
{i, i+ 1} ⊆ {i+ 2, . . . , i+ k}∀− ∩{i− k+ 1, . . . , i− 1}∀+. The only elements
outside {i − k + 1, . . . , i − 1} ∪ {i + 2, . . . , i + k} are i, i + 1 and i + k + 1,
and as i + k + 1 /∈ {i + 2, . . . , i + k}∀−, hence {i − k + 1, . . . , i − 1}∀+ ∩
{i + 2, . . . , i + k}∀− = {i, i + 1}. Hence, {i, i + 1} is pp-definable in T c, so
f({i, i+1}×{i, i+1}) ⊆ {i, i+1}. Here the sets {i, i+1}∀+ and {i, i+1}∀−
are nonempty since k > 1.

If we assume that f(1, j + 1) = i for some 1 < j ≤ 2k, then we get that
f(k+ 2, j− k+ 1)→ f(k+ 3, j− k+ 2)→ . . .→ f(2k, j− 1)→ f(2k+ 1, j)
and f(k+2, j−k+1), f(k+3, j−k+2), . . . , f(2k+1, j) ∈ f(1, j+1)− = i−.
Since the induced subgraph on i− is the strict linear order with only one
directed path of length k, this implies that f(m,m+ j) = m+ i− 1 for all
m such that k+ 2 ≤ m ≤ 2k+ 1. An analogous argument on i+ proves that
f(m,m+ j) = m+ i− 1 for all m such that 2 ≤ m ≤ k + 1. So it remains
to find only f(1, j + 1) for all 0 < j ≤ 2k + 1.

We assume first that f(1, 2) = 1. As proved above, f(1, 2) = 1 implies
that f(i, i + 1) = i for all i. Assume now that for some 2 ≤ j ≤ 2k,
f(1, j + 1) = i 6= 1 and that j is the least such. Then 2k + 1 = f(2k +
1, j − 1)→ f(1, j + 1)→ f(3, j + 2) = 3, so f(1, j + 1) ∈ (2k + 1, 3) and we
obtain f(1, j + 1) = 2 since we assumed that it is not equal to 1. But, then
2 = f(1, j + 1)→ f(2, j + k+ 1)→ f(3, j + 2k+ 1) = f(3, j). If j = 2, then
we know f(3, 2) ∈ {2, 3}, while if j ≥ 3, then f(3, j) = 3 by the inductive
assumption. Either way, from the fact that 2−∩2+ = ∅ = 3−∩2+ we derive
a contradiction. Thus all binary idempotent polymorphisms are projections.
If f(1, 2) = 2, an analogous proof as above works for g(x, y) := f(y, x), just
starting from j = 2k and inductively decreasing j. By proving that g is the
first projection, we prove f is the second one.

Now let f be an m-ary polymorphism, m ≥ 3 and inductively assume
that all polymorphisms of smaller arity are projections. We know that
al(T ) = 1 and T has no loops, so T has no weak near-unanimity poly-
morphisms. By Proposition 2.1, T has no near unanimity polymorphisms
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(therefore at least one fi(x, y) = y) and T has no Mal’cev polymorphisms
(therefore at most one fi(x, y) = y, or if fi(x, y) = fj(x, y) = y, we would
be able to make a derived Mal’cev polymorphism from f by treating the
ith and jth variable as x and z, respectively, and identifying all others as
y). Without loss of generality, assume f1(x, y) = y and fi(x, y) = x for all
i 6= 1. For any evaluation (a1, a2, . . . , am) where there is any identification
ai = aj for some 2 ≤ i < j ≤ m, from the inductive assumption we know
that f(a1, a2, . . . , am) = a1.

Now take any tuple (a1, a2, . . . , am) and assume that there exist i, j such
that 2 ≤ i < j ≤ m and aj /∈ {ai + k, ai + k + 1}. Then there exists bi ∈
{ai, aj}∀+. Select b2, . . . , bm such that bj = bi ∈ {ai, aj}∀+ and bl = al + 1
for all integers l ∈ [2,m] \ {i, j}. Then for any x ∈ a+

1 , f(a1, a2, . . . , am) →
f(x, b2, . . . , bm) = x. We get that a+

1 ⊆ f(a1, a2, . . . , am)+, and since T is
regular, this means that f(a1, a2, . . . , am) = a1.

Finally, assume that for all integers i, j such that 2 ≤ i < j ≤ m,
aj ∈ {ai + k, ai + k + 1}. This implies that m = 3, and that a3 ∈ {a2 +
k, a2 + k + 1}. Assume that a3 = a2 + k. But then for any x ∈ a+

1 ,
f(a1, a2, a3) → f(x, a3, a3 + 1) = x, where the equality follows from the
previous case, so a+

1 ⊆ f(a1, a2, a3)+ and this means that f(a1, a2, a3) = a1.
In the case when a3 = a2 + k + 1, the proof goes the same, except that we
use f(a1, a2, a3)→ f(x, a2 + 1, a2).

Lemma 4.16. Every automorphism f of a regular locally transitive tourna-
ment T = ({1, 2, . . . , 2k + 1},→) is of the form f(x) = x+ t for some fixed
t.

Proof. Clearly all such maps are automorphisms of T . On the other hand, if
f is an automorphism of T , then select t so that f(1) = t+ 1. f({2, . . . , k+
1}) = f(1+) = (t+ 1)+ = {t+ 2, . . . , t+ k+ 1} and f({k+ 2, . . . , 2k+ 1}) =
f(1−) = (t+ 1)− = {t+ k+ 2, . . . , t+ 2k+ 1}. Since the induced subgraphs
on the sets {2, . . . , k + 1}, {t + 2, . . . , t + k + 1}, {k + 2, . . . , 2k + 1} and
{t+k+2, . . . , t+2k+1} are all transitive touraments with k elements, clearly
there can be only one map which isomorphically maps the first onto the
second and the third onto the fourth subgraph, and that is f(x) = x+ t.

Definition 4.17. Let G = (V,→) be a digraph. The subset I ⊆ V is called
a triangular ideal if for all a, b ∈ I such that a → b, if c ∈ V is such that
b→ c→ a, then c ∈ I. I is trivial if |I| = 1 or I = V .
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Lemma 4.18. Any digraph G = (V,E) which contains a regular locally
transitive tournament on V as an edge-subgraph has only trivial triangular
ideals.

Proof. Assume that V = {1, 2, . . . , 2k + 1}, T = (V,→), → ⊆ E, I is a
triangular ideal of G and |I| ≥ 2. We will prove that for any a ∈ I, a+k ∈ I,
too. This will imply that I = {1, 2, . . . , 2k+1}, since the element k generates
the additive cyclic group Z2k+1.

So, let b ∈ I, b 6= a. If b ∈ [a+k+ 1, a+ 2k], then a→ a+k → b→ a, so
a+k ∈ I. On the other hand, if b ∈ [a+ 1, a+k−1], then first a+k+ 1 ∈ I
since b→ a+ k+ 1→ a→ b, and then from a→ a+ k → a+ k+ 1→ a we
get a+ k ∈ I.

From now until Theorem 4.25, we fix a finite P-graph GT = (V,E)
parametrized by a locally transitive tournament T and assume that GT is
not a 3-cycle. Our goal is Theorem 4.25 which says that GT has only trivial
idempotent polymorphisms. According to Lemma 4.14, we may assume that
T is the regular locally transitive tournament ({1, 2, . . . , 2k + 1},→). The
partition from Definition 4.13 is denoted by ρ and we denote by Ai the
ρ-class corresponding to i in the parametrization of GT by T .

Lemma 4.19. Let f be an m-ary idempotent polymorphism of GT , let
j1, . . . , jm ∈ {1, . . . ,m}, let ai,t ∈ Aji+t for i = 1, . . . ,m and t = 0, . . . , 2k
and denote at := f(a1,t, a2,t, . . . , am,t). Then there exists j ∈ {1, . . . , n} such
that either at ∈ Aj for all t = 0, . . . , 2k, or at ∈ Aj+t for all t = 0, . . . , 2k.
(All additions are modulo 2k + 1).

Proof. Let V1 := {a0, . . . , a2k}. GT is parametrized by T , so s → t in T
iff (ai,s, ai,t) ∈ E for all i. Thus, s → t implies (as, at) = (f(a1,s, . . . , am,s),
f(a1,t, . . . , am,t)) ∈ E. Hence, |V1| = 2k + 1 by irreflexivity of E, and the
mapping ϕ : {1, . . . , n} → V1 given by f(t) = at (an := a0, as usually) is a
bijective homomorphism from T to the induced subgraph V1 := (V1, E �V1).
Therefore, V1 contains an isomorphic copy of T as an edge-subgraph. We
observe that if x, y ∈ Aj and z ∈ V \ Aj , then either (x, z), (y, z) ∈ E, or
(z, x), (z, y) ∈ E and no double edges exist between z and {x, y}. So, if
the restriction of E to {x, y, z} contains the edges of a 3-cycle, then from
{x, y} ⊆ Aj follows that z ∈ Aj , too. Therefore, the intersection of any
Aj with the induced subgraph V1 is a triangular ideal of the latter. Since
V1 contains as an edge-subgraph a tournament isomorphic to T , according
to Lemma 4.18, either V1 ⊆ Aj for some j, or no two elements of V1 are
in the same ρ-class. The first possibility is one of the desired outcomes,

24



so we assume that V1 is a set of representatives for {A1, . . . , An}. In this
case, if as ∈ Al and at ∈ Am, since s 6= t iff l 6= m, then (as, at) ∈ E iff
l → m. Thus the induced subgraph V1 is a tournament, and the mapping
ψ : V1 → {1, . . . , n} given by ψ(ai) = j iff ai ∈ Aj is an isomorphism from V1

to T . Both V1 and T have

(
n

2

)
edges, so ϕ is also an isomorphism, not just a

bijective homomorphism. Hence, the composition ψ ◦ϕ is an automorphism
of T . The only such, according to Lemma 4.16, are mappings of the sort
f(x) = x+ j for some fixed j ∈ {0, 1, . . . , 2k}, so if a0 ∈ Aj , then at ∈ Aj+t,
as desired.

Lemma 4.20. The equivalence relation ρ is compatible with all idempotent
polymorphisms (i. e. it is a congruence of the algebra of polymorphisms).

Proof. For any ρ-classes Aj1 , . . . , Ajm we want to prove that there exists
a ρ-class Aj such that f(Aj1 , . . . , Ajm) ⊆ Aj . Let ai,0, a

′
i,0 ∈ Aji for i =

1, . . . ,m. Select ai,t ∈ Aji+t for i = 1, . . . ,m and t = 1, . . . , 2k. Let at =
f(a1,t, . . . , am,t), t = 0, 1, . . . , 2k and a′0 = f(a′1,0, . . . , a

′
m,0). Let a0 ∈ Aj .

The sets V1 = {a0, a1, . . . , a2k} and V ′1 = {a′0, a1, . . . , a2k} are, according to
Lemma 4.19 either both subsets of Aj , or both are sets of representatives
for {A1, . . . , An}. Either way, we obtain that a′0 ∈ Aj , as desired.

We know from Lemma 4.20 that any idempotent polymorphism f induces
an operation f̂ on T given by f̂(j1, j2, . . . , jm) = j iff f(Aj1 , . . . , Ajm) ⊆ Aj .
In other words, f(Aj1 , . . . , Ajm) ⊆ Af̂(j1,j2,...,jm). Given any j1, . . . , jm ∈
{1, . . . , n}, from Lemma 4.19 follows that either f̂(j1 + t, j2 + t, . . . , jm +
t) = f̂(j1, j2, . . . , jm) for all 0 ≤ t < n, or f̂(j1 + t, j2 + t, . . . , jm + t) =
f̂(j1, j2, . . . , jm) + t for all 0 ≤ t < n.

Lemma 4.21. Let f ∈ Polid(GT ) be m-ary. For all 1 ≤ t ≤ 2k, if
f(Aj1 , . . . , Ajm) ⊆ Aj, then f(Aj1+t, . . . , Ajm+t) ⊆ Aj+t.

Proof. From the above considerations, we know that the alternative is that
there exist Aj1 , Aj2 , . . . , Ajm and Ai such that f(Aj1+t, Aj2+t, . . . , Ajm+t) ⊆
Ai for all t = 0, 1, . . . , 2k, so we assume that. We select and fix representa-
tives ar ∈ Ar for r = 1, 2, . . . , 2k + 1. We desire that f(aj1 , aj2 , . . . , ajm) ∈
Ai \ {ai}. If this is the case we ignore the rest of the paragraph, otherwise
assume that f(aj1 , . . . , ajm) = ai. Consider a′i := f(aj1+1, aj2+1, . . . , ajm+1).
By assumption a′i ∈ Ai and (f(aj1 , aj2 , . . . , ajm), a′i) ∈ E, so a′i 6= ai. By
substituting jl + 1 for jl, we get an idempotent polymorphism and ρ-classes
such that f(aj1 , aj2 , . . . , ajm) = a′i ∈ Ai \ {ai}.
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Without loss of generality, assume that (ai, a
′
i) ∈ E. a′i is in a directed cy-

cle within Ai which consists of elements of the form f(aj1+t, aj2+t, . . . , ajm+t)
for 0 ≤ t ≤ 2k. So, there exists a′′i ∈ Ai such that (a′i, a

′′
i ) ∈ E.

Let bjl = a′i if jl ∈ [i+k+1, i] and bjl = ai+k+1 if jl ∈ [i+1, i+k]. Define
as b′i := f(bj1 , bj2 , . . . , bjm). From (ajl , bjl) ∈ E for all 1 ≤ l ≤ m follows
that (a′i, b

′
i) ∈ E, while from (a′i, a

′′
i ), (ak+1, a

′′
i ) ∈ E follows that (b′i, a

′′
i ) ∈ E.

Therefore, b′i ∈ a
′+
i ∩a

′′−
i , so it must be that b′i ∈ Ai. Finally, from (a′i, b

′
i) ∈ E

and (ak+1, b
′
i) ∈ E follows that (bjl , b

′
i) ∈ E for all 1 ≤ l ≤ m, and therefore

(f(bj1 , bj2 , . . . , bjm), f(b′i, b
′
i, . . . , b

′
i)) ∈ E. But this is the same as saying that

(b′i, b
′
i) ∈ E, a contradiction.

Lemma 4.22. f̂ is a projection operation.

Proof. We prove first that f̂ is a polymorphism of T . Suppose j1 →
i1, . . . , jm → im. Hence, i1 → (j1 + k + 1), . . . , im → (jm + k + 1). Let
us pick elements a1 ∈ Aj1 , . . . , am ∈ Ajm , b1 ∈ Ai1 , . . . , bm ∈ Aim , c1 ∈
Aj1+k+1, . . . , cm ∈ Ajm+k+1. Also, let f̂(j1, . . . , jm) = j and f̂(i1, . . . , im) =
i. We know from Definition 4.13 and (f(a1, . . . , am), f(b1, . . . , bm)) ∈ E
that i = j or j → i, that is, i ∈ [j, j + k]. Also, by Lemma 4.21, we know
that f(c1, . . . , cm) ∈ Aj+k+1, so from Definition 4.13 and (f(b1, . . . , bm),
f(c1, . . . , cm)) ∈ E that i = j + k + 1 or i → (j + k + 1), that is, i ∈
[j + 1, j + k + 1]. Therefore, i ∈ [j + 1, j + k], so j → i and f̂ is a polymor-
phism of T , as desired.

Since f is an idempotent operation, thus f̂ is also an idempotent oper-
ation, so by Lemma 4.15, either k = 1 or f̂ is a projection. So assume
that k = 1 and T = ({1, 2, 3},→). Note first that since GT is not a
3-cycle, at least one of the ρ-classes is not a singleton. Without loss of
generality, assume that a1, a

′
1 ∈ A1, a2 ∈ A2, a3 ∈ A3 and (a1, a

′
1) ∈ E.

Since a′1, a2 ∈ a+
1 for any idempotent polymorphism g(x1, . . . , xs) we have

that g(b1, . . . , bs) ∈ a+
1 ⊆ A1 ∪ A2 whenever for all i, bi ∈ {a′1, a2}. By

Lemma 4.20, this implies that A1 ∪A2 is closed under all idempotent poly-
morphisms of GT . From this and Lemma 4.21, we conclude that A2 ∪ A3

and A3 ∪A1 are also closed under all idempotent polymorphisms of GT .
Claim. If f(A1, A2, A2, . . . , A2) ⊆ A1, then for all Aj1 , Aj2 , . . . , Ajm ∈

{A1, A2, A3}, f(Aj1 , Aj2 , . . . , Ajm) ⊆ Aj1 .
We prove the claim by treating separately the cases m = 2, m = 3 and

m > 3 (there in nothing to prove if m = 1 since then f(x) = x follows
by idempotence). If m = 2 then from idempotence and Lemma 4.21 fol-
lows that all that we have to prove is f(A2, A1) ⊆ A2. From Lemma 4.21
and f(A1, A2) ⊆ A1 follows that b3 := f(a3, a

′
1) ∈ A3. Thus (f(a2, a1),
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f(a3, a
′
1)) ∈ E and from the discussion preceding the Claim we infer f(a2, a1)

∈ b−3 ∩ (A1 ∪A2) = A2. By Lemma 4.20, f(A2, A1) ⊆ A2, as desired.
In the case m = 3, from f(A1, A2, A2) ⊆ A1 and the binary case fol-

low all cases where Aj2 = Aj3 (using g(x, y) := f(x, y, y)). Since b1 :=
f(a3, a1, a1) ∈ A3 and f(a′1, a

′
1, a2) ∈ b+1 ∩ (A1 ∪ A2) ⊆ A1, we infer by

Lemmas 4.20 and 4.21 that f(Ai, Ai, Ai+1) ⊆ Ai. Moreover, since c1 :=
f(a1, a1, a2) ∈ A1 and f(a′1, a

′
1, a3) ∈ c+

1 ∩ (A1 ∪ A3) ⊆ A1, from Lem-
mas 4.20 and 4.21 we also infer that f(Ai, Ai, Ai+2) ⊆ Ai. By transpos-
ing the last two coordinates of f in the previous arguments we also con-
clude that f(Ai, Ai+1, Ai) ⊆ Ai and f(Ai, Ai+2, Ai) ⊆ Ai. Finally, since
c1 = f(a1, a1, a2) ∈ A1 and f(a′1, a2, a3) ∈ c+

1 we conclude f(a′1, a2, a3) /∈ A3,
while from d1 := f(a′1, a3, a

′
1) ∈ A1 and f(a1, a2, a3) ∈ d− we conclude

f(a1, a2, a3) /∈ A2. These two by Lemma 4.20 imply that f(A1, A2, A3) ⊆ A1

and thus by Lemma 4.21 follows f(Ai, Ai+1, Ai+2) ⊆ Ai. The proof that
f(Ai, Ai+2, Ai+1) ⊆ Ai is analogous, just transpose the last two coordinates
of f .

Finally, let m > 3 and f(A1, A2, A2, . . . , A2) ⊆ A1. Fix a sequence
Aj1 , Aj2 , . . . , Ajm such that allAji ∈ {A1, A2, A3}. Let u2, . . . , um, v2, . . . , vm
∈ {x, y, z} be such that ui = y if Aji = Aj1 and ui = z if Aji 6= Aj1 , while
vi = x if Aji = Aj1 , vi = y if Aji = Aj1+1 and vi = z if Aji = Aj1+2. Let
g(x, y, z) = f(x, u2, u3, . . . , um) and h(x, y, z) = f(x, v2, v3, . . . , vm). From
f(A1, A2, A2, . . . , A2) ⊆ A1 follows that g(A1, A2, A2) ⊆ A1. By the case
m = 3, h(A1, A2, A2) = g(A1, A1, A2) ⊆ A1. Again by the case m = 3
follows that f(Aj1 , Aj2 , . . . , Ajm) = h(Aj1 , Aj1+1, Aj1+2) ⊆ Aj1 , so the Claim
is proved.

The Claim (with an appropriate permutation of variables) implies the
Lemma is true if there exists a position i is such that f(A2, A2, . . . , A2,
A1, A2, A2, . . . , A2) ⊆ A1, where A1 is in ith position (in particular, the
Lemma is proved for m = 2, so we assume m > 2). Let fi(x, y, z) be
f(x, x, . . . , x, y, z, z, . . . , z), where the first i variables are evaluated as x.
Moreover, let i be maximal among those that satisfy fi(A1, A2, A2) ⊆ A2 (by
our assumptions, 1 ≤ i < m− 1). Thus fi(A1, A1, A2) = fi+1(A1, A2, A2) ⊆
A1. By applying the Claim to fi(x, y, y) and fi(x, x, y) we deduce that
fi(Al, Aj , Aj) ⊆ Aj and fi(Al, Al, Aj) ⊆ Al for all j, l ∈ {1, 2, 3}. From
fi(a1, a1, a2) ∈ A1 and fi(a

′
1, a2, a3) ∈ fi(a1, a1, a2)+ follows fi(a

′
1, a2, a3) /∈

A3. By Lemmas 4.20 and 4.21 we obtain that ¬ fi(A1, A2, A3) ⊆ A3 and
hence that ¬ fi(A3, A1, A2) ⊆ A2. On the other hand, from fi(a2, a1, a1) ∈
A1 and fi(a3, a

′
1, a2) ∈ fi(a2, a1, a1)+ follows that fi(a3, a

′
1, a2) /∈ A3, and by

Lemma 4.20 this implies ¬ fi(A3, A1, A2) ⊆ A3. The remaining possibility
allowed by Lemma 4.20 is fi(A3, A1, A2) ⊆ A1. Therefore by Lemma 4.21
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we obtain fi(A1, A2, A3) ⊆ A2, so fi(a1, a2, a3) ∈ A2. Since fi(a
′
1, a3, a

′
1) ∈

fi(a1, a2, a3)+ ∩ (A1 ∪ A3) ⊆ A3 we get that fi(A1, A3, A1) ⊆ A3. By the
Claim applied to fi(x, y, x), this implies that fi(A2, A1, A2) ⊆ A1, so the
Claim may be applied to prove f(Aj1 , Aj2 , . . . , Ajm) ⊆ Aji+1 .

Without loss of generality, we may assume that f̂ is the first projection,
so now we know that f(Aj1 , . . . , Ajm) ⊆ Aj1 for any m-tuple of ρ-classes
(Aj1 , . . . , Ajm). Since we will not use the tournament T in the remainder of
the proof, from this point onwards we change the notation to write u → v
instead of (u, v) ∈ E.

Lemma 4.23. Let the induced subgraph on Ai contain a nontrivial strong
component C. Then f(C, V, . . . , V ) = C.

Proof. We may consider the case when i = k+1 to make the notation easier
(we use the isomorphic copy T ′ of T obtained by the cyclic automorphism
which maps i into k + 1 and parametrize G by T ′ instead of T ). Let c ∈ C
and v2, v3, . . . , vm ∈ V .
• If v2, . . . , vm ∈

⋃k
j=1Aj , then from f(c, v2, . . . , vm)+ ⊇ Ak+1 ∩ c+

follows that f(c, v2, . . . , vm) ∈ Ak+1 ∩ C−. If it were f(c, v2, . . . , vm) ∈
Ak+1 ∩ C∀− = (Ak+1 ∩ C−) \ C, then Ak+1 ∩ C∀− 3 f(c, v2, . . . , vn) ←
f(c′, a2k+1, . . . , a2k+1) ← f(c′′, c′′, . . . , c′′) = c′′ ∈ C where c ← c′ ← c′′ are
vertices in C and a2k+1 ∈ A2k+1. However, (c′′+)+ ∩C∀− ∩Ak+1 = ∅, which
is a contradiction. Therefore,

f(C, (

k⋃
j=1

Aj)
m−1) ⊆ C.

• We can prove dually that

f(C, (
2k+1⋃
j=k+2

Aj)
m−1) ⊆ C.

• Now let v2, . . . , vm ∈ V \ Ak+1. Let c′ → c → c′′ in C, a1 ∈ A1 and
a2k+1 ∈ A2k+1. Since the first two cases hold also for a polymorphism ob-
tained from f by identifying some variables with x1, from a2k+1 →

⋃k
j=1Aj

and c′ →
⋃2k+1
j=k+2Aj follows that C 3 f(c′, u2, . . . , um) → f(i, v2, . . . , vm),

where uj = a2k+1 if vj ∈
⋃k
j=1Aj , while uj = c′ if vj ∈

⋃2k+1
j=k+2Aj . Similarly,

from
⋃2k+1
j=k+2Aj → a1 and

⋃k
j=1Aj → c′′ follows that f(c, v2, . . . , vm) →
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f(c′′, w2, . . . , wm) ∈ C, where wj = a1 if vj ∈
⋃2k+1
j=k+2Aj , while wj = c′′ if

vj ∈
⋃k
j=1Aj . So,

f(C, (V \Ak+1)m−1) ⊆ C.

• From the previous inclusion follows that f(C, V m−1) ⊆ C similarly as
in the proof of the previous inclusion.

Lemma 4.24. Let the induced subgraph on Ai contain a nontrivial strong
component C and let c ∈ C. Then f({c}, V, . . . , V ) = {c}.

Proof. Again as in the previous proof we assume that j = k + 1. Also, let
us assume v2, . . . , vm ∈ A∀−k+1 =

⋃k
j=1Aj and denote c′ := f(c, v2, . . . , vm).

Then for any d ∈ c+ ∩C, c′ = f(c, v2, . . . , vm)→ f(d, d, . . . , d) = d, so c+ ⊆
c′+. By semicompleteness, either c′ = c, or c′ → c. Since we wish to prove
c′ = c, assume instead that c′ → c. But then for any a2k+1 ∈ A2k+1 follows
that c′′ = f(c′, a2k+1, . . . , a2k+1) → f(c, v2, . . . , vm) = c′. Finally, c′′ =
f(c′′, c′′, . . . , c′′)→ f(c′, a2k+1, . . . , a2k+1) = c′′ contradicting the irreflexivity
of →. Moreover, a dual argument proves that f(c, v2, . . . , vm) = c when
v2, . . . , vm ∈ A∀+k+1.

Next assume that v2, . . . , vm ∈ V \ Ak+1. Then for any a1 ∈ A1,
a2k+1 ∈ A2k+1 and c′, c′′ ∈ C such that c′ → c→ c′′, there exist u2, . . . , um ∈
{a2k+1, c

′} and w2, . . . , wm ∈ {a1, c
′′} such that ui → vi → wi for all

2 ≤ i ≤ m. To see this, denote first J1 = {j : 1 < j ≤ m and vj ∈ C−},
while J2 = {2, 3, . . . ,m} \ J1 = {j : 1 < j ≤ m and vj ∈ C+}. Now just
take uj = a2k+1 and wj = c′′ when vj ∈ J1, while uj = c′ and wj = a1

when vj ∈ J2. From the previous case applied to the binary polymor-
phisms g and h which are obtained from f by identification of the variables
in {1} ∪ J1 and in J2, respectively in {1} ∪ J2 and in J1, we get c′ =
g(c′, a2k+1) = f(c′, u2, . . . , um) → f(c, v2, . . . , vm) → f(c′′, w2, . . . , wm) =
h(c′′, a1) = c′′. Since c′ and c′′ were arbitrarily chosen, this implies that
(c− ∩ C) ⊆ f(c, v2, . . . , vm)− and (c+ ∩ C) ⊆ f(c, v2, . . . , vm)+, while from
Lemma 4.23 follows that f(c, v2, . . . , vm) ∈ C, so together this implies that
f(c, v2, . . . , vm) = c. We proved now that f({c}, (V \Ak+1)m−1) = {c}.

The general case of the lemma follows now easily by the same argument
as the case above, as for any vi ∈ V it is easy to find ui and wi such that
ui → vi → wi and that ui ∈ {c′}∪(V \Ak+1) and wi ∈ {c′′}∪(V \Ak+1).

Theorem 4.25. Every idempotent polymorphism f of a P-graph GT para-
metrized by the locally transitive tournament T is a projection, except when
GT is the 3-cycle.
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Proof. We may assume that f(Aj1 , . . . , Ajm) ⊆ Aj1 and after Lemma 4.24 is
applied, we are left with proving that f(v1, v2, . . . , vm) = v1 when v1 ∈ Ai is
the only element of a trivial strong component of the induced subgraph on
Ai. First let us denote by S the union of the maximal sequence of consecutive
trivial strong components of the induced subgraph on Ai which contains
{v1}. Here the use of term ’consecutive’ is with respect to the linear order
of strong components induced by→. S is bounded from above either by the
start of Ai, or by a nontrivial strong component I of Ai, and from below
either by the end of Ai or by the nontrivial strong component J of Ai. We
know that f(v1, v2, . . . , vm) ∈ Ai, so if S = Ai, then f(v1, v2, . . . , vm) ∈ S.
Otherwise, we select any uj → vj → wj for 2 ≤ j ≤ m. If a nontrivial strong
component I of the subgraph on Ai such that S ⊆ I∀+, then for all x ∈ I,
from Lemma 4.24 we get x = f(x, u2, . . . , um)→ f(v1, v2, . . . , vm), so for all
x ∈ I, f(v1, v2, . . . , vm) ∈ x+, i. e. f(v1, v2, . . . , vm) ∈ I∀+. Dually, for any
nontrivial strong component J of the subgraph on Ai such that S ⊆ J∀−,
then for all y ∈ J , we get f(v1, v2, . . . , vm) → f(y, w2, . . . , wm) = y, so for
all y ∈ J , f(v1, v2, . . . , vm) ∈ y−, i. e. f(v1, v2, . . . , vm) ∈ J∀−. We conclude
that f(v1, v2, . . . , vm) ∈ S, and by extension that f(S, V, V, . . . , V ) ⊆ S.

Now let S = {a1
1, a

2
1, . . . , a

|S|
1 }, where a1

1 → a2
1 → . . .→ a

|S|
1 and v1 = aj1.

Moreover, select any vertices atr ∈ V for 2 ≤ r ≤ m and 1 ≤ t ≤ |S| which
satisfy that atr → at+1

r for all r, t such that 2 ≤ r ≤ m and 1 ≤ t < |S|,
and which also have the property that ajr = vr for all 2 ≤ r ≤ m. Denote
by bt = f(at1, a

t
2, . . . , a

t
m). We get from compatibility that b1 → b2 → . . .→

b|S|, while from the previous paragraph follows that {b1, b2, . . . , b|S|} ⊆ S.
However, the induced subgraph on S is the strict linear order (i. e. transitive
tournament) in which the only directed path of length |S| is a1

1 → a2
1 →

. . . → a
|S|
1 , so it must be that at1 = bt for all 1 ≤ t ≤ |S|. In particular, for

t = j we get f(v1, v2, . . . , vm) = bj = aj1 = v1, as desired.

4.2 All strongly connected semicomplete digraphs

Lemma 4.26. Let G = (V,→) be a strongly connected semicomplete digraph
which contains at least one 2-cycle. Then for each 2-cycle a↔ b in G, the set
{a, b} is closed with respect to all idempotent polymorphisms of G and each
binary idempotent polymorphism of G restricted to {a, b} is a projection.

Proof. First, note that the 2-cycle has no idempotent binary polymorphisms
other than projections (the only other options are ∧ and ∨, and those two
are clearly not polymorphisms of the 2-cycle). So the second statement
follows from the first one.
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Given f ∈ Polid(G) of arity n > 1 and c ∈ {a, b}n, there is a binary
g ∈ Polid(G) (obtained from f by identification of variables) and d ∈ {a, b}2
such that f(c) = g(d). So, it suffices to prove that any 2-cycle a ↔ b is
closed under all binary f ∈ Polid(G). There is nothing to prove for |V | = 2.
Assume that it holds for all strongly connected semicomplete digraphs with
fewer than |V | vertices. In this proof we will call the 2-cycles {a, b} ⊆ V
which are not closed under all idempotent polymorphisms of G the bad pairs
of G. We are trying to prove no bad pairs exist and assume the opposite.

Claim 1: For a bad pair {a, b} of G, {a, b}∀+ = {a, b}∀− = ∅.
Assume not, and without loss of generality, let x ∈ {a, b}∀−. Then

{a, b} ⊆ x+ and x+ is closed under all idempotent polymorphisms of G,
since it is pp-definable with → and the constant x. Let G1 = (x+,→) be
the induced subgraph on x+. The strong component S of G1 which contains
{a, b} is pp-definable within G1 using all constants from x+ \S and →, so it
is also pp-definable within G using → and constants. Therefore, S is closed
under all idempotent polymorphisms of G. The assumption that {a, b} is a
bad pair of G implies that {a, b} is a bad pair of the induced subgraph of G
on the set S. Since x /∈ S, thus |S| ≤ |V | − 1 and the induced subgraph on
S is a strongly connected semicomplete digraph, contradicting the inductive
assumption and proving Claim 1.

Another way to write Claim 1 is to say that for all bad pairs {a, b} of G
and x ∈ V \ {a, b}, |x+ ∩ {a, b}| = |x− ∩ {a, b}| = 1.

Claim 2: Let {a, b} be a bad pair of G which is not closed under the
idempotent binary polymorphism f . Then {f(a, b), f(b, a)} is also a bad
pair of G.

From the fact that f is a polymorphism, it follows that f(a, b)↔ f(b, a).
Moreover, assuming that f(a, b) = c /∈ {a, b}, then from Claim 1 follows that
{a, c} and {b, c} are not 2-cycles, and so f(b, a) = d /∈ {a, b}. If {c, d} is not
a bad pair, then it is closed under all idempotent polymorphisms. Assume
that c → a → d or d → a → c. Then by Lemma 4.8, {a, c, d} is nice.
Moreover, since the induced subgraph on {a, c, d} is strongly connected and
b+ ∩{a, c, d} 6= ∅ 6= b− ∩{a, c, d}, then {a, b, c, d} is also nice by Lemma 4.7,
which is a contradiction with the assumption that {a, b} is a bad pair. So,
{c, d} ⊆ a− or {c, d} ⊆ a+. We may assume without loss of generality that
{c, d} ⊆ a+, that {c, d}∩a− = ∅, and also that f restricts to {c, d} as the first
projection. Now we get that d = f(b, a) → f(a, c) → f(c, d) = c and from
Lemma 4.8 follows that the subset {c, d, f(a, c)} is nice and that f restricts
to it as the first projection. Moreover, if it were a→ f(a, c), then we would
get that f(a, c)→ f(f(a, c), d) = f(a, c) (the equality follows since f is the
first projection on {c, d, f(a, c)}), which is impossible. From d → f(a, c)
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follows that f(a, c) 6= a. The only remaining possibility is that f(a, c)→ a.
But together with Lemma 4.7, this implies that {a, c, d, f(a, c)} is nice and
then again from Lemma 4.7 and b ↔ a we get that {a, b, c, d, f(a, c)} is
nice, which contradicts the assumption that {a, b} is a bad pair. This final
contradiction proves that {c, d} = {f(a, b), f(b, a)} must be a bad pair.

Claim 3: The set B :=
⋃
{{a, b} : {a, b} is a bad pair of G} is closed

under all binary idempotent polymorphisms of V .
By Claim 1, if a ∈ V is a member of the bad pair {a, b}, then the only

2-cycle containing a is a ↔ b. Let a1, a2 ∈ B and let f be an idempotent
polymorphism of G. We aim to prove that f(a1, a2) ∈ B. This follows
from idempotence if a1 = a2. If a1 ↔ a2, then {a1, a2} is a bad pair, so
f(a1, a2) ∈ B by Claim 2. So, we may assume without loss of generality
that a1 → a2, a1 ↔ b1 and a2 ↔ b2, where {a1, b1} and {a2, b2} are bad
pairs, and that |{a1, a2, b1, b2}| = 4. From a1 → a2 and Claim 1 applied to
a1 ↔ b1, resp. to a2 ↔ b2, we get a2 → b1, resp. b2 → a1, while Claim 1
applied to a2 ↔ b2 and a2 → b1 imply b1 → b2. The induced subgraph on
{a1, a2, b1, b2} is given in Figure 2:

b1

a1

b2

a2

Figure 2: The induced subgraph on {a1, a2, b1, b2}

Assume that c := f(a1, a2) /∈ B. Therefore, f(a1, a2) ↔ f(b1, b2) =: d
and the pair {c, d} is not a bad pair, and hence {c, d} is closed under
all idempotent polymorphisms of G. Now c = f(a1, a2) → f(a2, b1) →
f(b1, b2) = d, so the subset {c, d, f(a2, b1)} is nice by Lemma 4.8. More-
over, since f(a1, b2) ↔ f(a2, b1), thus {c, d, f(a2, b1), f(a1, b2)} is also nice
by Lemma 4.7. Since f(a2, b1) ↔ f(a1, b2), {f(a2, b1), f(a1, b2)} is not a
bad pair and elements of B are in precisely one 2-cycle, thus f(a2, b1) /∈ B
and f(a1, b2) /∈ B. Now, a1 = f(a1, a1) → f(a2, b1), and since f(a2, b1) /∈
B 3 b1, from Claim 1 follows that f(a2, b1) → b1. Also, we know that
b1 = f(b1, b1) → f(a1, b2), so from Lemma 4.7 follows that {c, d, f(a2, b1),
f(a1, b2), b1} is nice. Finally, from this, Lemma 4.7 and a1 ↔ b1 follows
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that {c, d, f(a2, b1), f(a1, b2), a1, b1} is nice, which contradicts the assump-
tion that the pair {a1, b1} is bad. This finishes the proof of Claim 3.

Now we consider the case when B contains at least three distinct bad
pairs. If this is the case, we claim that there exist three distinct elements
a1, a2, a3 ∈ B such that {a1, a2, a3} contains no bad pairs and it is closed
under all binary idempotent polymorphisms. We will obtain this set as an
intersection of a pp-definable subset of V and B, and therefore all binary
polymorphisms will be compatible with it by Claim 3. Note that for any
b ∈ B, |b+ ∩ B| = |B|

2 , since b+ ∩ B contains the other half of the bad pair
which contains b and exactly one element of each other bad pair, according
to Claim 1. So, b+ ∩ B = {a1, a2, . . . , an}, this is a set which contains
no bad pairs, it is closed under all idempotent binary polymorphisms of G
and we assumed that n ≥ 3. Now we inductively intersect this set with
another pp-definable subset to make it smaller, but still no less than 3. To
do this, assume that the subset S = {a1, a2, . . . , am} ⊆ B is closed under all
idempotent binary polymorphisms and contains no bad pairs and let m > 3.
If m ∈ {2k, 2k + 1} for some integer k, then we know that k ≥ 2. Now
the induced subgraph on S is a tournament and since |S| ∈ {2k, 2k + 1},
then either |a+

m ∩ S| ≥ k or |a−m ∩ S| ≥ k. Without loss of generality, let
|a+
m ∩ S| ≥ k. The set T := a+

m ∩ S contains no bad pairs since S doesn’t
contain them, it is closed under all idempotent binary polymorphisms and
since T ⊆ S \ {am}, thus |T | < m. If |T | ≥ 3, then this is our desired set T .
If |T | = 2, then for bm ∈ B such that am ↔ bm, i. e. that {am, bm} is a bad
pair, Claim 1 implies that b−m ∩ S = T ∪ {am} and so T ′ = |b−m ∩ S| = 3. As
above, this set T ′ is also closed under all idempotent binary polymorphisms
and contains no bad pairs.

So we have proved that there exist three distinct elements a1, a2, a3 ∈ B
such that {a1, a2, a3} is closed under all idempotent binary polymorphisms
of G and contains no bad pairs. In fact, from the proof in previous paragraph
we know that there exists a pp-formula ϕ(x) in the language of the pointed
digraph Gc with one free variable x such that {x : ϕG(x)}∩B = {a1, a2, a3}.
Without loss of generality, we may assume that a1 → a2 → a3 (no assump-
tion is made on the edge between a1 and a3) and let ai ↔ bi, i. e. {ai, bi}
are bad pairs. This and Claim 1 force the situation depicted on Figure 3:
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b1

a1

b2

a2 a3

b3

Figure 3: The induced subgraph on {a1, a2, a3, b1, b2, b3}

{b1, b2, b3} = {x : (∃y)(ϕG(y)&x ↔ y)} ∩ B, so {b1, b2, b3} is also closed
under all idempotent binary polymorphisms of G. Also since {a1, a2} =
b+2 ∩ {a1, a2, a3}, {a2, a3} = b−2 ∩ {a1, a2, a3}, {b1, b2} = a+

2 ∩ {b1, b2, b3},
{b2, b3} = a−2 ∩ {b1, b2, b3}, then the sets {a1, a2}, {a2, a3}, {b1, b2} and
{b2, b3} are all closed under idempotent binary polymorphisms of G. Let f
be an idempotent binary polymorphism of G such that {a2, b2} is not closed
under f . We have the following cases:

Case 1: f(a1, a2) = a2. Since a2 = f(a1, a2)→ f(a2, a3) and {a2, a3} is
closed under f , we get f(a2, a3) = a3. Then we have these two subcases:

Case 1a: f(a3, a2) = a2. Then a2 = f(a1, a2)→ f(a2, b2)→ f(a3, a2) =
a2 and the only element x ∈ V such that a2 ↔ x is b2, it follows that
f(a2, b2) = b2. By Claim 2, {f(a2, b2), f(b2, a2)} = {b2, f(b2, a2)} is a bad
pair, so f(b2, a2) = a2, and from these and idempotence of f follows that
{a2, b2} is closed under f , contradicting the choice of f .

Case 1b: f(a3, a2) = a3. Now f(a2, b2) → f(a3, a2) = a3 and f(b2, a2)
→ f(a2, a3) = a3, so a3 ∈ f(a2, b2)+ ∩ f(b2, a2)+. Since {f(a2, b2), f(b2, a2)}
is a bad pair by Claim 2, we get a contradiction with Claim 1.

Case 2: f(a2, a1) = a2. This case is analogous to Case 1.
Case 3: f(a1, a2) = a1 and f(a2, a1) = a1. This case is analogous to

Case 1b, with all edges and the roles of a1 and a3 reversed, since the con-
tradiction there was derived only from f(a2, a3) = a3 = f(a3, a2), without
using f(a1, a2) = a2 at all.

Finally, we deal with the case when B contains at most two bad pairs. By
Claim 2 it cannot contain exactly one, so |B| = 4. Without loss of generality,
B = {a1, a2, b1, b2} and the induced subgraph on B is isomorphic to the one
in Figure 2. Also, since b+1 ∩ B = {a1, b2}, the subset {a1, b2} is invariant
under all idempotent binary polymorphisms of G. Let f be an idempotent
binary polymorphism such that {a1, b1} is not closed with respect to f .
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Then by Claim 2 {f(a1, b1), f(b1, a1)} is a bad pair distinct from {a1, b1},
so {f(a1, b1), f(b1, a1)} = {a2, b2} and without loss of generality we may
assume that f(a1, b1) = a2 and f(b1, a1) = b2 (if not, just replace f with
g(x, y) := f(y, x)). Now a2 = f(a1, b1) → f(a2, b2) → f(b1, a1) = b2, so
f(a2, b2) = b1 and from f(a2, b2) ↔ f(b2, a2) follows that f(b2, a2) = a1

(see Figure 2). Since a1 = f(b2, a2) → f(a1, b2), then f(a1, b2) ∈ a+
1 ∩ B =

{a2, b1}, so {a1, b2} is not closed under f . This contradiction establishes
that B must be empty, as desired.

Definition 4.27. Let G = (V,→) be a strongly connected semicomplete
digraph. We say that L splits G if ∅ 6= L ( V is a subset with the following
properties:

1. {L,L∀+, L∀−} is a partition of V and

2. for any 2-cycle a ↔ b in G, {a, b} is contained in one of L, L∀+, or
L∀−.

Lemma 4.28. Let G = (V,→) be a strongly connected semicomplete digraph
which is not a cycle. Let L0 be either a 2-cycle or a nice subset of V . Then
either all idempotent polymorphisms of G are projections, or there exists an
L such that L0 ⊆ L ⊆ V and that

• L splits G and

• either the induced subgraph on L is a 2-cycle, or L is nice.

Proof. We inductively construct a sequence of subsets such that for all i,
Li ⊆ Li+1, and also such that Li are nice for all i > 0. We terminate
our inductive construction if Li splits G and make L := Li. We have two
possibilities:

Case 1: If there exists an element v ∈ V \Li such that v+ ∩Li 6= ∅ and
v−∩Li 6= ∅, then select Li+1 := Li∪{v}. If i = 0 and the induced subgraph
on L0 is a 2-cycle, then from Lemmas 4.26 and 4.8 follows that Li+1 is nice.
Otherwise, the same conclusion follows from Lemma 4.7 since Li is nice.

Case 2: Assume that for all v ∈ V \Li, either v+∩Li = ∅, or v−∩Li = ∅.
Thus either v ∈ L∀−i or v ∈ L∀+i , but not both, and so {L,L∀+, L∀−} is a
partition of V . Now either Li splits G, in which case we put L := Li and
terminate the sequence, or there exists a 2-cycle c ↔ d such that c ∈ L∀−
and d ∈ L∀+. We put Li+1 := Li ∪ {c, d}. The induced subgraph on any
subset of Li+1 which contains {c, d} is strongly connected as any element
is in a 3-cycle with c and d. Moreover if Li = {v1, v2, . . . , vk}, starting
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from {c, d} by Lemmas 4.26 and 4.8 we get that {c, d, v1} is nice. From
the assumption that {c, d, v1, . . . , vj} is nice and Lemma 4.7 we get that
{c, d, v1, . . . , vj , vj+1} is nice, hence inductively Li+1 is nice.

Lemma 4.29. Let G = (V,→) be a strongly connected semicomplete digraph
which is not a P -graph and let L split G. Then there exist vertices a0, a1, b0 ∈
V such that a1 ← a0 → b0 → a1 and that either

(a) b0 ∈ L∀− and a0, a1 are in the same strong component, or two consec-
utive strong components, of the induced subgraph on L∀+, or

(b) b0 ∈ L∀+ and a0, a1 are in the same strong component, or two consec-
utive strong components, of the induced subgraph on L∀−.

Proof. Firstly, if there were no elements a ∈ L∀− and b ∈ L∀+ such that
b→ a, then G would not be strongly connected. On the other hand, if there
were no elements a ∈ L∀− and b ∈ L∀+ such that a→ b, then G would be a
P-graph parametrized by the 3-cycle into components L∀−, L and L∀+.

Let the strong components of the induced subgraphs on L∀− and L∀+

be, respectively, A1 ⇒ A2 ⇒ . . . ⇒ Ak1 and B1 ⇒ B2 ⇒ . . . ⇒ Bk2 (here
⇒ indicates that all edges between those subsets are in that direction and
none in the other). If there is an element c ∈ L∀− and a strong component
Bj of the induced subgraph on L∀+ such that c+ ∩Bj 6= ∅ 6= c− ∩Bj , then
consider the Hamiltonian cycle d0 → d1 → . . . → dk−1 → d0 of Bj . There
must be consecutive elements di → di+1 in this cycle (here we use addition
modulo k) such that di → c → di+1. Then take b0 := c, a0 := di and
a1 := di+1 and the case (a) is satisfied. Dually, if there exist any c ∈ L∀+
and a strong component Aj of the induced subgraph on L∀−, such that
c+ ∩Bj 6= ∅ 6= c− ∩Bj , then item (b) of the Lemma would be true.

Now for any a ∈ Ai and b ∈ Bj , if a → b, then Bj ⊆ a+. Thus for any
c ∈ Bj , also a → c, so Ai ⊆ c−, and therefore Ai ⇒ Bj . Dually, if b → a
then Bj ⇒ Ai. We proved that G is parametrized by a tournament T into
A1, A2, . . . , Ak1 , L,B1, B2, . . . , Bk2 . Since G is not a P-graph, we know that
T is not locally transitive. We know that A1 ⇒ A2 ⇒ . . . ⇒ Ak1 ⇒ L ⇒
B1 ⇒ B2 ⇒ . . .⇒ Bk2 ⇒ A1, so T is strongly connected and by definition,
there exists a vertex v ∈ V (T ) such that either v− or v+ is not transitive.

Assume that v+ is not transitive. v is not the vertex which gets expanded
into L, since the subtournaments which expand into L∀− and L∀+ are both
transitive (as Ai ⇒ Aj and Bi ⇒ Bj whenever i < j). If v expands into
Ai, from the assumption that v+ is not transitive follows that there must
be some j and k > i such that Bj ⊆ A+

i and Bj ⇒ Ak. Let k be the least
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integer greater than i such that Bj ⇒ Ak. From Ai ⇒ Bj follows that
Ak−1 ⇒ Bj , so select any a0 ∈ Ak−1, a1 ∈ Ak and b0 ∈ Bj to fulfil the
requirements of (b). On the other hand, if v gets expanded into Bi from
intransitivity of v+ follows that there must be some j and k > i such that
Aj ⊆ B+

i and Aj ⇒ Bk. The proof of this case follows by permuting the
letters A and B in the previous proof and leads to fulfilment of (a). The
case when v− is intransitive is dual.

The next lemma will be used only in the case when there are no 2-cycles
in G, so we assume that G is a tournament. It will help with the inductive
base of the main proof.

Lemma 4.30. If a strongly connected tournament G = (V,→) is not a P-
graph and for all v ∈ V , all strong components of the induced subgraphs on
v+ and on v− are of sizes 1 or 3, then there is a 3-cycle a → b → c → a
in G such that all idempotent polymorphisms of G restrict to {a, b, c} as
projections.

Proof. Claim 1: There exist five distinct vertices such that the induced
subgraph on them contains all edges of the partial tournament depicted on
Figure 4, or of its dual (the edge between a2 and b0 is missing since it doesn’t
matter which way it goes).

a0

a2

a1

b0

v

Figure 4: The partial tournament from Claim 1

Since G is a tournament, each singleton {v} splits G, so V = {v}∪v−∪v+.
First assume that for some vertex v there exist strong components A of v+

and B of v− such that neither A ⇒ B nor B ⇒ A. At least one of these
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components is of size 3, say A. From the proof of Lemma 4.29 we get
statement (a) or statement (b) of that Lemma to hold, with a0, a1 both in
the same component (the consecutive case arises when always A ⇒ B or
B ⇒ A). If (b) holds then the situation is like in Figure 4, while if (a) holds,
then it is like in its dual.

Now assume that for all vertices v and all strong components A of v+

and B of v−, either A ⇒ B or B ⇒ A. Select L ( V to be maximal so
that L is singleton or a strongly connected proper subtournament, and that
L splits G. Denote the strong components of L∀− and L∀+, respectively, by
A1 ⇒ A2 ⇒ . . . ⇒ Ak1 and B1 ⇒ B2 ⇒ . . . ⇒ Bk2 . For any v ∈ L, Ai and
Bj are strong components of the induced graph on v− and v+, respectively,
since Ai ⇒ (L ∩ v−) and (L ∩ v+)⇒ Bj , so by our assumptions |Ai|, |Bj | ∈
{1, 3}, and either Ai ⇒ Bj or Bj ⇒ Ai. Without loss of generality, assume
that Lemma 4.29, item (b) holds, i. e. Ai+1 ⇐ Ai ⇒ Bj ⇒ Ai+1, (in
particular, k1 > 1).

Let us show that we may assume that i = k1− 1 and j = 1. If i < k1− 1
then for any ai ∈ Ai, a+

i contains a cycle of length at least 4, as Ai+1 ⇒
Ak1 ⇒ L ⇒ Bj ⇒ Ai+1. This is a contradiction with the conditions of the
Lemma. Let Ai = ki − 1 and j > 1. If Ai ⇒ B1, then for any ai ∈ Ai, a+

i

contains a cycle of length 4 or more since Ak1 ⇒ L⇒ B1 ⇒ Bj ⇒ Ak1 , and
this again contradicts the conditions of the Lemma. On the other hand, if
B1 ⇒ Ai then select a0 ∈ Ai, a1 ∈ L, a2 ∈ B1, v ∈ Bj and b0 ∈ Ai+1. We
get the following edges: a0 → a1 → a2 → a0, then {a0, a1, a2} ∈ v−, v → b0
and finally a0 → b0 → a1. In other words, the induced subgraph on these
five vertices contains all edges of the partial tournament depicted on Figure
4.

Now let i = k1−1 and j = 1. If there exists Al such that l < i, B1 ⇒ Al,
then select a0 ∈ Ak1 , a1 ∈ B1, a2 ∈ L, v ∈ Ak1−1 = Ai and b0 ∈ Al. Now
we get that a0 ← a1 ← a2 ← a0, that {a0, a1, a2} ⊆ v+, b0 → v and that
a0 ← b0 ← a1. In other words, the induced subgraph on these five vertices
contains all edges of dual of the partial tournament depicted on Figure 4.

The remaining case is when for all l < i, the strong components Al ⇒ B1.
Also, |Ak1 | = |L| = |B1| = 1, otherwise from Ak1 ∪ L ∪ B1 ⊆ A∀+k1−1 and
Ak1 ⇒ L ⇒ B1 ⇒ Ak1 would follow that for any v ∈ Ak1−1, v+ contains a
cycle of length greater than 3. Moreover, we know from strong connectedness
of G that k2 > 1, otherwise there would be no edge from Ak1 ∪ L ∪ B1 into
the rest of V (which is nonempty since k1 > 1).

Now we prove that also for all l > 1, Ak1 ⇒ Bl. Assume not, then select
Bl such that l > 1 and Bl ⇒ Ak1 . Now, if Ak1−1 ⇒ Bl, we would get that
Ak1 ⇒ L⇒ B1 ⇒ Bl ⇒ Ak1 and for any v ∈ Ak1−1, Ak1 ∪L∪B1∪Bl ⊆ v+.
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This would imply that v+ contains a 4-cycle, a contradiction. On the other
hand, if Bl ⇒ Ak1−1, then select a2 ∈ L, a0 ∈ Ak1 , a1 ∈ B1, v ∈ Ak1−1

and b0 ∈ Bl. We get that a0 ← a1 ← a2 ← a0, that {a0, a1, a2} ⊆ v+,
b0 → v and that a0 ← b0 ← a1. As before, the induced subgraph on these
five vertices contains all edges of dual of the partial tournament depicted on
Figure 4.

Finally, if for all l > 1, Ak1 ⇒ Bl, then we get that Ak1 ∪ L ∪ B1 also
splits G and it is a proper subset of V . This contradicts the choice of L.
Claim 1 is thus proved.

Note that {a0, a1, a2} ⊆ v− and {a1, b0, v} ⊆ a+
0 , hence each of those

three-element sets is closed under all idempotent polymorphisms of G (since
they are 3-cycles, they must be strong components of v− and a+

0 , respec-
tively, so they are pp-definable in Gc).

Claim 2: Every idempotent binary polymorphism f ∈ Polid(G) is the
same projection on the sets {a0, a1, a2} and {a1, v, b0}.

Since a0 = f(a0, a0) → f(b0, a1) → f(a1, a2) → f(v, v) = v, it follows
that f(a1, a2) 6= a0 since there are no 2-cycles in G. From f(a0, a1) →
f(a1, a2) 6= a0 and f(a0, a1), f(a1, a2) ∈ {a0, a1, a2} follows f(a0, a1) ∈
{a0, a1}. By switching the coordinates of f in the previous sentence we
also get that f(a1, a0) ∈ {a0, a1}. By the same argument, since v is not in
a 2-cycle, we get that f(b0, a1) 6= v 6= f(a1, b0). Therefore, also f(b0, a1),
f(a1, b0) ∈ {a1, b0}. Let us assume that f(a0, a1) = a0. This implies that
a0 = f(a0, a1) → f(a1, a2) → f(a2, a0) → f(a0, a1) = a0, so f(a1, a2) = a1

and f(a2, a0) = a2. Since f(a0, a1) → f(b0, a2) → f(a1, a0) and there are
no 2-cycles in G, therefore f(a1, a0) 6= a0 and so f(a1, a0) = a1. Similarly
as before, a1 = f(a1, a0) → f(a2, a1) → f(a0, a2) → f(a1, a0) = a1 implies
f(a2, a1) = a2 and f(a2, a0) = a2, so f is the first projection on {a0, a1, a2}.
Moreover, from {a1, b0} 3 f(b0, a1)→ f(a1, a2) = a1 implies that f(b0, a1) =
b0. Thus from b0 = f(b0, a1) → f(a1, v) → f(v, b0) → f(b0, a1) = b0 we get
f(a1, v) = a1 and f(v, b0) = v. Finally, from a1 = f(a1, v) → f(a2, b0) →
f(v, a1) follows that f(v, a1) 6= a1 since there are no 2-cycles in G, while
from a1 = f(a1, a0)→ f(v, a1) follows that f(v, a1) 6= b0 since b0 → a1 and
not the other way round. So the remaining possibility is that f(v, a1) = v
and then from v = f(v, a1) → f(b0, v) → f(a1, b0) → f(v, a1) = v we
get f(a1, b0) = a1 and f(b0, v) = b0. So, f is the first projection both on
{a0, a1, a2} and on {a1, v, b0}. The proof that if f(a0, a1) = a1 then f is the
second projection both on {a0, a1, a2} and on {a1, v, b0} is analogous.

Claim 3: No idempotent polymorphism of G restricts to {a1, v, b0} as a
Mal’cev or as a near-unanimity operation.

Assume first that d(x, y, z) is a ternary idempotent polymorphism of
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G which restricts to {a1, v, b0} as a Mal’cev operation, i. e. d(x, x, y) =
y = d(y, x, x) holds identically on {a1, v, b0}. Applying Claim 2 we get that
d(x, x, y) = y = d(y, x, x) holds identically on {a0, a1, a2}, as well. Thus, we
get a1 = d(a1, a0, a0)→ d(v, v, a1) = a1, a contradiction.

On the other hand, assume that f(x1, x2, . . . , xn) is an idempotent poly-
morphism of G which restricts to {a1, v, b0} as a near-unanimity operation,
i. e. f(y, x, . . . , x) = f(x, y, x, . . . , x) = . . . = f(x, x, . . . , x, y) = x is true
for all x, y ∈ {a1, v, b0}. Applying Claim 2 we get that f(y, x, . . . , x) =
f(x, y, x, . . . , x) = f(x, x, . . . , x, y) = x holds identically on {a0, a1, a2}, as
well. Let i be such that f(xiyn−i) = x, while f(xi−1yn−i+1) = y for all
x, y ∈ {a1, v, b0} (and consequently, for all x, y ∈ {a0, a1, a2}). From com-
patibility of f with {a0, a1, a2} and

f(ai−1
0 a1a

n−i
2 )→ f(ai−1

1 a2a
n−i
0 )→ f(ai−1

2 a0a
n−i
1 )→ f(ai−1

0 a1a
n−i
2 )

we conclude that the triples(
f(ai−1

0 a1a
n−i
2 ), f(ai−1

1 a2a
n−i
0 ), f(ai−1

2 a0a
n−i
1 )

)
and (a0, a1, a2)

are cyclic permutations of each other. We have two cases:
Case 1: a2 → b0. Then f(ai−1

0 a1a
n−i
2 ) = a0 implies that f(ai−1

1 a2a
n−i
0 ) =

a1, so a1 = f(ai−1
1 a2a

n−i
0 ) → f(vi−1bn−i+1

0 ) = b0 → a1, which would be a
double-edge, a contradiction. On the other hand, if f(ai−1

0 a1a
n−i
2 ) = a2,

then f(ai−1
2 a0a

n−i
1 ) = a1 and a1 = f(ai−1

2 a0a
n−i
1 ) → f(bi0v

n−i) = b0 → a1,
a contradiction. Finally, if f(ai−1

0 a1a
n−i
2 ) = a1, then a1 = f(ai−1

0 a1a
n−i
2 )→

f(bi−1
0 vbn−i0 ) = b0 → a1, again a contradiction.
Case 2: b0 → a2. If f(ai−1

0 a1a
n−i
2 ) = a0, then a0 = f(ai−1

1 an−i+1
0 ) →

f(ai−1
2 bn−i+1

0 ) → f(ai−1
0 a1a

n−i
2 ) = a0, a contradiction. On the other hand,

if f(ai−1
0 a1a

n−i
2 ) = a2, then f(ai−1

1 a2a
n−i
0 ) = a0 and a0 = f(ai0a

n−i
1 ) →

f(bi0a
n−i
2 ) → f(ai−1

1 a2a
n−i
0 ) = a0, again the same contradiction. Finally, if

f(ai−1
0 a1a

n−i
2 ) = a1, then f(ai−1

2 a0a
n−i
1 ) = a0 and hence a0 = f(ai−1

2 a0a
n−i
1 )

← f(bi−1
0 a2b

n−i
0 )← f(vi−1a1v

n−i) = v, again a contradiction since (v+)+ =
b+0 = {a1, a2}, so a0 /∈ (v+)+. Thus Claim 3 is proved.

Let f be an idempotent polymorphism of G. We deduce from Lemma 4.1
that there exists a unique k such that fk(b0, v) = v. Without loss of gen-
erality, assume that k = 1, so let f(v, bn−1

0 ) = v. By the binary case
we proved in Claim 2, it follows that f(a1, a

n−1
0 ) = a1. However, since

f({v}, {a1, v, b0}n−1) ⊆ f(a1, a
n−1
0 )+ = a+

1 , we obtain f({v}, {a1, v, b0}n−1)
= {v}. It follows that f is the first projection on {a1, v, b0} by the same ”go-
ing around the 3-cycle” argument we used several times in this proof.

40



Theorem 4.31. A strongly connected semicomplete digraph which is not a
cycle has only trivial idempotent polymorphisms.

Proof. We prove it by an induction on |V | = n. By Theorem 4.25, if G
is a P-graph, we are done, so we assume that G is not a P-graph. For
n = 2 the only strongly connected semicomplete digraph must be a cycle.
If n = 3 and G is not a cycle, then there is a 2-cycle a ↔ b in G, and the
third vertex c must satisfy either a → c → b or b → c → a (possibly even
both!), so by Lemma 4.26 and Lemma 4.8 all idempotent polymorphisms
are projections. Also, if n = 4, then G is a P-graph parametrized by the
3-cycle if G is the only 4-element strongly connected tournament or in the
case when V = {a, b, c, d} has exactly one 2-cycle a ↔ b, c ∈ {a, b}∀+ and
d ∈ {a, b}∀−. Otherwise, from Lemmas 4.26, 4.8 and 4.7 follows that all
idempotent polymorphisms of G are projections.

Now assume that n > 4 and that the Theorem holds in all strongly
connected semicomplete digraphs with fewer than n vertices. We are going
to prove that the maximal nice subset of V is V itself. We would like to
prove this by finding first a nice subset, then going to the maximal nice
subset which contains it and finally proving that this maximal nice set is V .
However, the actual argument we found is slightly murkier, we may not be
able to start off from a nice subset. Our starting point might be instead a
2-cycle, which may have a polymorphism (of arity greater than 2) which is
nontrivial. However, if not even Lemma 4.28 provides a nice subset which
contains the 2-cycle, then we are able to proceed inductively to a nice set
which contains the 2-cycle by Lemma 4.29.

First we need to prove that there exists a 2-cycle, or a nice subset with
more than one element. If there exists a 2-cycle a ↔ b, then we set L0 =
{a, b}. Otherwise, G is a tournament, and if there exists any vertex v ∈ V
and a strong component L0 of the induced subgraph on v− or on v+ such
that |L0| > 3, then L0 is clearly pp-definable with constants in G, so L0

must be nice by the inductive assumption. Finally, if G is a tournament and
for all v ∈ V all strong components of the induced subgraphs on v− and on
v+ have at most three elements, then G is either a P-graph, in which case
we are done by Theorem 4.25, or from Lemma 4.30 follows that there is a
three element subset L0 which is nice.

Let L be a maximal nice subset of V such that L0 ⊆ L. Assume that
L 6= V . Either L exists, so by Lemma 4.28 L splits G, or L0 is contained
in no nice set, so L0 is a 2-cycle, so by Lemmas 4.26 and 4.8 L0 splits G
(in this case we also set L := L0). From Lemma 4.29 follows that either a
strong component L′ of the induced subgraph on a+

0 contains L ∪ {a1, b0}
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(if Lemma 4.29 (b) holds), or that a strong component L′ of the induced
subgraph on a−1 contains L∪{a0, b0} (Lemma 4.29 (a) holds). Either way, L′

is pp-definable in Gc, L ( L′ ( V and the induced subgraph on L′ is strongly
connected, so by the inductive assumption L′ is nice. This contradicts the
assumed maximality of L (or nonexistence of the nice set which contains
L0, as the case may be). The remaining alternative is L = V , but then the
Theorem holds by niceness of L.

As we mentioned at the start of this section, by proving Theorem 4.31
and invoking Proposition 4.2 we also proved Theorem 4.3.

5 Smooth semicomplete digraphs with several
strong components

In this section we deal with the smooth semicomplete digraphs G and we
will show that QCSP(G) is PSPACE-complete whenever G is not a 2-cycle
nor a 3-cycle (i.e. when G has at least two cycles, cf. the proof of Theo-
rem 3.3). The case when G has only one strong component was resolved in
Theorem 4.3, so we may assume that G has at least two strong components.
Moreover, smoothness implies that the largest and smallest one in the linear
order of strong components induced by the edge relation are nontrivial.

5.1 Two strong components

Let us first deal with the case when the digraph G = (V,→) consists of
exactly two nontrivial strong components, U and L such that L⇒ U . Since
they are nontrivial, the induced subgraph on each of L and U is either a cycle
(a 2-cycle or 3-cycle would be the only semicomplete ones, but our proof
would also work if there was a k-cycle instead!) or a strongly connected
semicomplete digraph with at least two cycles, for which we know from
Theorem 4.31 that the only idempotent polymorphisms of that subgraph
are projections. Recall the notation �G from Section 2. Note that a+ ⊆ b+
iff a �G∂ b, where G∂ is the dual graph. Denote by x →k y the assertion
that there exists a directed path of length k from x to y.

Lemma 5.1. Let a ∈ L and b ∈ U such that a is maximal in the poset
(L,�G) and b is maximal in (U,�G∂ ). Then {a, b} = (a−)∀+ ∩ (b+)∀−.
In particular, {a, b} is pp-definable in Gc, and thus compatible with any
idempotent polymorphism of G.
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Proof. (⊆) follows the fact that L⇒ U .
(⊇): Let c be in the right hand side, but not in {a, b}. Assume first that
c ∈ L. Then for all x ∈ a−, x → c, so a− ⊆ c−. Thus a �G c, and from
maximality of a follows c = a. The case when c ∈ U is dual.

The final sentence requires no proof.

Note that, in the case when L is a cycle, any of its elements satisfies the
maximality condition for a, and dually when U is a cycle.

Lemma 5.2. Let f(x1, . . . , xn) be an idempotent polymorphism of G and
1 ≤ k ≤ n.

(i) For all (a, b2, . . . , bn) ∈ Lk × Un−k, if a− ⊆ f(a, b2, . . . , bn)− and U ⊆
f(a, b2, . . . , bn)+, then f(a, b2, . . . , bn) = a for all (a, b2, . . . , bn) ∈ Lk×
Un−k.

(ii) For all (a, b2, . . . , bn) ∈ Lk × Un−k, if a+ ⊆ f(a, b2, . . . , bn)+ and U ⊆
f(a, b2, . . . , bn)+, then f(a, b2, . . . , bn) = a for all (a, b2, . . . , bn) ∈ Lk×
Un−k.

(iii) Assume also that U is a cycle and that for all (a′, b′2, . . . , b
′
n) ∈ Lk ×

Un−k, (a′)− ⊆ f(a′, b′2, . . . , b
′
n)−. If (a, b2, . . . , bn) ∈ Lk × Un−k sat-

isfy n − k ≥ 2, bk+1 6= bk+2, b+k+1 ⊆ f(a, b2, . . . , bn)+ and b+k+2 ⊆
f(a, b2, . . . , bn)+, then f(a, b2, . . . , bn) = a.

Remark: Note that the above Lemma also implies its dual statement
for (a, b2, . . . , bn) ∈ Uk × Ln−k (obtained by transposing U and L, + and
−, etc.). Also, the order of variables may be permuted arbitrarily and the
same statements would hold.

Proof. In all three cases we have that a �H f(a, b2, . . . , bn) with respect to
some graph H = G in (i) and (iii), while in (ii) we use H = G∂ . In (iii)
from the assumption that U is a cycle follows that |f(a, b2, . . . , bn)+ ∩ U | ≥
|b+k+1 ∪ b

+
k+2| = 2, hence f(a, b2, . . . , bn) ∈ L, as |x+| = 1 for all x ∈ U . The

same f(a, b2, . . . , bn) ∈ L can be concluded from U ⊆ f(a, b2, . . . , bn)+ for
the cases (i) and (ii). So let a be maximal in the poset (L,�H) such that
there exist (b2, . . . , bn) ∈ Lk−1 × Un−k for which e := f(a, b2, . . . , bn) ∈ L
and a 6= e. The relations a �H e and a 6= e mean that a→ e in cases (i) and
(iii), while they mean a← e in (ii). Select (d2, . . . , dn) ∈ Lk−1×Un−k such
that bi → di in cases (i) and (iii), respectively bi ← di in case (ii). Since bi
and di are in the same strong component of G, there exists some m such that,
in cases (i) and (iii), a→ e→m a and bi → di →m bi, while in (ii) the same
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holds with← in place of→ (we take m+1 to be the least common multiple of
several lengths of cycles). Since f(e, d2, . . . , dn)→m f(a, b2, . . . , bn) = e ∈ L
(in (ii) replace →m with →), it follows that f(e, d2, . . . , dn) ∈ L. From
maximality of a follows that f(e, d2, . . . , dn) = e. But this is a contradiction,
as e = f(a, b2, . . . , bn)→ f(e, d2, . . . , dn) = e (in case (ii) use←) contradicts
the irreflexivity of →.

Lemma 5.3. Let f(x, y) be a binary idempotent polymorphism of G. Then
f is one of the two projections.

Proof. Fix a and b which fit the conditions of Lemma 5.1. According to
Lemma 5.1, without loss of generality, we may assume that f(a, b) = a. We
claim first that f is the first projection on L.

If L is not a cycle, then we get for any x ∈ a− that (x, a)→ (a, b) in G2.
We know that f�L is one of the two projections, according to Theorem 4.31,
and f(x, a) can’t equal a as we would get a = f(x, a) → f(a, b) = a, which
is impossible. Thus from {x, a} ⊆ L and f(x, a) 6= a follows that f�L must
be the first projection. In the case when L is a k-cycle, a = ak ← ak−1 ←
. . .← a1 ← a0 = a, for each l, 0 < l < k, we get f(ak−1, ak−l−1)→ f(a, b) =
a = ak, so f(ak−1, ak−l−1) = ak−1. Continuing like this we inductively get
that f(ai, ai−l) = ai for all 0 ≤ i ≤ k− 1, where the subtractions in the last
few sentences are modulo k, of course.

Now for some x ∈ a− we get (a, x) → (b, a) in G2, so a = f(a, x) →
f(b, a), so f(b, a) 6= a, and therefore f(b, a) = b. By the dual argument to
that of the last paragraph, we get that f is the first projection in the set U ,
as well.

It remains to prove that f is the first projection when one of the argu-
ments is in L and the other in U . For any x ∈ L and y ∈ U we get that for
each u ∈ U and some v ∈ y+, f(x, y)→ f(u, v) = u, so U ⊆ f(x, y)+. Also,
for each w ∈ x−, w = f(w, x) → f(x, y), so f(x, y) ∈ w+. In other words,
x− ⊆ f(x, y)−. Now, by Lemma 5.2 (i) it follows that f(x, y) = x for all
x ∈ L and y ∈ U . We prove f(x, y) = x for x ∈ U and y ∈ L using a dual
proof and the dual of Lemma 5.2 (i).

Lemma 5.4. Let f be an idempotent polymorphism of G. There exists
exactly one i such that fi(x, y) = y, while for all other j, j 6= i, it is
fj(x, y) = x.

Proof. According to Lemma 5.3, each fi(x, y) is identically equal to one of x
and y. G is a smooth digraph of algebraic length 1 (witnessed by the induced
subgraph on any two elements of L and one element of U) without loops,
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so it has not even a weak near-unanimity polymorphism, according to the
Loop Lemma of [2] (see the remarks preceding Lemma 4.15), and therefore
by Proposition 2.1 G has no Mal’cev nor near-unanimity polymorphisms.
Now apply Lemma 4.1 to Polid(G).

Theorem 5.5. Let G be a smooth semicomplete digraph with precisely two
strong components. Then all idempotent polymorphisms of G are projections.

Proof. Assume that f(x1, x2, . . . , xn) is an idempotent polymorphism of G
with n ≥ 2. Without loss of generality, we can assume from Lemma 5.4
that f1(x, y) = y for all x, y ∈ V and that fi(x, y) = x for all x, y ∈ V
and i > 1. This is for easier notation, if the coordinate singled out by
Lemma 5.4 is another, we just permute the coordinates of f to reduce to
another idempotent polymorphism which fits this case. We are going to
prove that f is the first projection.

We prove it by an induction on n. In the base case n = 2 there is nothing
to prove.

Fix some a1, a2, . . . , an ∈ V . Without loss of generality, we assume
that a1 ∈ L. Also, we may assume for i and j all such that i 6= j and
2 ≤ i, j ≤ n, that ai 6= aj , or there would exist some polymorphism g
which is the substitution instance of f obtained by identifying the ith and
jth variables which satisfies g(y, x, . . . , x) = y and which has arity n − 1.
This g would be the first projection by the inductive assumption and hence
f(a1, a2, . . . , an) = a1. Also, if a1 = ai for some 2 ≤ i ≤ n, then define
the idempotent polymorphism g of G from f by identifying the first and
ith variables. Now from Lemma 5.4 we get fl(x, y) = x for all 2 ≤ l ≤ n,
and hence we get gj(x, y) = x for all 2 ≤ j ≤ n − 1. Then by Lemma 5.4
it follows that g(y, x, . . . , x) = g1(x, y) = y and the inductive assumption
implies that g is the first projection. Thus, again, f(a1, . . . , an) = a1. So we
are left with the case when |{a1, a2, . . . , an}| = n.

Case 1: Let |{a2, a3, . . . , an} ∩ L| 6= 0 and |{a2, a3, . . . , an} ∩ U | 6= 0.
Without loss of generality (by permuting the coordinates), let a2, . . . , ak ∈ L
and ak+1, . . . , an ∈ U for some 2 < k < n. Then for any d ∈ U and
e ∈ a+

n we get that f(a1, a2, . . . , an) → f(d, e, a′3 . . . , a
′
k−1, e) = d, where

the elements a′i ∈ a+
i for 3 ≤ i ≤ n − 1 and the equality holds by the

inductive assumption, thus U ⊆ f(a1, a2, . . . , an)+. Also, for any d ∈ a−1
and e ∈ a−2 , d = f(d, e, a′3 . . . , a

′
k−1, e) → f(a1, a2, . . . , an), where a′i ∈ a

−
i

for 3 ≤ i ≤ n−1 and the equality holds by the inductive assumption, so a−1 ⊆
f(a1, a2, . . . , an)−. Now from Lemma 5.2 (i) we get that f(a1, a2, . . . , an) =
a1 for all (a1, a2, . . . , an) ∈ Lk × Un−k.
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Case 2: Let (a1, . . . , an) ∈ Ln. There we get for any d ∈ a+
1 ∩L, a′i ∈ a

+
i ∩

L for 1 < i < n and a′n ∈ U that f(a1, a2, . . . , an)→ f(d, a′2, . . . , a
′
n) = d (the

last equality holds either by the Case 1 or by the inductive assumption, since
n > 2), so a+

1 ⊆ f(a1, a2, . . . , an)+. Also, for all d ∈ U , f(a1, a2, . . . , an) →
f(d, d, . . . , d) = d, so U ⊆ f(a1, a2, . . . , an)+. Now by Lemma 5.2 (ii) we get
f(a1, a2, . . . , an) = a1 for all a1, a2, . . . , an ∈ L.

Case 3: Let (a1, a2, . . . , an) ∈ L × Un−1. We have for each d ∈ a−1 that
d = f(d, d, . . . , d)→ f(a1, a2, . . . , an), so a−1 ⊆ f(a1, a2, . . . , an)−.

First assume that the induced subgraph on U is a cycle. Then a+
i = {a′i}

for all 2 ≤ i ≤ n, and we get f(a1, a2, . . . , an) → f(a′2, a
′
2, . . . , a

′
n) = a′2 and

f(a1, a2, . . . , an) → f(a′3, a
′
2, . . . , a

′
n) = a′3, where the equalities hold by the

inductive assumption, that is, by the observations at the start of this proof.
Since a2 6= a3 we have all the conditions of Lemma 5.2 (iii) fulfilled, and so
f(a1, a2, . . . , an) = a1.

Finally, let the induced subgraph on U be strongly connected and semi-
complete with at least two cycles. The restriction of f to Un is a projection,
so it can only be the first one, since f(y, x, . . . , x) = y for all x, y ∈ V .
Therefore, for any d ∈ U , and any a′i ∈ a+

i for all 2 ≤ i ≤ n, we get
f(a1, a2, . . . , an)→ f(d, a′2, . . . , a

′
n) = d, so U ⊆ f(a1, a2, . . . , an)+. Thus by

Lemma 5.2 (i), f(a1, a2, . . . , an) = a1, completing the proof.

5.2 Several strong components, but just two nontrivial

We first generalize Theorem 5.5 to the case of smooth semicomplete digraphs
with precisely two non-singleton strong components. The order of strong
components is linear, and if x, y ∈ V are in distinct strong components,
x → y and ¬y → x, then we say that the component of x is below that of
y. Since G is smooth, then the only two nontrivial strong components must
be the top and bottom one in the order of components.

We denote the strong components by L (the bottom one), U (the top
one) and Mi = {mi}, for 1 ≤ i < k, which are in between, where Mi is
below Mj iff i < j.

Lemma 5.6. U ∪ L is closed under any polymorphism of G.

Proof. Both L and U have Hamiltonian cycles, being nontrivial strong com-
ponents in a semicomplete digraph. Let the lengths of those cycles be `1
and `2, respectively, and let ` = lcm (`1, `2). Let f be a polymorphism of
G of arity n. For any (a1, . . . , an) ∈ (U ∪ L)n we know that (a1, . . . , an)→`

(a1, . . . , an) in the digraph Gn. Hence, f(a1, . . . , an) →` f(a1, . . . , an), and
therefore f(a1, . . . , an) can’t be in any Mi for 1 ≤ i < k, as any element
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such that a directed path leads from mi to it must be in M+
i , therefore in a

strong component above Mi, and not equal to mi.

Theorem 5.7. Let G be a smooth semicomplete digraph with exactly two
non-trivial strong components. Then all idempotent polymorphisms of G are
projections.

Proof. According to Lemma 5.6 and Theorem 5.5, we may assume that f is
the ith projection on U ∪V , i.e. that f(a1, . . . , an) = ai for all (a1, . . . , an) ∈
(L ∪ U)n. We will prove that f is the ith projection on all of V n.

Case 1: Let ai ∈M1 ∪ . . .∪Mk−1. Then for each d ∈ L and e ∈ U there
exist tuples (b1, . . . , bn) ∈ Ln and (c1, . . . , cn) ∈ Un such that bi = d, ci = e
and for all a ≤ j < n, bj ∈ a−j and cj ∈ a+

j . Therefore, d = f(b1, . . . , bn)→
f(a1, . . . , an) → f(c1, . . . , cn) = e, and so L ⊆ f(a1, . . . , an)− and U ⊆
f(a1, . . . , an)+. This implies that f(a1, . . . , an) ∈M1 ∪ . . . ∪Mk−1.

Let ai = mj . Define the tuples (a
(1)
1 , . . . , a

(1)
n ), . . . , (a

(k−1)
1 , . . . , a

(k−1)
n ) so

that for all s, t, a
(t)
s → a

(t+1)
s , that a

(j)
s = as and that a

(t)
i = mt. These tuples

exist because of the structure of G and its smoothness. Now by the previous

paragraph, all f(a
(t)
1 , . . . , a

(t)
n ) are in M1∪ . . .∪Mk−1 and f(a

(t)
1 , . . . , a

(t)
n )→

f(a
(t+1)
1 , . . . , a

(t+1)
n ) for all t. Since the relation → on M1 ∪ . . . ∪Mk−1 is

the strict partial order on a set with k − 1 elements, the only path on that
set of length k − 1 is m1 → m2 → . . . → mk−1, Therefore it must be that

f(a
(t)
1 , . . . , a

(t)
n ) = mt = a

(t)
i and the case is done.

Case 2: Let ai ∈ U∪L. Without loss of generality we may assume ai ∈ L
(or we would just reverse the edges). Now for each d ∈ V \ L, there exist
some b1, . . . , bn such that for all j, aj → bj , bi = d and bj ∈ U for all j 6= i.
If d /∈ U , then it follows from Case 1 that f(a1, . . . , an)→ f(b1, . . . , bn) = d.
On the other hand, if d ∈ U , from the fact that f(b1, . . . , bn) = bi if all
of bj are in U , again we get f(a1, . . . , an) → f(b1, . . . , bn) = d. Thus,
(V \ L) ⊆ f(a1, . . . , an)+. On the other hand, if ci ∈ a−i , then there exist
c1, . . . , ci−1, ci+1, . . . , cn ∈ Ln−1 such that cj → aj for all j ≤ n. Hence
ci = f(c1, . . . , cn) → f(a1, . . . , an), so a−i ⊆ f(a1, . . . , an)−. The rest of the
proof of this case proceeds exactly like in the proof of Lemma 5.2 (i), with
M1∪ . . .∪Mk−1∪U playing the role of U this time, and L still being L.

5.3 More than two nontrivial strong components

Now we deal with the remaining smooth case, namely the case when there
exist more than two nontrivial strong components.
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Theorem 5.8. Let G be a smooth semicomplete digraph with at least two
cycles. Then G has no idempotent polymorphisms other than projections.

Proof. Let the strong components of G, ordered by ⇒, be B1 < B2 < . . . <
Bm. Let all nontrivial strong components be B1, Bi1 , Bi2 , . . . , Bik−1

, Bm,

where 1 < i1 < i2 < . . . < ik−1 < m. Define subsets C1 =
i1⋃
j=1

Bj , Ck =

m⋃
j=ik−1

Bj and Cs =
is⋃

j=is−1

Bj for 1 < s < k. So, each Ci consists of exactly

two consecutive nontrivial strong components, one on the top, one on the
bottom, and all trivial strong components between these two nontrivial ones
(if any). It is easy to show that each Cj is primitively positively definable
in Gc, as Cj = B∀+ij−1−1 ∩B

∀−
ij+1 (in the case of C1 and Ck they are just B∀−i1+1

and B∀+ik−1−1, respectively). Therefore, each Cj , as well as any union
⋃̀
j=r

Cj ,

where 1 ≤ r ≤ ` ≤ k, is closed under all idempotent polymorphisms of G.
From Theorem 5.7 we get that the restriction of each idempotent poly-

morphism f to each Cj is some projection, let us say it is the ith on C1.
Since Cj and Cj+1 intersect in the nontrivial strong component Bij on which
f is (inductively) the ith projection as this strong component is a part of
Cj , then it must be the ith projection on the set Cj+1, too, by Theorem 5.7.
Thus the restriction of f to each Cj is the ith projection.

We finish the proof by inductively showing for each tuple (a1, . . . , an) ∈
V n that f(a1, . . . , an) = ai, where we use the induction on the minimal
number ` such that there exists some s so that {a1, . . . , an} ⊆ Cs∪. . .∪Cs+`.
For ` = 0 we have proved it in the previous paragraph.

If ` ≥ 1, we first consider the case when ai /∈ Cs ∪ Cs+`. Then we
will show by the inductive assumption that a+

i ⊆ f(a1, . . . , an)+ and a−i ⊆
f(a1, . . . , an)−, which can only be satisfied in a semicomplete digraph if
f(a1, . . . , an) = ai. More precisely, we will prove that any element bi ∈ a+

i

is equal to f(b1, b2, ..., bn), where (b1, b2, ..., bn) is a properly selected tuple
such that aj → bj for all 1 ≤ j ≤ n.

If aj is in a strong component which is below the strong component
containing ai, then we select bj to be equal to bi, since bi ∈ a+

i ⊆ a
+
j . For all

other j we select bj to be any element of Cs+` ∩ a+
j . Then each bj ∈ Cs+1 ∪

. . . ∪ Cs+`, so by the inductive assumption f(b1, b2, ..., bn) = bi, implying
that bi ∈ f(a1, . . . , an)+, as desired. The proof of a−i ⊆ f(a1, . . . , an)− is
dual.

The remaining case is if ai ∈ Cs (the case ai ∈ Cs+` is dual to it with
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respect to reversal of edges). If ai is in the top strong component of Cs,
then ai ∈ Cs+1 and the previous case applies. If ai is in one of the trivial
components of Cs, then we imitate the proof of Case 1 of Theorem 5.7, with
L replaced by Bis−1 , Ml, . . . ,Mk−1 replaced by the trivial strong components
of Cs (i.e. Bt, where is−1 < t < is) and U replaced by Cs+1 ∪ . . . ∪ Cs+`.
Note that we used just the fact that L has no sources and U has no sink in
the proof of Case 1 of Theorem 5.7, together with the provisions that the
strong components (here, unions of the strong components in case of U) are
ordered by L ⇒ M1 ⇒ . . . ⇒ Mk ⇒ U and that all Mi are trivial, so with
the said replacement of the meaning of L, U and Mi, the proof transfers
verbatim.

Finally, let ai ∈ Bis−1 , but now by L we denote the set Bis−1 , while U
is (Cs \ L) ∪ Cs+1 ∪ . . . ∪ Cs+`. We will just replicate the proof of Case
2 of Theorem 5.7, which is in fact a reduction to the proof of Lemma 5.2
(i). For each bi ∈ U there exists a tuple (b1, . . . , bn) ∈ Un, where in fact
for all j 6= i, bj ∈ Cs+` such that aj → bj for all 1 ≤ j ≤ n. If bi is in
one of the trivial strong components of Cs, then f(b1, . . . , bn) = bi, using
the case which we proved in the last paragraph (this argument replaces our
reference to Case 1 in the proof of Case 2 of Theorem 5.7), and otherwise
{b1, . . . , bn} ⊆ Cs+1 ∪ . . . ∪ Cs+` and by the inductive assumption on ` we
obtain again that f(b1, . . . , bn) = bi. We conclude that U ⊆ f(a1, . . . , an)+,
and then we reduce it to a proof analogous to that of Lemma 5.2 (i): Namely,
note that for each ci ∈ a−i there exists a tuple (c1, . . . , cn) ∈ Ln such that
for all j, cj → aj , and therefore ci = f(c1, . . . , cn) → f(a1, . . . , an). So,
(a−i ∩ L) ⊆ (f(a1, . . . , an)− ∩ L). The rest of the proof of Lemma 5.2 (i)
transfers verbatim.

By Proposition 4.2, Theorem 5.8 implies that

Theorem 5.9. If G is a smooth semicomplete digraph with more than one
cycle, then QCSP(G) is Pspace-complete.

6 Semicomplete graphs with one sink
and no sources

The remaining class of semicomplete graphs whose complexity is not known
by Theorem 5.9 or Theorem 3.3 is those which have a sink and not a source,
or vice versa. As the two are symmetric, we assume that the graph has no
sources, but has a sink (which is unique by semicompleteness). The sink is
labelled by t.
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6.1 Some Pspace-hardness results

We recall some notation and terminology from basic logic. A formula is
in prenex normal form, prenex form for short, if it starts with a sequence
of quantifiers (the prefix), each of which acts the remainder of the formula
after it, followed by the quantifier-free part (the matrix). The evaluation
of variables of some formula into a model M is a mapping τ of the set
of all variables of that formula into M . The truth value of the formula ϕ
under evaluation τ is denoted by vτ (ϕ) and is defined in the usual inductive
way, starting from atomic formulae. When the formula in prenex form is a
positive Horn formula, then the matrix is essentially a model of its language
on the set of its variables. If ϕ is a positive Horn formula on a signature
with a single binary relation, then the matrix of ϕ is the graph Gϕ which we
defined in Section 2. Note that there is a homomorphism from Gϕ to H iff
the existential quantification of ϕ is true on H.

Let K2→2 be the semicomplete graph built from disjoint copies H1 and
H2 of K2 with all edges added from H1 to H2 and none other.

Proposition 6.1. QCSP(K2→2) and QCSP(K→2→2) are Pspace-complete.

Proof. There is a fairly straightforward reduction from QCSP(K4), i.e Quan-
tified 4-colouring, to QCSP(K2→2), but there is a problem translating it to
QCSP(K→2→2) with the encoding of universal variables. LetA = 〈{0, 1};RA〉,
where RA is the not-all-equal predicate. We give a reduction from QCSP(A)
to our problems QCSP(K2→2) and QCSP(K→2→2) (the same works for both).
Our reduction is vaguely based on that for QCSP(A) to QCSP(Kn) (n ≥ 3)
in [7], Proposition 5.1.

Let ϕ be a positive Horn formula in the language {R}. We construct
the corresponding positive Horn formula ψϕ in the language of digraphs (in
linear time) so that ϕ is a sentence iff ψϕ is a sentence. For any evaluation
τ of the variables of ϕ into A we define the corresponding evaluation τ ′ of
variables of ψϕ into K→2→2. Note that the evaluation τ in our setup is not
merely a mapping of the set of all variables into the universe of the model.
τ also includes the information which model it maps into. We prove that
vτ (ϕ) = > iff vτ ′(ψϕ) = >. The case when ϕ is a sentence is the desired
reduction.

We fix the template B which is a copy of K→2→2 such that the universe of
B is {0, 1, 2, 3, t}, where t is the sink, there are double-edges on {0, 1} and
{2, 3} and also there is an edge from any element of {0, 1} to any element of
{2, 3}. For short we write just ψ for ψϕ when ϕ is understood. We will define
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a few auxiliary graphs, beginning with the edge gadget which combines two
copies of K2→2:

x0

x3 x2

x1

•

• y0

y3 y2

y1

Figure 5: Edge gadget

Each copy of K2→2 in the graph of ψ will be denoted by the same letter with
indices 0, 1, 2, 3 which correspond to the same elements of B. The graph
of ψ will consist of many such copies with some additional variables. Any
evaluation µ of ψ into B is immediately false (and thus not interesting) unless
for all u, the mappings µu : {0, 1, 2, 3} → {0, 1, 2, 3} given by µu(i) = µ(ui)
are automorphism ofK2→2. To any evaluation of ψ we immediately associate
all those automorphisms.

Also, the edge gadget depicted in Figure 5 enforces that µx and µy are
distinct, otherwise the middle copy of K2 ensures that vµ(ψ) = ⊥. On the
other hand, if µx 6= µy, then they must differ at the upper or at the lower
copy of K2. The connecting copy of K2 can evaluate at copy of K2 at which
µx and µy differ and the edge gadget gets the truth value >. The reason we
care about this edge gadget is because we chain three of them together to
build a triangular clause gadget as drawn in Figure 6.

x0

x3 x2

x1

•

• y0

y3 y2

y1

•

• z0

z3 z2

z1

•

•

Figure 6: Clause gadget
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The salient property of the clause gadget is that the restrictions of µx, µy and
µz to {0, 1} are not all equal, i.e. we can enforce the not-all-equal constraint.
This follows since vµ of the clause gadget is > iff µx, µy and µz are three
distinct automorphisms of K2→2, and only two distinct automorphisms of
K2→2 restrict to {0, 1} in any fixed way.

Now we define a variable gadget and link variables to clauses. The vari-
able gadget corresponding to s is the subgraph on the vertices {s0, s1, s2, s3,
s∀} of the graph in Figure 7. The variable gadget links to a copy of K2→2

associated to x within some clause gadget iff there is a double edge from s1

to x0, as drawn on Figure 7.

s0

s3 s2

s1

s∀

x0

x3 x2

x1

Figure 7: Variable gadget corresponding to s connects to a position in the
clause

We first define ψϕ when ϕ is quantifier-free, starting with its graph. For
each occurrence of the predicate R(x, y, z) in ϕ we add a clause gadget and
for each variable s of ϕ we add a variable gadget. For any clause R(u, s, w)
occurs in ϕ, we connect u1 ↔ x0, s1 ↔ y0 and w1 ↔ z0. Now ψϕ is obtained
by quantifying existentially all variables with indices 2 and 3 in variable
gadgets and also all variables in the clause gadgets.

Assume that τ is an evaluation of ϕ into A. When τ(s) = 0, we evaluate
τ ′(s0) = 0 and τ ′(s1) = 1, while if τ(s) = 1, then τ ′(s0) = 1 and τ ′(s1) = 0.
For any s, τ ′(s∀) = 2.

We claim vτ (ϕ) = vτ ′(ψϕ). Assume that vτ (ϕ) = >. We select to
evaluate the existentially quantified variables in the variable gadgets vi as i
and also for all clause gadgets, we evaluate si as τ(vi), where i = 0, 1 and v
is the unique variable which is connected to the position s in that clause. As
the three variables which appear in some clause are not equally evaluated
by τ , in that clause two of the bottom double edges are evaluated equally,
while the third one is evaluated differently. The considerations after the
definition of the clause gadgets prove that there exists some evaluation of
the remaining variables in the clause gadget which has the truth value >.

On the other hand, if τ ′ is a truthful evaluation of ψ, we choose τ(s) =
τ ′(s0) for all variables s (of course, the only choices are 0 and 1, as ensured by
s2 and s3). Whenever there is a clause R(u, s, w), the corresponding clause
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gadget must have been evaluated as τ ′(x0) = τ ′(u0), τ ′(y0) = τ ′(s0) and
τ ′(z0) = τ ′(w0) (where u-gadget is linked to x and so on). The considerations
after the definition of clause gadgets showed that τ ′(x0) = τ ′(y0) = τ ′(z0)
is impossible since τ ′ is truthful. Therefore, τ ′(u0) = τ ′(s0) = τ ′(w0) is not
true either, and thus RA(τ(u), τ(s), τ(w)) holds.

Now we define the general case of ψϕ inductively on the number of quan-
tifiers of ϕ and simultaneously prove our claims about ψϕ. Assuming that
ϕ = (∃s)ϕ′, we define ψϕ = (∃s∀)(∃s0)(∃s1)ψϕ′ . If ϕ = (∀s)ϕ′, we define
ψϕ = (∀s∀)(∃s0)(∃s1)ψϕ′ .

We are proving vτ (ϕ) = vτ ′(ψϕ) by induction on the number of quanti-
fiers of ϕ. The base case is proved above. Denote by τ1 the evaluation of the
variables of ϕ which equals τ at all variables except at s, where τ(s) 6= τ1(s)
and let the corresponding evaluations of the variables of ψϕ be τ ′ and τ ′1.

If ϕ = (∃s)ϕ′, then vτ (ϕ) = > iff vτ (ϕ′) = > or vτ1(ϕ′) = > iff (by
the inductive assumption) vτ ′(ψϕ′) = > or vτ ′1(ψϕ′) = >, which implies
vτ ′(ψϕ) = >. We also need the other direction, so assume that vτ ′(ψϕ) = >.
Hence there exists an evaluation τ2 of the variables of ψϕ which differs from
τ ′ only perhaps at s∀, s0 and s1 such that vτ2(ψϕ′) = >. Since τ2(s0) ∈
{0, 1}, if τ3(s∀) = 2 and otherwise τ3 equals τ2, then from vτ2(ψϕ′) = >
follows vτ3(ψϕ′) = >. But since {τ3(s0), τ3(s1)} = {0, 1}, then τ3 = τ ′

or τ3 = τ ′1. By the inductive assumption, vτ (ϕ′) = > or vτ1(ϕ′) = >, so
vτ (ϕ) = vτ ((∃s)ϕ′) = >, as desired.

If ϕ = (∀s)ϕ′, then vτ (ϕ) = > iff vτ (ϕ′) = vτ1(ϕ′) = > iff (by the induc-
tive assumption) vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >. Now, let τ2 be any evaluation
of the variables of ψϕ which equals τ ′ at all variables except possibly s∀. If
τ2(s∀) ∈ τ ′(s0)−, then vτ2(ψϕ′) = vτ ′(ψϕ′) = >, so vτ2((∃s0)(∃s1)ψϕ′) = >.
Otherwise, tau2(s∀) = τ ′(s0) ∈ τ ′1(s0)−. Then we select τ3 to be equal to τ2,
except τ3(s0) = τ ′(s1) = τ ′1(s0) and τ3(s1) = τ ′(s0) = τ ′1(s1). Here τ3(s∀) ∈
τ3(s0)−, so vτ3(ψϕ′) = vτ ′1(ψϕ′) = >, and hence vτ2((∃s0)(∃s1)ψϕ′) = >.
In all cases we get vτ2((∃s0)(∃s1)ψϕ′) = >, hence we proved vτ ′(ψϕ) =
vτ ′((∀s∀)(∃s0)(∃s1)ψϕ′) = >. In the other direction, assume vτ ′(ψϕ) =
vτ ′((∀s∀)(∃s0)(∃s1)ψϕ′) = >. Let τ2 and τ3 be the evaluations of ψϕ which
differ from τ ′ only at τ2(s∀) = 0 and τ3(s∀) = 1. Our assumption im-
plies vτ2((∃s0)(∃s1)ψϕ′) = vτ3((∃s0)(∃s1)ψϕ′) = >. Let τ ′2 and τ ′3 be the
evaluations which equal τ2 and τ3, respectively, on all variables except pos-
sibly s0 and s1 and such that vτ2(ψϕ′) = vτ ′3(ψϕ′) = >. We know that

τ ′2(s0), τ ′2(s1), τ ′3(s0), τ ′3(s1) ∈ {0, 1} since they are all in {2, 3}∀−. From
τ ′2(s0) 6= τ ′2(s∀) = 0 and τ ′3(s0) 6= τ ′3(s∀) = 1 we get τ ′2(s0) = τ ′3(s1) = 1
and τ ′2(s1) = τ ′3(s0) = 0. But then τ ′2 and τ ′3 are equal to τ ′ and τ ′1
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in some order, except at s∀. From vτ2(ψϕ′) = vτ ′3(ψϕ′) = > we obtain
vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >, since evaluating s∀ as 2 can only help, and hence
vτ (ϕ) = >.

Corollary 6.2. Let G = (V,→) be a finite loopless digraph. Let G contain
either

(i) a copy of K2→2 where a ↔ b → c ↔ d such that any automorphism
of this copy extends by the identity map to an automorphism of G and
moreover, a+ ∪ b+ = V , or

(ii) a copy of K3, a ↔ b ↔ c ↔ a such that any permutation of {a, b, c}
extends by the identity map to an automorphism of G and also a+ ∪
b+ = a+ ∪ c+ = b+ ∪ c+ = V ,

then QCSP(G) is Pspace-complete.

Proof. We first prove the case (i). Let the subgraph H be induced by G
on V \ {a, b, c, d}. We modify the proof of Proposition 6.1 by adding vari-
ables which are connected in Gψ as an isomorphic copy of H. Call these
added variables the set H. First we connect the variables in H to the other
variables so that for all variable gadgets on variables s0, s1, s2, s3 and for all
clause gadgets which have copies of K2→2 induced by Gψ on x0, x1, x2, x3, on
y0, y1, y2, y3 and on z0, z1, z2, z3, Gψ induces on each of H ∪ {s0, s1, s2, s3},
H ∪{x0, x1, x2, x3}, H ∪{y0, y1, y2, y3} and H ∪{z0, z1, z2, z3} an isomorphic
copy of G. Basically we make an amalgam of a lot of copies of G over H.
We quantify all variables in H existentially as the outermost quantifiers of
the instance.

Whichever evaluation τ of vertices in H is selected, in order to com-
plete τ to a true evaluation of Gψ, τ together with any one of the variable
gadgets must induce an automorphism α of G which maps {a, b, c, d} onto
another (possibly different) copy of K2→2. Denote by K this copy of K2→2

on {α(a), α(b), α(c), α(d)}. Any automorphism of K extends by identity to
an automorphism of G and also α(a)+ ∪ α(b)+ = V (since (i) is preserved
by the automorphism α). The evaluation τ of H is fixed throughout the
evaluation of the instance since the variables in H are quantified existen-
tially outermost. Since any automorphism of K extends by identity to an
automorphism of G, this means that the choice of τ does not affect our
freedom to evaluate each variable gadget and clause gadget as we will into
{α(a), α(b), α(c), α(d)}, just as if our template was K→2→2. On the other
hand, the property α(a)+ ∪ α(b)+ = V allows us to select any value for the
universally quantified variables s∀ without creating a contradiction. The
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selection of s∀ may still limit our choice of the evaluation of the variables s0

and s1 to one of the two options, if we evaluate s∀ as α(a) or as α(b). Now
the reduction from QCSP(A) follows analogously as in Proposition 6.1.

The case (ii) goes similarly; here we modify in the same way the construc-
tion of Proposition 5.1 of [7], proving that QCSP(K3) is Pspace-complete.
Let the subgraph H be induced by G on V \ {a, b, c}. We modify the proof
found in [7] by adding variables which are connected in the graph Gψ of the
formula as an isomorphic copy of H. Call these added variables the set H.
First we connect the variables in H to the other variables so that for all i,
Gψ induces on H ∪ {w, xi, yi} an isomorphic copy of G. Next, we connect
variables in H to each clause gadget used in the proof in [7] to make a copy
of G again. Finally, change the edges between yi and zi to yi → zi for all
i (in their proof they were undirected). An analogous argument as the one
in [7], with modifications just like in the case (i) of this Corollary gives us
Pspace-completeness.

Recall the transitive tournament with an extra edge Tn defined at the
end of Section 2. Tn and Tn

→
are depicted in Figure 8.
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Figure 8: Drawing of Tn with Tn
→

.

Proposition 6.3. For all n ≥ 3, QCSP(T n) and QCSP(T →n ) are Pspace-
complete.

Proof. The reductions in all cases are exactly the same and so we will prove
them as one, referring to Mn instead of T n or T →n specifically. The reduc-
tion is from Quantified-1-in-3-Sat and again owes something in philosophy
to the proof of Proposition 5.1 of [7], though they use a reduction from
QCSP(A), see the proof of Proposition 6.1. Let R be the ternary Boolean
operation which is true iff exactly one of its entries is. A literal is a variable
or its negation and a clause is R applied to three literals. An instance of
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Quantified-1-in-3-Sat (1/3-Q-SAT) is a sentence in prenex form whose ma-
trix is a conjunction of clauses. 1/3-Q-SAT is known to be Pspace-complete
after, for example, [31] (see [29]).

Let ϕ be a formula in prenex form whose matrix is a conjunction of
clauses. We construct the corresponding positive Horn formula ψϕ in the
language of graphs so that ϕ is a sentence iff ψϕ is a sentence. For any
evaluation τ of the propositional variables of ϕ we define the corresponding
evaluation τ ′ of variables of ψϕ into Mn. We prove that ϕ is true in τ iff
ψϕ is true in τ ′. The case when ϕ is a sentence is the desired reduction.

First we define ψϕ when ϕ is quantifier-free. For each variable of ϕ we
introduce a variable gadget and for each occurrence of R in ϕ we intro-
duce a clause gadget. These are depicted in Figure 9, and the third graph
corresponds to the clause R(¬s1, s2, s3).

v

¬v

v∀

l1

l3

l2

s1

¬s1

s∀1 s2

¬s2

s∀2 s3

¬s3

s∀3 l3

l1

l2

Figure 9: Variable gadget, clause gadget; and their marriage together

Two vertices in the variable gadget correspond to literals of ϕ with the
same names (call them literal vertices), the third vertex (universal vertex)
having a special purpose to be explained later. Note that we will use (∃¬s)
in ψϕ, which should not create confusion since ψϕ uses only ∧ of logical
connectives. The dashed edges should not be seen as different from the solid
edges, they are merely drawn differently to emphasise that they connect the
respective gadgets. In particular, the dashed edges are of length 1.

Given a clause C of ϕ, we draw a directed edge from each of the three
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literal vertices corresponding to literals of C into a distinct vertex in the
clause gadget corresponding to C (each vertex in any clause gadget receives
exactly one edge from literal vertices). Now we quantify existentially all
variables in the clause gadgets and ψϕ is defined.

It is clear that the literal vertices in each variable gadget must evaluate
to the unique double edge in Mn. The two evaluations it can take will
correspond to the literal being evaluated to false (1) or true (n). Thus, if
τ(s) = >, we assign τ ′(s) = n, τ ′(¬s) = τ ′(s∀) = 1, while if τ(s) = ⊥, we
assign τ ′(s) = 1, τ ′(¬s) = τ ′(s∀) = n. A clause is true in τ iff precisely one
of the literals is true iff precisely one of the corresponding literal vertices is
evaluated as n and the other two as 1 in τ ′. Now note that any 3-cycle inMn

contains no t, and has to contain the edge n→ 1. Thus, any 3-cycle in Mn

is of the form 1 → k → n → 1, for some 1 < k < n. Since 1+ = Mn \ {1},
and n+ \ {t} = {1}, there exists a way to evaluate correctly the three clause
vertices iff one of the corresponding three literal vertices has τ ′-value n, and
the other two 1. This proves that vτ (ϕ) = vτ ′(ψϕ) when ϕ is quantifier-free.

As in the proof of Proposition 6.1, we proceed by an induction on the
number of quantifiers in ϕ. For the remainder of the proof we fix an eval-
uation τ of the variables of ϕ, a variable s, the evaluation τ1 which differs
from τ only at s and we assume that ϕ = (Qs)ϕ′, where Q is one of the
quantifiers. We insert a table which should help the reader follow the proof
below.

ϕ = (∃s)ϕ′, (⇐) ϕ = (∀s)ϕ′, (⇒) ϕ = (∀s)ϕ′, (⇐)

(s) (¬s) (s∀) (s) (¬s) (s∀) (s) (¬s) (s∀)

τ ′ 1 or n n+ 1− τ ′(s) τ ′(¬s) same as ϕ = (∃s)ϕ′
τ ′1 τ ′(¬s) τ ′(s) τ ′(s) same as ϕ = (∃s)ϕ′
ρ 1 or n n+ 1− ρ(s) ? τ ′(s) τ ′(¬s) ? τ ′(s) τ ′(¬s) 1

ρ′ ρ(s) ρ(¬s) ρ(¬s) 1 n ρ′(s∀) τ ′(s) τ ′(¬s) n

σ does not apply n 1 1

σ′ does not apply 1 n n

If ϕ = (∃s)ϕ′, then we define ψϕ = (∃s∀)(∃s)(∃¬s)ψϕ′ . Assume that
vτ (ϕ) = >. Thus vτ (ϕ′) = > or vτ1(ϕ′) = >. By the inductive assumption,
vτ ′(ψϕ′) = > or vτ ′1(ψϕ′) = >. In the first case, there is nothing to prove,
while if vτ ′1(ψϕ′), we only need note that τ ′1 and τ ′ differ exactly at s, ¬s
and s∀. Thus vτ ′(ψϕ) = vτ ′((∃s∀)(∃s)(∃¬s)ψϕ′) = >. Now assume that
vτ ′(ψϕ) = vτ ′((∃s∀)(∃s)(∃¬s)ψϕ′) = >. Let ρ be the evaluation of variables
of ψϕ such that vρ(ψϕ′) = > and ρ equals τ ′ at all variables except possibly
{s,¬s, s∀}. Since s ↔ ¬s, we still know that {ρ(s), ρ(¬s)} = {1, n}, so
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ρ = τ ′ or ρ = τ ′1 for all variables except possibly s∀. But the only relation
s∀ has in the graph Gψϕ is s → s∀. Since we also know that ρ(s) → ρ(¬s),
we may as well change ρ(s∀) to ρ(¬s), and the new evaluation ρ′ will still
satisfy vρ′(ψϕ′). But, since τ ′(s∀) = τ ′(¬s) and τ ′1(s∀) = τ ′1(¬s), we know
ρ′ = τ ′ or ρ′ = τ ′1. We obtain vτ ′(ψϕ′) = > or vτ ′1(ψϕ′) = >. By the
inductive assumption, vτ (ϕ′) = > or vτ1(ϕ′) = >, which is tantamount to
saying vτ (ϕ) = vτ ((∃s)ϕ′) = >.

If ϕ = (∀s)ϕ′, then we define ψϕ = (∀s∀)(∃s)(∃¬s)ψϕ′ . If vτ (ϕ) = >,
then vτ (ϕ′) = >, and vτ1(ϕ′) = >. By the inductive assumption, vτ ′(ψϕ′) =
vτ ′1(ψϕ′) = >. Choose any evaluation ρ of the variables of ψϕ which equals

τ ′ everywhere except possibly at s∀. Assume first that ρ(s∀) = 1, then
ρ = τ ′ if τ ′(s) = n, or otherwise ρ = τ ′1 for all variables except s and
¬s. Since vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >, then in either case we obtain that

vρ((∃s)(∃¬s)ψϕ′) = >. Now assume that ρ(s∀) 6= 1. Let ρ′ be the evalua-
tion of the variables of ψϕ′ such that ρ′(s) = 1, ρ′(¬s) = n and otherwise
ρ′ = ρ. We see that, except at s∀, either ρ′ = τ ′, or ρ′ = τ ′1 everywhere
else. From 1+ = Mn \ {1} and since the only relation s∀ has in the graph
Gψϕ is s → s∀, follows that if ρ′ were changed to ρ′(s∀) = n, the truth
value vρ′(ψϕ′) would stay unchanged. But since vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >, it
follows that vρ′(ψϕ′) = >. Since ρ and ρ′ are equal on Mn \ {s,¬s}, thus
vρ((∃s)(∃¬s)ψϕ′) = >. So for all evaluations ρ which equal τ ′ on Mn \ {s∀}
we have vρ((∃s)(∃¬s)ψϕ′) = >, so vτ ′(ψϕ) = vτ ′((∀s∀)(∃s)(∃¬s)ψϕ′) = >.

Now assume vτ ′(ψϕ) = >. Let the evaluations ρ, ρ′ satisfy ρ(s∀) =
1, ρ′(s∀) = n, and ρ = ρ′ = τ ′ on all other variables of ψϕ. From
vτ ′(ψϕ) = vτ ′((∀s∀)(∃s)(∃¬s)ψϕ′) = > follows that vρ((∃s)(∃¬s)ψϕ′) =
vρ′((∃s)(∃¬s)ψϕ′) = >. Therefore, there exist evaluations σ, σ′ such that
σ = ρ and σ′ = ρ′ on all variables of ψϕ, except possibly for {s,¬s}, and
such that vσ(ψϕ′) = vσ′(ψϕ′) = >. Since s ↔ ¬s in Gψϕ , it follows that
{σ(s), σ(¬s)} = {σ′(s), σ′(¬s)} = {1, n}. Also, from σ(s∀) = ρ(s∀) = 1 and
s → s∀ in Gψϕ , we obtain that σ(s∀) = σ(¬s) = 1 and σ(s) = n. Analo-
gously we obtain σ′(s∀) = σ′(¬s) = n and σ′(s) = 1. Therefore, {σ, σ′} =
{τ ′, τ ′1}, so vσ(ψϕ′) = vσ′(ψϕ′) = > implies that vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >.
We have that vτ (ϕ′) = vτ1(ϕ′) = > by the inductive assumption, and thus
vτ (ϕ) = vτ ((∀s)ϕ′) = >. This finishes the inductive proof.

We fix some notation now. For H a digraph and H1, H2 ⊆ V (H), let
QCSP[∃/H1](H) be as QCSP(H) except all existential variables are rela-
tivised to the set H1. Also, let Φ[∃/H1,∀/H2] be Φ with the existential vari-
ables relativised to H1 and the universal variables relativised to H2. Finally,
for a sets of variables X and Y , let Φ[X/H1, Y/H2] be Φ with all variables
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in the set X relativised to H1 and all variables in the set Y relativised to
H2 and so on. We will need the following propositions:

Proposition 6.4. For any digraph H, QCSP(H→) and QCSP[∃/H](H→)
are equivalent modulo polynomial-time reductions.

Proof. Let us first prove that QCSP(H→) reduces to QCSP[∃/H](H→). Let
the sink of H→ be t. Take an instance Φ (with its unquantified part ϕ) of
QCSP(H→). Call all those existentially quantified variables in Φ which are
sinks in Gϕ the set XΦ, the existentially quantified variables in Φ which are
not sinks in Gϕ the set YΦ, and the universally quantified variables of Φ the
set ZΦ (all those better be sinks in Gϕ, or Φ is a no-instance immediately).

Now, Φ is equivalent to the instance of Φ′ of QCSP[XΦ/{t},YΦ/H](H→)
which is the same instance as Φ, just with restricted universal and existential
quantifiers replacing the usual quantifiers at all variables in XΦ and in YΦ,
respectively. This follows from the fact that each of these atomic formulae
involving variables in XΦ are in fact of the form yj → xi for some xi ∈ XΦ

and yj ∈ YΦ, and they are all true if xi is evaluated as t and yj is evaluated
as any element of H. Moreover, since all y ∈ YΦ are not sinks in Gϕ, they
can’t be evaluated as the sink.

Next, the instance Φ′ is equivalent to the instance of QCSP[∃/H](H→)
where we delete all the atomic formulae involving variables in XΦ and the
quantifiers involving those variables from Φ′. These atomics are all true no
matter what and the instance’s truth or falsity is decided on the merits of
the rest of the formula. All remaining existentially quantified variables are
the ones in YΦ which are relativised to H.

On the other hand, any instance Φ with the unquantified part ϕ of
QCSP[∃/H](H→) reduces to QCSP(H→) by just adding a new variable t
quantified existentially outermost, and adding x → t to ϕ for any x which
is existentially quantified in Φ.

Proposition 6.5. Let H be a digraph. For each j > 1 there exists a polytime
reduction from QCSP[∃/H](H→) to QCSP(H→j).

Proof. Let t1 be the sink added in H→ and let t1, . . . , tj be the sinks itera-
tively added in (H→j) (say in the order that makes tj the true sink).

Let Φ be a positive Horn sentence, ϕ its unquantified part and Gϕ
the graph of ϕ. It is not hard to see that H→ |= Φ[∃/H] iff H→j |=
Φ[∃/H,∀/H→] iff H→j |= Φ[∃/H]. The second equivalence follows since
any evaluation which evaluates a universally quantified variable v to one
of ti may be modified by evaluating v to t1 without changing correctness
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(v is a sink in Gϕ connected just to some existentially quantified variables,
which are restricted to H). Applying Proposition 6.4 to H→(j−1) finishes
the proof.

The following two corollaries follow directly.

Corollary 6.6. For any j > 1 and digraph H, QCSP(H→) reduces to
QCSP(H→j).

Proof. This just combines Propositions 6.4 and 6.5.

Corollary 6.7. For each j > 0, QCSP(T →jn ) and QCSP(K→j2→2) are both
Pspace-complete.

Proof. This combines Proposition 6.1, Proposition 6.3 and Corollary 6.6.

6.2 The algebraic part

We will denote the ith projection function on m variables by pmi . We may
drop the superscript if we deem it unnecessary.

Lemma 6.8. Let G = (V,→) be a semicomplete graph without sources,
but with the sink t. Let f : V m → V be any idempotent mapping such
that f �V \{t} is the first projection. f is a polymorphism of G iff for all
b1, b2, . . . , bm ∈ V , b1 �G f(b1, b2, . . . , bm).

Proof. Let f be a polymorphism of G. If f(b1, b2, . . . , bm) = b1, then there
is nothing to prove, thus we may assume that f(b1, b2, . . . , bm) = a1 6= b1.
Since G has no sources, we may select a2, . . . , am such that ai → bi for all
1 < i ≤ m. In particular, this implies that ai 6= t for all 1 < i ≤ m. If c ∈ b−1 ,
i. e. if c → b1, then from the assumption that f is a polymorphism and
t /∈ {c, a2, . . . , am} follows that c = f(c, a2, . . . , am)→ f(b1, b2, . . . , bn) = a1,
which implies that c ∈ a−1 . (In particular we proved that ¬a1 → b1.) By
definition, this means b1 �G a1 = f(b1, b2, . . . , bm), as desired.

Now assume that f : V m → V is an idempotent mapping which satisfies
b1 �G f(b1, b2, . . . , bm) for all b1, b2, . . . , bm ∈ V , and that f(b1, b2, . . . , bm) =
b1 if t /∈ {b1, b2, . . . , bm}. Let ai → bi in G for all 1 ≤ i ≤ m. Then
t /∈ {a1, a2, . . . , am} and, consequently, f(a1, a2, . . . , am) = a1. Now we
know that a1 ∈ b−1 and from b1 �G f(b1, b2, . . . , bm) follows that a1 ∈
f(b1, b2, . . . , bm)−, i. e. f(a1, a2, . . . , am) = a1 → f(b1, b2, . . . , bm). There-
fore, f is a polymorphism of G.
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Definition 6.9. Let G = (V,E) be a digraph. We define the partition of
the vertex set V into V Gmin, V Gmax, V Gboth and V Gnone so that all vertices in V Gmin
are minimal, but not maximal, in the order �G , all vertices in V Gmax are
maximal, but not minimal, in the order �G , all vertices in V Gboth are both
minimal and maximal in the order �G , while vertices in V Gnone are neither
minimal nor maximal in the order �G . When the digraph G is understood,
we will omit the superscript G .

Definition 6.10. Given a digraph G = (V,E), S(G) = (V,→) is a digraph
given by:

1. For all x, y ∈ Vmax ∪ Vboth, x↔ y,

2. For all x, y ∈ Vmin, x↔ y,

3. For all x, y ∈ Vnone, x→ y iff E(x, y).

4. For all x ∈ Vmin and y ∈ Vnone ∪ Vmax, x→ y, but ¬y → x,

5. For all x ∈ Vnone and y ∈ Vmax, x→ y, but ¬y → x,

6. For all x ∈ Vboth and y ∈ Vnone ∪ Vmin, x→ y, but ¬y → x.

S(G) is depicted in Figure 10.

complete
graph

Vmax(G)

same as
G

Vnone(G)

complete
graph

Vmin(G)

complete
graph

Vboth(G)

Figure 10: An illustration of S(G)
.
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Proposition 6.11. V
S(G)
min = V Gmin, V

S(G)
max = V Gmax, V

S(G)
both = V Gboth and

V
S(G)
none = V Gnone. Consequently, S(S(G)) = S(G).

Proof. Using Definition 6.10, we compute the sets x− with respect to S(G)
for x in V Gmin, V Gmax, V Gboth and V Gnone.

• If x ∈ V Gmin, then x− = (V Gboth ∪ V
G
min) \ {x}.

• If x ∈ V Gnone, then V Gboth ∪ V
G
min ⊆ x− ⊆ (V Gboth ∪ V

G
min ∪ V Gnone) \ {x}.

• If x ∈ V Gmax, then x− = V \ {x}.

• If x ∈ Vboth, then x− = (V Gboth ∪ V
G
max) \ {x}.

Now the statements follow by Definition 6.9.

We prove the following trivial proposition for the sake of completeness.

Proposition 6.12. A permutation α of the vertex set V of the digraph G =
(V,→) (more generally, universe A of a finite model A) is an automorphism
iff it is structure-preserving.

Proof. We need to prove that α−1 is also structure preserving. The per-
mutation α applied pointwise induces a permutation α of the set V 2 (resp.
Ak) which maps injectively the relation → (resp. each relation R of A) into
itself. Thus the restriction of α to the set of pairs → (resp. set of k-tuples
R) is a permutation since V is finite, hence α−1 must also be structure-
preserving.

Lemma 6.13. The following statements hold for any digraph G:

(i) Aut(G) ⊂ Aut(V,�G),

(ii) Aut(G) ⊆ Aut(S(G)),

(iii) �G ⊆ �S(G),

(iv) If G is semicomplete, then so is S(G),

(v) If G is smooth and semicomplete, then so is S(G) and

(vi) If G is semicomplete and is not a cycle, then S(G) is also.
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Proof. (i) Let α be an automorphism of G and let x �G y. This implies
x− ⊆ y− in G, and since α is an automorphism of G, we get that α(x)− =
{α(z) : E(z, x)} ⊆ {α(z) : E(z, y)} = α(y)−, so α(x) �G α(y). According to
Proposition 6.12, α is an automorphism of the poset (V,�G). In particular,
α restricts to each of the sets Vmin, Vmax, Vboth and Vnone as a permutation
which we will use presently (there is no need to specify the superscript by
Proposition 6.11).

(ii) Let α be an automorphism of G and x→ y in S(G). If x and y are not
both in the same class of the partition {Vmin, Vmax, Vboth, Vnone} of V , then
according to Proposition 6.11, the previous paragraph and Definition 6.10,
α(x) → α(y), since all edges between vertices in different classes of that
partition are drawn the same way. Similarly, if x and y are both in one of
the sets Vmin, Vmax and Vboth, then by the previous paragraph, α(x) and
α(y) are also in that set, and the fact that the subgraph induced by S(G)
on each of these sets is the complete graph, while α is bijective, proves
α(x) → α(y). Finally if x, y ∈ Vnone, since the subgraphs induced on Vnone
by S(G) and G are the same graphs, the fact that α is an automorphism of
G implies that α(x)→ α(y). Now Proposition 6.12 proves (ii).

(iii) We assume that x �G y and we may as well assume that x 6= y.
This implies that x ∈ Vmin ∪ Vnone and y ∈ Vnone ∪ Vmax. For the rest
of this proof, by x− we will always mean the set of in-neighbours of x
with respect to S(G), rather than G. If y ∈ Vmax, then y− = V \ {y},
while y /∈ x− since x /∈ Vmax ∪ Vnone, so x− ⊆ y−. If x ∈ Vmin and
y ∈ Vnone, then x− = Vboth ∪ Vmin \ {x}, while y− ⊇ Vboth ∪ Vmin, so again
x− ⊆ y−. Finally, if x, y ∈ Vnone, then x− = Vboth ∪ Vmin ∪ (x− ∩ Vnone) ⊆
Vboth ∪ Vmin ∪ (y− ∩ Vnone) = y−, where the ⊆ in the middle holds from
x �G y and the fact that on Vnone both G and S(G) restrict the same way.

(iv) If G is semicomplete, then so is the subgraph induced by G on
Vnone. Moreover, S(G) is semicomplete iff the subgraph induced by S(G) on
Vnone is semicomplete. Thus, the semicompleteness of S(G) follows from the
semicompleteness of G and Definition 6.10 (3).

(v) We may assume that both G and S(G) are semicomplete by (iv).
S(G) has a source iff Vboth = ∅ and |Vmin| = 1 iff G has a source, and
analogously for the sinks. (See Proposition 6.11.)

(vi) We may assume that both G and S(G) are semicomplete by (iv).

By contraposition, if S(G) is a cycle, then V = V
S(G)
both = V Gboth (the last

equality follows from Proposition 6.11), and so S(G) is the complete graph.
But then |V | = 2, otherwise S(G) could not be at the same time a cycle
and a complete graph. Thus G is a 2-element semicomplete digraph with
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V = V Gboth, so G is a 2-cycle.

Corollary 6.14. Let G = (V,E) be a smooth semicomplete digraph which
is not a cycle. Then Pol(G→) ⊆ Pol(S(G)→).

Proof. Let us assume that f ∈ Pol(G→). Define g ∈ Aut(G→) by g(x) =
f(x, x, . . . , x) and h ∈ Polid(G→) by h = g−1 ◦ f . Now, according to The-
orem 5.8, h restricts to V as some projection. Without loss of generality,
assume that h �V = p1. Now, from Lemma 6.13 (v) and (vi) we know that
S(G) is also a semicomplete smooth digraph which is not a cycle. Accord-
ing to Lemma 6.8, for all b1, b2, . . . , bm ∈ V ∪ {t}, b1 �G→ f(b1, b2, . . . , bm).
Since for any digraph H, �H→ = �H ∪(V (H→) × {t}) and Lemma 6.13
(iii) guarantees that �G ⊆ �S(G), thus for all b1, b2, . . . , bm ∈ V ∪ {t},
b1 �S(G)→ f(b1, b2, . . . , bm). Again, by Lemma 6.8, h ∈ Polid(S(G)→).
Moreover, g(t) = t, and from Lemma 6.13 (ii) we know that the restric-
tion of g to V is in Aut(S(G)). Therefore, g ∈ Aut(S(G)→), and we get that
f = g ◦ h ∈ Pol(S(G)).

Definition 6.15. Let G = (V,E) be a digraph. We define the digraph L(G)
on the set V in the following way:

1. For all x ∈ Vboth ∪ Vmin and y ∈ Vnone ∪ Vmax, x→ y, but ¬y → x,

2. For all x ∈ Vnone and y ∈ Vmax, x→ y, but ¬y → x,

3. For all x, y ∈ Vmin ∪ Vboth, x↔ y,

4. For all x, y ∈ Vnone, x→ y iff E(x, y),

5. For all x, y ∈ Vmax, x↔ y.

L(G) is depicted in Figure 11.
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Figure 11: An illustration of L(G)
.

Lemma 6.16. Let G be a digraph. Either V = V Gboth = V
L(G)
both , or V

L(G)
min =

V Gboth ∪ V
G
min, V

L(G)
none = V Gnone, V

L(G)
max = V Gmax and V

L(G)
both = ∅.

Proof. The Lemma follows directly from Definition 6.15.

Corollary 6.17. Let G = (V,E) be a smooth semicomplete digraph which
is not a cycle. Then Pol(S(G)→) ⊆ Pol(L(G)→).

Proof. Let us denote the sink of G→ by t and assume that f ∈ Pol(S(G)→).
Define g ∈ Aut(S(G)→) by g(x) = f(x, x, . . . , x) and h ∈ Polid(S(G)→)
by h = g−1 ◦ f . By Lemma 6.13 (v) and (vi), our conditions imply that
S(G) is a smooth semicomplete digraph which is not a cycle. According to
Theorem 5.8, h restricts to V as some projection. Without loss of generality,
assume that h �V = p1.

Let us prove that L(G) is also a smooth semicomplete digraph which
is not a cycle. From Definition 6.15 follows that L(G) is semicomplete iff
the induced subgraph by L(G) on V Gnone is semicomplete, which is true since
it is equal to the induced subgraph by G on V Gnone. It has no source since

|V L(G)
max | = |V Gmax| 6= 1 (in both cases of Lemma 6.16) and no sink since either

|V L(G)
min | = |V Gmin ∪ V

G
both| > 1, or V = V

L(G)
both and so |V L(G)

min | = 0. Finally, if

L(G) were a cycle, then V = V
L(G)
both which would imply that V = V

S(G)
both and

so that S(G) = L(G), and we know that S(G) is not a cycle.
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From Definition 6.15 follows that the subgraphs induced by S(G) and

L(G) on the set V \ V Gboth = V
S(G)
min ∪ V

S(G)
none ∪ V S(G)

max are the same. This
implies that �S(G) ⊆ �L(G), and according to Lemma 6.8, we get that h ∈
Polid(L(G)→).

Moreover, from g ∈ Aut(S(G)→) follows that g ∈ Aut(V ∪ {t},�S(G)→)
by Lemma 6.13 (ii). Thus, Definition 6.10 implies that g acts independently
on {t}, V Gboth ∪ V

G
min, V Gnone and V Gmax (each is a union of g-orbits). By

Definition 6.15, the subgraphs induced by L(G) on V Gboth∪V
G
min and on V Gmax

are complete, so any permutation is an automorphism. Since L(G), S(G)
and G induce on V Gnone the same digraph, we get that g ∈ Aut(L(G)→).

Finally, we get that f = g ◦ h ∈ Pol(L(G)→).

Theorem 6.18. Let G = (V,E) be a smooth semicomplete digraph which is
not a cycle. Then QCSP(G→j) is Pspace complete for all j > 0.

Proof. According to Corollary 6.6, it suffices to prove this Theorem for j = 1,
i. e. for QCSP(G→). By Corollary 6.14, the fact that all polymorphisms
of core digraphs (in particular, semicomplete digraphs) are surjective and
Theorem 3.16 of [7], we get that we only need to prove that QCSP(S(G)→)
is Pspace complete. According to Corollary 6.17, it suffices to prove that
QCSP(L(G)→) is Pspace complete.

Now if |V Gboth ∪ V
G
min| ≥ 3, we can use Corollary 6.2 (ii) to prove Pspace-

completeness of L(G)→. V Gboth = ∅ implies that |V Gmax| ≥ 2 and |V Gmin| ≥ 2,
or G would have a source or a sink. However, if |V Gboth ∪ V

G
min| = 2 ≤ |V Gmax|,

then we can use Corollary 6.2 (i) on L(G)→. Moreover, if V Gmax = ∅ or
V Gmin = ∅, this implies that V Gmax = V Gmin = V Gnone = ∅ and V = V Gboth. Since
|V Gboth| = 2 would imply that G is the 2-cycle, it must be that |V Gboth| = n ≥ 3,
and therefore S(G) = Kn and QCSP(S(G)→) is Pspace complete.

So we are down to the case when |V Gboth| = |V
G
min| = |V Gmax| = 1. Denote

V Gboth = {b} and V Gmin = {m}. In this case, the subgraphs induced by S(G)
and by G on the set V \ Vboth are the same, and the only elements of Vmin
and Vmax are the source and the sink of the induced subgraph on the set
V \ Vboth, respectively.

Let us denote by G′ the subgraph induced by G on V Gnone. We have two
subcases: if each strong component of G′ is a one-element strong component
(i. e. if G′ is a transitive tournament), then S(G) is isomorphic to the
graph Tn (where |V | = n) and we can apply Proposition 6.3 to prove that
QCSP(S(G)→) is Pspace complete.

On the other hand, assume that G′ has a nontrivial strong component.
All strong components of G′ are at the same time strong components of L(G),
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but L(G) has two more strong components, the singleton V Gmax containing
its sink, and {b,m}. In particular, L(G) has a nontrivial strong component
other than {b,m}. The strict linear order⇒L(G) on the set of strong compo-
nents of L(G) has the least element {b,m}, and let C be the maximal non-
trivial strong component of L(G) in this order. Let W ⊆ V be the union of C
and all strong components of L(G) below it. It follows that the subgraph H
induced by L(G) onW is smooth since the minimal strong component ofH in
the order v is {b,m} while the maximal one is C. Furthermore, L(G) = H→j
for some j > 0. Now L(G)→ = H→(j+1). We have |V Hmin∪V Hboth| = 2 ≤ |V Hmax|,
so QCSP(H→) is Pspace-complete by the earlier case of this proof. By
Corollary 6.6, this implies that QCSP(H→(j+1)) = QCSP(L(G)→) is Pspace-
complete, and the result follows.

Now we have proved all cases of our main theorem which we restate here:

Theorem 6.19. If H is a semicomplete digraph then either
– H contains at most one cycle and QCSP(H) is in P, or
– H contains at least two cycles, a source and a sink and QCSP(H) is NP-
complete, or
– H contains at least two cycles, but not both a source and a sink, and
QCSP(H) is Pspace-complete.

7 Final remarks

Since the conference version of this paper, some companion results, making
use of several of our constructions, have appeared in [12]. These new results
on algebraic dichotomies, pertaining to growth rates of generating sets of
algebra direct powers, are directly motivated by the complexity-theoretic
trichotomy we have derived here. Thus the polymorphism classification we
give engenders new classifications, both complexity-theoretic and algebraic.
Moreover, a good reference on the importance of reflexive digraphs with only
projections among their idempotent polymorphisms is [22] and the references
found therein (the property is called idempotent-trivial there).

We were not able to find any purely algebraic criterion to replace the ad-
hoc arguments in Section 6. For a while, there was a conjecture attributed
to H. Chen that Pspace completeness of a template A was equivalent to
the algebra A of polymorphisms of A having the exponentially generated
powers property (EGP property). D. Zhuk was recently [32] able to prove
that all finite algebras have either the polynomially generated powers (PGP)
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or the EGP property, and that PGP of A implies that QCSP(A) reduces to
CSP(A).

We thank the referees for their many useful remarks. Referee 1’s com-
ments helped with presentation and made the paper more palatable, also
he/she found a mistake. Referees 2 and 3 have delved very deeply indeed
into our arguments, finding several mistakes, some of which were quite se-
rious. Referee 2 also found a way to simplify our definitions by moving a
part which was originally in Section 6 into Section 2. All in all, the referees’
efforts greatly improved this paper, much more so than usually.
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