# An equivalent condition to Frankl's Conjecture 

Vladimir Božin and Petar Marković

University of Belgrade and University of Novi Sad, Serbia
Combinatorics Seminar, Renyi Institute, Budapest

November 2020

## Frankl's conjecture

For a family $\mathcal{F} \subseteq P(T), \mathcal{F}_{a}:=\{X \in \mathcal{F}: a \in X\}$,
$f_{\mathcal{F}}(a):=\frac{\left|\mathcal{F}_{a}\right|}{|\mathcal{F}|}$ - the frequency of $a$ in $\left.\mathcal{F}\right]$.
Conjecture (P. Frankl, 1979)
Let $\mathcal{F}$ be a finite family of finite sets closed under unions. If $\mathcal{F} \neq\{\emptyset\}$, then there exists $a \in \bigcup \mathcal{F}$ such that $f_{\mathcal{F}}(a) \geq \frac{1}{2}$.

The version we'll work with today
Definition
Let $T$ be a nonvoid finite set. We say $\mathcal{F} \subseteq P(T)$ is an IC family [on $T$ ] if $T, \emptyset \in \mathcal{F}$ and $\mathcal{F}$ is closed under intersection.

Conjecture
Frankl's conjecture says that for every IC family $\mathcal{F}$ on $T$ there exists $a \in T$ such that $f_{\mathcal{F}}(a) \leq \frac{1}{2}$.

## Notation

Note that each IC family $\mathcal{F}$, together with inclusion, forms the lattice $\mathbf{L}(\mathcal{F}) .[N]:=\{1,2, \ldots, N\}$.
When certain parameters get large, $a \ll b$ means that the ratio $\frac{a}{b}$ tends to infinity, and $a \approx b$ means that the same ratio tends to 1 .

For an IC family $\mathcal{A} \subseteq P(T)$,

$$
\pi_{X}(\mathcal{A}):=\{X \cap Y: Y \in \mathcal{A}\}
$$

Probability measure is $p: \mathcal{A} \rightarrow[0,1]$ so that $\sum_{X \in \mathcal{A}} p(X)=1$, and

$$
\begin{gathered}
P(a \in X):=\sum_{X \in \mathcal{A}_{a}} p(X) \\
E(f(X)):=\sum_{X \in \mathcal{A}} p(X) f(X) \\
\mathcal{A}^{p}:=\{X \in \mathcal{A}: p(X)>0\}
\end{gathered}
$$

## The Equivalence Theorem

Theorem (The Equivalence Theorem, V. Božin, 2004)
Frankl's Conjecture is true iff for every IC family $\mathcal{A} \subseteq P(T)$, and every probability measure $p: \mathcal{A} \rightarrow[0,1]$ which satisfies $P(a \in X) \geq 1-f_{\mathcal{A}}(a)$ for all $a \in T$,

$$
\begin{equation*}
\frac{E\left(\log \left|\pi_{X}(\mathcal{A})\right|\right)}{\log |\mathcal{A}|} \geq \frac{1}{2} . \tag{1}
\end{equation*}
$$

The main difference compared to weights and threshold functions: The probability measure assigns weights to sets, and this is more general than each element having its weight.

## The proof of $(\Leftarrow)$

Assume that Frankl's Conjecture is false for some IC family $\mathcal{A} \subseteq P(T)$.
Then there exists some $q>\frac{1}{2}$ such that for all $a \in T, f_{\mathcal{A}}(a) \geq q$.
Hence for all $a \in T, 1-f_{\mathcal{A}}(a) \leq 1-q$.
Select $p(T)=1-q$, and $p(\emptyset)=q$.
Then for all $a \in T, P(a \in X)=1-q \geq 1-f_{\mathcal{A}}(a)$ and

$$
\frac{E\left(\log \left|\pi_{X}(\mathcal{A})\right|\right)}{\log |\mathcal{A}|}=\frac{(1-q) \log |\mathcal{A}|+q \log 1}{\log |\mathcal{A}|}=1-q<\frac{1}{2}
$$

## The proof of $(\Rightarrow)$ : What we want to construct

Start from a counterexample to the Equivalence Theorem, want a counterexample to Frankl's Conjecture.

We have $f_{\mathcal{A}}(a)+P(a \in X)>1$ (made strict using continuity).
We want families $\mathcal{A}_{3}$ and $\mathcal{C}$ on $\{a$-elements $\} \cup\{c$-elements $\}$ such that

- $\left\{X \cap Y: X \in \mathcal{A}_{3}, Y \in \mathcal{C}\right\} \subseteq \mathcal{C}$,
- $f_{\mathcal{A}_{3}}(a$-element $) \approx f_{\mathcal{A}}(a)$
- $f_{\mathcal{C}}(a$-element $) \approx P(a \in X)$, so $f_{\mathcal{A}_{3}}(a$-element $)+f_{\mathcal{C}}(a$-element $)>1$,
- $f_{\mathcal{A}_{3}}(c$-element $)-\frac{1}{2}>\frac{1}{2}-f_{\mathcal{C}}(c$-element $)>0$ and
- $\left|\mathcal{A}_{3}\right| \gg|\mathcal{C}|$.


## The proof of $(\Rightarrow)$ : Convex combination setup

$$
\begin{gathered}
f_{\mathcal{A}_{3}}(a-\text { element }) \approx f_{\mathcal{A}}(a) \\
f_{\mathcal{A}_{3}}(c-\text { element })>\frac{1}{2} \\
\left|\mathcal{A}_{3}\right| \gg|\mathcal{C}| \\
\mathcal{C} \quad f_{\mathcal{C}}(a-\text { element }) \approx P(a \in X) \\
f_{\mathcal{C}}(c-\text { element })<\frac{1}{2}
\end{gathered}
$$

## The proof of $(\Rightarrow)$ : Convex combination blowup

Letting the parameters get large, we have


$$
\begin{gathered}
f_{\mathcal{A}_{3}}(a-\text { element }) \approx f_{\mathcal{A}}(a) \\
f_{\mathcal{A}_{3}}(c-\text { element })>\frac{1}{2} \\
\left|\mathcal{A}_{3}\right| \gg|\mathcal{C}| \\
f_{\mathcal{C}}(a-\text { element }) \approx P(a \in X) \\
f_{\mathcal{C}}(c-\text { element })<\frac{1}{2}
\end{gathered}
$$

## The proof of $(\Rightarrow)$ : Convex combination

Let $M|\mathcal{C}|<\left|\mathcal{A}_{3}\right| \leq(M+1)|\mathcal{C}|$. Add new $e$-elements:


$$
\begin{gathered}
f_{\mathcal{A}_{3}}(a-\text { element }) \approx f_{\mathcal{A}}(a) \\
f_{\mathcal{A}_{3}}(c-\text { element })>\frac{1}{2} \\
\left|\mathcal{A}_{3}\right| \gg|\mathcal{C}|
\end{gathered}
$$

$$
\square\left\{e_{1}, \ldots, e_{M-1}\right\} \cup \mathcal{C} \quad f_{\mathcal{C}}(a-\text { element }) \approx P(a \in X)
$$

$$
f_{\mathcal{C}}(c-\text { element })<\frac{1}{2}
$$

Recall: $\mathcal{C}$ is closed under intersections with sets from $\mathcal{A}_{3}$

## How to blow up IC families: The construction $\mathcal{A} \otimes I$

Let $\mathcal{A} \subseteq P(T)$ be an IC family and $I$ a nonvoid set. The IC family $\mathcal{A} \otimes I \subseteq P(T \times I)$ is given by:

For any $X \subseteq T \times I, X \in \mathcal{A} \otimes I$ if for all $i \in I$,
$X \cap(T \times\{i\}) \in \mathcal{A} \times\{i\}$.
In other words,

- The universe of $\mathcal{A} \otimes I$ can be seen as a disjoint union of $|I|$ copies of the universe of $\mathcal{A}$,
- and the sets in $\mathcal{A} \otimes I$ are represented by sequences of sets in $\mathcal{A}$ of length $|I|$, where $X_{i}:=\{a \in T:(a, i) \in X\}$.

Properties:

- The lattice $\mathbf{L}(\mathcal{A} \otimes I) \cong(\mathbf{L}(\mathcal{A}))^{|I|}$.
- $f_{\mathcal{A} \otimes I}(a, i)=f_{\mathcal{A}}(a)$ for all $a \in T$ and $i \in I$.
- $(\mathcal{A} \otimes I) \otimes J=\mathcal{A} \otimes(I \times J)$, up to $((a, i), j) \leftrightarrow(a,(i, j))$.


## The proof of $(\Rightarrow)$ : The initial adjustment

Let $\mathcal{A} \subseteq P(T)$ be an IC family, and $p: \mathcal{A} \rightarrow[0,1]$ a probability measure which fail condition (1) of the Equivalence Theorem.

- $P(a \in X) \geq 1-f_{\mathcal{A}}(a)$ for all $a \in T$, but
- $\frac{E\left(\log \left|\pi_{X}(\mathcal{A})\right|\right)}{\log |\mathcal{A}|}<\frac{1}{2}$.

Due to continuity, we may slightly increase $p(T)$ and decrease all other positive $p(X)$. Thus both inequalities are strict and all probabilities are rational.
Next we apply the construction $\mathcal{A} \otimes I$ and cleverly choose probabilities to obtain an IC family $\mathcal{A}_{1} \subseteq T \times I$ so that

- $P((a, i) \in X)>1-f_{\mathcal{A}_{1}}(a, i)$ for all $(a, i) \in T \times I$,
- $\frac{E\left(\log \left|\pi_{X}\left(\mathcal{A}_{1}\right)\right|\right)}{\log \left|\mathcal{A}_{1}\right|}<\frac{1}{2}$ and
- $p(X) \in\left\{0, \frac{1}{K_{1}}\right\}$ for all $X \in \mathcal{A}_{1}$ (where $I=\left[K_{1}\right]$ ).


## The proof of $(\Rightarrow): a$-elements and $c$-elements

The universe on which $\mathcal{A}_{3}$ and $\mathcal{C}$ are defined is a disjoint union $A \cup C$.
$A=T \times I \times J \times U(a$-elements $)$
$C=\left\{c_{i, j, k}: i \in I, j \in J, k \in V\right\}$ ( $c$-elements)
Here $J=\left[2 K_{2}-1\right], U=\left[K_{3}\right]$ and $V=\left[K_{4}\right]$. Recall that $I=\left[K_{1}\right]$.

## The proof of $(\Rightarrow)$ : On the constants

We have four natural parameters $K_{1}, K_{2}, K_{3}$ and $K_{4}$.
The first two are related by $K_{1}>2 K_{2}$ and both are chosen simultaneously as large enough for several conditions to be fulfilled.

The frequencies of $c$-elements in $\mathcal{A}_{3}$ and $\mathcal{C}$, depend on these two parameters.

Then the other two parameters are chosen, even larger than the first two, depending on the choice of $K_{1}$ and $K_{2}$, and such that the ratio $\frac{K_{3}}{K_{4}}$ is fixed.
$K_{3}$ makes $\left|\mathcal{A}_{3}\right|$ grow but does not affect $|\mathcal{C}|$, while $K_{4}$ makes $|\mathcal{C}|$ grow but does not affect $\left|\mathcal{A}_{3}\right|$.

## The proof of $(\Rightarrow)$ : Blinking family

Start from $\mathcal{F} \subseteq P(C)$ (not closed under intersection)
To each set $S \in \mathcal{F}$ attach an IC family $\mathcal{B}_{S} \subseteq P(A)$ (the blinking family of $S$ ). Properties:

- $\left|\mathcal{B}_{S}\right|=\left|\mathcal{B}_{S^{\prime}}\right|$ for all $S, S^{\prime} \in \mathcal{F}$, but
- when $S \neq S^{\prime}$, then $\left|\left\{X \cap Y: X \in \mathcal{B}_{S}, Y \in \mathcal{B}_{S^{\prime}}\right\}\right| \ll\left|\mathcal{B}_{S}\right|$.

Definition of $\mathcal{A}_{3}$
$\mathcal{A}_{3}^{\prime}:=\left\{S \cup X: S \in \mathcal{F}, X \in \mathcal{B}_{S}\right\}$ and $\mathcal{A}_{3}$ is the closure of $\mathcal{A}_{3}^{\prime}$ under intersection.

Effect: When we close $\mathcal{A}_{3}^{\prime}:=\left\{S \cup X: S \in \mathcal{F}, X \in \mathcal{B}_{S}\right\}$ under intersection, the new sets obtained in the intersection are so few, that the frequencies $f_{\mathcal{A}_{3}^{\prime}}$ and $f_{\mathcal{A}_{3}}$ are as close as we want to make them.
$\mathcal{C}$ is constructed using the same basic idea, with $a$-elements and $c$-elements switching roles.

## The proof of $(\Rightarrow)$ : Constructing $\mathcal{A}_{3}$

We start from $\mathcal{F}=\left\{S_{j}: 1 \leq j \leq 2 K_{2}-1\right\}$, where

$$
S_{j}:=\left\{c_{i, t, k}: i \in I, j \leq t<j+K_{2}, k \in V\right\}
$$

(here $j \leq t<j+K_{2}$ is meant cyclically, so if $K_{2}=3$ and $j=4$, we get $t \in\{4,5,1\}$ ).
The blinking family associated with $S_{j}$ is

$$
\mathcal{B}_{S_{j}}:=\{(X, i, t, k) \in \mathcal{A} \otimes I \otimes J \otimes U:(t=j \Rightarrow X=\emptyset)\} .
$$

First we take $\mathcal{A}_{3}^{\prime}:=\left\{S \cup X: S \in \mathcal{F}, X \in \mathcal{B}_{S}\right\}$. Then close under intersections to obtain $\mathcal{A}_{3}$.
The blinking part of families in $\mathcal{A}_{3} \backslash \mathcal{A}_{3}^{\prime}$ has many more forced empty sets - so $\left|\mathcal{A}_{3} \backslash \mathcal{A}_{3}^{\prime}\right| \ll\left|\mathcal{A}_{3}^{\prime}\right|$.
The frequencies in $\mathcal{A}_{3}$ tend to the frequencies in $\mathcal{A}_{3}^{\prime}$, which we can compute and control.

## The proof of $(\Rightarrow)$ : The flavor of the construction of $\mathcal{C}$

Much more difficult, but the same main idea.
Now the initial family of sets uses $a$-elements, while $c$-elements are used for blinking.

1st issue: Arrange $f_{\mathcal{C}}(a, i, j, k) \approx P(a \in X)$. Using the clever definition of probabilities from the construction of $\mathcal{A}_{1}$.

2nd issue: we have to make sure that

- there are very few sets obtained as intersections of the generating ones,
- there are very few new sets which are intersections of sets in $\mathcal{A}_{3}$ and the sets obtained by intersecting generators of $\mathcal{C}$,
- however, there are very few sets in $\mathcal{C}$ compared to $\mathcal{A}_{3}$. 2 nd and 3 rd item work against each other. Can both be satisfied when the parameters are large enough and the ratio $\frac{K_{3}}{K_{4}}$ is in some interval.

That interval is nonempty provided $K_{1}$ and $K_{2}$ satisfy some additional condition. This finishes the construction.

