On Vladimir Božin's equivalent to Frankl's union-closed sets conjecture

Petar Marković

University of Novi Sad, Serbia

Arbeitstagung Allgemeine Algebra 99, Siena, February 2020

Frankl's conjecture

It is a simple enough statement:

Conjecture (P. Frankl, 1979)

Let \mathcal{F} be a finite family of finite sets closed under unions. If $\mathcal{F} \neq \{\emptyset\}$, then there exists $a \in \bigcup \mathcal{F}$ which is an element of at least one-half of the sets in \mathcal{F} .

Equivalently,

Conjecture

Let **L** be a finite lattice. Then there exists a join-irreducible element $a \in L$ such that $|a\uparrow| \leq \frac{1}{2}|L|$.

Probably around 100 research papers and surveys written on it, some by famous people (Poonen, Stanley, Bollobas, ...)

Poonen [1992] introduced weights on elements. The idea was used for several things:

- Families on a small enough set satisfy the conjecture,
- Families with few enough sets satisfy the conjecture,
- Finding FC families when an FC family \mathcal{F} is a subfamily of an union-closed family \mathcal{G} , then the conjecture is true with one of the elements of $\bigcup \mathcal{F}$ being in \geq half of the sets.

Ultimately, these weights just allow for quick checking of large, but finite sets of cases - useless for the whole problem.

Definition

Let T be a nonvoid finite set. We say $\mathcal{F} \subseteq P(T)$ is an IC family [on T] if $T, \emptyset \in \mathcal{F}$ and \mathcal{F} is closed under intersection.

For an IC family
$$\mathcal{F} \subseteq P(T), \mathcal{F}_a := \{X \in \mathcal{F} : a \in X\},\$$

$$f_{\mathcal{F}}(a) := \frac{|\mathcal{F}_a|}{|\mathcal{F}|}$$
 - the frequency of a [in \mathcal{F}].

Conjecture

Frankl's conjecture says that for every IC family \mathcal{F} on T there exists $a \in T$ such that $f_{\mathcal{F}}(a) \leq \frac{1}{2}$.

Note that each IC family \mathcal{F} , together with inclusion, forms the lattice $\mathbf{L}(\mathcal{F})$.

More notation

$$[N] := \{1, 2, \dots, N\}.$$

When certain parameters get large, $a \ll b$ means that the ratio $\frac{a}{b}$ tends to infinity, and $a \approx b$ means that the same ratio tends to 1.

For an IC family $\mathcal{A} \subseteq P(T)$,

 $\pi_X(\mathcal{A}) := \{ X \cap Y : Y \in \mathcal{A} \},\$

Probability measure is $p: \mathcal{A} \to [0,1]$ so that $\sum_{X \in \mathcal{A}} p(X) = 1$, and

$$P(a \in X) := \sum_{X \in \mathcal{A}_a} p(X);$$
$$E(f(X)) := \sum_{X \in \mathcal{A}} p(X)f(X);$$
$$\mathcal{A}^p := \{X \in \mathcal{A} : p(X) > 0\}.$$

Theorem (The Equivalence Theorem, V. Božin, 2004) Frankl's Conjecture is true iff for every IC family $\mathcal{A} \subseteq P(T)$, and every probability measure $p : \mathcal{A} \to [0, 1]$ which satisfies $P(a \in X) \ge 1 - f_{\mathcal{A}}(a)$ for all $a \in T$,

$$\frac{E(\log |\pi_X(\mathcal{A})|)}{\log |\mathcal{A}|} \ge \frac{1}{2}.$$

The main difference compared to old weights: The probability measure assigns weights to sets, and this is more general than each element having its weight. Assume that Frankl's Conjecture is false for some IC family $\mathcal{A} \subseteq P(T)$.

Then there exists some $q > \frac{1}{2}$ such that for all $a \in T$, $f_{\mathcal{A}}(a) \ge q$. Hence for all $a \in T$, $1 - f_{\mathcal{A}}(a) \le 1 - q$. Select p(T) = 1 - q, and $p(\emptyset) = q$. Then for all $a \in T$, $P(a \in X) = 1 - q \ge 1 - f_{\mathcal{A}}(a)$ and

$$\frac{E(\log|\pi_X(\mathcal{A})|)}{\log|\mathcal{A}|} = \frac{(1-q)\log|\mathcal{A}| + q\log 1}{\log|\mathcal{A}|} = 1 - q < \frac{1}{2}.$$

We aim toward constructing two IC families of sets, \mathcal{A}_3 and \mathcal{C} , both on a universe consisting of two types of elements, the *a*-elements and the *c*-elements. \mathcal{A}_3 and \mathcal{C} will have the following properties:

- $\{X \cap Y : X \in \mathcal{A}_3, Y \in \mathcal{C}\} \subseteq \mathcal{C},\$
- $f_{\mathcal{A}_3}(a\text{-element}) + f_{\mathcal{C}}(a\text{-element}) > 1$,
- $f_{\mathcal{A}_3}(c\text{-element}) \frac{1}{2} > \frac{1}{2} f_{\mathcal{C}}(c\text{-element}) > 0$ and
- $|\mathcal{A}_3| \gg |\mathcal{C}|$.

Then we make a *convex combination* of one copy of \mathcal{A}_3 and below it many copies of \mathcal{C} so that the number of sets in the copies of \mathcal{C} is almost equal to $|\mathcal{A}_3|$. Thus the frequencies of all elements in the combination are \approx the arithmetic mean of the frequencies in \mathcal{A}_3 and \mathcal{C} , hence greater than $\frac{1}{2}$.

The construction $\mathcal{A} \otimes I$

Let $\mathcal{A} \subseteq P(T)$ be an IC family and I a nonvoid set. The IC family $\mathcal{A} \otimes I \subseteq P(T \times I)$ is given by:

For any $X \subseteq T \times I$, $X \in \mathcal{A} \otimes I$ if for all $i \in I$, $X \cap (T \times \{i\}) \in \mathcal{A}$.

In other words,

- The universe of $\mathcal{A} \otimes I$ can be seen as a disjoint union of |I| copies of the universes of \mathcal{A} ,
- and the sets in $\mathcal{A} \otimes I$ are represented by sequences of sets in \mathcal{A} of length |I|, where $X_i := \{a \in T : (a, i) \in X\}$.

Properties:

- The lattice $\mathbf{L}(\mathcal{A} \otimes I) \cong (\mathbf{L}(\mathcal{A}))^{|I|}$.
- $f_{\mathcal{A}\otimes I}(a,i) = f_{\mathcal{A}}(a)$ for all $a \in T$ and $i \in I$.
- $(\mathcal{A} \otimes I) \otimes J = \mathcal{A} \otimes (I \times J)$, up to $((a, i), j) \leftrightarrow (a, (i, j))$.

For $X \in \mathcal{A}$, X^I denotes the "constant tuple" in $\mathcal{A} \otimes I$, i.e. $Y = X^I$ iff for all $i \in I$, $Y_i = X$. We will have four natural parameters K_1 , K_2 , K_3 and K_4 .

The first two are related by $K_1 > 2K_2$ and both are chosen simultaneously as large enough that several conditions are fulfilled (the conditions will be specified by-and-by).

The frequencies of c-elements in \mathcal{A}_3 and \mathcal{C} depend on these two parameters.

Then the other two parameters are chosen, even larger than the first two, depending on the choice of K_1 and K_2 , and such that the ratio $\frac{K_3}{K_4}$ is fixed.

 K_3 makes $|\mathcal{A}_3|$ grow but does not affect $|\mathcal{C}|$, while K_4 makes $|\mathcal{C}|$ grow but does not affect $|\mathcal{A}_3|$.

The proof of (\Rightarrow) : The initial adjustment

Assume that $\mathcal{A} \subseteq P(T)$ is an IC family, and $p : \mathcal{A} \to [0, 1]$ a probability measure so that $P(a \in X) \geq 1 - f_{\mathcal{A}}(a)$ for all $a \in T$, but

$$\frac{E(\log |\pi_X(\mathcal{A})|)}{\log |\mathcal{A}|} < \frac{1}{2}.$$

Due to continuity, we may slightly increase p(T) and decrease all other positive p(X) so that

• for some t > 0, $P(a \in X) \ge 1 - f_{\mathcal{A}}(a) + t$ for all $a \in T$,

•
$$p(X) \in \mathbb{Q}$$
 for all $X \in \mathcal{A}$ and still
• $\frac{E(\log |\pi_X(\mathcal{A})|)}{\log |\mathcal{A}|} = m < \frac{1}{2}.$

The constants t > 0 and $0 < m < \frac{1}{2}$ are fixed from now on.

We introduce the parameters $K_1, K_2 \in \mathbb{N}$. Let $K_2 > \frac{1}{\frac{1}{2}-m}$, $K_1 > 2K_2$ and K_1 is a common multiple of all denominators of $p(X), X \in \mathcal{A}$. Moreover, both K_1 and K_2 must be large enough (denoted: $K_1 \gg 1$ and $K_2 \gg 1$) to make two further estimates close enough for our purpose.

Let $I := [K_1].$ Let $\mathcal{A}_1 := \mathcal{A} \otimes I.$

The proof of (\Rightarrow) : The probability measure p_1

Fix $Z := \{Z_i : i \in [K_1]\}$, such that for all $i \in [K_1], Z_i \in \mathcal{A}$ and for all $X \in \mathcal{A}$, if $p(X) = \frac{k}{K_1}$, then $\{i \in [K_1] : Z_i = X\}$ is a set of consecutive indices of size k.

Define the probability measure $p_1 : \mathcal{A}_1 \to [0, 1]$ by

$$p_1(X) = \begin{cases} \frac{1}{K_1} & \text{if } (\exists k \le K_1) (\forall i \in I) X \cap (T \times \{i\}) = Z_{i+k}; \\ 0 & \text{otherwise.} \end{cases}$$

(Addition in indices is mod K_1 , so $\mathcal{A}_1^{p_1}$ consists of Z and its cyclic permutations, each with the probability $\frac{1}{K_1}$).

We see that $P_1((a, i) \in X) = P(a \in X)$ for all $a \in T$. Denote $\mathcal{A}_1^{p_1} := \{Y \in \mathcal{A}_1 : p_1(Y) \neq 0\}$. We have

 $|\mathcal{A}_1^{p_1}| = \{Z \text{ and all its cyclic permutations}\} = K_1.$ (Unless $|\mathcal{A}^p| = 1$, which easily leads to a contradiction.)

The proof of (\Rightarrow) : The expectation in \mathcal{A}_1

For each $Y \in \mathcal{A}_1$ such that $p_1(Y) = \frac{1}{K_1}$ (i.e. for $Y \in \mathcal{A}_1^{p_1}$),

$$|\pi_{Y}(\mathcal{A}_{1})| = \prod_{i=1}^{K_{1}} \pi_{Y_{i}}(\mathcal{A}) = \prod_{X \in \mathcal{A}} \pi_{X}(\mathcal{A})^{p(X)K_{1}}.$$

$$\frac{E(\log |\pi_{Y}(\mathcal{A}_{1})|)}{\log |\mathcal{A}_{1}|} = \frac{\sum_{Y \in \mathcal{A}_{1}^{p_{1}}} \frac{1}{K_{1}} \log |\pi_{Y}(\mathcal{A})|}{\log |\mathcal{A}_{1}|} =$$

$$\frac{\frac{K_{1}}{K_{1}} \log |\prod_{X \in \mathcal{A}} \pi_{X}(\mathcal{A})^{p(X)K_{1}}|}{\log |\mathcal{A}_{1}|} = \frac{K_{1} \sum_{X \in \mathcal{A}} p(X) \log |\pi_{X}(\mathcal{A})|}{K_{1} \log |\mathcal{A}|} =$$

$$\frac{E(\log |\pi_{X}(\mathcal{A})|}{\log |\mathcal{A}|} = \frac{m \log |\mathcal{A}|}{\log |\mathcal{A}|} = m.$$

To remember: For all $Y \in \mathcal{A}_1^{p_1}$, $|\pi_Y(\mathcal{A}_1)| = |\mathcal{A}_1|^m < \sqrt{|\mathcal{A}_1|}$.

The proof of (\Rightarrow) : The family \mathcal{A}_2

Let
$$J = [2K_2 - 1]$$
 and $L = [K_3]$. K_3 is such that $K_3 \gg 2^{K_2}$.
Let $\mathcal{A}_2 \subseteq P(T \times I \times J \times L)$ be given by
 $\mathcal{A}_2 := \mathcal{A} \otimes (I \times J \times L) = \mathcal{A}_1 \otimes (J \times L)$.
We know that $f_{\mathcal{A}_2}(a, i, j, l) = f_{\mathcal{A}_1}(a, i) = f_{\mathcal{A}}(a)$ for all $a \in T$.
Define $p_2 : \mathcal{A}_2 \to [0, 1]$ by

 $p_2(X) = \begin{cases} \frac{1}{K_1}, & \text{if } (\exists Y \in \mathcal{A}_1^{p_1})(X = Y^{J \times L}) \\ & (X \text{ is a "constant" tuple in } \mathcal{A}_1 \otimes (J \times L)); \\ & 0, & \text{otherwise.} \end{cases}$

Analogously as with \mathcal{A}_1 , $P_2((a, i, j, l) \in X) = P(a \in X)$ and for each $Y \in \mathcal{A}_2^{p_2}$, the projection $|\pi_Y(\mathcal{A}_2)| = |\mathcal{A}_2|^m$.

The proof of (\Rightarrow) : The family \mathcal{A}'_3

We make $\mathcal{A}'_3 \subseteq P(\{c_1, \ldots, c_{2K_2-1}\} \cup (T \times I \times J \times L))$ in several steps:

First we consider only the sets $Y \in \mathcal{A}_2$ for which there exists $j \in J$ such that $Y \cap (T \times I \times \{j\} \times L) = \emptyset$.

For any $Y \in \mathcal{A}_2$ and $j \in J$ such that $Y \cap (T \times I \times \{j\} \times L) = \emptyset$, put $X = Y \cup \{c_j, c_{j+1}, \ldots, c_{j+K_2-1}\}$ into the family \mathcal{A}_3^I . (Addition in indices is modulo $2K_2 - 1$; we add exactly one set into \mathcal{A}_3^I for each suitable choice of the pair Y and j.)

Close \mathcal{A}_3^I under intersections to obtain \mathcal{A}_3' . Denote $\mathcal{A}_3^{II} := \mathcal{A}_3' \setminus \mathcal{A}_3^I$.

For any $X \in \mathcal{A}_{3}^{II}$ we will have $|X \cap \{c_{1}, \dots, c_{2K_{2}-1}\}| < K_{2}$, while for $X \in \mathcal{A}_{3}^{I}$, $|X \cap \{c_{1}, \dots, c_{2K_{2}-1}\}| = K_{2}$. The proof of (\Rightarrow) : The frequencies in family \mathcal{A}'_3

$$|\mathcal{A}_3^I| = (2K_2 - 1)|\mathcal{A}|^{K_1(2K_2 - 2)K_3}.$$

Bounding $|\mathcal{A}_3^{II}|$ from above:

$$\begin{aligned} |\mathcal{A}_{3}^{II}| &\leq \sum_{t=2}^{2K_{2}-1} \binom{2K_{2}-1}{t} |\mathcal{A}|^{K_{1}(2K_{2}-1-t)K_{3}} \leq \\ |\mathcal{A}|^{K_{1}(2K_{2}-3)K_{3}} \sum_{t=2}^{2K_{2}-1} \binom{2K_{2}-1}{t} \leq |\mathcal{A}|^{K_{1}(2K_{2}-3)K_{3}} 2^{2K_{2}-1} = \\ \frac{2^{2K_{2}-1}}{(2K_{2}-1)|\mathcal{A}|^{K_{1}K_{3}}} |\mathcal{A}_{3}^{I}| \ll |\mathcal{A}_{3}^{I}|. \end{aligned}$$

(The last inequality used $K_3 \gg K_2$.) The frequency $f_{\mathcal{A}'_3}(a, i, j, l) \approx \frac{2K_2 - 2}{2K_2 - 1} f_{\mathcal{A}}(a) \approx f_{\mathcal{A}}(a)$ and $f_{\mathcal{A}'_3}(c_j) \approx \frac{K_2}{2K_2 - 1}$. Using: $|\mathcal{A}_3^I| \gg |\mathcal{A}_3^{II}|$ and $K_2 \gg 1$. For $j \in [2K_2 - 1]$ we define new elements

$$C_j := \{c_{i,j,k} : 1 \le i \le K_1, 1 \le k \le K_4\}.$$

 K_4 - a new large constant to be specified later.

 $\begin{aligned} \mathcal{A}_3 &\subseteq P(C_1 \cup \cdots \cup C_{2K_2-1} \cup (\mathcal{A} \times I \times J \times L)) \text{ is obtained from} \\ \mathcal{A}'_3 \text{ by replacing each occurrence of } c_j \text{ with the whole subset } C_j. \\ \text{Still, } |\mathcal{A}_3| &= |\mathcal{A}_3^I| + |\mathcal{A}_3^{II}| \approx |\mathcal{A}_3^I| = (2K_2 - 1)|\mathcal{A}|^{K_1(2K_2 - 2)K_3}. \\ \text{The frequencies of } f_{\mathcal{A}_3}(c_{i,j,k}) = f_{\mathcal{A}'_3}(c_j) \text{ while the frequencies of } (a, i, j, l) \text{ are unchanged.} \end{aligned}$

The proof of (\Rightarrow) : The family \mathcal{C}^I

Let
$$\mathcal{A}_{2}^{p_{2}} = \{X_{\ell} : \ell \in [K_{1}]\}.$$

For each $\ell \in [K_1]$, let \mathcal{D}_{ℓ} be the Boolean family

$$\mathcal{D}_{\ell} := P(\{c_{i,j,k} : i \in [K_1] \setminus \{\ell\}, j \in [2K_2 - 1], k \in [K_4]\}).$$

Define
$$\mathcal{C}^I := \bigcup_{\ell=1}^{K_1} \{ X_\ell \cup Y : Y \in \mathcal{D}_\ell \}.$$

We assume $K_4 \gg K_2$ and $2^{K_4} \gg K_1$, but the relationship between K_4 and K_3 TBD later.

The proof of (\Rightarrow) : The family \mathcal{C} - estimating $|\mathcal{C}^I|$ and $|\mathcal{C}^{II}|$

We define \mathcal{C}' to be the closure of \mathcal{C}^{I} under intersection, $\mathcal{C}^{II} := \mathcal{C}' \setminus \mathcal{C}^{I}, \, \mathcal{C} := \mathcal{C}' \cup \{X \cap Y : X \in \mathcal{C}', Y \in \mathcal{A}_3\}, \text{ and}$ $\mathcal{C}^{III} := \mathcal{C} \setminus \mathcal{C}'.$ We estimate the sizes $|\mathcal{C}^{I}|$ and $|\mathcal{C}^{II}|.$

$$|\mathcal{C}^{I}| = K_1 2^{(K_1 - 1)(2K_2 - 1)K_4},$$

$$|\mathcal{C}^{II}| \le \sum_{t=2}^{K_1} \binom{K_1}{t} 2^{(K_1-t)(2K_2-1)K_4} <$$

$$\sum_{t=2}^{K_1} K_1^t 2^{(2K_2-1)(K_1-t)K_4} < 2^{(K_1-2)(2K_2-1)K_4} \frac{K_1^2}{1 - \frac{K_1}{2^{(2K_2-1)K_4}}} = \frac{K_1}{2^{(2K_2-1)K_4}(1 - \frac{K_1}{2^{(2K_2-1)K_4}})} |\mathcal{C}^I|$$

Since $2^{K_4} \gg K_1$, we get $|\mathcal{C}^I| \gg |\mathcal{C}^{II}|$.

The proof of (\Rightarrow) : The family \mathcal{C} - estimating $|\mathcal{C}^{III}|$

Any set $X \in \mathcal{C}^{III}$ is a disjoint union of $X \cap (C_1 \cup \cdots \cup C_{2K_2-1})$ and $X \cap (T \times I \times J \times L)$.

$$X \cap (C_1 \cup \dots \cup C_{2K_2-1}) \subseteq \{c_{i,j,k} : i \in [K_1] \setminus \{\ell\},\ j_0 \le j < j_0 + K_2, k \in [K_4]\},\$$

where $(\ell, j_0) \in [K_1] \times [2K_2 - 1]$ must be chosen first. So, $X \cap (C_1 \cup \cdots \cup C_{2K_2 - 1})$ can be chosen in at most

$$K_1(2K_2-1)2^{(K_1-1)K_2K_4}$$

ways. $X \cap (T \times I \times J \times L)$ is an element of $\pi_Y(\mathcal{A}_2)$, where $Y \in \mathcal{A}_2^{p_2}$, so $X \cap (T \times I \times J \times L)$ can be chosen in

$$K_1|\mathcal{A}_2|^m = K_1|\mathcal{A}|^{mK_1(2K_2-1)K_3} = K_1 2^{mK_1(2K_2-1)K_3\log|\mathcal{A}|}$$

ways. Putting it all together we get

$$|\mathcal{C}^{III}| \le K_1^2 (2K_2 - 1) 2^{(K_1 - 1)K_2 K_4 + m \log |\mathcal{A}| K_1 (2K_2 - 1)K_3}.$$

The proof of (\Rightarrow) : Adjusting K_3 and K_4

In order to obtain $|\mathcal{C}^{III}| \ll |\mathcal{C}^{I}| \ll |\mathcal{A}_{3}|$, it suffices to have the desired inequalities among the exponents. So, we need

$$m \log |\mathcal{A}| K_1 (2K_2 - 1) K_3 < (K_1 - 1) (K_2 - 1) K_4 \text{ and} (K_1 - 1) (2K_2 - 1) K_4 < \log |\mathcal{A}| K_1 (2K_2 - 1) K_3.$$

These inequalities boil down to

$$\frac{K_1 - 1}{K_1 \log |\mathcal{A}|} < \frac{K_3}{K_4} < \frac{(K_1 - 1)(K_2 - 1)}{mK_1(2K_2 - 1)\log |\mathcal{A}|}.$$

For these to be possible, we need

$$\frac{K_1 - 1}{K_1 \log |\mathcal{A}|} < \frac{(K_1 - 1)(K_2 - 1)}{mK_1(2K_2 - 1)\log |\mathcal{A}|}, \text{ equivalently}$$
$$m < \frac{K_2 - 1}{2K_2 - 1}, \text{ i.e. } m < \frac{1}{2} - \frac{1}{2(2K_2 - 1)},$$
$$4K_2 - 2 > \frac{1}{\frac{1}{2} - m}, \text{ which we know from } K_2 > \frac{1}{\frac{1}{2} - m}.$$

We let K_3 and K_4 simultaneously tend to infinity, their ratio fixed and in the interval $\left(\frac{K_1-1}{K_1 \log |\mathcal{A}|}, \frac{(K_1-1)(K_2-1)}{mK_1(2K_2-1)\log |\mathcal{A}|}\right)$. From $|\mathcal{C}| \approx |\mathcal{C}^I|$ we get

$$f_{\mathcal{C}}(a, i, j, l) \approx f_{\mathcal{C}^{I}}(a, i, j, l) = \frac{|\{\ell \le K_1 : (a, i, j, l) \in X_\ell\}|}{K_1} = P_2((a, i, j, l) \in X) = P(a \in X) > 1 - f_{\mathcal{A}}(a),$$

and

$$f_{\mathcal{C}}(c_{i,j,k}) \approx f_{\mathcal{C}^{I}}(c_{i,j,k}) = \frac{K_1 - 1}{2K_1}.$$

We have $|\mathcal{A}_3| \gg |\mathcal{C}|$ and we combine them: Let MAX be the largest natural number such that $MAX \cdot |\mathcal{C}| < |\mathcal{A}_3|$. We construct the IC family \mathcal{F} of subsets of

$$(T \times I \times J \times L) \cup C_1 \cup C_2 \cup \cdots \cup C_{K_1} \cup \{e_1, e_2, \dots, e_{MAX}\}$$

as

$$\mathcal{C} \cup \{X \cup \{e_1, \dots, e_k\} : X \in \mathcal{C}, 1 \le k < MAX\} \cup \{X \cup \{e_1, \dots, e_{MAX}\} : X \in \mathcal{A}_3\}.$$

The proof of (\Rightarrow) : The frequencies in \mathcal{F}

The frequencies of the new elements are all at least

$$f_{\mathcal{F}}(e_i) \ge s := \frac{|\mathcal{A}_3|}{|\mathcal{A}_3| + MAX|\mathcal{C}|} > \frac{1}{2},$$

while the frequencies of old elements are

$$f_{\mathcal{F}}(x) = sf_{\mathcal{A}_3}(x) + (1-s)f_{\mathcal{C}}(x).$$

Here $s > \frac{1}{2}$ but $s \approx \frac{1}{2}$ as K_3 and K_4 tend to infinity. Thus

$$f_{\mathcal{F}}(a, i, j, l) \approx sf_{\mathcal{A}}(a) + (1-s)(1-f_{\mathcal{A}}(a)+t) \approx \frac{1}{2} + (1-s)t > \frac{1}{2}.$$

Here we used $s \approx \frac{1}{2} \approx 1 - s$. Also,

$$f_{\mathcal{F}}(c_{i,j,k}) \approx s \frac{K_2}{2K_2 - 1} + (1 - s) \frac{K_1 - 1}{2K_1} > \frac{1}{2}.$$

The last follows from $K_1 > 2K_2$ and s > 1 - s. Thus \mathcal{F} contradicts Frankl's conjecture.

There are examples out there of IC families where the frequencies of most elements fail Frankl's Conjecture, but a small number of elements satisfies it.

The idea is to construct a family and select a probability measure such that each set with positive probability contains all elements which satisfy Frankl's conjecture, and the probability of the remaining ones being in a set satisfies the condition of the Equivalence Theorem.

Moreover, the conclusion of the Equivalence Theorem should fail.

We have not been successful in constructing such a family and probability measure yet.

This talk is dedicated to the memory of Velibor Tintor and Jarda Ježek.

THANK YOU FOR YOUR ATTENTION!