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Abstract

We prove a characterization of all idempotent, linear, strong Mal’cev
conditions in two variables which hold in all locally finite congruence
meet-semidistributive varieties. This is an alternative proof to the
one previously given by Z. Brady in [4], and has some advantages,
some disadvantages, to his approach. Along the way we prove that
such a strong Mal’cev condition holds in all locally finite congruence
meet-semidistributive varieties iff it is realized in a certain four-element
algebra.

To Bjarni Jónsson,
who invented congruence meet-semidistributivity,

who made an area out of Mal’cev conditions,
who taught us all how to write down a pretty proof.

1 Introduction

The various conditions which are equivalent to congruence meet-semidistri-
butivity in locally finite varieties of algebras have been explored in several
previous papers and books [6], [8], [13], [17], [24], [15], [10] and in the recent
work of Z. Brady [4]. The reason for this activity is that congruence meet-
semidistributive varieties are a very general, and yet well-behaved class of
varieties. Congruence meet-semidistributivity is equivalent to congruence
neutrality (trivialization of the commutator) [13] and [17]; in locally finite
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varieties it is characterized by omitting tame congruence theory types 1 and
2 [8]; the Park conjecture is true in congruence meet-semidistributive vari-
eties [24], as is the Restricted Quackenbush conjecture [14]; it characterizes
the algebraic duals of the finite relational structures A such that the con-
straint satisfaction problem with template A can be accurately solved by
using only the local consistency checking [16], [2], see also [1].

In this paper we characterize all linear strong Mal’cev conditions in two
variables which hold in all locally finite congruence meet-semidistributive
varieties. M. Siggers proved in [22] that the weaker property, having a Taylor
term (characterized in locally finite varieties by omitting type 1) is a strong
Mal’cev property, when restricted to locally finite varieties. Siggers’ result
was a big surprise at the time of publication and spurred an investigation of
what other properties, previously known to have a Mal’cev characterization,
also have a strong Mal’cev characterization in locally finite varieties. The
paper [12] settled the question of optimal (syntactically simplest) strong
Mal’cev characterizations for having a Taylor term (= omitting type 1) in
locally finite varieties.

Three recent papers have influenced our work. The paper [15] by M.
Kozik, A. Krokhin, M. Valeriote and R. Willard invented the first strong
Mal’cev condition which is equivalent, in locally finite varieties, to con-
gruence meet-semidistributivity, while many other natural properties were
proved not to have a strong Mal’cev characterization in the same paper.
It also posed two problems about some non-strong Mal’cev conditions for
congruence meet-semidistributivity, whether they can be made strong by
limiting the arity of the pertinent operations. Willard reiterated those ques-
tions at a 2016 workshop. The easier of the two questions is answered posi-
tively by an application of a theorem from the paper [10] by J. Jovanović, P.
Marković, R. McKenzie and M. Moore. The harder one needed a different
proof which provided immediate motivation to our work.

The paper [10] proved the syntactically easiest strong Mal’cev condition
for congruence meet-semidistributivity by modifying the technique of a proof
from [15], namely, introducing an auxiliary structure on the variables of the
Constraint Satisfaction Problem, which determines which variables are in
which constraint relations. Thus a simple pigeonhole argument from [15]
becomes a more complicated Ramsey proof, proving that some substructure
is monochromatic, but in exchange, this enables proofs of more powerful
results. Our main theorem is proved using the same idea, using a more
general language and stronger Ramsey arguments.

Finally, the paper [4] by Z. Brady, which was available to us after we
proved initial results of our investigation (just after we answered the ques-
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tions from [15]), gave a list of two-variable linear strong Mal’cev conditions
in one operation symbol which are maximal in a sense and which all have
the same derived binary operation, with additional properties of that bi-
nary operation. This also answers the same questions from [15], and proves
much more. Our main theorem gives an alternative proof of that Brady’s
result, and adds a polynomial-time algorithm for checking whether a strong
Mal’cev condition of the type under consideration holds in all locally finite
congruence meet-semidistributive varieties. Also, we believe that the Ram-
sey techniques of our paper, while much less innovative, may be used for
proofs of Mal’cev conditions in more than two variables, while Brady’s ma-
jor ideas like the Semilattice Preparation Lemma, seem to be limited to two
variables. The initial investigation into the Mal’cev conditions in more than
two variables revealed that there is no inherent difficulty in generalizing our
ideas there, but the Ramsey statements to which the Mal’cev conditions
reduce seem to be quite complicated.

A more detailed history of the progress of Mal’cev characterizations of
congruence meet-semidistributivity is available in [10].

2 Background

By a strong Mal’cev condition we mean a finite set of identities in some
language. Informally, a strong Mal’cev condition is realized in an algebra A
(or variety V) if there is a way to interpret the function symbols appearing
in the condition as term operations of A (or V) so that the identities in
the Mal’cev condition become true equations in A (or V). A Mal’cev
condition is a sequence {Cn : n ∈ ω} of strong Mal’cev conditions such
that any variety which realizes Cn must also realize Cn+1 for all n ∈ ω. We
say that the variety V realizes the Mal’cev condition {Cn : n ∈ ω} if there
exists an n ∈ ω such that V realizes Cn. We say that a varietal property P is
a (strong) Mal’cev property if there exists a (strong) Mal’cev condition
C such that for any variety V, C is realized in V iff V has the property P .
Also, the previous sentence is commonly relativized to locally finite varieties,
so we say that some varietal property is a (strong) Mal’cev property of locally
finite varieties if there exists a (strong) Mal’cev condition C such that for
any locally finite variety V, C is realized in V iff V has the property P .

A (strong) Mal’cev condition Σ is linear if it contains no composition
of operations in any of its identities. Σ is idempotent if for all operations
f in Σ the identities f(x, x, . . . , x) ≈ x can be derived from Σ. Σ is trivial
if it is realized in every variety (equivalently in the variety of sets, equiv-
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alently realized in some variety by interpreting each operation symbol as
some projection).

W. Taylor proved in [23] that a variety realizes a nontrivial idempotent
strong Mal’cev condition iff it realizes a nontrivial idempotent linear strong
Mal’cev condition in one-operation language with identities in only two vari-
ables. This condition can be rewritten (by writing equations repeatedly) to
be of the form

t(x, x, . . . , x) ≈ x
t(a1,1, a1,2, ..., a1,n) ≈ t(b1,1, b1,2, ..., b1,n),

t(a2,1, a2,2, ..., a2,n) ≈ t(b2,1, b2,2, ..., b2,n),

...

t(an,1, an,2, ..., an,n) ≈ t(bn,1, bn,2, ..., bn,n),

where all for all i, j ai,j , bi,j ∈ {x, y}, ai,i = x and bi,i = y. We will call such
strong Mal’cev condition a Taylor condition. If the variety V realizes a
Taylor condition C, then a term which interprets the only operation symbol
used in C is called a Taylor term for the variety V.

We say that an algebra is congruence meet-semidistributive if for
any congruences α, β, γ ∈ Con A, the following implication holds:

α ∧ β = α ∧ γ ⇒ α ∧ β = α ∧ (β ∨ γ).

A variety V is congruence meet-semidistributive if every algebra in V is
congruence meet-semidistributive.

Congruence meet-semidistributivity can be characterized in general va-
rieties by a Mal’cev condition, see [24] and in locally finite varieties by a
strong Mal’cev condition, see [15] and [10]. We need to state just one of
these for our purpose, so we select the one having a nonempty intersection
of authors with our paper.

Theorem 2.1 (Theorem 3.2 in [10]). A locally finite variety V is congruence
meet semidistributive iff V realizes the strong Mal’cev condition

t(x, x, x, x) ≈ x
t(y, x, x, x) ≈ t(x, y, x, x) ≈ t(x, x, y, x) ≈ t(x, x, x, y)

≈ t(y, y, x, x) ≈ t(y, x, y, x) ≈ t(x, y, y, x).

(2.1)

Let us now introduce definitions of the constraint satisfaction problem
and a (2, 3)-minimal instance of it. We follow [1] as we will use the main
result of that paper a lot.
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Definition 2.2. An instance of the constraint satisfaction problem
(CSP) is triple (V ;A; C) with

• V a nonempty, finite set of variables,

• A a nonempty, finite domain,

• C a finite nonempty set of constraints, where each constraint is a subset
C of AW for some W ⊆ V . Here the subset W of V called the scope
of C, and the cardinality |W | of W is referred to as the arity of C.

A solution of the instance (V ;A; C) is a function f : V → A such
that, for each constraint C ∈ C, such that the scope of C is W ⊆ V , the
restriction f �W is in C. We say that an instance of CSP is trivial if it
contains the empty constraint. Next we define a 2-consistent and a (2, 3)-
minimal instance.

Definition 2.3. An instance of (V ;A; C) is 2-consistent, if for every U ⊆ V
such that |U | ≤ 2 and every pair of constraints C,D ∈ C such that U is
contained in the scopes of both C and D, holds C �U= D �U . An instance
of CSP (V ;A; C) is a 3-dense if every at most 3-element subset of V is
contained in the scope of some constraint in C. An instance is a (2,3)-
minimal instance if it is 2-consistent and 3-dense.

Before moving on with the following definition, let’s note that we can
observe any constraint with a scope W as a relation R ⊆ A|W | by linearly
ordering the elements of W .

Definition 2.4. Let A = 〈A; Γ〉 be a relational structure. An instance of the
constraint satisfaction problem CSP (A) is any instance of the CSP (V ;A; C)
such that for each constraint C ∈ C, there exists a relation C ′ ∈ Γ such that
C and C ′ are equal up to a permutation of coordinates. The structure A is
called the template of CSP (A).

We silently assume that all Γ contain the equality relation (to allow using
the relations obtained by identification of variables).

Let A be an algebra. When Γ ⊆ SPfin(A), then we say that CSP (〈A; Γ〉)
is compatible with A. The following result is from [1]; it has as a conse-
quence the main theorem of [1], and it will play an important role in our
paper.

Theorem 2.5 (Corollary 6.5 of [1]). Let A be an idempotent finite algebra
which generates a congruence meet-semidistributive variety. Then for every
CSP (〈A; Γ〉) which is compatible with A, every nontrivial (2, 3)-minimal
instance of CSP (〈A; Γ〉) has a solution.
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The final area we need to introduce in this section is the basic Ramsey
theory. In the seminal paper [21] F. P. Ramsey proved that for any positive
integers k, N and n, there exists a number m such that for any set X of size
m, if all k-element subsets of X are colored in n colors there exists a subset of
size N whose all k-element subsets are of the same color. As usually, Rnk (N)
denotes the smallest number m such that the previous sentence holds.

We recall some notation and terminology from partially ordered sets (po-
sets): X↓ = {y : (∃x ∈ X) y ≤ x} and a↓ := {a}↓. The set X is called a
down-set (order-ideal) when X↓ = X. X↑, a↑ and an up-set (order-filter)
are defined dually.

We assume the reader is familiar with the basic notions of universal
algebra, and refer those who might need some clarification to the standard
textbooks [5], [19] and [3]. We will also use a little bit of Tame Congruence
Theory developed in the seminal monograph [8], but only in the penultimate
section, when we prove a rephrasing of our main results.

3 Decent Mal’cev conditions

All strong Mal’cev conditions which we consider in this paper will be idem-
potent, linear and on the set of variables {x, y}. The following proposition
is folklore; it was probably first mentioned in [23], without proof.

Proposition 3.1. For any linear idempotent strong Mal’cev condition Σ
there exists a linear idempotent strong Mal’cev condition Σ′ which has only
one operation symbol such that for any variety V, V realizes Σ iff V realizes
Σ′.

Proof. Assume that Σ involves operations f and g of arities k and n, re-
spectively. We construct a strong Mal’cev condition Σ1 in the following
way: replace f and g with a new operation symbol h of arity kn so that

1. in any equation which contains f , we replace f(x1, . . . , xk) with the
term h(x1, . . . , x1, x2, . . . , x2, . . . , xk, . . . , xk) (each variable repeated n
times);

2. for any equation which involves g, we replace g(x1, . . . , xn) with the
term h(x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn).

If V realizes Σ, the realization of Σ1 in V is obtained by interpreting h
as the term f(g(x1, . . . , xn), g(xn+1, . . . , x2n), . . . , g(x(k−1)n+1, . . . , xkn)). On
the other hand, if V realizes Σ1, the realization of Σ in V uses the h-terms
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from (1) and (2) as interpretations for f and g, respectively. The details are
left to the reader.

Thus we removed one operation symbol and inductively we can keep
doing it until we are left with just one.

Therefore, we may assume that any strong Mal’cev condition Σ we will
consider involves only one operation symbol. Note that the procedure for
obtaining Σ′ described in the proof of Proposition 3.1 is deterministic up
to the selection of ordered pairs of operations which get replaced by a sin-
gle operation; the impact of the order of selection can be neutralized by
permuting the variables of the only operation of Σ′.

Definition 3.2. We will call a strong Mal’cev condition which is linear,
idempotent, and such that only two variables and one operation symbol
occur in it, a decent Mal’cev condition.

In our deliberations on decent Mal’cev conditions we will need to rep-
resent them in different ways. First we notice that all terms involved in a
decent Mal’cev condition with n-ary operation symbol f are either substitu-
tion instances of f(x1, x2, . . . , xn), or the variables x or y. Modulo idempo-
tence, we may replace each x with f(x, x, . . . , x) and y with f(y, y, . . . , y),
so now we assume that all terms involved in the identities of any decent
Mal’cev condition, except for the idempotence, are not variables, but sub-
stitution instances of f(x1, x2, . . . , xn). We will use various sets of n distinct
variables, not just {x1, x2, . . . , xn}, to describe a decent Mal’cev condition.

We fix the countably infinite set of variables V ar = {x1, x2, . . . }. Given
a subset U ⊆ V ar, we define the notation xUj := y if xj ∈ U , while if xj /∈ U ,

then xUj := x.

Definition 3.3. Let Σ be a decent Mal’cev condition with the only op-
eration symbol f such that n = ar(f), let the identities in Σ other than
idempotence involve two operation symbols f (one in each term of the iden-
tity), and let X = {xi1 , xi2 , . . . , xin} be some n-element subset of V ar,
where i1 < i2 < · · · < in. We define the representation of Σ on X, written
as rX(Σ), by

rX(Σ) := {(U, V ) ∈ P(X)× P(X) : f(xUi1 , . . . , x
U
in) ≈ f(xVi1 , . . . , x

V
in) ∈ Σ}.

Note that a decent Mal’cev condition has many representations, one
for each n-element subset of V ar, while each representation uniquely de-
termines the decent Mal’cev condition. Since our manipulations of decent
Mal’cev conditions will be reflected on their representations and invariants
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derived from them, whenever we introduce a decent Mal’cev condition, we
will always include the set of variables X together with it (though X is not
intrinsic to the condition itself, it is just an invariant of our description).

Definition 3.4. If Σ is a decent Mal’cev condition in the language with one
operation f and let X = {xi1 , . . . , xin} be an n-element subset of V ar. We
define the binary relation ε(Σ) on the set P(X) to be the least equivalence
relation which contains rX(Σ)∪{(U, V ) ∈ (P(X))2 : (X\U,X\V ) ∈ rX(Σ)}.

The following easy lemma describes the impact of dummy variables on
ε(Σ).

Lemma 3.5. Let A be an algebra and Σ a decent Mal’cev condition rep-
resented on X = {x1, . . . , xn}. A realizes Σ by interpreting its only opera-
tion symbol f as some A-term t(xi1 , . . . , xik), where E = {xi1 , . . . , xik} ⊆
{x1, . . . , xn} iff A realizes the decent Mal’cev condition

Σ′ = {f ′(xU∩Ei1 , . . . , xU∩Eik
) ≈ f ′(xV ∩Ei1 , . . . , xV ∩Eik

) : (U, V ) ∈ ε(Σ)}.

(together with the idempotence of f ′). Hence ε(Σ′) is the equivalence relation
on P(E) generated by {(U ∩ E, V ∩ E) : (U, V ) ∈ ε(Σ)}.

Proof. Let t′(xi1 , . . . , xik) be an A-term such that interpreting f as t′ induces
a realization of Σ in A. Define the A-term t(x1, . . . , xn) := t′(xi1 , . . . , xik),
the term syntactically equal to t′ but with additional dummy variables. If
(U, V ) ∈ ε(Σ) then A |= t(xU1 , . . . , x

U
n ) ≈ t(xV1 , . . . , x

V
n ) or, equivalently,

A |= t′(xUi1 , . . . , x
U
ik

) ≈ t′(xVi1 , . . . , x
V
ik

). Observe that all for all 1 ≤ j ≤ k,

xij ∈ E, implying A |= t′(xU∩Ei1
, . . . , xU∩Eik

) ≈ t′(xV ∩Ei1
, . . . , xV ∩Eik

). From
this and the definition of Σ′ follows that A realizes Σ′.

On the other hand, assume that A realizes Σ′ by interpreting f ′ as the
A-term t′. Consider any f(xU1 , . . . , x

U
n ) ≈ f(xV1 , . . . , x

V
n ) ∈ Σ. Thus (U, V ) ∈

ε(Σ), and A |= t(xU∩Ei1
, . . . , xU∩Eik

) ≈ t(xV ∩Ei1
, . . . , xV ∩Eik

) by the definition of
Σ′. By interpreting f as t(x1, . . . , xn), the same term as t′ with the addi-
tional dummy variables, we see that t(xU1 , . . . , x

U
n ) = t′(xU∩Ei1

, . . . , xU∩Eik
) and

t(xV1 , . . . , x
V
n ) = t′(xV ∩Ei1

, . . . , xV ∩Eik
), since the pairs of terms, as sequences

of symbols, are identical. Hence, A |= t(xU1 , . . . , x
U
n ) ≈ t(xV1 , . . . , x

V
n ), so Σ

is thus realized in A.

Convention. To shorten notation we adopt the following convention about
decent Mal’cev conditions: The operation symbol of Σ will be called f , the
operation symbol of Σ′ will be called f ′ and the operation symbol of Π will
be called g, where Σ, Σ′ and Π are decent Mal’cev conditions.
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3.1 Decent Mal’cev conditions in the majority algebra

Let A = ({0, 1};m) be the unique two-element algebra with ternary majority
operation m, i.e.

A |= m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x.

We investigate which decent Mal’cev conditions are realized in A.

Lemma 3.6. A realizes a decent Mal’cev condition Σ represented on X =
{x1, . . . , xn} iff A realizes some decent Mal’cev condition Π represented on
X such that, where ρ = ε(Π):

1. ε(Σ) ⊆ ρ

2. ρ has exactly two equivalence classes [∅]ρ and [X]ρ, and [∅]ρ = {X \U :
U ∈ [X]ρ} (hence, |[∅]ρ| = |[X]ρ|);

3. [∅]ρ is a down-set (order-ideal) and [X]ρ is an up-set (order-filter);

Also, the same term which interprets f in the realization of Σ can be taken
as the term which interprets g in the realization of Π.

Proof. The implication “if” follows from ε(Σ) ⊆ ε(Π), so we only need to
prove “only if”. Let t(x1, . . . , xn) be a term on the language {m} such that
interpreting f as t induces a realization of Σ in A. We recall that, for every
term s(x1, . . . , xn) in the language {m} and tuple (a1, . . . , an) such that
{a1, . . . , an} ⊆ {x, y}, either A |= s(a1, . . . , an) ≈ x or A |= s(a1, . . . , an) ≈
y.

The decent Mal’cev condition Π represented on X is defined as Π :=
{g(xU1 , . . . , x

U
n ) ≈ x : A |= t(xU1 , . . . , x

U
n ) ≈ x}. Clearly, A realizes Π by

interpreting g as t. Also, ε(Σ) ⊆ ρ and ρ = ε(Π) has exactly two equivalence
classes, [∅]ρ and [X]ρ (note that [∅]ρ 6= [X]ρ by idempotence and since A 6|=
x ≈ y). Hence for all U ∈ P(X), [U ]ρ 6= [X \ U ]ρ, as (∅, U) ∈ ρ implies
(X \ ∅, X \ U) = (X,X \ U) ∈ ρ. Thus also |[∅]ρ| = |[X]ρ|.

Now we will prove that [∅]ρ is a down-set. Let U ∈ [∅]ρ and V ⊆ U .
Thus A |= t(xU1 , . . . , x

U
n ) ≈ x and we have to prove A |= t(xV1 , . . . , x

V
n ) ≈

x. We prove it by an induction on the complexity of t. If t(x1, . . . , xn)
is a variable or m(xi, xj , xk) then it is obvious. Assume that the claim
holds for every term with fewer operation symbols than t(x1, . . . , xn) and
let A |= t(xU1 , . . . , x

U
n ) ≈ x. Then t = m(t1, t2, t3) where the inductive

hypothesis holds for t1(x1, . . . , xn), t2(x1, . . . , xn) and t3(x1, . . . , xn). Since
A |= tj(x

U
1 , . . . , x

U
n ) ≈ x or A |= tj(x

U
1 , . . . , x

U
n ) ≈ y for each j = 1, 2, 3, and
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m is the majority, then for at least two j, A |= tj(x
U
1 , . . . , x

U
n ) ≈ x. Without

loss of generality we may assume A |= t1(xU1 , . . . , x
U
n ) ≈ t2(xU1 , . . . , x

U
n ) ≈ x.

By the induction hypothesis, A |= t1(xV1 , . . . , x
V
n ) ≈ t2(xV1 , . . . , x

V
n ) ≈ x, so

A |= t(xV1 , . . . , x
V
n ) ≈ m(x, x, ?) ≈ x where ? ∈ {x, y}. [X]ρ is an up-set,

being the complement of [∅]ρ in P(X).

Remark 3.7. Assume that Σ is realized in A by interpreting f as the A-
term t(xi1 , . . . , xik), where all xij occur in the syntactic expression for t.
Then for any E such that {xi1 , . . . , xik} ⊆ E ⊆ {x1, . . . , xn} there exists an
A-term t such that all variables in E occur in the syntactical expression for t
and A realizes a decent Mal’cev condition Π represented on E such that ρ =
ε(Π) satisfies (2)-(3) of Lemma 3.6 and {(U ∩E, V ∩E) : (U, V ) ∈ ε(Σ)} ⊆ ρ
by interpreting g as t. In the case when E = {xi1 , . . . , xik}, this is clear
from Lemmas 3.5 and 3.6. For bigger E, we can keep adding new variables
x which act as dummies though they occur in the term by repeatedly using
t′ = m(t, t, x).

The following definition plays the role of intersecting families from [4].
We use it for an algorithmic result near the end of this Section.

Definition 3.8. An equivalence relation ε on P(X) is 0-1 distinguishing if
there exist no sets U, V,W,Z in P(X) such that:

(i) UεV εWεZ;

(ii) U ∩ V = ∅;

(iii) W ∪ Z = X.

Lemma 3.9. Any equivalence relation ρ on P(X) which satisfies (2) and
(3) of Lemma 3.6 is 0-1 distinguishing.

Proof. Assume that ρ is not 0-1 distinguishing. Then there exist U, V,W,Z
in P(X) such that conditions (i) − (iii) from Definition 3.8 hold. Assume
that U, V,W,Z ∈ [∅]ρ. From (iii) we have that (X \W ) ⊆ Z and then by
(3) of Lemma 3.6 we conclude (X \W ) ∈ [∅]ρ, so Wρ (X \W ), a contradic-
tion. The case U, V,W,Z ∈ [X]ρ leads to an analogous contradiction with
condition (ii) of Definition 3.8.

Definition 3.10. Given an equivalence relation ε on P(X), we define the
binary relation �ε on P(X)/ε by [U ]ε �ε [V ]ε iff there exist U ′ ∈ [U ]ε and
V ′ ∈ [V ]ε such that U ′ ⊆ V ′. Let ≤ε be the transitive closure of �ε. If
[U ]ε ≤ε [V ]ε and [V ]ε ≤ε [U ]ε, then we say [U ]ε ∼ε [V ]ε.
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By its definition, ≤ε is reflexive and transitive, while ∼ε is an equivalence
relation on P(X)/ε.

Definition 3.11. Given an equivalence relation ε on P(X), its closure ε
will denote {(U, V ) : U, V ∈ P(X) and [U ]ε ∼ε [V ]ε}.

Definition 3.12. Also, given an equivalence relation ε on P(X), we in-
troduce the notation C(ε) := {(X \ U,X \ V ) : (U, V ) ∈ ε}. Clearly, the
equivalence (U, V ) ∈ ε iff (X \ U,X \ V ) ∈ ε holds if and only if ε = C(ε).

Lemma 3.13. For any equivalence relation ε on P(X), its closure ε is
convex, i.e. if U ⊆ V ⊆W ⊆ X and (U,W ) ∈ ε, then (U, V ) ∈ ε. Moreover,
if ε = C(ε), then for all U, V ⊆ X, [U ]ε ≤ε [V ]ε iff [X \ V ]ε ≤ε [X \ U ]ε.
Hence, if ε = C(ε), then ε = C(ε).

Proof. We leave it to the reader, it is routine.

The connection of the closure to A is given by

Lemma 3.14. Let Σ be a decent Mal’cev condition represented on X =
{x1, . . . , xn} which is realized in A by interpreting its operation symbol as
the A-term t. Then for any U, V ∈ P(X), if (U, V ) ∈ ε(Σ), then A |=
t(xU1 , . . . , x

U
n ) ≈ t(xV1 , . . . , xVn ).

Proof. We claim that if [U ]ε(Σ) ≤ε(Σ) [V ]ε(Σ) and A |= t(xV1 , . . . , x
V
n ) ≈ x,

then A |= t(xU1 , . . . , x
U
n ) ≈ x. Since [U ]ε(Σ) ≤ε(Σ) [V ]ε(Σ), there exist U =

W0,W1,W2, . . . ,W2k−1,W2k = V in P(X) such that for all even 0 ≤ i < 2k,
(Wi,Wi+1) ∈ ε(Σ), while for all odd 0 ≤ i < 2k, Wi ⊆Wi+1.

We prove by an induction on k−i that A |= t(x
W2(k−i)

1 , . . . , x
W2(k−i)
n ) ≈ x.

The base case when i = 0 is A |= t(xV1 , . . . , x
V
n ) ≈ x, which we assumed.

Assuming the claim holds for i, and since (W2(k−i)−1,W2(k−i)) ∈ ε(Σ), we

obtain A |= t(x
W2(k−i)−1

1 , . . . , x
W2(k−i)−1
n ) ≈ t(x

W2(k−i)

1 , . . . , x
W2(k−i)
n ) ≈ x.

Moreover, in the proof of Lemma 3.6, we proved that [∅]ρ is a down-set,
where [∅]ρ = {Z ⊆ X : A |= t(xZ1 , . . . , x

Z
n ) ≈ x}. As W2(k−i)−1 ∈ [∅]ρ

and W2(k−1)−2 ⊆ W2(k−1)−1, thus W2(k−i)−2 ∈ [∅]ρ, which means that

A |= t(x
W2(k−i−1)

1 , . . . , x
W2(k−i−1)
n ) ≈ x, completing the inductive proof. The

case i = k gives A |= t(xU1 , . . . , x
U
n ) ≈ y finishing off the claim.

Now from (U, V ) ∈ ε(Σ) follows [U ]ε(Σ) ≤ε(Σ) [V ]ε(Σ) and [V ]ε(Σ) ≤ε(Σ)

[U ]ε(Σ), so the claim we just proved implies A |= t(xU1 , . . . , x
U
n ) ≈ x iff A |=

t(xV1 , . . . , x
V
n ) ≈ x. Since for any W ⊆ X, either A |= t(xW1 , . . . , xWn ) ≈ x, or

A |= t(xW1 , . . . , xWn ) ≈ y, what we proved establishes A |= t(xU1 , . . . , x
U
n ) ≈

t(xV1 , . . . , x
V
n ).
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The following lemma is the goal of all the work in this subsection follow-
ing Lemma 3.6. It is an easily verifiable criterion for realization of decent
Mal’cev conditions in A.

Lemma 3.15. Let Σ be a decent Mal’cev condition represented on X. A
realizes Σ iff ε(Σ) is a 0− 1 distinguishing equivalence relation on P(X).

Proof. Let X = {x1, . . . , xn} and denote ε := ε(Σ) and ε := ε(Σ).
Assume that ε is not a 0−1 distinguishing equivalence relation on P(X).

Then there exist U, V,W,Z ∈ P(X) such that [U ]ε = [V ]ε = [W ]ε = [Z]ε,
U ∩ V = ∅ and W ∪ Z = X. Let t(x1, . . . , xn) be any A-term and suppose
A realizes Σ by interpreting its operation as t. If A |= t(xU1 , . . . , x

U
n ) ≈ y,

from U ∩ V = ∅ follows V ⊆ (X \ U), hence t(xV1 , . . . , x
V
n ) ≈ x, contradict-

ing A |= t(xU1 , . . . , x
U
n ) ≈ t(xV1 , . . . , x

V
n ) which we get from (U, V ) ∈ ε and

Lemma 3.14. On the other hand, if A |= t(xU1 , . . . , x
U
n ) ≈ x, then (U,W ) ∈ ε,

(U,Z) ∈ ε and Lemma 3.14 imply A |= t(xW1 , . . . , xWn ) ≈ t(xZ1 , . . . , xZn ) ≈ x.

But W ∪Z = X implies that (X \W ) ⊆ Z, so A |= t(x
X\W
1 , . . . , x

X\W
n ) ≈ x,

while t(xW1 , . . . , xWn ) ≈ x implies A |= t(x
X\W
1 , . . . , x

X\W
n ) ≈ y, a contradic-

tion. Thus there can be no realization of Σ in A.
Now assume that (1) ε is a 0− 1 distinguishing equivalence rela-

tion. We will prove some other properties of ε, which will be bolded and
underlined, since we will be proving that all those properties are carried
over to the next, larger equivalence relation. If [U ]ε �ε [V ]ε, then there
exist U ′, V ′ ⊆ X such that [U ]ε = [U ′]ε, [V ′]ε = [V ]ε and U ′ ⊆ V ′. This
means that [U ]ε ∼ε [U ′]ε, so [U ]ε ≤ε [U ′]ε, and similarly [V ′]ε ≤ε [V ]ε, and
taken together with U ′ ⊆ V ′ we obtain [U ]ε ≤ε [V ]ε. Thus for the transitive
closure ≤ε of the relation �ε we must have that also [U ]ε ≤ε [V ]ε implies
[U ]ε ≤ε [V ]ε. From this we conclude that, if [U ]ε ≤ε [V ]ε and [V ]ε ≤ε [U ]ε,
then [U ]ε ∼ε [V ]ε, so [U ]ε = [V ]ε. Since reflexivity and transitivity of ≤ε are
given, we have proved that (2) (P(X)/ε;≤ε) is a partially ordered set.
From the antisymmetry of ≤ε follows that [U ]ε ∼ε [V ]ε iff [U ]ε ≤ε [V ]ε and
[V ]ε ≤ε [U ]ε iff [U ]ε = [V ]ε, so (3) ε = ε. The least element of P is [∅]ε, while
the greatest element of P is [X]ε. From Definition 3.4 follows that ε = C(ε),
so Lemma 3.12 implies that (4) ε = C(ε). Applying Lemma 3.13 to ε, we
prove that (5) for all U, V ⊆ X, [U ]ε ≤ε [V ]ε iff [X \ V ]ε ≤ε [X \ U ]ε.

Since ε is 0− 1 distinguishing, [∅]ε 6= [X]ε. Assume that there are more
ε-classes than just these two. Select U0 ⊆ X such that [U0]ε is minimal in
the poset (P(X)/ε\{[∅]ε};≤ε). Just using the properties (1)− (5) above we
prove that the equivalence relation ε′ obtained from ε by merging the class
[∅]ε with [U0]ε and also merging [X]ε with [X \ U0]ε, but keeping all other
classes the same, also satisfies (1)− (5).
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(4) ε′ = C(ε′) follows from ε = C(ε) and from {X \U : U ∈ [∅]ε′} = {X \
U : U ∈ [∅]ε ∪ [U0]ε} = [X]ε ∪ [X \ U0]ε = [X]ε′ . (5) follows since ε′ satisfies
(4) by applying Lemma 3.13 to ε′. To prove that ε′ is 0-1 distinguishing,
our property (1), we need only check the conditions for the classes [∅]ε′ and
[X]ε′ , as the rest are ε-classes. Since ε′ = C(ε′), it suffices to check only
[∅]ε′ . Assume that there exist W,Z ∈ [∅]ε′ such that W ∪ Z = X. Since ε
is 0-1 distinguishing, at least one of them must be in [U0]ε, say W ∈ [U0]ε.
From W ∪ Z = X follows that (X \ W ) ⊆ Z, so [X \ W ]ε ≤ε [Z]ε. By
the minimality of [U0]ε it follows that either [X \ W ]ε = [U0]ε = [W ]ε,
contradicting that ε is 0−1 distinguishing, or [X \W ]ε = [∅]ε, implying that
[W ]ε = [X \ ∅]ε, i.e. [U0]ε = [X]ε. Since (P(X)/ε;≤ε) is a partially ordered
set with its greatest element [X]ε, and by the minimality of [U0]ε = [X]ε,
this means that P(X)/ε = {[∅]ε, [X]ε}, which we assumed was not the case.
To prove (2), we need to prove the antisymmetry of ≤ε′ . Assume that
[U ]ε′ ≤ε′ [V ]ε′ and [V ]ε′ ≤ε′ [U ]ε′ . This means that there exist Wi, Zj ⊆ X
such that U =: W0 ε

′ W1 ⊆ W2 ε
′ W3 ⊆ · · · ⊆ W2k−1 ε

′ W2k := V and
V =: Z0 ε

′ Z1 ⊆ Z2 ε
′ Z3 ⊆ · · · ⊆ Z2l−1 ε

′ Z2l := U . If none of the [Wi]ε′

or [Zj ]ε′ is either [∅]ε′ , or [X]ε′ , the conclusion follows by the antisymmetry
of ≤ε. Without loss of generality, assume that [W2i]ε′ = [∅]ε′ . Inductively,
we prove that For all j < 2i, [Wj ]ε′ = [∅]ε′ . W2i−1 ⊆ W2i implies that
[W2i−1]ε ≤ε [W2i]ε ∈ {[∅]ε, [U0]ε}. The minimality of [U0]ε implies that
[W2i−1]ε ∈ {[∅]ε, [U0]ε}, hence [W2i−2]′ε = [W2i−1]ε′ = [∅]ε′ . Proceeding
inductively, we conclude that [U ]ε′ = [∅]ε′ . But then [Z2l]ε′ = [∅]ε′ , and the
same inductive argument applied to Zj proves [V ]ε′ = [Z0]ε′ = [∅]ε′ . So
[U ]ε′ = [V ]ε′ , as desired. The antisymmetry of ≤ε′ proves ε′ = ε′, property
(3), just like in the case of ε.

Since ε′ is 0 − 1 distinguishing, [∅]ε′ 6= [X]ε′ , and we can keep merging
classes like this until there are only those two. Let the relation obtained
at the end of this process be ρ. Since our process started from ε = ε(Σ)
and kept increasing the equivalence relation, we have ε ⊆ ρ. Moreover,
ρ has exactly two equivalence classes [∅]ρ and [X]ρ, and since ρ satisfies
property (4) ρ = C(ρ), hence [∅]ρ = {X \ U : U ∈ [X]ρ}. If U ∈ [∅]ρ and
V ⊆ U , then [∅]ρ ≤ [V ]ρ ≤ [U ]ρ, so by property (2) of ≤ρ we obtain that
[V ]ρ = [U ]ρ. Hence, [∅]ρ is a down-set with respect to inclusion, and since
[X]ρ = {X \ U : U ∈ [∅]ρ}, it follows that [X]ρ is an up-set. All conditions
of Lemma 3.6 are fulfilled, so we conclude that A |= Σ.

13



3.2 Decent Mal’cev conditions in semilattices

Let B = ({0, 1},∧) be the two-element semilattice. Again, we discuss decent
Mal’cev conditions, but those realized in the algebra C = ({0, 1}, s), where
s(x, y, z) = x∧y∧z for all x, y, z ∈ {0, 1}, and ∧ is the semilattice operation
from B. B and C are clearly term equivalent since also x ∧ y = s(x, x, y),
and the following is well known about B:

Proposition 3.16. For every term t(x1, . . . , xn) on the language {s} there
exists nonempty {i1, . . . , ik} ⊆ {1, 2, . . . , n} such that

C |= t(x1, . . . , xn) ≈ xi1 ∧ · · · ∧ xik .

{xi1 , . . . , xik} is the set of all variables which actually occur in the syntactic
expression of the term t.

Incidentally, the positive integer k from Proposition 3.16 is the essential
arity of the term operation tC (we omit the definition since we don’t use the
concept). Proposition 3.16 implies

Proposition 3.17. For every term t(x1, . . . , xn) on the language {s} and
U ⊆ {x1, . . . , xn}:

C |= t(xU1 , . . . , x
U
n ) ≈ x, when U ∩ E = ∅

C |= t(xU1 , . . . , x
U
n ) ≈ y, when E ⊆ U, or

C |= t(xU1 , . . . , x
U
n ) ≈ x ∧ y, when E ∩ U 6= ∅ 6= E \ U.

Here ∅ 6= E ⊆ {x1, . . . , xn} is the unique set such that C |= t ≈
∧

xi∈E
xi

From this follows a corollary similar to Lemma 3.6, but for the algebra
C:

Corollary 3.18. Let Σ be a decent Mal’cev condition represented on X.
The following conditions are equivalent:

(1) C realizes Σ.

(2) There exists a subset ∅ 6= E ⊆ X such that interpreting f as
∧

xi∈E
xi

induces a realization of Σ in C.

(3) There exists a subset ∅ 6= E ⊆ X such that C realizes a decent Mal’cev
condition Π represented on E and such that:

14



(a) {(U ∩ E, V ∩ E) : (U, V ) ∈ ε(Σ)} ⊆ ε(Π) and

(b) ρ = ε(Π) has exactly three equivalence classes and two of them are
[∅]ρ = {∅} and [E]ρ = {E}, or |E| = 1 and ρ has two equivalence
classes, {∅} and {E}.

Proof. (1)⇔ (2) follows from Proposition 3.16.
(2) ⇒ (3) Let E = {xi1 , . . . , xik}. (2) implies that A realizes a decent

Mal’cev condition Σ′ obtained from Σ by considering all variables in X \E
as dummy variables. Lemma 3.5 implies that (a) holds for ε(Σ′) in place
of ρ. By Proposition 3.17, C |= xUi1 ∧ · · · ∧ x

U
ik
≈ y if and only if E ⊆ U ,

and C |= xUi1 ∧ · · · ∧ x
U
ik
≈ x if and only if U ∩ E = ∅, so [∅]ε(Σ′) = {∅} and

[E]ε(Σ′) = {E}. Since for all U, V ∈ P(E) \ {∅, E}, C |= xU1 ∧ · · · ∧ xUn ≈
xV1 ∧ · · · ∧ xVn ≈ x ∧ y, thus C realizes the decent Mal’cev condition Π such
that (1) and (2) hold (Π is obtained from Σ′ by uniting all ε(Σ′)-classes into
one, except {∅} and {E}).

(3) ⇒ (1) Let t be the C-term which interprets g in the realization of
Π in C. From Proposition 3.16, there exists a set of variables E′ ⊆ E such
that C |= t ≈

∧
xi∈E′

xi. The condition [E]ρ = {E} implies that E′ = E.

For the decent Mal’cev condition Σ′, obtained from Σ by considering all
variables outside E as dummy variables, from Lemma 3.5 and (a) follows
that ε(Σ′) ⊆ ρ = ε(Π). Therefore, interpreting f ′ as the same term t realizes
Σ′, and by Lemma 3.5, (1) also holds.

So which E to take in Corollary 3.18? It is easy to come up with the
conditions which EXCLUDE variables from E, i.e. for U ⊆ X to be disjoint
with E. We denote ε := ε(Σ). Clearly, if a set (U, V ) ∈ ε and V ∩E = ∅, then
U ∩E = ∅, i.e. if V consists entirely of dummy variables and U ε V then U
consists entirely of dummy variables. Another criterion is if U ⊆ V1∪· · ·∪Vk
and for each Vi, Vi ∩E = ∅, then U ∩E = ∅. So, we define D(Σ) (D stands
for “dummy”) to be the least subset of X such that:

i) D(Σ)↓ contains [∅]ε and

ii) D(Σ)↓ is a union of ε-classes.

If E satisfies Corollary 3.18 (3), then conditions (3) (a) and (3) (b) imply
that X \E satisfies i) and ii). Moreover, X satisfies i) and ii), and if D1 and
D2 both satisfy i) and ii), then so does D1 ∩ D2, so D(Σ) is well-defined.
Finally, both criteria we came up with for disjointness with E are met if
V ⊆ D(Σ).

The next lemma shows that Corollary 3.18 works with E = X \D(Σ).

15



Lemma 3.19. If C realizes a decent Mal’cev condition Σ represented on
X = {x1, . . . , xn}, then C realizes Σ by interpreting f as

∧
xi∈X\D(Σ)

xi.

Proof. Denote E := X \D(Σ) and let (U, V ) ∈ ε(Σ). Firstly, U ∩ E = ∅ iff
U ⊆ D(Σ) iff V ⊆ D(Σ) (since D(Σ) is a union of ε-classes) iff V ∩ E = ∅.
Moreover, from (U, V ) ∈ ε(Σ) follows that (X\U,X\V ) ∈ ε(Σ), so U∩E = E
iff X \ U ⊆ D(Σ) iff X \ V ⊆ D(Σ) iff V ∩ E = E. So, the equivalence
relation ρ on E whose only classes are {∅}, {E} and P(E) \ {∅, E} contains
the relation {(U ∩ E, V ∩ E) : (U, V ) ∈ ε(Σ)}. According to Corollary 3.18
(3)⇒ (2), this means that C realizes Σ by interpreting f as

∧
xi∈E

xi.

When Σ is a decent Mal’cev condition represented on X, we denote
E(Σ) := X \D(Σ).

3.3 Decent Mal’cev conditions in the algebra D

Let us denote D = A×C. The next lemma is significant for our purpose.

Lemma 3.20. If D realizes a decent Mal’cev condition Σ represented on
X = {x1, . . . , xn}, then for E = E(Σ), there exists a decent Mal’cev condi-
tion Π represented on E such that, where ρ = ε(Π):

(1) {(U ∩ E, V ∩ E) : (U, V ) ∈ ε(Σ)} ⊆ ρ;

(2) ρ has exactly four equivalence classes, I, J , {∅} and {E}, where I =
{E \ U : U ∈ J} (hence |I| = |J |), or |E| = 1, and the ρ-classes are
{∅} and {E};

(3) I ∪ {∅} is a down-set in P(E) and J ∪ {E} is up-set in P(E);

Proof. Let Σ be realized in D by interpreting f as some D-term t′ so that
the set of all variables which occur in t′ is E′. Then both A and C realizes
Σ by interpreting f as t′ so, according to remarks preceding Lemma 3.19,
E′ ⊆ E. Using the term which adds dummy variables in A as in Remark 3.7,
we can construct the term t such that A |= t ≈ t′ and the set of variables
which occur in t is E. So A realizes Σ by interpreting f as t. Moreover, C |=
t ≈

∧
xi∈E

xi, so according to Lemma 3.19, C also realizes Σ by interpreting

f as t. Therefore, D = A×C realizes Σ by interpreting f as t.
From Lemma 3.6 follows that there exists a decent Mal’cev condition Π1

represented on E which is realized in A by interpreting its operation as t
and such that ρ1 := ε(Π1) satisfies conditions (2)− (3) with ρ1 in the place
of ρ of Lemma 3.6 and also, by combining Lemma 3.6 and Lemma 3.5
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(1′) {(U ∩ E, V ∩ E) : (U, V ) ∈ ε(Σ)} ⊆ ρ1.

Since the set of variables which occur in the syntactical expression of t is
E, thus C |= t ≈

∧
xi∈E

xi. Therefore, Lemma 3.19 and Corollary 3.18 provide

that there exists a decent Mal’cev condition Π2 represented on E which is
realized in C by interpreting its operation as t and conditions (a) and (b)
stated in Corollary 3.18 are satisfied (by replacing ρ in their statements with
ρ2 := ε(Π2)).

Since the term t satisfies in A the identities implied by ρ1 and in C the
identities implied by ρ2, then in D this term satisfies all identities implied by
ρ1 ∩ ρ2. Now denote I := [∅]ρ1 \ {∅} and J := [E]ρ1 \ {E} and the statement
of the Lemma follows.

Definition 3.21. We say that a decent Mal’cev condition Σ represented on
X = {x1, . . . , xn}, n > 1, such that:

(1) ε(Σ) has exactly four equivalence classes, IΣ, JΣ, {∅} and {X}, where
IΣ = {X \ U : U ∈ JΣ} (hence |IΣ| = |JΣ|),

(2) IΣ ∪ {∅} is a down-set in P(X) and JΣ ∪ {X} is an up-set in P(X)
and

(3) ε(Σ) is 0-1 distinguishing on P(X)

is a canonical decent Mal’cev condition.

Remark 3.22. Note that each canonical decent Mal’cev condition Σ is
syntactically equivalent to Σ1 = {f(xU1 , . . . , x

U
n ) ≈ f(xV1 , . . . , x

V
n ) : U, V ∈

IΣ} (and idempotence), also to Σ2 = {f(xU1 , . . . , x
U
n ) ≈ f(xV1 , . . . , x

V
n ) :

U, V ∈ JΣ} (and idempotence). This follows from IΣ = {(X \ U,X \ V ) :
(U, V ) ∈ JΣ}, so the identities in Σ1 are equivalent to the identities in Σ2

via interchanging the variables x and y. JΣ is a maximal family of subsets of
X such that any pair of sets in JΣ has a nonempty intersection (recall again
the intersecting families of [4]). For us, however, it will be more expedient
to assume that each canonical decent Mal’cev condition is of the form Σ1,
so we make this assumption now.

Lemma 3.20 may be restated as

Corollary 3.23. If D realizes a decent Mal’cev condition Σ represented
on X = {x1, . . . , xn} then for E = E(Σ), either |E| = 1, or there exists
a canonical decent Mal’cev condition Π represented on E such that {(U ∩
E, V ∩ E) : (U, V ) ∈ ε(Σ)} ⊆ ε(Π).

17



Also, for the purposes of the next subsection, we state the following

Corollary 3.24. Let Σ be a decent Mal’cev condition represented on X. De-
note by ε′ the equivalence relation on P(E(Σ)) generated by {(U ∩E(Σ), V ∩
E(Σ)) : (U, V ) ∈ ε(Σ)}. Then D realizes Σ iff ε′ is a 0 − 1 distinguishing
equivalence relation on P(E(Σ)).

Proof. According to the proof of Lemma 3.20, if D realizes Σ, then it realizes
Σ by interpreting its operation as some term t such that the set of variables
which occurs in t is E(Σ). According to Lemma 3.5, this means that D
realizes a decent Mal’cev condition Σ′ represented on E(Σ) such that ε(Σ′) =
ε′. Now Lemma 3.15 and the fact that A realizes Σ′ imply that ε′ is 0 − 1
distinguishing on P(E(Σ)).

On the other hand, if ε′ is 0− 1 distinguishing on P(E(Σ)), Lemma 3.15
implies that the decent Mal’cev condition Σ′ represented on E(Σ) which
is defined by ε′ is realized in A. According to Remark 3.7, there exists
an interpretation of the operation symbol as an A-term t which uses all
variables in E(Σ) and realizes Σ′. Lemma 3.5 and the definition of ε′ imply
that interpreting its operation as t realizes Σ in A. Also, since the set of all
variables which occur in t is E(Σ), Proposition 3.17 and Lemma 3.19 imply
that interpreting its operation as t realizes Σ in C, too. Hence D = A×C
realizes Σ.

3.4 An algorithm for checking whether a decent Mal’cev con-
dition is realized in D

The work done so far in this Section allows one to efficiently algorithmi-
cally determine whether D realizes a decent Mal’cev condition Σ. Now we
describe this algorithm.
Procedure 1. Encoding ε(Σ). Let Σ be a decent Mal’cev condition on
the set of variables X. First we linearly order the elements of X. This allows
us to encode all subsets U ⊆ X as elements of {0, 1}|X|, i.e. U becomes a
word of length |X| with 1 as its ith letter iff the ith element of X is in U .
We order all subsets in the following way: U ≤ V iff either |U | < |V |, or
|U | = |V | and the word encoding U is lexicographically before than or equal
to the word encoding V . Note that U ≤ V iff (X \ V ) ≤ (X \ U) and also
that ≤ contains (extends) the inclusion order. Now we define a directed
graph Γ(Σ) by its edge relation U → V iff U < V , (U, V ) ∈ ε(Σ) and V is
the greatest element with respect to ≤ in its ε(Σ)-class. Thus ε(Σ) is the
weak connectedness relation of the digraph Γ(Σ), so all we need to do is
effectively and efficiently construct Γ(Σ) from Σ.
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First, for each identity t(xU1 , . . . , x
U
n ) ≈ t(xV1 , . . . , x

V
n ) ∈ Σ we add to Γ

the edges U → V and (X \ V )→ (X \U), if U < V , or the two edges going
the other way if V < U . Now Γ consists of at most 2|Σ| edges and its weak
connectedness relation is equal to ε(Σ).

Next, whenever U → V and U → W in Γ and V < W , we delete the
edge U → V and replace it with V → W . When this process terminates,
there are still 2|Σ| edges, the weak connectedness of Γ is unchanged, and
the out-degree of each vertex is at most 1. The process will terminate, and
in a quadratic number of steps, provided that we always use this step with
the least set U for which such V and W exist. This way the out-degree of
U reduces until it equals 1, and it will never change in the remainder of the
process, so we proceed to the next least such U until we can find no more.

Finally, whenever U → V → W in Γ, we delete the edge U → V and
replace it with U →W . This step can be applied to the edge coming out of
U and the edge coming out of V at most once, after it is performed, there
is still one edge coming out of U and one coming out of V , so the number
of such steps is at most quadratic in |Γ|. When the process terminates, the
number of edges and the weak connectedness are unchanged, the out-degree
of each vertex is still at most 1, but now the edge going from any U points
to the largest set in its ε(Σ)-class. This way we constructed Γ(Σ).
Procedure 2. Finding D(Σ). Given Γ, we are implicitly given a closure
operation on P(X): U∗ = V iff V is the greatest element (with respect to
≤) in [U ]ε(Σ) iff either U → V or the out-degree of U is 0 and V = U .

If ∅∗ = ∅, then D(Σ) = ∅ and we can stop. Otherwise, we start with
∆ := Γ(Σ) and expand the class [∅]∆ using two kinds of steps until we reach
D(Σ). We fix V := ∅∗, i.e. ∅ → V in ∆. When ∆ is a digraph on P(X), by
[U ]∆ we denote the weakly connected component which contains U .

In the first kind of step, we close [∅]∆ under unions. First we check
whether

⋃
{U : U → V } ⊆ V . This requires checking if U ⊆ V whenever

U → V , so the number of checks equals the number of edges in ∆. If⋃
{U : U → V } 6⊆ V , we define W := V ∪

⋃
{U : U → V }, the new ∆

is obtained by replacing all edges U → V with U → W ∗ and adding the
edge V → W ∗. Note that ∆ is now increased by one edge, [∅]∆ and [W ]∆
are now merged. The second class may be singleton, so we can’t bound the
number of times this step is performed with the number of non-singleton
Γ(Σ)-classes, but since |W ∗| ≥ |W | > |V |, hence this kind of step can be
performed at most |X| times. Finally define V to be W ∗ and return to
checking whether V =

⋃
{U : U → V }. When the first kind of step can no

longer be performed, then V = ∅∗ satisfies that if U → V , then U ⊆ V .
Moreover, the number of non-singleton ∆-classes does not increase.
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We perform the second kind of step when the first kind of step can no
longer be performed. This step starts with searching through all edges U →
U∗ in ∆ such that U∗ 6= V . If we find such an edge which satisfies U ⊆ V or
U∗ ⊆ V , we merge [∅]∆ and [U ]∆. In particular, if max{U∗, V } = V , then
in the new graph of ∆ we replace all edges W → U∗ with W → V and add
the edge U∗ → V . On the other hand, if max{U∗, V } = U∗, then we replace
all edges W → V with W → U∗, add the edge V → U∗ and set the new
V to be U∗. By analyzing all the substeps of the second kind of step we
conclude that the second kind of step can be performed in polynomial time
in |Σ|. Moreover, it reduces the number of non-singleton ∆-classes by one,
and since Γ(Σ) had at most 2|Σ| many such classes, thus we have a linear
bound on the number of times the second kind of step can be performed.
Once we have merged [∅]∆ and [U ]∆, we return to checking whether the first
kind of step can be performed.

In the end we reached, in polynomial time in |Σ| and |X|, a graph ∆
which satisfies the following: [∅]∆ is a union of weakly connected components
of Γ(Σ) = ε(Σ)-classes, ∅∗ =

⋃
[∅]∆ and whenever U → V in ∆ and either

U ⊆ ∅∗ or V ⊆ ∅∗, then [U ]∆ = [∅]∆. So V := ∅∗ satisfies that V ↓ (with
respect to inclusion) is a union of ε(Σ)-classes and contains [∅]ε(Σ). Hence
D(Σ) ⊆ V .

On the other hand, by an induction on the number of steps we prove
that

⋃
[∅]∆ ⊆ D(Σ). The base is clear since [∅]ε(Σ) ⊆ D(Σ)↓. Assume that

∆ is obtained from the previous ∆′ by merging [∅]∆′ with [U ]∆′ = [U ]ε(Σ).
If ∆ is obtained from ∆′ by performing a step of the first kind, we merged
[∅]∆′ with [U ]∆′ = [U ]ε(Σ), where U =

⋃
[∅]∆′ . We know that [∅]∆′ ⊆ D(Σ)↓

and also U =
⋃

[∅]∆′ ⊆ D(Σ), by the inductive assumption. Since D(Σ)↓ is
a union of ε(Σ)-classes and [U ]ε(Σ) is an ε(Σ)-class which intersects D(Σ)↓,
we conclude that [U ]∆′ ⊆ D(Σ) ↓. Hence [∅]∆ ⊆ D(Σ) ↓, i.e.

⋃
[∅]∆ ⊆

D(Σ). If ∆ is obtained from ∆′ by performing a step of the second kind,
we merged [∅]∆′ with [U ]∆′ = [U ]ε(Σ), where U ⊆

⋃
[∅]∆′ ∈ [∅]∆′ . By the

inductive assumption,
⋃

[∅]∆ ⊆ D(Σ), so U ⊆ D(Σ). Since D(Σ) ↓ is a
union of ε(Σ)-classes, this implies [U ]∆′ = [U ]ε(Σ) ⊆ D(Σ)↓, and as we know
[∅]∆′ ⊆ D(Σ)↓, we obtain again [∅]∆ ⊆ D(Σ)↓, i.e.

⋃
[∅]∆ ⊆ D(Σ).

Procedure 3. Restricting to E(Σ). We use the just computed D(Σ) to
get E(Σ) = X \D(Σ). Then we replace Γ(Σ) with the graph Γ′ on P(E(Σ))
so that U → V in Γ′ iff there exist U ′ → V ′ in Γ(Σ) such that U = U ′∩E(Σ)
and V = V ′ ∩ E(Σ). Γ′ has at most the number of edges of Γ(Σ), so it can
be constructed in linear time. Since (X \ U) ∩ E(Σ) = E(Σ) \ (E(Σ) ∩ U),
we conclude that U → V in Γ′ iff (E(Σ) \ V ) → (E(Σ) \ U) in Γ′. Also,
the weak connectedness relation of Γ′ is equal to the equivalence relation
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generated by {(U ∩ E(Σ), V ∩ E(Σ)) : (U, V ) ∈ ε}. However, the graph Γ′

might have U → V → W or U → V and U → W such that V 6= W . So we
conclude the procedure by performing Procedure 1 on Γ′.

After Procedure 3 is completed, we have computed the graph Γ′ = Γ(ε′),
where ε′ is the equivalence relation on P(E(Σ)) generated by {(U∩E(Σ), V ∩
E(Σ)) : (U, V ) ∈ ε(Σ)}. According to Corollary 3.24, to decide whether D
realizes Σ we need to determine whether ε′ is 0− 1 distinguishing.
Procedure 4. Computing ε′. The problem facing us with ε′ is that its
classes are probably too large, i.e. exponential in |Σ|. However, we know
that the ε′-classes are convex with respect to inclusion, so we will compute an
equivalence relation ε′′ on P(E(Σ)) such that the least equivalence relation
on P(E(Σ)) which contains ε′′ and whose classes are convex with respect to
inclusion is ε′. In fact, ε′′-classes will consist of the union of all ε′-classes
which are not singleton and which lie in the same ε′-class.

We first prove that if [U ]ε′ and [V ]ε′ are two ε′-classes, then [U ]ε′ ≤ε′ [V ]ε′

iff there exist some finite sequence [W1]ε′ , . . . , [Wk−1]ε′ of non-singleton ε′-
classes such that [U ]ε′ �ε′ [W1]ε′ , [Wk−1]ε′ �ε′ [V ]ε′ and for all 1 ≤ i <
k − 1, [Wi]ε′ �ε′ [Wi+1]ε′ . The definition of ≤ε′ is the same, just it allows
some [Wi]ε′ to be singleton classes. However, if [Wi]ε′ = {Wi}, then from
[Wi−1]ε′ �ε′ [Wi]ε′ �ε′ [Wi+1]ε′ (one of the outside classes among these three
might be [U ]ε′ or [V ]ε′) implies that there exist Zi−1 and Zi+1 in P(E(Σ))
such that [Wi−1]ε′ = [Zi−1]ε′ , [Wi+1]ε′ = [Zi+1]ε′ and Zi−1 ⊆ Wi ⊆ Zi+1.
But then [Wi−1]ε′ �ε′ [Wi+1]ε′ and [Wi]ε′ can be omitted from the sequence
which witnesses that [U ]ε′ ≤ε′ [V ]ε′ . Thus when [U ]ε′ and [V ]ε′ are two ε′-
classes, [U ]ε′ ≤ε′ [V ]ε′ and consequently also [U ]ε′ ∼ε′ [V ]ε′ can be computed
using only non-singleton ε′-classes. Note that we allowed [U ]ε′ and [V ]ε′ to
be singleton.

Next, note that when [U ]ε′ is singleton and [U ]ε′ is not a singleton, then
there exist V,W ∈ [U ]ε′ such that V ⊆ U ⊆ W and that [V ]ε′ and [W ]ε′

are non-singleton classes. To see that, note that [U ]ε′ must be ∼ε′-related
to some other class [U ′]ε′ , so U ⊆ W1 ε′ W ′1 ⊆ . . . ε′ W ′k ⊆ U ′ ε′ U ′′ ⊆
Z1 ε

′ Z ′1 ⊆ . . . ε′ Z ′l ⊆ U . Thus Z ′l ⊆ U ⊆ W1, as desired. The degenerate
cases when [U ′]ε′ is singleton and when U ′ and when U are comparable by
inclusion are handled similarly.

Hence, if we compute which non-singleton ε′-classes are ∼ε′-related to
[U ]ε′ , the class [U ]ε′ is the convex closure of their union. So all we need
to do is to merge all non-singleton ε′-classes which are ∼ε′-related and the
relation ε′′ which is obtained will have as its convex closure ε′.

Now that we know what to do, it is easy to describe the procedure
for doing it. We note that [U ]ε′ is a non-singleton class iff there exists an
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edge V → W in the graph Γ′ such that U ∈ {V,W} and that in this case
U∗ = W . We first encode �ε′ among non-singleton ε′-classes by a directed
graph U∗  V ∗ iff there exist some U ′ ∈ [U ]ε′ and V ′ ∈ [V ]ε′ such that
U ′ ⊆ V ′. This is achieved by checking for inclusion among arbitrary pairs
of edges of Γ′ which have distinct out-vertices.

Then for any two non-singleton ε′-classes [U ]ε′ and [V ]ε′ , we merge them
iff U∗ and V ∗ are in the same strong component with respect to  (deter-
mining this is known to be tractable by any number of classical algorithms,
such as the breadth-first search). Merging the classes [U ]ε′ and [V ]ε′ is done
by the same method we have been accustomed to already, if U∗ < V ∗, we
modify Γ′ by replacing all edges of the form W → U∗ with W → V ∗ and
also adding the edge U∗ → V ∗. This can be done at most as many times
as there are non-singleton |ε′|-classes, so the procedure terminates with the
graph Γ′′ = Γ(ε′′) in polynomial time.
Procedure 5. Checking whether ε′ is 0 − 1 distinguishing. We note
that if there exist U, V,W,Z such that U ε′ V ε′ W ε′ Z, and that U ∩V = ∅
and W ∪ Z = E(Σ), then we may assume that [U ]ε′ , [V ]ε′ , [W ]ε′ and [Z]ε′

are all non-singleton classes. Indeed, if [U ]ε′ is a singleton class, then there
exists a non-singleton class [U ′]ε′ ∼ε′ [U ]ε′ such that U ′ ⊆ U (and similarly
for V ), while if [W ]ε′ is a singleton class, then there exists a non-singleton
class [W ′]ε′ ∼ε′ [W ]ε′ such that W ⊆ W ′ (and similarly for Z). All those
follow from our remarks in the proof of Procedure 4.

So, we have just proved that ε′ is 0 − 1 distinguishing iff ε′′ is 0 − 1
distinguishing. It remains to check this. We just run through all edges in
Γ′′ to check whether such U , V , W and Z can be found among any five sets
U1, U2, U3, U4 and U5 such that Ui → U5 in Γ′′ for all 1 ≤ i ≤ 4. Thus,
according to Corollary 3.24, we have efficiently decided whether D realizes
Σ.

4 Ramsey lemma on posets with disjointness

4.1 Posets with disjointness and their representation

This subsection is rather easy and tangential to our main interest. It is
included since it is a different language in which some of our results may be
expressed.

Let’s denote the set of all nonempty subsets of a set X with P+(X).
There is a disjointness relation naturally defined on P+(X) by A||B iff
A ∩ B = ∅. Whenever F ⊆ P+(X), the disjointness relation on F is a
symmetrical relation which satisfies that A||B implies A↓ ∩ B ↓= ∅ and
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that, if A||B, A′ ⊆ A and B′ ⊆ B, then A′||B′. So we may abstractly define
a partially ordered set (poset) with disjointness:

Definition 4.1. Let P = (P ;≤, ||) be a set with two binary relations. P is
a poset with disjointness if ≤ is a partial order on P , while || is a symmetric
relation on P which satisfies:

(1) a||b implies a↓ ∩ b↓= ∅ and

(2) if a||b, a′ ≤ a and b′ ≤ b, then a′||b′.

It is easy to prove a representation of (P ;≤, ||) as families of sets (the
finite case suffices for our purpose, but we may as well prove the infinite
one). The following proof is due to the referee, replacing our longer and less
elegant one.

Proposition 4.2. For any poset with disjointness P, there exists a set X
and a family F ⊆ P+(X) such that P ∼= (F ;⊆, ||) (disjointness in the right-
hand model interprets as the actual disjointness of subsets).

Proof. Let A = ({0, 1};≤, D), where D = {(0, 0), (1, 0), (0, 1)} and let X :=
Hom(P,A). By definition, the characteristic function of any up-set U in P is
compatible with the order, while the compatibility with the second relation
hinges on the up-set not containing elements x, y ∈ U such that x||y. When
a, b ∈ P , by sa, sa,b ∈ AP we denote the characteristic functions of a↑ and
a↑ ∪ b↑, respectively. Hence, sa ∈ X for all a ∈ P , while sa,b ∈ X whenever
a ∦ b, or a = b, using the converse of Definition 4.1 (2).

Define ϕ : P → P(X) by ϕ(a) = {f ∈ X : f(a) = 1}. Since sa ∈ ϕ(a),
ϕ(a) ∈ P(X)+. If a ≤ b, then for any a ∈ ϕ(a), s(b) ≥ s(a) = 1, so s(b) = 1
and ϕ(a) ⊆ ϕ(b). If a � b, then sa ∈ ϕ(a) \ϕ(b), so ϕ(a) * ϕ(b). Hence ϕ is
injective and both ϕ and its inverse are monotone. If s ∈ ϕ(a) ∩ ϕ(b), then
(s(a), s(b)) = (1, 1) /∈ D, so a ∦ b, since s is a homomorphism. If a ∦ b, then
sa,b ∈ ϕ(a)∩ϕ(b), so ϕ(a)∩ϕ(b) 6= ∅. So, ϕ(P ) is the desired family F .

4.2 Monochromatic representation of finite posets with dis-
jointness

Lemma 4.3. For every finite poset with disjointness P and every positive
integer n there exists an integer N so that for every coloring of P+(N) in n
colors there exists a monochromatic family F ⊆ P+(N) such that P ∼= (F ;⊆
, ||).
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Proof. Recall that natural numbers are defined by M = {0, 1, . . . ,M − 1}.
For short, we call the sets of size k as k-sets, a coloring in n colors as n-
coloring, denote the set of all k-subsets of X as X [k] the set of all nonempty
subsets of X of size at most k − 1 as X [<k]. Also, we say that a set is
k-monochromatic if all of its k-subsets are of the same color, and for any
K ⊆ ω we say that a set is K-monochromatic if it is k-monochromatic for
all k ∈ K. Recall also the definition of the Ramsey numbers Rnk (N) from
Section 2

According to the proof of Proposition 4.2, there exists a positive integer
M and a family G ⊆ P(M)+ such that P ∼= (G;⊆, ||). We will pick a positive
integer N so that for any n-coloring of P+(N), we will prove that there exists
a monochromatic family F ⊆ P+(N) such that (P(M)+;⊆, ||) ∼= (F ;⊆, ||).
This would suffice, as P embeds into (P(M)+;⊆, ||).

Let ti be defined as ti = 2i·M for all 0 < i. We will show that as the
number N from the statement of the lemma we can use

Nn,M = Rnt1(Rnt2(...(Rnt(M−1)n−1
(Rnt(M−1)n

(t(M−1)n+1))...))).

Let A be a set of size Nn,M and fix an n-coloring of P(A)+. Nn,M , by
construction, is large enough for the set A to have a t1-monochromatic
subset A1 of size Rnt2(Rnt3(...(Rnt(M−1)n

(t(M−1)n+1))...)). Similarly we obtain

a t2-monochromatic subset A2 of A1 of size Rnt3(...(Rnt(M−1)n
(t(M−1)n+1))...),

and continuing like this we obtain sets A1 ⊇ A2 ⊇ ... ⊇ A(M−1)n+1 =:
B′. The set B′ is {t1, t2, ..., t(M−1)n+1}-monochromatic (it is t(M−1)n+1-
monochromatic since |B′| = t(M−1)n+1). Using the pigeonhole principle we
obtain a subset {ti1 , ti2 , ..., tiM } ⊆ {t1, t2, ..., t(M−1)n+1} such that i1 < i2 <
· · · < iM and all subsets of B′ of sizes ti1 , ti2 , ..., tiM are of the same color.
We choose a tiM -sized subset of B′ and denote it by B. So B has the same
color as any of its subsets of size tij , for any 1 ≤ j < M .

Let us denote B[tij ] as Bj for all 1 ≤ j ≤M . For any I ∈ P(M)+, we will
choose DI ∈ B|I| (so DM = B) and make F = {DI : I ∈ P(M)+}. Note that

any ti+1-set is large enough to have
(
M
k

)
< 2M disjoint subsets of size ti (for

any 0 ≤ k ≤M). We choose DI inductively, starting from |I| = 1 where we
just pick any M disjoint subsets in B1. If DJ are selected for all J ∈M [k−1],
for each I ∈M [k] we define subsets EI =

⋃
{DJ : J ∈ I [k−1]}. Next we select

subsets E′I ⊆ B such that E′I is disjoint from any DJ for |J | < k and that for
distinct k-subsets I1 and I2 of M , E′I1 and E′I2 are disjoint and that for each

I ∈M [k], |E′I | = tik − |EI |. If we make E′I disjoint from
⋃
{EJ : J ∈M [k]},

then it will automatically be disjoint from
⋃
{DJ : J ∈ M [<k]}, as each

such DJ , where J ∈ M [<k], can be found as a subset within some EK with
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K ∈ M [k]. The following sequence of inequalities shows that the set B is
large enough to allow us to select such pairwise disjoint sets E′I :

|B| ≥ tik+1 = 2M tik >

(
M

k

)
tik =

∑
I∈M [k]

tik =

∑
I∈M [k]

(|EI |+ (tik − |EI |)) ≥
∣∣∣⋃{EI : I ∈M [k]}

∣∣∣+
∑

I∈M [k]

(tik − |EI |)

Finally, make DI = EI ∪E′I . Note for future use that E′I ∩DJ = ∅ whenever
J 6= I, and |J | ≤ |I|.

For notational reasons denote D∅ := ∅. We want to show that DI∩DJ =
DI∩J . This would suffice to show that (P(M)+;⊆, ||) ∼= (F ;⊆, ||). If J ⊆ I,
then there exists a sequence of sets J = J1 ⊆ J2 ⊆ · · · ⊆ Js = I such
that |Jk+1| = |Jk| + 1 and by construction DJk ⊆ DJk+1

for all 1 ≤ k < s.
Thus DJ ⊆ DI . In the general case this means that DI∩J ⊆ DI ∩ DJ .
We prove the reverse inclusion by an induction on |I| + |J |. Assume that
|I| ≥ |J | and J * I. The base case when |I| = |J | = 1 is true since then
DI ∩DJ = ∅. If |I| = k > 1, then E′I is disjoint from DJ by construction,
so DI ∩DJ = EI ∩DJ =

⋃
{DK : K ∈ I [k−1]} ∩DJ =

⋃
{DK ∩DJ : K ∈

I [k−1]} =
⋃
{DK∩J : K ∈ I [k−1]} ⊆ DI∩J . The last inclusion follows from

the observation that for all K ∈ I [k−1], DK∩J ⊆ DI∩J .

5 Canonical decent Mal’cev conditions are real-
ized in all locally finite congruence meet-semi-
distributive varieties

The following theorem generalizes Theorem 3.2 of [10] and its proof is anal-
ogous. We include the full proof to make the paper more self-contained.

Theorem 5.1. Let Σ be a canonical decent Mal’cev condition. Every locally
finite congruence meet-semidistributive variety realizes Σ.

Proof. Let V be a locally finite congruence meet-semidistributive variety.
Let W be the idempotent reduct of V, which is the variety whose clone
is the clone of idempotent term operations of V and whose fundamental
operations are the distinct elements of this clone. Since congruence meet-
semidistributivity can be characterized by an idempotent Mal’cev condi-
tion, see Theorem 2.1, W is a locally finite, idempotent, congruence meet-
semidistributive variety. Since all term operations inW are idempotent and
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all idempotent term operations of V are term operations ofW, it follows that
V realizes Σ iffW realizes Σ′, which consists of all identities of Σ, except for
idempotence.

Now, consider Σ′ and let it be represented on X = {x1, . . . , xm}. Ac-
cording to Remark 3.22, Σ′ is syntactically equivalent to {f(xU1 , . . . , x

U
m) ≈

f(xV1 , . . . , x
V
m) : U, V ∈ IΣ}, where IΣ ⊆ P(X) satisfies (1) − (3) of Defini-

tion 3.21. Note that each pair of sets U, V ∈ IΣ satisfies that U ∪ V 6= X,
otherwise ∅ 6= X \ V ⊆ U , so X \ V ∈ IΣ by (2). On the other hand, by
(1), from V ∈ IΣ follows that X \ V ∈ JΣ. Since IΣ and JΣ are equivalence
classes of the relation ε(Σ), IΣ ∩ JΣ = ∅, so this is impossible. Hence, there
must always be at least one xi ∈ X \(U ∪V ) such that xUi = xVi = x. Define
the poset with disjointness P = (IΣ;⊆, ||). We fix k = |IΣ| and m = |X|. Let
F be the two-generated free algebra in W, freely generated by x and y and
let us fix the number N provided by Lemma 4.3 applied to P and n = |F |.

We define some subuniverses of F2 (compatible binary relations of F)
the same way as in [10] (as with other relations we will define, we permuted
variables from their versions in [10] for aesthetic reasons):

E = SgF
2

([
x
x

]
,

[
x
y

]
,

[
y
x

])
,

≥ = SgF
2

([
x
x

]
,

[
y
x

]
,

[
y
y

])
,

G = SgF
2

([
x
x

]
,

[
x
y

]
,

[
y
x

]
,

[
y
y

])
.

We note that, because of idempotence, G is the full product F×F (it is easy
to prove and written up in [10]). The converse of ≥ is denoted as ≤, while
E and G are clearly symmetric. Next we recall the subuniverses R1−R11 of
F3 defined in [10]. Ri (with permuted variables) can be alternatively defined
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as:

R1(x1, x2, x3) := E(x1, x2) ∧ E(x1, x3) ∧ E(x2, x3),

R2(x1, x2, x3) := x1 ≥ x2 ∧ x1 ≥ x3 ∧ E(x2, x3),

R3(x1, x2, x3) := x1 ≥ x2 ∧ E(x1, x3) ∧ E(x2, x3),

R4(x1, x2, x3) := x1 ≥ x2 ∧ x1 ≥ x3 ∧ x2 ≥ x3,

R5(x1, x2, x3) := x1 ≥ x2 ∧ x1 ≥ x3 ∧G(x2, x3),

R6(x1, x2, x3) := G(x1, x2) ∧ x1 ≥ x3 ∧ x2 ≥ x3,

R7(x1, x2, x3) := x1 ≥ x2 ∧G(x1, x3) ∧ E(x2, x3),

R8(x1, x2, x3) := E(x1, x2) ∧ E(x1, x3) ∧G(x2, x3),

R9(x1, x2, x3) := E(x1, x2) ∧G(x1, x3) ∧G(x2, x3),

R10(x1, x2, x3) := x1 ≥ x2 ∧G(x1, x3) ∧G(x2, x3),

R11(x1, x2, x3) := G(x1, x2) ∧G(x1, x3) ∧G(x2, x3).

The definitions of Ri as subuniverses of F3 generated by x, y-valued vector
columns are given in [10] and too cumbersome to include here again. How-
ever, they are significant as they show that the projection to each pair of co-
ordinates of eachRi is the relation from the above definition, and not smaller.
For instance π{2,3}(R8) = G and π{1,3}(R2) = ≥. This is not obvious in gen-
eral, for instance, take R′(x1, x2, x3) := x1 ≥ x2∧E(x1, x3)∧G(x2, x3). It is
not hard to show that π{2,3}(R

′) = E, so π{2,3}(R
′) does not have to equal

G, it can be smaller (if W has a Mal’cev term then E = G, so sometimes
π{2,3}(R

′) = G, but not always). We will use the restrictions of the relations
Ri to show 2-consistency of a CSP instance.

The final compatible relation we define is RI which is the subuniverse of
Fk generated by {a1, . . . , am} (recall m = |X| and k = |IΣ|), where ai are
defined in the following way: We fix an arrangement of the sets in IΣ in a
linear order which extends ⊇, so IΣ = {U1, U2, . . . , Uk} and Ui ⊇ Uj ⇒ i ≤ j
(in other words, if i < j, then Ui\Uj 6= ∅). Next we define ai(j) = x if xi /∈ Uj
and ai(j) = y if xi ∈ Uj , i.e. ai(j) = x

Uj

i . Finally, ai := [ai(1), . . . , ai(k)]T ,
so we think of ai as vector columns of elements of F .

We consider what are the possibilities for π{i,j}(RI), where 1 ≤ i < j ≤
k. Since Ui ∪ Uj 6= X and Ui \ Uj 6= ∅, as we said, there must be some
1 ≤ r, s ≤ m such that ar(i) = x = ar(j), as(i) = y and as(i) = x.

• If Ui and Uj are comparable, then Ui ) Uj ) ∅, so there exists xt ∈
Ui ∩ Uj for some 1 ≤ t ≤ m, but Uj \ Ui = ∅. Thus at(i) = y = at(j),
but for no 1 ≤ l ≤ m, al(i) = x and al(j) = y. Hence, the projection
π{i,j}({a1, . . . , am}) = {[x, x]T , [y, x]T , [y, y]T } and π{i,j}(RI) = ≥.
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• If Ui and Uj are disjoint, then Uj ∩ Uj = ∅, while Uj \ Ui is nonempty
(since Uj 6= ∅), so there exists 1 ≤ t ≤ m such that at(i) = x and
at(j) = y, but for no 1 ≤ l ≤ m, al(i) = y = al(j). Hence, the projec-
tion π{i,j}({a1, . . . , am}) = {[x, x]T , [y, x]T , [x, y]T } and π{i,j}(RI) =
E.

• If Ui and Uj are neither comparable, nor disjoint, then Uj \ Ui 6= ∅ 6=
Ui ∩ Uj , so there exist 1 ≤ t, l ≤ m such that at(i) = x, at(j) = y
and al(i) = y = al(j). Hence, the projection π{i,j}({a1, . . . , am}) =

{[x, x]T , [y, x]T , [x, y]T , [y, y]T } and π{i,j}(RI) = G.

Next, we define F = (F ;E,≥, G,R1, . . . , R11, RI) and an instance (V ;F ; C)
of CSP (F). First, let Y be a finite set such that |Y | = N and define
V = P(Y )+.

We proceed with defining C. Let Z1, Z2 ∈ V be distinct. If Z1 ⊇ Z2, add
the constraint Z1 ≥ Z2 to C. If Z1 ∩ Z2 = ∅, add the constraint E(Z1, Z2)
to C. Finally, if Z1 and Z2 are neither comparable, nor disjoint, add the
constraint G(Z1, Z2) to C.

Let Z1, Z2, Z3 ∈ V be pairwise distinct and such that i ≤ j implies
Zi * Zj . Depending on the inclusion and disjointness relations between
these sets Z1, Z2 and Z3, the possible cases are:

• If one set contains the other two, then Z1 ⊇ Z2 ∪ Z3, and we add the
constraint R2(Z1, Z2, Z3), R4(Z1, Z2, Z3), or R5(Z1, Z2, Z3) to C, when
Z2 and Z3 are disjoint, comparable or neither (respectively).

• If one set is contained in the other two, then Z3 ⊆ Z1∩Z2 and Z1 and
Z2 are not disjoint, while when Z1 and Z2 are comparable, we are in
the above case, so the remaining case is when Z1 and Z2 are neither
disjoint nor comparable. Then we add R6(Z1, Z2, Z3) to C,

• If there is only one comparability between the three sets, say Z1 ⊇ Z2,
then the possibilities are that Z3 intersects each of Z1 and Z2, that
Z3 intersects Z1, but not Z2 and that Z3 is disjoint from each of Z1

and Z2. In those cases, we add R10(Z1, Z2, Z3), R7(Z1, Z2, Z3), or
R3(Z1, Z2, Z3) to C (respectively).

• Finally, assume that there is no comparability between the three sets.
If all three sets are pairwise disjoint, we add R1(Z1, Z2, Z3) to C. If
Z1 is disjoint from the other two, but they intersect, then we add
R8(Z1, Z2, Z3) to C. If Z1 and Z2 are disjoint, but the other two pairs
intersect, then we add R9(Z1, Z2, Z3) to C. If any pair among Z1, Z2
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and Z3 has a nonempty intersection, then we add R11(Z1, Z2, Z3) to
C.

As we have covered all possibilities and each {Z1, Z2, Z3} has a unique con-
straint imposed on them, depending only on inclusion and disjointness be-
tween the sets Z1, Z2 and Z3, thus our instance is 3-dense. Moreover, since
the projections of the ternary constraints onto pairs of coordinates are pre-
cisely the binary constraints imposed on those pairs of coordinates, thus our
instance is also 2-consistent.

Finally, we add one more type of constraint to C. When P ∼= (F ;⊆, ||),
where F = {Z1, . . . , Zk} ⊆ P(Y )+, then we select one such isomorphism φ1.
We impose the constraint RI(φ(U1), . . . , φ(Uk)) on F . Of course, adding
constraints doesn’t violate 3-density of the instance. Since we proved that
π{i,j}(RI) is either E, ≥, ≤ or G, depending only on the inclusion and
disjointness between Ui and Uj , and since ϕ is an isomorphism with respect
to inclusion and disjointness, thus the 2-consistency is also not violated by
adding these constraints to C.

We just proved that the instance (V ;F ; C) of CSP (F) is (2, 3)-minimal
and nontrivial, while F is compatible with F which generates a congru-
ence meet-semidistributive variety. We apply Theorem 2.5 to conclude that
(V ;F ; C) has a solution g.

This solution g : V → F is a coloring of V = P(Y )+ into |F | = n colors,
so since |Y | = N , Lemma 4.3 provides us with family F ⊆ P(Y )+ such that
P ∼= (F ;⊆, ||) and that g �F is constant, say g(Z) = u(x, y) ∈ F for all
Z ∈ F . We know that the constraint RI is imposed on F in some order,
so we have proved that RI must contain a constant vector [u, u, . . . , u]T .
But this means that there exists some W-term t(x1, . . . , xm) such that

tF
k
(a1, . . . , am) = [u, u, . . . , u]T . Since the terms in Fk are computed coordi-

natewise, thus for each 1 ≤ i ≤ k, tF(xUi
1 , . . . , x

Ui
m ) = tF(a1(i), . . . , am(i)) =

u(x, y). Hence, for all 1 ≤ i, j ≤ k, F |= tF(xUi
1 , . . . , x

Ui
m ) = tF(x

Uj

1 , . . . , x
Uj
m ).

But F is the W-free algebra on {x, y} and all equalities tF(xUi
1 , . . . , x

Ui
m ) =

tF(x
Uj

1 , . . . , x
Uj
m ) use just the variables x and y, so for all U, V ∈ IΣ, W |=

t(xU1 , . . . , x
U
m) ≈ t(xV1 , . . . , xVm). Thus, W realizes Σ′, and as we noted in the

first paragraph of this proof, this means that V realizes Σ.

The rest of this section is devoted to odds and ends we conclude after
proving Theorem 5.1, which is the main result of the section.

1This detail is missing in the proof of Theorem 3.2 in [10], imposing a constraint for
each isomorphic copy of P on F could make the intersecting constraint too small.
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Proposition 5.2. A canonical decent Mal’cev condition Σ represented on
X is a Taylor condition iff for any xi ∈ X, IΣ 6= P(X \ {xi})+.

Proof. Let X = {x1, . . . , xn}. If IΣ = P(X \ {xi})+, then Σ is realized by
f(x1, . . . , xn) = xi. Now assume that for any xi ∈ X, IΣ 6= P(X \ {xi})+.

Then for all 1 ≤ i, j ≤ n, Σ includes the identities f(x
{xi}
1 , . . . , x

{xi}
n ) ≈

f(x
{xj}
1 , . . . , x

{xj}
n ), which, together with idempotence, are the identities

which claim that f is a weak near-unanimity operation. Since every weak
near-unanimity term is a Taylor term, thus any realization of Σ is a Taylor
term.

Corollary 5.3. Let V be a locally finite variety and Σ a canonical de-
cent Mal’cev condition represented on the set X such that |X| ≥ 4 and
Σ is a Taylor condition. Then V realizes Σ iff V is congruence meet-
semidistributive. Those are all characterizations of locally finite congruence
meet-semidistributive varieties by canonical decent Mal’cev conditions.

Proof. If Σ is a canonical decent Mal’cev condition represented on the set X
such that |X| ≥ 4 and Σ is a Taylor condition, then Σ is realized in all locally
finite congruence meet-semidistributive varieties, according to Theorem 5.1.
Moreover, according to Proposition 5.2, IΣ contains all one-element subsets
of X, and since |X| ≥ 4, IΣ contains at least one two-element set, say
{xk, xl}.

Let R be any associative ring with unit and M any right R-module.
Assume that M realizes Σ. We may assume without loss of generality
that M is faithful, since M is term-equivalent to an R/I module, where
the ideal I is defined by I = {α ∈ R : (∀x ∈ M)αx = 0}. Hence,

there is a term t(x1, . . . , xn) =
n∑
i=1

αixi which realizes all identities in Σ.

t(x
{xi}
1 , . . . , x

{xi}
n ) = (

n∑
j=1

j 6=i

αj)x + αiy, so evaluating x = 0, the identities

t(x
{xi}
1 , . . . , x

{xi}
n ) ≈ t(x

{xj}
1 , . . . , x

{xj}
n ) become M |= αiy ≈ αjy. Because

M is faithful, we conclude that for all 1 ≤ i ≤ n, αi = α ∈ R. The iden-

tity f(x
{x1}
1 , . . . , x

{x1}
n ) ≈ f(x

{xk,xl}
1 , . . . , x

{xk,xl}
n ), again in the case x = 0,

implies that M |= 2αy ≈ αy, so again using faithfulness, α = 0. But
then M |= t(x1, . . . , xn) ≈ 0, and idempotence of t implies M |= x ≈ 0,
so the module M is trivial. Since any module which realizes Σ is trivial,
according to [11], Theorem 8.1 (1)⇔ (10), Σ is realized only in congruence
meet-semidistributive varieties.

30



The final sentence follows from the fact that any such characterization
Σ is not realized by the Abelian group Z2. However, all those Σ which are
not Taylor conditions are realized by a projection (in any nontrivial algebra,
hence also in Z2), while those Σ that are Taylor conditions and have less
than four variables must be the ternary weak near-unanimity term, which
is realized in Z2 by t(x, y, z) = x+ y + z.

Another aspect in which Theorem 5.1 can be improved is the following
result, also proved by Z. Brady in [4]:

Theorem 5.4. Let V be a locally finite congruence meet-semidistributive va-
riety. There exists a binary V-term p(x, y) such that for every n > 2, every
X = {x1, . . . , xn} and every canonical decent Mal’cev condition Σ repre-
sented on X, there exists a realization of Σ in V in which f is interpreted
as some V-term t so that V |= t(xU1 , . . . , x

U
n ) ≈ p(x, y) for all U ∈ IΣ.

Moreover, p(x, y) can be chosen so that V |= p(p(x, y), p(y, x)) ≈ p(x, y)

Proof. Such a term p(x, y), if it exists, would have to be idempotent be-
cause decent Mal’cev conditions are all idempotent. So, like in the proof of
Theorem 5.1, we turn to the idempotent reduct of V, the variety W. Let
F = FW(x, y) be the free algebra and |F | = n.

We assume the opposite. Let the set of all pairwise distinct binary
W-terms be {p1(x, y), . . . , pn(x, y)} (this is a set of representatives for the
elements of F). Then for every 1 ≤ j ≤ n there exists a canonical decent
Mal’cev condition Σj represented on Xj = {xj,1, . . . , xj,mj}, determined by

IΣj = {U j1 , . . . , U
j
kj
} ⊆ P+(Xj), such that for every realization of Σj in V,

where some V-term t interprets the operation of Σj , and for any U ∈ IΣj ,
V 6|= t(xUj,1, . . . , x

U
j,mj

) ≈ pj(x, y).
Moreover, for any canonical decent Mal’cev condition Σ represented on

the set of variables X = {x1, . . . , xk} there exists another canonical decent
Mal’cev condition Σ, represented on a set of variables Y = {x1, . . . , xl}, such
that k < l and the set of binary W-terms

{p(x, y) : (∃t)(∀U ∈ IΣ)W |= t(xU1 , . . . , x
U
k ) ≈ p(x, y)} ⊇

{p(x, y) : (∃t)(∀U ∈ IΣ′)W |= t(xU1 , . . . , x
U
l ) ≈ p(x, y)}.

Proof for the case l = k + 1: Define IΣ′ and JΣ′ by:

• when U ∈ IΣ, make U,U ∪ {xk+1} ∈ IΣ′ ,

• when U ∈ JΣ, make U,U ∪ {xk+1} ∈ JΣ′ ,
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• {xk+1} ∈ IΣ′ and X ∈ JΣ′ .

Now it is routine to verify that IΣ′ ∪{∅} is a down-set since IΣ ∪{∅} is, and
that U ∈ IΣ′ iff (Y \ U) ∈ JΣ′ , again using the same property for IΣ, JΣ

and X. Hence JΣ′ ∪ {Y } is an up-set. If there exist U, V ∈ IΣ′ such that
U ∪ V = Y , then U \ {xk+1} and V \ {xk+1} are both in IΣ and their union
is X, contradicting the assumption that Σ is a canonical decent Mal’cev
condition. Finally, note that if xk ∈ U and ∅ ( U ( X, then U ∈ IΣ iff
U ∪ {xk+1} ∈ IΣ′ (since the conclusion works even if xk /∈ U). Hence, for
any realization t of Σ′, t(x1, x2, . . . , xk, xk) is a realization of Σ, proving the
desired containment for the case l = k + 1.

For l > k + 1 we proceed inductively adding one variable at a time. In
conclusion, we may assume that i < j implies |Xi| < |Xj | by adding more
variables to the set on which Σj is represented, as needed.

Without loss of generality, we may assume that all Xj are pairwise dis-
joint and select X such that Xj ⊆ X for all 1 ≤ j ≤ n and such that

|X| = 1 + 2
n∑
j=1

mj =: m. We have all sets IΣj ⊆ P(Xj) ⊆ P(X). Define the

canonical decent Mal’cev condition Σ represented on X by IΣ = {U ⊆ X :

1 ≤ |U | ≤
n∑
j=1

mj = m−1
2 }.

Now we modify the proof that V realizes Σ from Theorem 5.1 in the
following way: we keep all the constraint relations and constraints we had
there, and we add the compatible relations RIj , 1 ≤ j ≤ n, to the constraint

language. For each 1 ≤ j ≤ n, RIj is the subalgebra of Fkj generated by

{aj1, . . . , a
j
mj} so that for all 1 ≤ r ≤ mj and 1 ≤ s ≤ kj , a

j
r(s) = y if

xj,r ∈ U js , while ajr(s) = x otherwise.
Now we impose additional constraints with constraint relations RIj . Let

T be any set of variables on which we imposed RI defined by the mapping
φT which is an isomorphism between (IΣ;⊆, ||) and (T ;⊆, ||). For each such
T and each 1 ≤ j ≤ n we will select one subset STj ⊆ T and impose RIj on

STj . We select the subsets STj ⊆ T so that STj = {φ(U) : U ⊆ Xj ⊆ X and

U ∈ IΣj}. We impose RIj on STj in some way which is determined by a fixed

isomorphism between (IΣj ;⊆, ||) and (STj ;⊆, ||). The sets STj and ST
′

j′ never

coincide for j 6= j′, since |Sj | = 2|Xj |−1 − 1, so from i < j ⇒ |Xi| < |Xj |
follows that the constraint relation imposed on a set S, if any, is always the
same. If there exists T such that S = STj , then we always select the same

isomorphism from (IΣj ;⊆, ||) and (S;⊆, ||) for any T ′ such that S = ST
′

j .
Therefore the constraint relation on Sj , doesn’t depend on T .
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Now there is no set of variables which is subject to more than one con-
straint, the instance is still 3-dense, and the 2-consistency follows from the
fact that the restriction to pairs of variables is always the binary constraint
determined by inclusion and disjointness, which does not depend on the
larger constraint, just on the relationship between those two variables. So
we know from Theorem 2.5 that there is a solution g. As before, using
Lemma 4.3 we conclude that for some set of variables T on which the con-
straint relation RI is imposed, all variables in T are mapped by g to the same
element u ∈ F . This element u is V-equal to one of pj(x, y), for some 1 ≤ j ≤
n. But each RIr is imposed on some subset of T . Hence, the constraint RIj is
imposed on the subset Sj ⊆ T . We conclude that there exists some W-term

t(x1, . . . , xmj ) such that tF
kj

(aj1, . . . , a
j
mj ) = [u, u, . . . , u]T . Computed coor-

dinatewise, for each U ji ∈ IΣj , t
F(x

Uj
i

j,1 , . . . , x
Uj
i

j,mj
) = tF(a1(i), . . . , amj (i)) =

u(x, y). ThusW realizes Σj , take away idempotence, but in such a way that

W |= t(x
Uj
i

j,1 , . . . , x
Uj
i

j,mj
) ≈ pj(x, y) for all U ji ∈ IΣj . Since W is the idempo-

tent reduct of V, this implies that V |= t(x
Uj
i

j,1 , . . . , x
Uj
i

j,mj
) ≈ pj(x, y) for all

U ji ∈ IΣj and t is an idempotent term of V. This is a contradiction with the
choice of Σj .

It remains to prove the final sentence. We define a sequence of binary
terms p(1)(x, y) = p(x, y) and p(k+1)(x, y) = p(p(k)(x, y), p(k)(y, x)). We aim
to prove that for all k ≥ 1, p(k) can replace p in the first paragraph of our
theorem. The base case is proved, so we proceed by an induction on k.

Let Σ be any decent Mal’cev condition on Xn := {x1, . . . , xn}, where
n > 2. Also let IΣ be the family of subsets of Xn associated with Σ
and t(x1, . . . , xn) a realization of Σ in V such that for all U ∈ IΣ, V |=
t(xU1 , . . . , x

U
n ) ≈ p(x, y). Denote t(1) := t. Define the canonical decent

Mal’cev condition Σ<n represented on the set X2n−1 = {x1, x2, . . . , x2n−1}
by IΣ<n := {U ⊆ X2n−1 : 1 ≤ |U | < n}. By the inductive assumption
applied to the condition Σ<n, there exists a realization of Σ<n by a (2n−1)-

ary V-term q
(k)
n such that for all U ∈ IΣ<n , V |= q

(k)
n (xU1 , x

U
2 , . . . , x

U
2k−1) ≈

p(k)(x, y).
We introduce a little notation, xsi denotes xi, xi, . . . , xi, where xi repeats

s times. We define t(k+1) inductively:

t(k+1)(x1, . . . , xn) := t(q(k)
n (xn1 , x2, x3, . . . , xn),

q(k)
n (x1, x

n
2 , x3, . . . , xn), . . . , q(k)

n (x1, x2, . . . , xn−1, x
n
n))

(5.1)
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Fix an arbitrary ∅ 6= U ( Xn. We obtain that

V |= q(k)
n (xU1 , . . . , x

U
i−1, (x

U
i )n, xUi+1, . . . , x

U
n ) ≈ p(k)(x, y)

iff |U ∩ (Xn \ {xi})|+ n|U ∩ {xi}| ≤ n iff xi /∈ U.

On the other hand, analogously

V |= q(k)
n (xU1 , . . . , x

U
i−1, (x

U
i )n, xUi+1, . . . , x

U
n+1) ≈ p(k)(y, x) iff xi ∈ U.

From (5.1) follows that t
(k+1)
n (xU1 , . . . , x

U
n ) equals in V to a substitution in-

stance of t(xU1 , . . . , x
U
n ) where x is substituted by p(k)(x, y) and y is sub-

stituted by p(k)(y, x). Since t is a realization of Σ in V, with the de-
rived operation p(x, y), it follows that for any U ⊆ Xk, U ∈ IΣ iff V |=
t(k+1)(xU1 , . . . , x

U
n ) ≈ p(p(k)(x, y), p(k)(y, x)) = p(k+1)(x, y), finishing the in-

ductive proof.

Our (messy) proof of Theorem 5.4 is included to demonstrate that our
framework is equally powerful as Z. Brady’s from [4]. For now we may
prove the most elegant characterization of congruence meet-semidistributive
varieties from [4]:

Theorem 5.5. A locally finite variety V is congruence meet-semidistributive
iff it realizes the following Mal’cev condition:

f(x, x, x) ≈ x
f(f(x, x, y), f(x, x, y), f(y, y, x)) ≈ f(x, x, y) ≈ f(x, y, x) ≈ f(y, x, x).

(5.2)

Proof. The implication (⇒) follows directly from Theorem 5.4 applied to
the canonical decent Mal’cev condition W represented on {x1, x2, x3} given
by IW = {{x1}, {x2}, {x3}}. Any realization of W is a ternary weak near-
unanimity term, while the final sentence of Theorem 5.4 implies

V |= f(f(x, x, y), f(x, x, y), f(y, y, x)) ≈ f(x, x, y).

Now we prove the implication (⇐). Let R be any associative ring with
unit and M any right R-module. Assume that M realizes (5.2). We may
assume without loss of generality that M is faithful. Hence, there is a term

t(x1, x2, x3) =
3∑
i=1

αixi which realizes all identities in (5.2). By plugging in

x = 0, we get α1y = α2y = α3y for all y, and the faithfulness of M implies
α1 = α2 = α3 in R (denote α := α1). Applying x = y in (5.2), we get 3αx =
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x, so 3α = 1 by faithfulness of M. Plugging x = 0 again into (5.2) we get
α2y+α2y+2α2y = αy. Hence α(3α+α)y = y, which implies α(α+1)y = αy,
from which α2y+αy = αy and finally α2y = 0y, which means α2 = 0 by the
faithful property. But then 0 = 9α2 = (3α)(3α) = 1 · 1 = 1. Hence for all
x ∈ M , x = 1x = 0x = 0, so M is trivial. Since any module which realizes
Σ is trivial, according to [11], Theorem 8.1 (1)⇔ (10), Σ is realized only in
congruence meet-semidistributive varieties.

6 Putting it all together

The following theorem summarizes the main line of the results of our paper:

Theorem 6.1. Let Σ be a decent Mal’cev condition on the set of variables
X. The following conditions are equivalent:

(1) Every locally finite congruence meet-semidistributive variety realizes
Σ.

(2) D realizes Σ.

(3) There exists a canonical decent Mal’cev condition Π represented on
E ⊆ X such that {(U ∩ E, V ∩ E) : (U, V ) ∈ ε(Σ)} ⊆ ε(Π).

Moreover, whether these three conditions are satisfied can be checked in poly-
nomial time in |Σ| and |X|.

Proof. (1) ⇒ (2) V(D) is locally finite since D is finite. Also, D generates
a congruence meet-semidistributive variety, as was noticed in [9] (we could
also see this directly, it is easy to check that D realizes all known strong
Mal’cev characterizations of congruence meet-semidistributivity).

(2)⇒ (3) This follows from Lemma 3.20 by taking E := E(Σ).
(3) ⇒ (1) Let V be a locally finite congruence meet-semidistributive

variety. By Theorem 5.1, V realizes Π. Hence, where E = {xi1 , . . . , xik}, V
realizes the condition Σ′ = {g(xU∩Ei1

, . . . , g(xU∩Eik
) ≈ g(xV ∩Ei1

, . . . , g(xV ∩Eik
) :

(U, V ) ∈ ε(Σ)}. According to Lemma 3.5, V realizes Σ by interpreting its
operation as some term on the set of variables E.

Finally, the algorithm for efficiently checking (2) was described in Sub-
section 3.4.

For the next corollary, which is another restatement of our main results,
we ask the reader to recall a little notation and some results from [8].
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Corollary 6.2. Let Σ be a linear, idempotent strong Mal’cev condition in
which only two variables occur. Then the following are equivalent:

(1) Σ is realized in D, but not in any nontrivial finite module.

(2) For any locally finite variety V, V realizes Σ iff V is congruence meet-
semidistributive.

Proof. (1) ⇒ (2) If Σ is realized in D, then we can, according to Propo-
sition 3.1, select the decent Mal’cev condition Σ′, so that Σ′ is realized in
any variety which realizes Σ. By Theorem 6.1, Σ′ is realized in every locally
finite congruence meet-semidistributive variety and using Proposition 3.1
again, we conclude that Σ is realized in every locally finite congruence meet-
semidistributive variety.

On the other hand, assume that a locally finite variety V realizes Σ. Let
E := Mod(Σ). By the terminology introduced in Definition 9.1 of [8], E and
by assumption (1), for every finite field F, the one-dimensional vector space

FV over F does not realize Σ. The variety FV of all vector spaces over F is
generated by FV, so by the notation from the beginning of Chapter 9 of [8],
E 6≤ FV. Finally, V realizes Σ, so E ≤ V (again using the notation of [8]).
Hence, by the implication (2)⇒ (5) of Theorem 9.10 of [8], V is congruence
meet-semidistributive.

(2) ⇒ (1) The easy direction is true since V(D) is a congruence meet-
semidistributive locally finite variety, but V(M) is not, where M is any
nontrivial finite module.

7 Problems and remarks

One obvious way to improve on our results would be to remove the con-
dition that there are only two variables involved in any identity. This
is not prescribed by our technique (and that is its chief selling point as
opposed to Brady’s from [4], his technique seems to be inherently lim-
ited to two variables); for instance, if we used three variables, then we
would encode f(x, y, y, z, x, z) as the equivalence relation with named classes
Cx = {x1, x5}, Cy = {x2, x3} and Cz = {x4, x6}. Since we were dealing with
two-class equivalence relations only, we were able to encode them by just
considering the sets Cy; Cx was understood to be its complement. However,
while we needed consider only disjointness, containment in one of the di-
rections, and “neither” in the two-variable case, in the situation with only
three variables, we are already faced with many more possible interactions
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between two equivalence relations (evaluations). This makes the Ramsey
argument much more complex. Moreover, consider the following examples:

Example 7.1. The strong Mal’cev conditions

t(x, x, x, x) ≈ x
t(x, x, y, z) ≈ t(y, z, y, x) ≈ t(x, z, z, y)

(BD)

and
t(x, x, x, x) ≈ x

t(x, x, y, z) ≈ t(y, x, z, x) ≈ t(y, z, x, y)
(LS)

are realized in D, but not in all locally finite congruence meet-semidistribu-
tive varieties.

The above examples were discovered by a computer search in [10] but it
was left as an open question whether they are realized in all locally finite con-
gruence meet-semidistributive varieties. Z. Brady in [4], also independently
M. Maróti (circulated by email to the participants of the 2016 Nashville
workshop), proved they are not realized in certain locally finite congruence
meet-semidistributive varieties. Hence, we don’t have a good candidate for
the set of all linear idempotent strong Mal’cev conditions realized by all
locally finite congruence meet-semidistributive varieties. In the two-variable
case we were able to just check which ones are realized in D, but in the more
general seting this is not the same set of conditions and we don’t know how
to narrow it down.

Still, though the above discussion indicates it is probably difficult, we
believe that the following problem may be attempted:

Problem 7.2. Characterize all linear idempotent strong Mal’cev conditions
which are realized in all locally finite congruence meet-semidistributive va-
rieties.

Another, perhaps even more challenging, and certainly more attractive,
problem lies in shedding the local finiteness. In that direction, the only
known result is the following shocker by M. Oľsák from [20]:

Theorem 7.3. A variety V realizes some Taylor condition iff V realizes

t(x, x, x, x, x, x) ≈ x
t(x, y, x, y, x, y) ≈ t(y, y, y, x, x, x) ≈ t(x, x, y, y, y, x)

(O)
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Since there exists a strong Mal’cev characterization of having a Taylor
term, it is conceivable that congruence meet-semidistributivity also admits
such a strong Mal’cev characterization. The problem was attempted ever
since Oĺsak circulated a draft of his result in 2016, but it remains open:

Problem 7.4. Does there exist a strong Mal’cev condition Σ such that for
any variety V, V is congruence meet-semidistributive iff V realizes Σ?
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[9] Jovanović, J.: On terms describing omitting unary and affine types.
Filomat 27, 183–199 (2013)
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[12] Kearnes, K., Marković, P., McKenzie, R.: Optimal strong Mal’cev con-
ditions for omitting type 1 in locally finite varieties. Algebra Universalis
72, 91–100 (2014)
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