# On Vladimir Božin's equivalent to Frankl's union-closed sets conjecture 

Petar Marković

University of Novi Sad, Serbia
Arbeitstagung Allgemeine Algebra 99,
Siena, February 2020

## Frankl's conjecture

It is a simple enough statement:
Conjecture (P. Frankl, 1979)
Let $\mathcal{F}$ be a finite family of finite sets closed under unions. If $\mathcal{F} \neq\{\emptyset\}$, then there exists $a \in \bigcup \mathcal{F}$ which is an element of at least one-half of the sets in $\mathcal{F}$.

Equivalently,
Conjecture
Let $\mathbf{L}$ be a finite lattice. Then there exists a join-irreducible element $a \in L$ such that $|a \uparrow| \leq \frac{1}{2}|L|$.

Probably around 100 research papers and surveys written on it, some by famous people (Poonen, Stanley, Bollobas, ...)

## Weights

Poonen [1992] introduced weights on elements. The idea was used for several things:

- Families on a small enough set satisfy the conjecture,
- Families with few enough sets satisfy the conjecture,
- Finding FC families - when an FC family $\mathcal{F}$ is a subfamily of an union-closed family $\mathcal{G}$, then the conjecture is true with one of the elements of $\bigcup \mathcal{F}$ being in $\geq$ half of the sets. Ultimately, these weights just allow for quick checking of large, but finite sets of cases - useless for the whole problem.


## The version we'll work with today and a bit of notation

## Definition

Let $T$ be a nonvoid finite set. We say $\mathcal{F} \subseteq P(T)$ is an IC family [on $T$ ] if $T, \emptyset \in \mathcal{F}$ and $\mathcal{F}$ is closed under intersection.

For an IC family $\mathcal{F} \subseteq P(T), \mathcal{F}_{a}:=\{X \in \mathcal{F}: a \in X\}$,
$f_{\mathcal{F}}(a):=\frac{\left|\mathcal{F}_{a}\right|}{|\mathcal{F}|}$ - the frequency of $a[$ in $\mathcal{F}]$.
Conjecture
Frankl's conjecture says that for every IC family $\mathcal{F}$ on $T$ there exists $a \in T$ such that $f_{\mathcal{F}}(a) \leq \frac{1}{2}$.

Note that each IC family $\mathcal{F}$, together with inclusion, forms the lattice $\mathbf{L}(\mathcal{F})$.

## More notation

$[N]:=\{1,2, \ldots, N\}$.
When certain parameters get large, $a \ll b$ means that the ratio $\frac{a}{b}$ tends to infinity, and $a \approx b$ means that the same ratio tends to 1 .

For an IC family $\mathcal{A} \subseteq P(T)$,
$\pi_{X}(\mathcal{A}):=\{X \cap Y: Y \in \mathcal{A}\}$,
Probability measure is $p: \mathcal{A} \rightarrow[0,1]$ so that $\sum_{X \in \mathcal{A}} p(X)=1$, and

$$
\begin{gathered}
P(a \in X):=\sum_{X \in \mathcal{A}_{a}} p(X) \\
E(f(X)):=\sum_{X \in \mathcal{A}} p(X) f(X) \\
\mathcal{A}^{p}:=\{X \in \mathcal{A}: p(X)>0\}
\end{gathered}
$$

## The Equivalence Theorem

Theorem (The Equivalence Theorem, V. Božin, 2004)
Frankl's Conjecture is true iff for every IC family $\mathcal{A} \subseteq P(T)$, and every probability measure $p: \mathcal{A} \rightarrow[0,1]$ which satisfies $P(a \in X) \geq 1-f_{\mathcal{A}}(a)$ for all $a \in T$,

$$
\frac{E\left(\log \left|\pi_{X}(\mathcal{A})\right|\right.}{\log |\mathcal{A}|} \geq \frac{1}{2} .
$$

The main difference compared to old weights: The probability measure assigns weights to sets, and this is more general than each element having its weight.

## The proof of $(\Leftarrow)$

Assume that Frankl's Conjecture is false for some IC family $\mathcal{A} \subseteq P(T)$.
Then there exists some $q>\frac{1}{2}$ such that for all $a \in T, f_{\mathcal{A}}(a) \geq q$.
Hence for all $a \in T, 1-f_{\mathcal{A}}(a) \leq 1-q$.
Select $p(T)=1-q$, and $p(\emptyset)=q$.
Then for all $a \in T, P(a \in X)=1-q \geq 1-f_{\mathcal{A}}(a)$ and

$$
\frac{E\left(\log \left|\pi_{X}(\mathcal{A})\right|\right)}{\log |\mathcal{A}|}=\frac{(1-q) \log |\mathcal{A}|+q \log 1}{\log |\mathcal{A}|}=1-q<\frac{1}{2}
$$

## The proof of $(\Rightarrow)$ : Synopsis

We aim toward constructing two IC families of sets, $\mathcal{A}_{3}$ and $\mathcal{C}$, both on a universe consisting of two types of elements, the $a$-elements and the $c$-elements. $\mathcal{A}_{3}$ and $\mathcal{C}$ will have the following properties:

- $\left\{X \cap Y: X \in \mathcal{A}_{3}, Y \in \mathcal{C}\right\} \subseteq \mathcal{C}$,
- $f_{\mathcal{A}_{3}}(a$-element $)+f_{\mathcal{C}}(a$-element $)>1$,
- $f_{\mathcal{A}_{3}}(c$-element $)-\frac{1}{2}>\frac{1}{2}-f_{\mathcal{C}}(c$-element $)>0$ and
- $\left|\mathcal{A}_{3}\right| \gg|\mathcal{C}|$.

Then we make a convex combination of one copy of $\mathcal{A}_{3}$ and below it many copies of $\mathcal{C}$ so that the number of sets in the copies of $\mathcal{C}$ is almost equal to $\left|\mathcal{A}_{3}\right|$. Thus the frequencies of all elements in the combination are $\approx$ the arithmetic mean of the frequencies in $\mathcal{A}_{3}$ and $\mathcal{C}$, hence greater than $\frac{1}{2}$.

## The construction $\mathcal{A} \otimes I$

Let $\mathcal{A} \subseteq P(T)$ be an IC family and $I$ a nonvoid set. The IC family $\mathcal{A} \otimes I \subseteq P(T \times I)$ is given by:

For any $X \subseteq T \times I, X \in \mathcal{A} \otimes I$ if for all $i \in I, X \cap(T \times\{i\}) \in \mathcal{A}$.
In other words,

- The universe of $\mathcal{A} \otimes I$ can be seen as a disjoint union of $|I|$ copies of the universes of $\mathcal{A}$,
- and the sets in $\mathcal{A} \otimes I$ are represented by sequences of sets in $\mathcal{A}$ of length $|I|$, where $X_{i}:=\{a \in T:(a, i) \in X\}$.

Properties:

- The lattice $\mathbf{L}(\mathcal{A} \otimes I) \cong(\mathbf{L}(\mathcal{A}))^{|I|}$.
- $f_{\mathcal{A} \otimes I}(a, i)=f_{\mathcal{A}}(a)$ for all $a \in T$ and $i \in I$.
- $(\mathcal{A} \otimes I) \otimes J=\mathcal{A} \otimes(I \times J)$, up to $((a, i), j) \leftrightarrow(a,(i, j))$.

For $X \in \mathcal{A}, X^{I}$ denotes the "constant tuple" in $\mathcal{A} \otimes I$, i.e. $Y=X^{I}$ iff for all $i \in I, Y_{i}=X$.

## The proof of $(\Rightarrow)$ : On the constants

We will have four natural parameters $K_{1}, K_{2}, K_{3}$ and $K_{4}$.
The first two are related by $K_{1}>2 K_{2}$ and both are chosen simultaneously as large enough that several conditions are fulfilled (the conditions will be specified by-and-by).

The frequencies of $c$-elements in $\mathcal{A}_{3}$ and $\mathcal{C}$ depend on these two parameters.

Then the other two parameters are chosen, even larger than the first two, depending on the choice of $K_{1}$ and $K_{2}$, and such that the ratio $\frac{K_{3}}{K_{4}}$ is fixed.
$K_{3}$ makes $\left|\mathcal{A}_{3}\right|$ grow but does not affect $|\mathcal{C}|$, while $K_{4}$ makes $|\mathcal{C}|$ grow but does not affect $\left|\mathcal{A}_{3}\right|$.

## The proof of $(\Rightarrow)$ : The initial adjustment

Assume that $\mathcal{A} \subseteq P(T)$ is an IC family, and $p: \mathcal{A} \rightarrow[0,1]$ a probability measure so that $P(a \in X) \geq 1-f_{\mathcal{A}}(a)$ for all $a \in T$, but

$$
\frac{E\left(\log \left|\pi_{X}(\mathcal{A})\right|\right)}{\log |\mathcal{A}|}<\frac{1}{2} .
$$

Due to continuity, we may slightly increase $p(T)$ and decrease all other positive $p(X)$ so that

- for some $t>0, P(a \in X) \geq 1-f_{\mathcal{A}}(a)+t$ for all $a \in T$,
- $p(X) \in \mathbb{Q}$ for all $X \in \mathcal{A}$ and still
- $\frac{E\left(\log \left|\pi_{X}(\mathcal{A})\right|\right)}{\log |\mathcal{A}|}=m<\frac{1}{2}$.

The constants $t>0$ and $0<m<\frac{1}{2}$ are fixed from now on.

## The proof of $(\Rightarrow)$ : The family $\mathcal{A}_{1}$

We introduce the parameters $K_{1}, K_{2} \in \mathbb{N}$. Let $K_{2}>\frac{1}{\frac{1}{2}-m}$,
$K_{1}>2 K_{2}$ and $K_{1}$ is a common multiple of all denominators of $p(X), X \in \mathcal{A}$. Moreover, both $K_{1}$ and $K_{2}$ must be large enough (denoted: $K_{1} \gg 1$ and $K_{2} \gg 1$ ) to make two further estimates close enough for our purpose.

Let $I:=\left[K_{1}\right]$.
Let $\mathcal{A}_{1}:=\mathcal{A} \otimes I$.

## The proof of $(\Rightarrow)$ : The probability measure $p_{1}$

Fix $Z:=\left\{Z_{i}: i \in\left[K_{1}\right]\right\}$, such that for all $i \in\left[K_{1}\right], Z_{i} \in \mathcal{A}$ and for all $X \in \mathcal{A}$, if $p(X)=\frac{k}{K_{1}}$, then $\left\{i \in\left[K_{1}\right]: Z_{i}=X\right\}$ is a set of consecutive indices of size $k$.

Define the probability measure $p_{1}: \mathcal{A}_{1} \rightarrow[0,1]$ by

$$
p_{1}(X)=\left\{\begin{array}{cc}
\frac{1}{K_{1}} & \text { if }\left(\exists k \leq K_{1}\right)(\forall i \in I) X \cap(T \times\{i\})=Z_{i+k} \\
0 & \text { otherwise }
\end{array}\right.
$$

(Addition in indices is $\bmod K_{1}$, so $\mathcal{A}_{1}^{p_{1}}$ consists of $Z$ and its cyclic permutations, each with the probability $\left.\frac{1}{K_{1}}\right)$.
We see that $P_{1}((a, i) \in X)=P(a \in X)$ for all $a \in T$.
Denote $\mathcal{A}_{1}^{p_{1}}:=\left\{Y \in \mathcal{A}_{1}: p_{1}(Y) \neq 0\right\}$. We have

$$
\left|\mathcal{A}_{1}^{p_{1}}\right|=\{Z \text { and all its cyclic permutations }\}=K_{1}
$$

(Unless $\left|\mathcal{A}^{p}\right|=1$, which easily leads to a contradiction.)

## The proof of $(\Rightarrow)$ : The expectation in $\mathcal{A}_{1}$

For each $Y \in \mathcal{A}_{1}$ such that $p_{1}(Y)=\frac{1}{K_{1}}$ (i.e. for $Y \in \mathcal{A}_{1}^{p_{1}}$ ),

$$
\begin{gathered}
\left|\pi_{Y}\left(\mathcal{A}_{1}\right)\right|=\prod_{i=1}^{K_{1}} \pi_{Y_{i}}(\mathcal{A})=\prod_{X \in \mathcal{A}} \pi_{X}(\mathcal{A})^{p(X) K_{1}} . \\
\frac{E\left(\log \left|\pi_{Y}\left(\mathcal{A}_{1}\right)\right|\right)}{\log \left|\mathcal{A}_{1}\right|}=\frac{\sum_{Y \in \mathcal{A}_{1}^{p_{1}}} \frac{1}{K_{1}} \log \left|\pi_{Y}(\mathcal{A})\right|}{\log \left|\mathcal{A}_{1}\right|}= \\
\frac{K_{1}}{K_{1}} \log \left|\prod_{X \in \mathcal{A}} \pi_{X}(\mathcal{A})^{p(X) K_{1}}\right| \\
\log \left|\mathcal{A}_{1}\right|
\end{gathered}=\frac{K_{1} \sum_{X \in \mathcal{A}} p(X) \log \left|\pi_{X}(\mathcal{A})\right|}{K_{1} \log |\mathcal{A}|}=
$$

To remember: For all $Y \in \mathcal{A}_{1}^{p_{1}},\left|\pi_{Y}\left(\mathcal{A}_{1}\right)\right|=\left|\mathcal{A}_{1}\right|^{m}<\sqrt{\left|\mathcal{A}_{1}\right|}$.

## The proof of $(\Rightarrow)$ : The family $\mathcal{A}_{2}$

Let $J=\left[2 K_{2}-1\right]$ and $L=\left[K_{3}\right] . K_{3}$ is such that $K_{3} \gg 22^{K_{2}}$.
Let $\mathcal{A}_{2} \subseteq P(T \times I \times J \times L)$ be given by
$\mathcal{A}_{2}:=\mathcal{A} \otimes(I \times J \times L)=\mathcal{A}_{1} \otimes(J \times L)$.
We know that $f_{\mathcal{A}_{2}}(a, i, j, l)=f_{\mathcal{A}_{1}}(a, i)=f_{\mathcal{A}}(a)$ for all $a \in T$.
Define $p_{2}: \mathcal{A}_{2} \rightarrow[0,1]$ by

$$
p_{2}(X)=\left\{\begin{array}{cc}
\frac{1}{K_{1}}, & \text { if }\left(\exists Y \in \mathcal{A}_{1}^{p_{1}}\right)\left(X=Y^{J \times L}\right) \\
& \left(X \text { is a "constant" tuple in } \mathcal{A}_{1} \otimes(J \times L)\right) ; \\
0, & \text { otherwise. }
\end{array}\right.
$$

Analogously as with $\mathcal{A}_{1}, P_{2}((a, i, j, l) \in X)=P(a \in X)$ and for each $Y \in \mathcal{A}_{2}^{p_{2}}$, the projection $\left|\pi_{Y}\left(\mathcal{A}_{2}\right)\right|=\left|\mathcal{A}_{2}\right|^{m}$.

## The proof of $(\Rightarrow)$ : The family $\mathcal{A}_{3}^{\prime}$

We make $\mathcal{A}_{3}^{\prime} \subseteq P\left(\left\{c_{1}, \ldots, c_{2 K_{2}-1}\right\} \cup(T \times I \times J \times L)\right)$ in several steps:
First we consider only the sets $Y \in \mathcal{A}_{2}$ for which there exists $j \in J$ such that $Y \cap(T \times I \times\{j\} \times L)=\emptyset$.
For any $Y \in \mathcal{A}_{2}$ and $j \in J$ such that $Y \cap(T \times I \times\{j\} \times L)=\emptyset$, put $X=Y \cup\left\{c_{j}, c_{j+1}, \ldots, c_{j+K_{2}-1}\right\}$ into the family $\mathcal{A}_{3}^{I}$.
(Addition in indices is modulo $2 K_{2}-1$; we add exactly one set into $\mathcal{A}_{3}^{I}$ for each suitable choice of the pair $Y$ and $j$.)
Close $\mathcal{A}_{3}^{I}$ under intersections to obtain $\mathcal{A}_{3}^{\prime}$. Denote $\mathcal{A}_{3}^{I I}:=\mathcal{A}_{3}^{\prime} \backslash \mathcal{A}_{3}^{I}$.
For any $X \in \mathcal{A}_{3}^{I I}$ we will have $\left|X \cap\left\{c_{1}, \ldots, c_{2 K_{2}-1}\right\}\right|<K_{2}$, while for $X \in \mathcal{A}_{3}^{I},\left|X \cap\left\{c_{1}, \ldots, c_{2 K_{2}-1}\right\}\right|=K_{2}$.

## The proof of $(\Rightarrow)$ : The frequencies in family $\mathcal{A}_{3}^{\prime}$

$$
\left|\mathcal{A}_{3}^{I}\right|=\left(2 K_{2}-1\right)|\mathcal{A}|^{K_{1}\left(2 K_{2}-2\right) K_{3}} .
$$

Bounding $\left|\mathcal{A}_{3}^{I I}\right|$ from above:

$$
\begin{aligned}
&\left|\mathcal{A}_{3}^{I I}\right| \leq \sum_{t=2}^{2 K_{2}-1}\binom{2 K_{2}-1}{t}|\mathcal{A}|^{K_{1}\left(2 K_{2}-1-t\right) K_{3}} \leq \\
&|\mathcal{A}|^{K_{1}\left(2 K_{2}-3\right) K_{3}} \sum_{t=2}^{2 K_{2}-1}\binom{2 K_{2}-1}{t} \leq|\mathcal{A}|^{K_{1}\left(2 K_{2}-3\right) K_{3}} 2^{2 K_{2}-1}= \\
& \frac{2^{2 K_{2}-1}}{\left(2 K_{2}-1\right)|\mathcal{A}|^{K_{1} K_{3}}}\left|\mathcal{A}_{3}^{I}\right| \ll\left|\mathcal{A}_{3}^{I}\right| .
\end{aligned}
$$

(The last inequality used $K_{3} \gg K_{2}$.)
The frequency $f_{\mathcal{A}_{3}^{\prime}}(a, i, j, l) \approx \frac{2 K_{2}-2}{2 K_{2}-1} f_{\mathcal{A}}(a) \approx f_{\mathcal{A}}(a)$ and $f_{\mathcal{A}_{3}^{\prime}}\left(c_{j}\right) \approx \frac{K_{2}}{2 K_{2}-1}$. Using: $\left|\mathcal{A}_{3}^{I}\right| \gg\left|\mathcal{A}_{3}^{I I}\right|$ and $K_{2} \gg 1$.

## The proof of $(\Rightarrow)$ : The family $\mathcal{A}_{3}$

For $j \in\left[2 K_{2}-1\right]$ we define new elements

$$
C_{j}:=\left\{c_{i, j, k}: 1 \leq i \leq K_{1}, 1 \leq k \leq K_{4}\right\} .
$$

$K_{4}$ - a new large constant to be specified later.
$\mathcal{A}_{3} \subseteq P\left(C_{1} \cup \cdots \cup C_{2 K_{2}-1} \cup(\mathcal{A} \times I \times J \times L)\right)$ is obtained from $\mathcal{A}_{3}^{\prime}$ by replacing each occurrence of $c_{j}$ with the whole subset $C_{j}$. Still, $\left|\mathcal{A}_{3}\right|=\left|\mathcal{A}_{3}^{I}\right|+\left|\mathcal{A}_{3}^{I I}\right| \approx\left|\mathcal{A}_{3}^{I}\right|=\left(2 K_{2}-1\right)|\mathcal{A}|^{K_{1}\left(2 K_{2}-2\right) K_{3}}$.
The frequencies of $f_{\mathcal{A}_{3}}\left(c_{i, j, k}\right)=f_{\mathcal{A}_{3}^{\prime}}\left(c_{j}\right)$ while the frequencies of ( $a, i, j, l$ ) are unchanged.

## The proof of $(\Rightarrow)$ : The family $\mathcal{C}^{I}$

Let $\mathcal{A}_{2}^{p_{2}}=\left\{X_{\ell}: \ell \in\left[K_{1}\right]\right\}$.
For each $\ell \in\left[K_{1}\right]$, let $\mathcal{D}_{\ell}$ be the Boolean family

$$
\mathcal{D}_{\ell}:=P\left(\left\{c_{i, j, k}: i \in\left[K_{1}\right] \backslash\{\ell\}, j \in\left[2 K_{2}-1\right], k \in\left[K_{4}\right]\right\}\right)
$$

Define $\mathcal{C}^{I}:=\bigcup_{\ell=1}^{K_{1}}\left\{X_{\ell} \cup Y: Y \in \mathcal{D}_{\ell}\right\}$.
We assume $K_{4} \gg K_{2}$ and $2^{K_{4}} \gg K_{1}$, but the relationship between $K_{4}$ and $K_{3}$ TBD later.

## The proof of $(\Rightarrow)$ : The family $\mathcal{C}$ - estimating $\left|\mathcal{C}^{I}\right|$ and $\left|\mathcal{C}^{I I}\right|$

We define $\mathcal{C}^{\prime}$ to be the closure of $\mathcal{C}^{I}$ under intersection, $\mathcal{C}^{I I}:=\mathcal{C}^{\prime} \backslash \mathcal{C}^{I}, \mathcal{C}:=\mathcal{C}^{\prime} \cup\left\{X \cap Y: X \in \mathcal{C}^{\prime}, Y \in \mathcal{A}_{3}\right\}$, and $\mathcal{C}^{I I I}:=\mathcal{C} \backslash \mathcal{C}^{\prime}$. We estimate the sizes $\left|\mathcal{C}^{I}\right|$ and $\left|\mathcal{C}^{I I}\right|$.

$$
\begin{gathered}
\left|\mathcal{C}^{I}\right|=K_{1} 2^{\left(K_{1}-1\right)\left(2 K_{2}-1\right) K_{4}}, \\
\left|\mathcal{C}^{I I}\right| \leq \sum_{t=2}^{K_{1}}\binom{K_{1}}{t} 2^{\left(K_{1}-t\right)\left(2 K_{2}-1\right) K_{4}}< \\
\sum_{t=2}^{K_{1}} K_{1}^{t} 2^{\left(2 K_{2}-1\right)\left(K_{1}-t\right) K_{4}}<2^{\left(K_{1}-2\right)\left(2 K_{2}-1\right) K_{4}} \frac{K_{1}^{2}}{1-\frac{K_{1}}{2^{\left(2 K_{2}-1\right) K_{4}}}}= \\
\frac{K_{1}}{2^{\left(2 K_{2}-1\right) K_{4}}\left(1-\frac{K_{1}}{\left.2^{\left(2 K_{2}-1\right) K_{4}}\right)}\right.}\left|\mathcal{C}^{I}\right|
\end{gathered}
$$

Since $2^{K_{4}} \gg K_{1}$, we get $\left|\mathcal{C}^{I}\right| \gg\left|\mathcal{C}^{I I}\right|$.

## The proof of $(\Rightarrow)$ : The family $\mathcal{C}$ - estimating $\left|\mathcal{C}^{I I I}\right|$

Any set $X \in \mathcal{C}^{I I I}$ is a disjoint union of $X \cap\left(C_{1} \cup \cdots \cup C_{2 K_{2}-1}\right)$ and $X \cap(T \times I \times J \times L)$.

$$
\begin{gathered}
X \cap\left(C_{1} \cup \cdots \cup C_{2 K_{2}-1}\right) \subseteq\left\{c_{i, j, k}: i \in\left[K_{1}\right] \backslash\{\ell\},\right. \\
\left.j_{0} \leq j<j_{0}+K_{2}, k \in\left[K_{4}\right]\right\}
\end{gathered}
$$

where $\left(\ell, j_{0}\right) \in\left[K_{1}\right] \times\left[2 K_{2}-1\right]$ must be chosen first. So, $X \cap\left(C_{1} \cup \cdots \cup C_{2 K_{2}-1}\right)$ can be chosen in at most

$$
K_{1}\left(2 K_{2}-1\right) 2^{\left(K_{1}-1\right) K_{2} K_{4}}
$$

ways. $X \cap(T \times I \times J \times L)$ is an element of $\pi_{Y}\left(\mathcal{A}_{2}\right)$, where $Y \in \mathcal{A}_{2}^{p_{2}}$, so $X \cap(T \times I \times J \times L)$ can be chosen in

$$
K_{1}\left|\mathcal{A}_{2}\right|^{m}=K_{1}|\mathcal{A}|^{m K_{1}\left(2 K_{2}-1\right) K_{3}}=K_{1} 2^{m K_{1}\left(2 K_{2}-1\right) K_{3} \log |\mathcal{A}|}
$$

ways. Putting it all together we get

$$
\left|\mathcal{C}^{I I I}\right| \leq K_{1}^{2}\left(2 K_{2}-1\right) 2^{\left(K_{1}-1\right) K_{2} K_{4}+m \log |\mathcal{A}| K_{1}\left(2 K_{2}-1\right) K_{3}} .
$$

## The proof of $(\Rightarrow)$ : Adjusting $K_{3}$ and $K_{4}$

In order to obtain $\left|\mathcal{C}^{I I I}\right| \ll\left|\mathcal{C}^{I}\right| \ll\left|\mathcal{A}_{3}\right|$, it suffices to have the desired inequalities among the exponents. So, we need

$$
\begin{aligned}
& m \log |\mathcal{A}| K_{1}\left(2 K_{2}-1\right) K_{3}<\left(K_{1}-1\right)\left(K_{2}-1\right) K_{4} \text { and } \\
& \quad\left(K_{1}-1\right)\left(2 K_{2}-1\right) K_{4}<\log |\mathcal{A}| K_{1}\left(2 K_{2}-1\right) K_{3}
\end{aligned}
$$

These inequalities boil down to

$$
\frac{K_{1}-1}{K_{1} \log |\mathcal{A}|}<\frac{K_{3}}{K_{4}}<\frac{\left(K_{1}-1\right)\left(K_{2}-1\right)}{m K_{1}\left(2 K_{2}-1\right) \log |\mathcal{A}|}
$$

For these to be possible, we need

$$
\begin{gathered}
\frac{K_{1}-1}{K_{1} \log |\mathcal{A}|}<\frac{\left(K_{1}-1\right)\left(K_{2}-1\right)}{m K_{1}\left(2 K_{2}-1\right) \log |\mathcal{A}|}, \text { equivalently } \\
m<\frac{K_{2}-1}{2 K_{2}-1}, \text { i.e. } m<\frac{1}{2}-\frac{1}{2\left(2 K_{2}-1\right)}, \\
4 K_{2}-2>\frac{1}{\frac{1}{2}-m}, \text { which we know from } K_{2}>\frac{1}{\frac{1}{2}-m} .
\end{gathered}
$$

## The proof of $(\Rightarrow)$ : The family $\mathcal{C}$ - estimating frequencies

We let $K_{3}$ and $K_{4}$ simultaneously tend to infinity, their ratio fixed and in the interval $\left(\frac{K_{1}-1}{K_{1} \log |\mathcal{A}|}, \frac{\left(K_{1}-1\right)\left(K_{2}-1\right)}{m K_{1}\left(2 K_{2}-1\right) \log |\mathcal{A}|}\right)$. From $|\mathcal{C}| \approx\left|\mathcal{C}^{I}\right|$ we get

$$
\begin{gathered}
f_{\mathcal{C}}(a, i, j, l) \approx f_{\mathcal{C}^{I}}(a, i, j, l)=\frac{\left|\left\{\ell \leq K_{1}:(a, i, j, l) \in X_{\ell}\right\}\right|}{K_{1}}= \\
P_{2}((a, i, j, l) \in X)=P(a \in X)>1-f_{\mathcal{A}}(a)
\end{gathered}
$$

and

$$
f_{\mathcal{C}}\left(c_{i, j, k}\right) \approx f_{\mathcal{C}^{I}}\left(c_{i, j, k}\right)=\frac{K_{1}-1}{2 K_{1}}
$$

## The proof of $(\Rightarrow)$ : Convex combination

We have $\left|\mathcal{A}_{3}\right| \gg|\mathcal{C}|$ and we combine them:
Let $M A X$ be the largest natural number such that $M A X \cdot|\mathcal{C}|<\left|\mathcal{A}_{3}\right|$. We construct the IC family $\mathcal{F}$ of subsets of

$$
(T \times I \times J \times L) \cup C_{1} \cup C_{2} \cup \cdots \cup C_{K_{1}} \cup\left\{e_{1}, e_{2}, \ldots, e_{M A X}\right\}
$$

as

$$
\begin{gathered}
\mathcal{C} \cup\left\{X \cup\left\{e_{1}, \ldots, e_{k}\right\}: X \in \mathcal{C}, 1 \leq k<M A X\right\} \cup \\
\left\{X \cup\left\{e_{1}, \ldots, e_{M A X}\right\}: X \in \mathcal{A}_{3}\right\} .
\end{gathered}
$$

## The proof of $(\Rightarrow)$ : The frequencies in $\mathcal{F}$

The frequencies of the new elements are all at least

$$
f_{\mathcal{F}}\left(e_{i}\right) \geq s:=\frac{\left|\mathcal{A}_{3}\right|}{\left|\mathcal{A}_{3}\right|+M A X|\mathcal{C}|}>\frac{1}{2},
$$

while the frequencies of old elements are

$$
f_{\mathcal{F}}(x)=s f_{\mathcal{A}_{3}}(x)+(1-s) f_{\mathcal{C}}(x) .
$$

Here $s>\frac{1}{2}$ but $s \approx \frac{1}{2}$ as $K_{3}$ and $K_{4}$ tend to infinity.
Thus
$f_{\mathcal{F}}(a, i, j, l) \approx s f_{\mathcal{A}}(a)+(1-s)\left(1-f_{\mathcal{A}}(a)+t\right) \approx \frac{1}{2}+(1-s) t>\frac{1}{2}$.
Here we used $s \approx \frac{1}{2} \approx 1-s$. Also,

$$
f_{\mathcal{F}}\left(c_{i, j, k}\right) \approx s \frac{K_{2}}{2 K_{2}-1}+(1-s) \frac{K_{1}-1}{2 K_{1}}>\frac{1}{2} .
$$

The last follows from $K_{1}>2 K_{2}$ and $s>1-s$. Thus $\mathcal{F}$ contradicts Frankl's conjecture.

## How to (maybe) apply the Equivalence Theorem

There are examples out there of IC families where the frequencies of most elements fail Frankl's Conjecture, but a small number of elements satisfies it.

The idea is to construct a family and select a probability measure such that each set with positive probability contains all elements which satisfy Frankl's conjecture, and the probability of the remaining ones being in a set satisfies the condition of the Equivalence Theorem.

Moreover, the conclusion of the Equivalence Theorem should fail.

We have not been successful in constructing such a family and probability measure yet.

## Dedication

This talk is dedicated to the memory of Velibor Tintor and Jarda Ježek.

THANK YOU FOR YOUR ATTENTION!

