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Frankl's conjecture

It is a simple enough statement:

Conjecture (P. Frankl, 1979)

Let F be a �nite family of �nite sets closed under unions. If
F 6= {∅}, then there exists a ∈

⋃
F which is an element of at

least one-half of the sets in F .

Equivalently,

Conjecture

Let L be a �nite lattice. Then there exists a join-irreducible
element a ∈ L such that |a↑| ≤ 1

2 |L|.

Probably around 100 research papers and surveys written on it,
some by famous people (Poonen, Stanley, Bollobas, . . . )



Weights

Poonen [1992] introduced weights on elements. The idea was
used for several things:

• Families on a small enough set satisfy the conjecture,

• Families with few enough sets satisfy the conjecture,

• Finding FC families - when an FC family F is a subfamily
of an union-closed family G, then the conjecture is true
with one of the elements of

⋃
F being in ≥ half of the sets.

Ultimately, these weights just allow for quick checking of large,
but �nite sets of cases - useless for the whole problem.



The version we'll work with today and a bit of notation

De�nition

Let T be a nonvoid �nite set. We say F ⊆ P (T ) is an IC family
[on T ] if T, ∅ ∈ F and F is closed under intersection.

For an IC family F ⊆ P (T ), Fa := {X ∈ F : a ∈ X},

fF (a) :=
|Fa|
|F| - the frequency of a [in F ].

Conjecture

Frankl's conjecture says that for every IC family F on T there
exists a ∈ T such that fF (a) ≤ 1

2 .

Note that each IC family F , together with inclusion, forms the
lattice L(F).



More notation

[N ] := {1, 2, . . . , N}.

When certain parameters get large, a� b means that the ratio
a

b
tends to in�nity, and a ≈ b means that the same ratio tends

to 1.

For an IC family A ⊆ P (T ),

πX(A) := {X ∩ Y : Y ∈ A},

Probability measure is p : A → [0, 1] so that
∑

X∈A
p(X) = 1, and

P (a ∈ X) :=
∑

X∈Aa

p(X);

E(f(X)) :=
∑
X∈A

p(X)f(X);

Ap := {X ∈ A : p(X) > 0}.



The Equivalence Theorem

Theorem (The Equivalence Theorem, V. Boºin, 2004)

Frankl's Conjecture is true i� for every IC family A ⊆ P (T ),
and every probability measure p : A → [0, 1] which satis�es
P (a ∈ X) ≥ 1− fA(a) for all a ∈ T ,

E(log |πX(A)|)
log |A|

≥ 1

2
.

The main di�erence compared to old weights: The probability
measure assigns weights to sets, and this is more general than
each element having its weight.



The proof of (⇐)

Assume that Frankl's Conjecture is false for some IC family
A ⊆ P (T ).

Then there exists some q > 1
2 such that for all a ∈ T , fA(a) ≥ q.

Hence for all a ∈ T , 1− fA(a) ≤ 1− q.

Select p(T ) = 1− q, and p(∅) = q.

Then for all a ∈ T , P (a ∈ X) = 1− q ≥ 1− fA(a) and

E(log |πX(A)|)
log |A|

=
(1− q) log |A|+ q log 1

log |A|
= 1− q < 1

2
.



The proof of (⇒): Synopsis

We aim toward constructing two IC families of sets, A3 and C,
both on a universe consisting of two types of elements, the
a-elements and the c-elements. A3 and C will have the following
properties:

• {X ∩ Y : X ∈ A3, Y ∈ C} ⊆ C,
• fA3(a-element) + fC(a-element) > 1,

• fA3(c-element)− 1
2 >

1
2 − fC(c-element) > 0 and

• |A3| � |C|.
Then we make a convex combination of one copy of A3 and
below it many copies of C so that the number of sets in the
copies of C is almost equal to |A3|. Thus the frequencies of all
elements in the combination are ≈ the arithmetic mean of the
frequencies in A3 and C, hence greater than 1

2 .



The construction A⊗ I

Let A ⊆ P (T ) be an IC family and I a nonvoid set. The IC
family A⊗ I ⊆ P (T × I) is given by:

For any X ⊆ T × I, X ∈ A⊗ I if for all i ∈ I, X ∩ (T ×{i}) ∈ A.

In other words,

• The universe of A⊗ I can be seen as a disjoint union of |I|
copies of the universes of A,
• and the sets in A⊗ I are represented by sequences of sets
in A of length |I|, where Xi := {a ∈ T : (a, i) ∈ X}.

Properties:

• The lattice L(A⊗ I) ∼= (L(A))|I|.
• fA⊗I(a, i) = fA(a) for all a ∈ T and i ∈ I.
• (A⊗ I)⊗ J = A⊗ (I × J), up to ((a, i), j)↔ (a, (i, j)).

For X ∈ A, XI denotes the �constant tuple� in A⊗ I, i.e.
Y = XI i� for all i ∈ I, Yi = X.



The proof of (⇒): On the constants

We will have four natural parameters K1, K2, K3 and K4.

The �rst two are related by K1 > 2K2 and both are chosen
simultaneously as large enough that several conditions are
ful�lled (the conditions will be speci�ed by-and-by).

The frequencies of c-elements in A3 and C depend on these two
parameters.

Then the other two parameters are chosen, even larger than the
�rst two, depending on the choice of K1 and K2, and such that
the ratio K3

K4
is �xed.

K3 makes |A3| grow but does not a�ect |C|, while K4 makes |C|
grow but does not a�ect |A3|.



The proof of (⇒): The initial adjustment

Assume that A ⊆ P (T ) is an IC family, and p : A → [0, 1] a
probability measure so that P (a ∈ X) ≥ 1− fA(a) for all a ∈ T ,
but

E(log |πX(A)|)
log |A|

<
1

2
.

Due to continuity, we may slightly increase p(T ) and decrease
all other positive p(X) so that

• for some t > 0, P (a ∈ X) ≥ 1− fA(a) + t for all a ∈ T ,
• p(X) ∈ Q for all X ∈ A and still

• E(log |πX(A)|)
log |A|

= m < 1
2 .

The constants t > 0 and 0 < m < 1
2 are �xed from now on.



The proof of (⇒): The family A1

We introduce the parameters K1,K2 ∈ N. Let K2 >
1

1
2
−m ,

K1 > 2K2 and K1 is a common multiple of all denominators of
p(X), X ∈ A. Moreover, both K1 and K2 must be large enough
(denoted: K1 � 1 and K2 � 1) to make two further estimates
close enough for our purpose.

Let I := [K1].

Let A1 := A⊗ I.



The proof of (⇒): The probability measure p1

Fix Z := {Zi : i ∈ [K1]}, such that for all i ∈ [K1], Zi ∈ A and
for all X ∈ A, if p(X) = k

K1
, then {i ∈ [K1] : Zi = X} is a set of

consecutive indices of size k.

De�ne the probability measure p1 : A1 → [0, 1] by

p1(X) =

{ 1
K1

if (∃k ≤ K1)(∀i ∈ I)X ∩ (T × {i}) = Zi+k;

0 otherwise.

(Addition in indices is mod K1, so Ap1
1 consists of Z and its

cyclic permutations, each with the probability 1
K1

).

We see that P1((a, i) ∈ X) = P (a ∈ X) for all a ∈ T .

Denote Ap1
1 := {Y ∈ A1 : p1(Y ) 6= 0}. We have

|Ap1
1 | = {Z and all its cyclic permutations} = K1.

(Unless |Ap| = 1, which easily leads to a contradiction.)



The proof of (⇒): The expectation in A1

For each Y ∈ A1 such that p1(Y ) = 1
K1

(i.e. for Y ∈ Ap1
1 ),

|πY (A1)| =
K1∏
i=1

πYi(A) =
∏
X∈A

πX(A)p(X)K1 .

E(log |πY (A1)|)
log |A1|

=

∑
Y ∈Ap1

1

1
K1

log |πY (A)|

log |A1|
=

K1
K1

log |
∏

X∈A
πX(A)p(X)K1 |

log |A1|
=

K1
∑

X∈A
p(X) log |πX(A)|

K1 log |A|
=

E(log |πX(A|)
log |A|

=
m log |A|
log |A|

= m.

To remember: For all Y ∈ Ap1
1 , |πY (A1)| = |A1|m <

√
|A1|.



The proof of (⇒): The family A2

Let J = [2K2 − 1] and L = [K3]. K3 is such that K3 � 2K2 .

Let A2 ⊆ P (T × I × J × L) be given by
A2 := A⊗ (I × J × L) = A1 ⊗ (J × L).

We know that fA2(a, i, j, l) = fA1(a, i) = fA(a) for all a ∈ T .
De�ne p2 : A2 → [0, 1] by

p2(X) =


1
K1
, if (∃Y ∈ Ap1

1 )(X = Y J×L)

(X is a �constant� tuple in A1 ⊗ (J × L));

0, otherwise.

Analogously as with A1, P2((a, i, j, l) ∈ X) = P (a ∈ X) and for
each Y ∈ Ap2

2 , the projection |πY (A2)| = |A2|m.



The proof of (⇒): The family A′3

We make A′3 ⊆ P ({c1, . . . , c2K2−1} ∪ (T × I × J × L)) in several
steps:

First we consider only the sets Y ∈ A2 for which there exists
j ∈ J such that Y ∩ (T × I × {j} × L) = ∅.

For any Y ∈ A2 and j ∈ J such that Y ∩ (T × I × {j} × L) = ∅,
put X = Y ∪ {cj , cj+1, . . . , cj+K2−1} into the family AI

3.
(Addition in indices is modulo 2K2 − 1; we add exactly one set
into AI

3 for each suitable choice of the pair Y and j.)

Close AI
3 under intersections to obtain A′3. Denote

AII
3 := A′3 \ AI

3.

For any X ∈ AII
3 we will have |X ∩ {c1, . . . , c2K2−1}| < K2,

while for X ∈ AI
3, |X ∩ {c1, . . . , c2K2−1}| = K2.



The proof of (⇒): The frequencies in family A′3

|AI
3| = (2K2 − 1)|A|K1(2K2−2)K3 .

Bounding |AII
3 | from above:

|AII
3 | ≤

2K2−1∑
t=2

(
2K2 − 1

t

)
|A|K1(2K2−1−t)K3 ≤

|A|K1(2K2−3)K3

2K2−1∑
t=2

(
2K2 − 1

t

)
≤ |A|K1(2K2−3)K322K2−1 =

22K2−1

(2K2 − 1)|A|K1K3
|AI

3| � |AI
3|.

(The last inequality used K3 � K2.)

The frequency fA′3(a, i, j, l) ≈
2K2−2
2K2−1fA(a) ≈ fA(a) and

fA′3(cj) ≈
K2

2K2−1 . Using: |A
I
3| � |AII

3 | and K2 � 1.



The proof of (⇒): The family A3

For j ∈ [2K2 − 1] we de�ne new elements

Cj := {ci,j,k : 1 ≤ i ≤ K1, 1 ≤ k ≤ K4}.

K4 - a new large constant to be speci�ed later.

A3 ⊆ P (C1 ∪ · · · ∪ C2K2−1 ∪ (A× I × J × L)) is obtained from
A′3 by replacing each occurrence of cj with the whole subset Cj .

Still, |A3| = |AI
3|+ |AII

3 | ≈ |AI
3| = (2K2 − 1)|A|K1(2K2−2)K3 .

The frequencies of fA3(ci,j,k) = fA′3(cj) while the frequencies of
(a, i, j, l) are unchanged.



The proof of (⇒): The family CI

Let Ap2
2 = {X` : ` ∈ [K1]}.

For each ` ∈ [K1], let D` be the Boolean family

D` := P ({ci,j,k : i ∈ [K1] \ {`}, j ∈ [2K2 − 1], k ∈ [K4]}).

De�ne CI :=
K1⋃
`=1

{X` ∪ Y : Y ∈ D`}.

We assume K4 � K2 and 2K4 � K1, but the relationship
between K4 and K3 TBD later.



The proof of (⇒): The family C - estimating |CI | and
|CII |

We de�ne C′ to be the closure of CI under intersection,
CII := C′ \ CI , C := C′ ∪ {X ∩ Y : X ∈ C′, Y ∈ A3}, and
CIII := C \ C′. We estimate the sizes |CI | and |CII |.

|CI | = K12
(K1−1)(2K2−1)K4 ,

|CII | ≤
K1∑
t=2

(
K1

t

)
2(K1−t)(2K2−1)K4 <

K1∑
t=2

Kt
12

(2K2−1)(K1−t)K4 < 2(K1−2)(2K2−1)K4
K2

1

1− K1

2(2K2−1)K4

=

K1

2(2K2−1)K4(1− K1

2(2K2−1)K4
)
|CI |

Since 2K4 � K1, we get |CI | � |CII |.



The proof of (⇒): The family C - estimating |CIII |
Any set X ∈ CIII is a disjoint union of X ∩ (C1 ∪ · · · ∪ C2K2−1)
and X ∩ (T × I × J × L).

X ∩ (C1 ∪ · · · ∪ C2K2−1) ⊆ {ci,j,k : i ∈ [K1] \ {`},
j0 ≤ j < j0 +K2, k ∈ [K4]},

where (`, j0) ∈ [K1]× [2K2 − 1] must be chosen �rst. So,
X ∩ (C1 ∪ · · · ∪ C2K2−1) can be chosen in at most

K1(2K2 − 1)2(K1−1)K2K4

ways. X ∩ (T × I × J × L) is an element of πY (A2), where
Y ∈ Ap2

2 , so X ∩ (T × I × J × L) can be chosen in

K1|A2|m = K1|A|mK1(2K2−1)K3 = K12
mK1(2K2−1)K3 log |A|

ways. Putting it all together we get

|CIII | ≤ K2
1 (2K2 − 1)2(K1−1)K2K4+m log |A|K1(2K2−1)K3 .



The proof of (⇒): Adjusting K3 and K4

In order to obtain |CIII | � |CI | � |A3|, it su�ces to have the
desired inequalities among the exponents. So, we need

m log |A|K1(2K2 − 1)K3 < (K1 − 1)(K2 − 1)K4 and

(K1 − 1)(2K2 − 1)K4 < log |A|K1(2K2 − 1)K3.

These inequalities boil down to

K1 − 1

K1 log |A|
<
K3

K4
<

(K1 − 1)(K2 − 1)

mK1(2K2 − 1) log |A|
.

For these to be possible, we need

K1 − 1

K1 log |A|
<

(K1 − 1)(K2 − 1)

mK1(2K2 − 1) log |A|
, equivalently

m <
K2 − 1

2K2 − 1
, i.e. m <

1

2
− 1

2(2K2 − 1)
,

4K2 − 2 >
1

1
2 −m

, which we know from K2 >
1

1
2 −m

.



The proof of (⇒): The family C - estimating frequencies

We let K3 and K4 simultaneously tend to in�nity, their ratio

�xed and in the interval
(

K1−1
K1 log |A| ,

(K1−1)(K2−1)
mK1(2K2−1) log |A|

)
. From

|C| ≈ |CI | we get

fC(a, i, j, l) ≈ fCI (a, i, j, l) =
|{` ≤ K1 : (a, i, j, l) ∈ X`}|

K1
=

P2((a, i, j, l) ∈ X) = P (a ∈ X) > 1− fA(a),

and

fC(ci,j,k) ≈ fCI (ci,j,k) =
K1 − 1

2K1
.



The proof of (⇒): Convex combination

We have |A3| � |C| and we combine them:
Let MAX be the largest natural number such that
MAX · |C| < |A3|. We construct the IC family F of subsets of

(T × I × J × L) ∪ C1 ∪ C2 ∪ · · · ∪ CK1 ∪ {e1, e2, . . . , eMAX}

as
C ∪ {X ∪ {e1, . . . , ek} : X ∈ C, 1 ≤ k < MAX}∪

{X ∪ {e1, . . . , eMAX} : X ∈ A3}.



The proof of (⇒): The frequencies in F
The frequencies of the new elements are all at least

fF (ei) ≥ s :=
|A3|

|A3|+MAX|C|
>

1

2
,

while the frequencies of old elements are

fF (x) = sfA3(x) + (1− s)fC(x).

Here s > 1
2 but s ≈ 1

2 as K3 and K4 tend to in�nity.

Thus

fF (a, i, j, l) ≈ sfA(a)+ (1− s)(1− fA(a)+ t) ≈
1

2
+ (1− s)t > 1

2
.

Here we used s ≈ 1
2 ≈ 1− s. Also,

fF (ci,j,k) ≈ s
K2

2K2 − 1
+ (1− s)K1 − 1

2K1
>

1

2
.

The last follows from K1 > 2K2 and s > 1− s. Thus F
contradicts Frankl's conjecture.



How to (maybe) apply the Equivalence Theorem

There are examples out there of IC families where the
frequencies of most elements fail Frankl's Conjecture, but a
small number of elements satis�es it.

The idea is to construct a family and select a probability
measure such that each set with positive probability contains all
elements which satisfy Frankl's conjecture, and the probability
of the remaining ones being in a set satis�es the condition of the
Equivalence Theorem.

Moreover, the conclusion of the Equivalence Theorem should
fail.

We have not been successful in constructing such a family and
probability measure yet.



Dedication

This talk is dedicated to the memory of Velibor Tintor and
Jarda Jeºek.

THANK YOU FOR YOUR ATTENTION!


