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Abstract

A class of optimization problems characterized by a weighted finite-
sum objective function subject to box constraints is considered. We
propose a novel stochastic optimization method, named AS-BOX (Addi-
tional Sampling for BOX constraints), that combines projected gradi-
ent directions with adaptive variable sample size strategies and non-
monotone line search. The method dynamically adjusts the batch size
based on progress with respect to the additional sampling function and
on structural consistency of the projected direction, enabling practical
adaptivity of AS-BOX, while ensuring theoretical support. We estab-
lish almost sure convergence under standard assumptions and provide
complexity bounds. Numerical experiments demonstrate the efficiency
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art algorithms.
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1 Introduction

We consider a box-constrained optimization problem with the objective
function in the form of a weighted finite sum, i.e.,

min
x∈S

f(x) :=
N∑
i=1

wifi(x), S = {x ∈ Rn | li ≤ xi ≤ ui, i = 1, ..., n}, (1.1)

where S represents the feasible set defined by

li ∈ R ∪ {−∞}, ui ∈ R ∪ {∞}, i = 1, 2, ..., n,

while fi : Rn → R, i = 1, ..., N are continuously-differentiable functions and
w1, ..., wN represent the weights such that

N∑
i=1

wi = 1, wi ≥ 0, i = 1, .., N.

This problem captures a wide class of practical problems. It generalizes clas-
sical unconstrained finite-sum formulations, where wi = 1/N and S = Rn

(e.g., empirical risk minimization with uniform weights) by allowing arbi-
trary positive weights and bound constraints. Special cases include non-
negative constraints x ≥ 0, i.e., xi ≥ 0, i = 1, ..., n. Such box-constrained
problems naturally arise in machine learning, signal processing, portfolio
optimization, and computational statistics.

In large-scale optimization problems of form (1.1), evaluating the full
gradient ∇f(x) =

∑N
i=1wi∇fi(x) can be computationally expensive, espe-

cially when N is large. Stochastic methods based on subsampling are widely
used to reduce this cost. One possibility to reduce the cost while main-
taining reasonably good approximations of the gradients is to use adaptive
sampling strategies. These strategies dynamically refine gradient approxi-
mations during the optimization process, mainly by progressive increase of
the sample size based on variance estimates or structural indicators such
as descent quality or direction stability. This way one is able to main-
tain a balance between computational efficiency and convergence reliability.
Adaptive sampling methods have been extensively studied in recent years
[1, 2, 3, 5, 13, 14, 17, 21].

One effective subclass of adaptive sampling is the so-called additional
sampling, which typically increases the sample size when a prescribed cri-
terion fails [8, 15, 19, 20, 21, 22]. The criterion of progress is defined by
an additional sampling, i.e., a new independent subsample (of modest size)
is generated after each iteration and is used to accept/reject the iteration.
As the additional sample is of mainly of modest size, this approach avoids
excessive computational cost while still ensures convergence in a stochastic
sense. For example, in the IPAS method [20], the additional sampling is
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combined with projected gradient steps for problems with linear equality
constraints. Sampling growth is governed by a descent-based condition that
assess whether the current sample is sufficient to ensure meaningful progress.
This mechanism allows the method to operate efficiently in early iterations
with small batches and to increase precision only when needed. Furthermore,
the ASPEN method [19] extends this idea to nonlinear equality-constrained
problems by incorporating a quadratic penalty term. In this method, addi-
tional sampling is applied adaptively based on indicators such as gradient
norm and descent quality. The method attempts to make progress using
the current sample and increases the sample size only when necessary, mak-
ing it particularly effective near critical points where variance in gradient
estimates becomes more pronounced.

Another key component of the method proposed here is nonmonotone
line search (NMLS). Classical Armijo-type condition requires a sufficient
decrease in each iteration, which can be restrictive and lead to overly con-
servative steps in noisy settings. Nonmonotone line searches, on the other
hand, allow temporary increases in the objective function, enabling bet-
ter exploration of the landscape and improving practical performance. A
number of NMLS is present in the literature, [10, 27, 23] and they are suc-
cessfully applied in numerous deterministic and stochastic frameworks (e.g.,
[4, 12, 15, 16, 18, 22]). In stochastic settings, the effect of noise and variance
by relaxing strict descent conditions are particularly important. The NMLS
method we rely on is originally defined in [23].

Interior-point methods (IPMs) represent another popular class of algo-
rithms for constrained optimization, known for their strong theoretical prop-
erties and practical efficiency. Numerous works have extended IPMs to ac-
commodate large-scale and structured problems, including both determinis-
tic and stochastic settings. For instance, classical interior-point frameworks
tailored for convex programming and barrier methods are well-established
(e.g., [24, 26]), while more recent advances incorporate stochastic elements or
specific constraint structures (e.g., [11, 25]). In the stochastic optimization
literature, interior-point methods have also been adapted to settings where
exact gradients are either expensive or impossible to compute. These adap-
tations often involve inexact or sampled gradient approximations and the
use of approximate barrier subproblems to preserve feasibility and conver-
gence properties under uncertainty. A recent contribution in this direction is
[7], where a stochastic gradient-based interior point method (SIPM) to solve
box-constrained optimization problems is proposed. The SIPM algorithm
extends the classical interior-point framework to the stochastic setting by
augmenting the objective with a logarithmic barrier that enforces box con-
straints and by employing a prescribed decreasing sequence of barrier param-
eters rather than adaptive updates. Unlike standard interior-point methods,
SIPM maintains iterates within progressively shrinking inner neighborhoods
of the feasible box and avoids fraction-to-the-boundary rules or line searches,
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which are challenging to implement in stochastic regimes.
As the baseline algorithm, we use the Projected Stochastic Gradient

Method (PSGM), which originates from the classical framework of projected
gradient methods and is here adapted into a stochastic version following the
implementation in [7]. PSGM is a projection-based method that iteratively
computes stochastic gradient steps on the original objective and projects
them back onto the feasible region, i.e., updates are of the form xk+1 =
π[l,u](xk−αkgk), where π[l,u] denotes the projection onto the box constraints.
While SIPM leverages barrier smoothing to handle boundaries implicitly,
PSGM enforces feasibility explicitly through projection. These two methods
are used for numerical comparison in this paper.

The method we propose here, AS-BOX is a novel stochastic optimization
algorithm for weighted finite-sum problems with box constraints. Our key
contributions include:

- A design of a novel first-order stochastic method based on projected
gradient directions, non-monotone line search and additional sampling
technique to guide the potential increase of the sample size. The pro-
posed method can be seen as a natural extension of the existing adap-
tive sampling frameworks for equality-constrained problems [19, 20] to
the box-constrained case.

- The a.s. convergence of AS-BOX is proved under a set of standard
assumptions. Moreover, some complexity bounds are provided for the
proposed method as well.

- Demonstration of the method’s effectiveness in numerical experiments
on real-world data, including both logistic regression and Neural Net-
work problems.

Paper organization. The paper is organized as follows. Section 2
provides the necessary preliminaries. In Section 3, we present the AS-NC
method designed for problems with non-negativity constraints, including the
algorithmic framework and convergence analysis. Although non-negativity
constraints are a special case of the general box constraints we start with
this case for clarity of exposition. Then, in Section 4 we generalize to AS-
BOX method, our main contribution, for solving box-constrained problems.
Numerical experiments are reported in Section 5, while Section 6 concludes
the paper.

Notation. Throughout the paper, we use the following notation: R+

denotes the set of non-negative real numbers. The symbol ∥ · ∥ represents
the standard Euclidean norm. The expectation operator is denoted by E(·),
and E(· | F) stands for the conditional expectation given a σ-algebra F . We
use “a.s.” to abbreviate “almost sure”. For a finite set A, |A| denotes its
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cardinality. Finally, πS(x) denotes the orthogonal projection of a point x
onto the set S.

2 Preliminaries

Let us denote by πS(y) the orthogonal projection of a point y on the set S.
It is easy to see that [πS(y)]i is equal to: 1) li if yi < li; 2) ui if yi > ui; 3)
yi if li ≤ yi ≤ ui, for i = 1, .., n, i.e.,

[πS(y)]i = min {max {yi, li} , ui} , for i = 1, . . . , n. (2.1)

One can show that the projected gradient direction of the form

d(x) := πS(x−∇f(x))− x (2.2)

is a descent direction for function f at point x ∈ S unless x is a stationary
point of problem (1.1). More precisely, the following result is known.

Theorem 2.1. [4] Assume that f ∈ C1(Sk) and x ∈ S. Then the projected
gradient direction (2.2) satisfies:

a) dT (x)∇f(x) ≤ −∥d(x)∥2.

b) d(x) = 0 if and only if x is a stationary point of problem (1.1).

We will be dealing with approximate functions and the gradients. More
precisely, we use the following sample-based estimate of the objective func-
tion at iteration k in general [20]

fNk
(x) :=

1

Nk

∑
i∈Nk

fi(x), (2.3)

where Nk := |Nk|, Nk = {ik1, ..., ikNk
}, and each ikj ∈ Nk takes the value

s ∈ N := {1, ..., N} with probability ws, i.e.,

P (ikj = s) = ws, s = 1, ..., N, j = 1, ..., Nk. (2.4)

This way we have an unbiased estimate of f , i.e.,

E(fNk
(x)|x) = E(

1

Nk

Nk∑
j=1

fikj
(x)|x) = 1

Nk

Nk∑
j=1

E(fikj (x)|x) =
1

Nk

Nk∑
j=1

f(x) = f(x),

where E(·|x) denotes conditional probability given the point x. However,
this is not crucial for the analysis, and the convergence results hold for an
arbitrary sampling of Nk as well. Moreover, since the method that will be
proposed in the sequel may reach the full sample size, we will assume that
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when Nk = N we simply take the whole sample, i.e., Nk = N . The approx-
imate gradient will be taken as the gradient of the approximate function
∇fNk

.
Since we work with approximate functions in general, non-monotone

Armijo-type line search will be employed [23] to determine the step size tk
given a direction pk = πS(xk −∇fNk

(xk))− xk

fNk
(xk + tkpk) ≤ fNk

(xk) + c1tk(∇fNk
(xk))

T pk + εk,

where εk > 0, k ∈ N represents a predetermined sequence which satisfies the
following condition

∞∑
k=0

εk ≤ ε̄ < ∞. (2.5)

Notice that the search direction pk is a descent direction for the function
fNk

at point xk. Moreover, xk + pk is feasible provided that xk is feasible
as well, and due to the convexity of S, backtracking line search will ensure
that xk + tkpk remains in the feasible set. Thus, starting from x0 ∈ S, the
proposed algorithm will ensure the feasibility of all the iterates.

We apply an additional sampling technique to guide the sample size
increase. Additional sampling is used to overcome bias that comes from
the dependency of the candidate iterate x̄k = xk + tkpk on the sample
Nk. Moreover, it can be viewed as a check on the similarity of the local
cost functions - if they are heterogeneous, then it is probably beneficial to
increase the sample size since the mini-batch estimate is not good enough
representative of the objective function. For more details one can see [20] and
the references therein. We form an additional sampling function similarly
to fNk

, but with a much smaller sample in general. Namely, we have

fDk
(x) :=

1

Dk

∑
i∈Dk

fi(x),

where Dk := |Dk|, Dk = {lk1 , ..., lkDk
}, and each lkj ∈ Dk takes the value

s ∈ N := {1, ..., N} with probability ws, i.e.,

P (lkj = s) = ws, s = 1, ..., N, j = 1, ..., Dk. (2.6)

Although Dk may be of arbitrary size, it is assumed that it is significantly
smaller than Nk, and the common choice is Dk = 1 for all k. The additional
sampling rule within this paper is adapted to box constraints. It is modified
in such way to take into account the structure of the projection operator
(2.1). A part of the additional sampling rule is also used to guide the
acceptance of the candidate point. We will elaborate this in more detail in
the next section. Finally, we emphasize that the additional sampling rule
is constructed to determine if the sample size increase is needed, but allows
an arbitrary increase.
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For simplicity, we start our analysis by observing non-negativity con-
straints, and later on we extend it to general box constraints by introducing
some simple modifications within the algorithm and the convergence analy-
sis.

3 Nonnegativity Constraints: AS-NC method

Within this section we consider an important special case of problem (1.1)
given by

min
x≥0

f(x), (3.1)

where the function f is as in problem (1.1) and inequalities x ≥ 0 are
component-wise. Compared to the general box-constrained problem, this
setting simplifies the structure of the feasible set, and we have

[πS(y)]i =

{
0, yi < 0;

yi, yi ≥ 0,

for i = 1, .., n, i.e., [πS(y)]i = max {yi, 0} . Since our direction will be of the
form

pk = πS(xk −∇fNk
(xk))− xk, (3.2)

we will distinguish two cases for each component i ∈ {1, ..., n}:

[pk]i = −[xk]i if [xk]i < [∇fNk
(xk)]i

and
[pk]i = −[∇fNk

(xk)]i if [xk]i ≥ [∇fNk
(xk)]i.

Let us denote by INk
an indicator vector of the event xk < ∇fNk

(xk), with
inequality defined by components. . More precisely, for i = 1, . . . , n we have

[INk
]i =

{
1, [xk]i < [∇fNk

(xk)]i

0, [xk]i ≥ [∇fNk
(xk)]i.

(3.3)

Analogously, we define an indicator vector IDk
of the event xk < ∇fDk

(xk)
and

rDk
:= ∥INk

− IDk
∥. (3.4)

These random vectors are used to check the similarity of local cost functions
in terms of the structure of the search direction pk. Namely, notice that if
rDk

= 0 then the structure of zero entries in πS(xk −∇fNk
(xk)) is the same

as for πS(xk −∇fDk
(xk)).
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3.1 The Algorithm

We state the algorithm for solving (3.1) as follows.
Algorithm 1: AS-NC (Additional Sampling -NonnegativityConstraints)

S0 Initialization. Input: x0 ≥ 0, N0 ∈ N, β, c, c1 ∈ (0, 1), C > 0, {εk}
satisfying (2.5). Set k := 0.

S1 Subsampling. If Nk < N , choose Nk such that (2.4) holds. Else, set
fNk

= f .

S2 Search direction. Compute pk = πS(xk −∇fNk
(xk))− xk.

S3 Step size. Find the smallest j ∈ N0 such that tk = βj satisfies

fNk
(xk + tkpk) ≤ fNk

(xk) + c1tk(∇fNk
(xk))

T pk + εk. (3.5)

Set x̄k = xk + tkpk.

S4 Additional sampling.
If Nk = N , set xk+1 = x̄k, k = k + 1 and go to step S1.
Else choose Dk via (2.6) and compute

sk = πS(xk −∇fDk
(xk))− xk (3.6)

and rDk
= ∥INk

− IDk
∥.

S5 Sample size update.
If

rDk
= 0 and fDk

(x̄k) ≤ fDk
(xk)− c∥sk∥2 + Cεk, (3.7)

Nk+1 = Nk.
Else choose Nk+1 ∈ {Nk + 1, ..., N}.

S6 Iterate update.
If

fDk
(x̄k) ≤ fDk

(xk)− c∥sk∥2 + Cεk

holds set xk+1 = x̄k. Else xk+1 = xk.

S7 Counter update. Set k = k + 1 and go to Step S1.

Notice that the algorithm can yield two types of scenarios: the Mini-
batch (MB) scenario, where Nk < N for all k ∈ N, and the Full sample
(FS) scenario, where the full sample is eventually reached. Moreover, we
say that AS-NC is in the MB phase at iteration k if Nk < N . Otherwise,
the full sample size is reached, i.e., if Nk = N , for some k then all further
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iterations have the same property and we say that we are in the FS phase.
In that case, the algorithm behaves as a deterministic projected gradient
method. However, the sequence of iterates is still random due to sampling
in the initial (MB) phase of the algorithm.

In the MB phase, we have sampling at two steps of the algorithm: S1 and
S4. Although we propose unbiased estimators (2.4) in step S1, the sampling
used for Nk can in fact be arbitrary. This allows many strategies which can
be very important from a practical point of view. Moreover, the choice of Dk

may be modified as well, but it has to meet certain requirements - it needs
to be chosen independently of Nk and it must allow positive probabilities for
choosing each of the local cost function. Unbiased estimator is not essential
for the convergence analysis.

Notice that the sequence of iterates is feasible due to the construction
of the algorithm. The search direction pk is a descent direction for fNk

and
feasible with respect to constraints, while backtracking line search retains
feasibility. The same type of direction is calculated in step S4, but with
respect to fDk

, which is independent of fNk
. However, the Armijo-like con-

dition is checked without performing any line search - it simply checks if the
candidate point x̄k is good enough for fDk

, which is an independent estimate
of the objective function. Notice that in this check the constants c and C
can be arbitrary small and large, respectively. If the value of fDk

is good
enough the candidate point is accepted at step S6. Otherwise, the step is
rejected and the sample size Nk is increased within step S5. The increase
is arbitrary, as mentioned in Preliminaries. However, the sample size Nk

can be increased also due to the different structure of the projection consid-
ering two approximate gradients ∇fNk

and ∇fDk
, which discloses through

rDk
> 0. Overall, the condition (3.7) serves as the check of similarity of local

cost functions and governs the sample size. Notice that calculating rDk
does

not yield additional costs since the structure observed in (3.3) is needed for
forming the projections as well.

3.2 Convergence analysis

Within this section, we prove almost sure convergence of the proposed al-
gorithm and analyze the complexity. We start the analysis by stating the
following standard assumption.

Assumption A 1. Each function fi, i = 1, ..., N is continuously differ-
entiable with L-Lispchitz continuous gradient and bounded from below by a
constant flow.

As usual for additional sampling framework analysis, we proceed by di-
viding the set of all possible outcomes at iteration k into two complementary
subsets. Namely, let us denote by D+

k the subset of all possible outcomes of
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Dk at iteration k for which the condition (3.7) is satisfied, i.e.,

D+
k = {Dk ⊂ N | rDk

= 0, fDk
(x̄k) ≤ fDk

(xk)− c∥sk∥2 + Cεk}.

We denote the complementary subset of outcomes at iteration k by

D−
k = {Dk ⊂ N | rDk

> 0 or fDk
(x̄k) > fDk

(xk)− c∥sk∥2 + Cεk}.

We begin our analysis with the following lemma, which basically de-
scribed the situation in which the full sample is a.s. reached, based of
choices of Dk that violate (3.7). This lemma is conceptually aligned with
Lemma 4.3 in [20], and similar results are also discussed in other additional
sampling related papers. Since the proof is the same as in [20], we omit it
here and delegate it to the Appendix for completeness.

Lemma 3.1. Suppose that Assumption A1 holds. If Nk < N for all k ∈ N,
then a.s. there exists k1 ∈ N such that D−

k = ∅ for all k ≥ k1.

The following lemma states the well-known result for backtracking line
search under the stated assumptions since, according to Theorem 2.1 a),
there holds

pTk∇fNk
(xk) ≤ −∥pk∥2.

Lemma 3.2. Suppose that Assumption A1 holds. Then the step size tk
obtained from step S3 satisfies

tk ≥ tmin := min

{
1,

2β(1− c1)

L

}
.

Next, we prove the key result for the convergence analysis of AS-NC.
Notice that (3.8) is related to the original objective function and d defined
as in (2.2), d(x) := πS(x − ∇f(x)) − x, regardless of the scenario (MB or
FS).

Theorem 3.3. Suppose that Assumption A1 holds. Then a.s. there exists
a finite, random iteration k̃ such that for all k ≥ k̃ there holds

f(xk+1) ≤ f(xk)− c̄∥d(xk)∥2 + C̄εk, (3.8)

where c̄ = min{c, c1, 2c1(1− c1)β/L} and C̄ = max{1, C}.

Proof. Let us consider the FS scenario first. Then there exists a finite k̃1
such that for all k ≥ k̃1 we operate with the true objective function f and
according to (3.5) there holds

f(xk+1) ≤ f(xk) + c1tk(∇f(xk))
Td(xk) + εk ≤ f(xk)− c1tk∥d(xk)∥2 + εk,
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where the last inequality comes from Theorem 2.1 a). Moreover, Lemma 3.2
implies that tk ≥ tmin and thus we obtain

f(xk+1) ≤ f(xk)− c1tmin∥d(xk)∥2 + εk. (3.9)

Now, let us observe the MB scenario. According to Lemma 3.1 a.s. there
exists some finite, random iteration k1 such that D−

k = ∅ for all k ≥ k1.
This means that the condition (3.7) holds for all the local cost functions1.
Therefore, for all k ≥ k1 and all j ∈ N there holds

fj(x̄k) ≤ fj(xk)− c∥sjk∥
2 + Cεk,

where sjk := πS(xk − ∇fj(xk)) − xk. Using the fact that in the considered
scenario the candidate point would be accepted, i.e., xk+1 = x̄k, multiplying
both sides with wj and summing up, we obtain

f(xk+1) ≤ f(xk)− c
N∑
j=1

wj∥sjk∥
2 + Cεk. (3.10)

Let us consider the first condition of (3.7). Denote by ANk
the set of indices

(components) i ∈ {1, ..., n} such that [INk
]i = 1, i.e.,

ANk
:= {i ∈ {1, ..., n} | [xk]i < [∇fNk

(xk)]i}. (3.11)

Furthermore, using the similar arguments as for the second condition of
(3.7), we conclude that D−

k = ∅ for all k ≥ k1 implies that rDk
= 0 for all

the singleton choices Dk = {1}, ...,Dk = {N} for all k ≥ k1. Having in mind
the definition of rDk

we conclude that for all k ≥ k1

ANk
= A1

k = ... = AN
k , (3.12)

where Aj
k := {i ∈ {1, ..., n} | [xk]i < [∇fj(xk)]i}, j = 1, ..., N. This further

implies that all k ≥ k1, for all i ∈ ANk
, for all j ∈ N there holds [xk]i <

[∇fj(xk)]i and thus

[xk]i =

N∑
j=1

wj [xk]i <

N∑
j=1

wj [∇fj(xk)]i = [∇f(xk)]i, for all i ∈ ANk
.

Similarly, we obtain [xk]i ≥ [∇f(xk)]i for all i /∈ ANk
and due to (2.2) we

conclude that the following holds for all k ≥ k1

[d(xk)]i = −[xk]i, for all i ∈ ANk
, [d(xk)]i = −[∇f(xk)]i for all i /∈ ANk

.
(3.13)

1Otherwise the set D−
k would not be empty since one could form at least one possible

Dk that violates (3.7), e.g., Dk = {jv, ..., jv} where jv represents a local cost function that
violates (3.7).
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Now, let us estimate the norm of d(xk) for k ≥ k1 as follows

∥d(xk)∥2 =
n∑

i=1

([d(xk)]i)
2 =

∑
i∈ANk

([d(xk)]i)
2 +

∑
i/∈ANk

([d(xk)]i)
2(3.14)

=
∑

i∈ANk

([xk]i)
2 +

∑
i/∈ANk

([∇f(xk)]i)
2.

According to (3.12) we have for all k ≥ k1 and all j ∈ N

[sjk]i = [πS(xk −∇fj(xk))]i − [xk]i = −[xk]i, i ∈ ANk

and thus for all i ∈ ANk

N∑
j=1

wj([s
j
k]i)

2 =
N∑
j=1

wj([xk]i)
2 = ([xk]i)

2, (3.15)

which further implies

∑
i∈ANk

N∑
j=1

wj([s
j
k]i)

2 =
∑

i∈ANk

([xk]i)
2, (3.16)

Similarly, we conclude that for all k ≥ k1 and all j ∈ N there holds

[sjk]i = −[∇fj(xk)]i, i /∈ ANk

and we conclude that for all i /∈ ANk

([∇f(xk)]i)
2 = (

N∑
j=1

wj [∇fj(xk)]i)
2 ≤

N∑
j=1

wj([∇fj(xk)]i)
2 =

N∑
j=1

wj([s
j
k]i)

2

(3.17)
which further implies

∑
i/∈ANk

([∇f(xk)]i)
2 ≤

∑
i/∈ANk

N∑
j=1

wj([s
j
k]i)

2. (3.18)

Combining (3.14), (3.16) and (3.18) we obtain

∥d(xk)∥2 ≤
∑

i∈ANk

N∑
j=1

wj([s
j
k]i)

2 +
∑

i/∈ANk

N∑
j=1

wj([s
j
k]i)

2 (3.19)

=
N∑
j=1

wj

 ∑
i∈ANk

([sjk]i)
2 +

∑
i/∈ANk

([sjk]i)
2


=

N∑
j=1

wj∥sjk∥
2.
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Combining this with (3.10) we obtain for all k ≥ k1

f(xk+1) ≤ f(xk)− c∥d(xk)∥2 + Cεk. (3.20)

Taking into account both scenarios (FS and MB), i.e., (3.20) and (3.9),
we conclude the proof with k̃ = k1 in FS and k̃ = k̃1 in MB case.

In order to obtain a.s. convergence, we impose the following assumption
[22].

Assumption A 2. There exists a constant Cb such that E(|f(xk̃)|) ≤ Cb,

where k̃ is specified in Theorem 3.3.

Let us denote by EFS(·) := E(· | FS) the conditional expectation con-
cerning all the sample paths falling into the FS scenario. Analogously, we
define EMB(·) := E(· | MB). It can be shown (see [22] e.g.) that Assump-
tion A2 implies

EFS(|f(xk̃1)|) ≤ CFS
b and EMB(|f(xk1)|) ≤ CMB

b , (3.21)

for some constants CFS
b , CMB

b where k̃1 and k1 are as in the proof of Theorem
3.3.

Next, we state the main convergence result for AS-NC.

Theorem 3.4. Suppose that Assumptions A1 and A2 hold. Then a.s. every
accumulation point of sequence {xk}k∈N generated by AS-NC is a stationary
point of the problem (3.1).

Proof. According to (3.8) we have that a.s.

f(xk̃+l) ≤ f(xk̃)− c̄

l−1∑
j=0

∥d(xk̃+j)∥
2 + C̄

l−1∑
j=0

εk̃+j ,

for any l ∈ N. Applying the expectation and using Assumption A2 together
with sumability of εk given in (2.5), by letting l → ∞ we obtain

∞∑
j=0

E(∥d(xk̃+j)∥
2) < ∞.

Now, the extended Markov’s inequality and the Borel-Cantelli lemma (see
e.g. [22] for details), we conclude that

P( lim
k→∞

d(xk) = 0) = 1. (3.22)

Let x∗ be an arbitrary accumulation point of the sequence {xk}, and let
K0 ⊂ N be a subsequence such that

lim
k∈K0

xk = x∗.

13



Due to continuity of the gradient and the projection operator, from (3.22)
we conclude that a.s.

0 = lim
k∈K0

d(xk) = lim
k∈K0

(πS(xk −∇f(xk))− xk) = πS(x
∗−∇f(x∗))−x∗ = d(x∗)

and by Theorem 2.1 b) and the feasibility of the iterates, we conclude that
x∗ is a.s. a stationary point of problem (3.1), which completes the proof.

Next, we analyze the complexity of the proposed method. The analysis
combines techniques of [2], [9], and [22]. We impose the assumption used
in [22]. It states that the local cost functions are not homogeneous in the
following sense.

Assumption A 3. For each k there exists at least one function fi such that
the condition (3.7) is violated.

Theorem 3.5. Suppose that Assumptions A1, A2 and A3 hold. Then the
expected number of iterations to reach ∥d(xk)∥ < ν is upper bounded by

k̂E =

⌈
N − 1

q

⌉
+

⌈
CFS
b − flow + Cε̄

c̄ν2

⌉
,

where c̄ is as in Theorem 3.3, CFS
b as in (3.21) and q = min{w1, ..., wN}N−1.

Proof. Assumption A3 ensures that for every iteration k, there exists at
least one function fi that violates the condition (3.7). Therefore, according
to the distribution of Dk (2.6), we conclude that

P(Dk ∈ D−
k ) ≥ min{w1, ..., wN}Dk ≥ min{w1, ..., wN}N−1 = q.

Further, let us denote by Sk a random variable that counts the number
of increments of the sample size until iteration k. Notice that Sk can be
represented as Sk = I1 + I2 + · · ·+ Ik, where Ik is an indicator variable, i.e.,
Ik = 1 if Nk > Nk−1 and Ik = 0 otherwise. Furthermore, according to step
S5 of AS-NC algorithm, the increase of the sample size happens if and only
if Dk ∈ D−

k and thus

E(Ik) = P (Ik = 1) = P (Dk ∈ D−
k ) ≥ q,

which further implies
E(Sk) ≥ kq. (3.23)

Let Ñ represent the number of increments of the sample size needed to reach
the full sample.2 Requiring E(Sk̃) = Ñ and using (3.23), we conclude that

2For instance, if we setNk+1 = Nk+1 at the end of step S5 of AS-NC, then Ñ = N−N0.
See [22] and the text after Assumption 4 therein for further discussion on this topic.
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the expected number of iterations to reach the full sample is bounded from
above by ⌈Ñ/q⌉ which can further be upper bounded by⌈

N − 1

q

⌉
. (3.24)

Furthermore, let k̃1 be the starting iteration of the FS phase. Then the
decrease condition (3.9) holds and according to Assumptions A1, A2 and
(2.5) we conclude that for any j ∈ N we have

k̃1+j∑
k=k̃1

EFS(∥d(xk)∥2) ≤
CFS
b − flow + ε̄

c̄
. (3.25)

Obviously, for each FS scenario there holds limk→∞ ∥d(xk)∥ = 0. Now, let
us denote by T the number of iterations (counting from k̃1) needed to reach
∥d(xk)∥ < ν. Then, we have

k̃1+T−1∑
k=k̃1

EFS(∥d(xk)∥2) ≥
k̃1+T−1∑
k=k̃1

ν2 = T · ν2

and thus due to (3.25) we obtain

T ≤ Cb − flow + ε̄

ν2c̄
.

Combining this with (3.24) we obtain the result.

Remark 1. Notice that the expected complexity bound k̂E is very
conservative. Since we observe the FS scenario in the previous theorem,
instead of c̄, we can use c1tmin. Moreover, instead of N − 1, we can take
Ñ , which reveals the influence of the dynamics of increase used in step S5
of AS-NC to the complexity bound. Finally, notice that q in fact depends
on the size of the additional sample Dk. Thus, setting e.g. Dk = 1 for
each k yields q = min{w1, ..., wN} which can be significantly larger than
q = min{w1, ..., wN}N−1.

We end this analysis by observing the strongly convex poblems. In that
case, under Assumption A1, there exists an unique solution x∗ of problem
(3.1).

Theorem 3.6. Suppose that Assumption A1 holds and that the sequence
{xk}k∈N generated by AS-NC is bounded. If the function f is strongly convex,
then limk→∞ xk = x∗ a.s.

Proof. Bounded iterates imply Assumption A2 and thus Theorem 3.4 implies
that every accumulation point of the sequence {xk}k∈N is a stationary point
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of (3.1) a.s.. On the other hand, the strong convexity implies that x∗ is
the unique stationary point of problem (3.1). Therefore, we conclude that
all accumulation points of the sequence {xk}k∈N are equal to x∗ a.s., which
further implies that the whole sequence converges to x∗ a.s. This completes
the proof.

4 Box Constraints: AS-BOX method

Within this section, we observe the general box-constrained problems (1.1).
The analysis is essentially the same as for the non-negativity constraints
case, and we focus on the differences needed to extend the results. The main
difference is in the projection form, which further influences the changes
in the definition of rDk

. These are, in fact, the only two modifications
with respect to the AS-NC algorithm, as will be stated in the sequel. The
convergence analysis is completely the same, except for the proof of Theorem
3.3, which needs to be adapted to the general case. We start by analyzing
the projection operator and specifying the form of the search direction in
this setting.

Considering the set S = {x ∈ Rn | li ≤ xi ≤ ui, i = 1, ..., n}, the
projection operator is defined by (2.1) and the search direction (3.2) is thus
given by

[pk]i =


li − [xk]i, [xk]i − [∇fNk

(xk)]i < li,

−[∇fNk
(xk)]i, li ≤ [xk]i − [∇fNk

(xk)]i ≤ ui, i = 1, . . . , n

ui − [xk]i, [xk]i − [∇fNk
(xk)]i > ui.

(4.1)
Analogously to (3.3) we define

[ĨNk
]i =


1, if [xk]i − [∇fNk

(xk)]i < li,

2, if li ≤ [xk]i − [∇fNk
(xk)]i ≤ ui, i = 1, . . . , n

3, if [xk]i − [∇fNk
(xk)]i > ui,

and the indicator vector ĨDk
accordingly. Then, the sparsity similarity vector

analogous to (3.4) is defined as

r̃Dk
= ∥ĨNk

− ĨDk
∥. (4.2)

4.1 The Algorithm

The algorithm differs from AS-NC only in steps S2 and S4. We state it for
completeness.
Algorithm 2: AS-BOX (Additional Sampling - BOX constraints)

S0 Initialization. Input: x0 ∈ S,N0 ∈ N, β, c, c1 ∈ (0, 1), C > 0, {εk}
satisfying (2.5). Set k := 0.
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S1 Subsampling. If Nk < N , choose Nk via (2.4). Else, set fNk
= f .

S2 Search direction. Compute pk via (4.1).

S3 Step size. Find the smallest j ∈ N0 such that tk = βj satisfies

fNk
(xk + tkpk) ≤ fNk

(xk) + c1tk(∇fNk
(xk))

T pk + εk. (4.3)

Set x̄k = xk + tkpk.

S4 Additional sampling.
If Nk = N , set xk+1 = x̄k, k = k + 1 and go to step S1.
Else choose Dk via (2.6) and compute

sk = πS(xk −∇fDk
(xk))− xk (4.4)

and r̃Dk
defined by (4.2).

S5 Sample size update.
If

r̃Dk
= 0 and fDk

(x̄k) ≤ fDk
(xk)− c∥sk∥2 + Cεk, (4.5)

Nk+1 = Nk.
Else choose Nk+1 ∈ {Nk + 1, ..., N}.

S6 Iterate update.
If

fDk
(x̄k) ≤ fDk

(xk)− c∥sk∥2 + Cεk

holds set xk+1 = x̄k.
Else set xk+1 = xk.

S7 Counter update. Set k = k + 1 and go to Step S1.

4.2 Convergence analysis

The convergence analysis is conducted under the same set of assumptions.
Notice that the results of Lemma 3.1 and 3.2 also hold for AS-BOX. Now,
we state the result analogous to Theorem 3.3. Notice that k̃ has the same
role as in Theorem 3.3.

Theorem 4.1. Suppose that Assumption A1 holds. Then a.s. there exists
a finite, random iteration k̃ such that for all k ≥ k̃ there holds

f(xk+1) ≤ f(xk)− c̄∥d(xk)∥2 + C̄εk,

where c̄ = min{c, c1, 2c1(1− c1)β/L} and C̄ = max{1, C}.
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Proof. The first part of the proof is completely the same as the proof of
Theorem 3.3. Consider first the FS scenario. Analogously as in the proof of
Theorem 3.3 we derive the inequality

f(xk+1) ≤ f(xk)− c1tmin∥d(xk)∥2 + εk. (4.6)

In the MB case, proceeding as in Theorem 3.3 we conclude that for all k ≥ k1
there holds

f(xk+1) ≤ f(xk)− c
N∑
j=1

wj∥sjk∥
2 + Cεk. (4.7)

Notice that k1 is again defined in Lemma 3.1. Now, let us define the following
sets of indices

LNk
:= {i ∈ {1, . . . , n} | [xk]i − [∇fNk

(xk)]i < li} ,
INk

:= {i ∈ {1, . . . , n} | li ≤ [xk]i − [∇fNk
(xk)]i ≤ ui} ,

UNk
:= {i ∈ {1, . . . , n} | [xk]i − [∇fNk

(xk)]i > ui} .

Using the same arguments as in the proof of Theorem 3.3 we conclude that
for all k ≥ k1 we have

LNk
= L1

k = · · · = LN
k , INk

= I1
k = · · · = IN

k , UNk
= U1

k = · · · = UN
k ,
(4.8)

where for each j = 1, . . . , N , we define

Lj
k := {i ∈ {1, . . . , n} | [xk]i − [∇fj(xk)]i < li} ,

Ij
k := {i ∈ {1, . . . , n} | li ≤ [xk]i − [∇fj(xk)]i ≤ ui} ,

U j
k := {i ∈ {1, . . . , n} | [xk]i − [∇fj(xk)]i > ui} .

This further implies that for all k ≥ k1, for all i ∈ LNk
, for all j ∈ N , there

holds [xk]i − [∇fj(xk)]i < li, i.e., [xk]i < [∇fj(xk)]i + li, and thus

[xk]i =
N∑
j=1

wj [xk]i <
N∑
j=1

wj([∇fj(xk)]i+li) = [∇f(xk)]i+li, for all i ∈ LNk
.

Similarly, for all i ∈ UNk
, we obtain [xk]i−[∇f(xk)]i > ui, and for all i ∈ INk

li ≤ [xk]i − [∇f(xk)]i ≤ ui. Therefore, for all k ≥ k1 we have

[d(xk)]i =


li − [xk]i, if i ∈ LNk

,

−[∇f(xk)]i, if i ∈ INk
,

ui − [xk]i, if i ∈ UNk
.

Now, let us estimate the norm of d(xk) for k ≥ k1 as follows

∥d(xk)∥2 =

n∑
i=1

([d(xk)]i)
2 (4.9)

=
∑

i∈LNk

(ℓi − [xk]i)
2 +

∑
i∈INk

([∇f(xk)]i)
2 +

∑
i∈UNk

(ui − [xk]i)
2.
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Recalling the definition sjk := πS(xk −∇fj(xk))−xk, due to (4.8) we obtain

[sjk]i =


ℓi − [xk]i, if i ∈ LNk

,

−[∇fj(xk)]i, if i ∈ INk
,

ui − [xk]i, if i ∈ UNk
,

for all k ≥ k1 and all j ∈ N . Hence, for i ∈ LNk
and k ≥ k1 there holds

N∑
j=1

wj([s
j
k]i)

2 =

N∑
j=1

wj(li − [xk]i)
2 = (li − [xk]i)

2,

and thus ∑
i∈LNk

N∑
j=1

wj([s
j
k]i)

2 =
∑

i∈LNk

(li − [xk]i)
2. (4.10)

Similarly, for i ∈ UNk
, we have

N∑
j=1

wj([s
j
k]i)

2 =
N∑
j=1

wj(ui − [xk]i)
2 = (ui − [xk]i)

2,

and hence ∑
i∈UNk

N∑
j=1

wj([s
j
k]i)

2 =
∑

i∈UNk

(ui − [xk]i)
2. (4.11)

Now, for i ∈ INk
,

([∇f(xk)]i)
2 =

 N∑
j=1

wj [∇fj(xk)]i

2

≤
N∑
j=1

wj([∇fj(xk)]i)
2 =

N∑
j=1

wj([s
j
k]i)

2,

which further implies

∑
i∈INk

([∇f(xk)]i)
2 ≤

∑
i∈INk

N∑
j=1

wj([s
j
k]i)

2. (4.12)

Combining (4.9), (4.10), (4.11), and (4.12), we obtain

∥d(xk)∥2 ≤
∑

i∈LNk

N∑
j=1

wj([s
j
k]i)

2 +
∑

i∈INk

N∑
j=1

wj([s
j
k]i)

2 +
∑

i∈UNk

N∑
j=1

wj([s
j
k]i)

2

=
n∑

i=1

N∑
j=1

wj([s
j
k]i)

2 =
N∑
j=1

wj

n∑
i=1

([sjk]i)
2 =

N∑
j=1

wj∥sjk∥
2. (4.13)
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Furthermore, combining this with (4.7) we obtain for all k ≥ k1

f(xk+1) ≤ f(xk)− c∥d(xk)∥2 + Cεk. (4.14)

Finally, Taking into account both scenarios (FS and MB), i.e., (4.14) and
(4.6), we conclude the proof.

The proofs of the following three main results for AS-BOX are the same
as for AS-NC, so we only provide statements for completeness.

Theorem 4.2. Suppose that Assumptions A1 and A2 hold. Then a.s. every
accumulation point of sequence {xk}k∈N generated by AS-BOX is a station-
ary point of problem (1.1).

Theorem 4.3. Suppose that Assumptions A1, A2 and A3 hold. Then the
expected number of iterations to reach ∥d(xk)∥ < ν is upper bounded by

k̂E =

⌈
N − 1

q

⌉
+

⌈
CFS
b − flow + Cε̄

c̄ν2

⌉
,

where c̄ is as in Theorem 3.3, CFS
b as in (3.21) and q = min{w1, ..., wN}N−1.

Theorem 4.4. Suppose that Assumption A1 holds and that the sequence
{xk}k∈N generated by AS-BOX is bounded. If the function f is strongly
convex, then limk→∞ xk = x∗ a.s.

5 Numerical results

In this section, we present numerical experiments designed to evaluate the
performance of the proposed Algorithm AS-BOX and to compare it with ex-
isting methods from the literature. In particular, we focus on a comparison
with the stochastic gradient-based interior-point method (SIPM) developed
in [7], which was designed for solving smooth optimization problems with
box constraints. The second benchmark method we consider is PSGM (Pro-
jected Stochastic Gradient Method) as in [7]. In each iteration of the PSGM
a stochastic gradient is computed and projected onto the feasible region de-
fined by the box constraints. All the parameters used in our work that are
related to SIPM and PSGM are the same as those provided in the numerical
results section of [7].

The experiments comprise two binary classification models: 1) logis-
tic regression (convex); 2) a single-hidden-layer neural network with cross-
entropy loss (nonconvex). The experiments were conducted on datasets
from the LIBSVM repository, namely Mushrooms (8124 samples, 112 fea-
tures) and IJCNN1 (49990 samples, 22 features). These datasets are widely
used benchmarks due to their diversity in structure, which enables a com-
prehensive evaluation of algorithmic performance under varying problem
structures. Labels were encoded in {−1, 1} format for binary classification.
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We generated x0 for each problem with elements drawn from a uniform
distribution over [−0.01, 0.01]. In both experiments, for the AS-BOX algo-
rithm we use the following parameters: Dk = 1, C = 1, β = 0.1, η = 10−4,
c = 10−4, εk = 1

k1.1
.

5.1 Logistic Regression Problem

The first benchmark problem is given by

min
x∈[−1, 1]n

1

N

N∑
i=1

log
(
1 + exp(−bia

⊤
i x)

)
,

where (ai, bi) are the training samples, bi ∈ {−1, 1} are binary labels. This
model is convex and commonly used as a baseline for large-scale classification
tasks. Box constraints [−1, 1]n were imposed to conform with the setup in
[7] and to enable direct comparison with existing stochastic methods. We
model the computational cost by FEVk – the number of scalar products
required by the specified method to compute xk, starting from the initial
point x0.

To evaluate the performance of the considered methods, we present: the
distance between xk and the solution x∗ of the considered problem, i.e.,
||xk − x∗||, against the computational cost measure FEVk.

Figure 1: Distance to the solution ||xk −x∗|| versus FEVk for logistic regression on the
Mushrooms dataset.

In the Figure 1, the comparison of the three algorithms (AS-BOX, SIPM,
and PSGM) is demonstrated on the Mushrooms dataset. The graph shows
the Euclidean distance ||xk − x∗|| as a function of the number of scalar
products FEVk, where AS-BOX achieves the fastest convergence toward the
reference solution. SIPM shows a slower but steady decrease, while PSGM
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seems to be stagnating. A similar behavior can be observed on the IJCNN1
dataset (Figure 2), where AS-BOX again achieves the best performance
and reaches the smallest distance to the reference solution, attaining an
accuracy level of 10−1 between 150,000 and 200,000 FEVk, SIPM follows
with moderate convergence, and PSGM remains the slowest method.

Figure 2: Distance to the solution ||xk − x∗|| versus FEVk for logistic regression on the
IJCNN1 dataset.

5.2 Neural Network with Cross-Entropy Loss

The second problem considers training a single-hidden-layer neural network
for binary classification. Let tanh(·) be the activation function in the hidden
layer, while the output layer uses a sigmoid activation. The network output
is therefore given by

σ
(
W2 tanh(W1a+ b1) + b2

)
,

where W1,W2 are weight matrices and b1, b2 are bias vectors. The training
objective is the average cross-entropy loss

min
x∈[−1, 1]d

1

N

N∑
i=1

[
− yi log(ŷi)− (1− yi) log(1− ŷi)

]
,

where x collects all parameters (W1,W2, b1, b2) and d denotes the total num-
ber of network parameters. As in the logistic regression case, the parameters
are constrained to lie within [−1, 1].

This problem is inherently nonconvex and poses a stronger challenge to
optimization methods. Its inclusion in the test suite allows us to assess the
robustness of AS-BOX when applied to neural network training under box
constraints. Since the solution of such problem is not unique in general, we
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plot the optimality measure ||d(xk)|| against the computational cost measure
FEVk to evaluate the performance of the considered methods.

The Figure 3 part a) shows the cross-entropy loss trajectory on theMush-
rooms dataset. AS-BOX again outperforms its competitors, with the loss
dropping from approximately 2 × 10−1 to below 10−2 within 105 evalua-
tions. SIPM displays a slower descent, converging around 5×10−2, whereas
PSGM initially outperforms AS-BOX but stagnates around 3 × 10−2. The
results suggest that AS-BOX maintains its advantage across problems of
different structure. Figure 3 part b) reports the stationarity measure for
the Mushrooms dataset. Consistent with the loss plots, AS-BOX achieves
the most significant reduction, descending from roughly 10−1 to about 10−2

and exhibiting a stable convergence pattern despite minor stochastic fluc-
tuations. SIPM steadily decreases but remains above 3 × 10−2 by the end,
while PSGM flattens out near 4× 10−2 early in the run.

a) b)

Figure 3: Part a): Cross-entropy loss versus FEVk for the Mushrooms dataset. Part b):
Stationarity measure ∥d(xk)∥ versus FEVk for the Mushrooms dataset.

Next, Figure 4 part a) illustrates the evolution of the cross-entropy loss
with respect to the number of function evaluations (FEV) for the IJCNN1
dataset. All algorithms start from a comparable initial loss of approximately
4.2 × 10−1. The proposed AS-BOX method demonstrates the fastest and
most consistent decrease, reaching a loss below 3.2× 10−1 after roughly 4×
105 evaluations. The part b) on Figure 4 presents the stationarity measure
||d(xk)|| as a function of FEVk on the same dataset. This metric reflects how
close the iterates are to satisfying the first-order optimality conditions under
box constraints. AS-BOX exhibits the steepest decline, dropping below
2×10−2 by the end of the run, indicating near-stationarity. SIPM converges
more slowly, stabilizing around 4× 10−2, while PSGM decreases rapidly at
first but stagnates near 4×10−2. This highlights AS-BOX’s ability to achieve
higher stationarity accuracy compared to the other methods. These results
confirm the superior long-term convergence behavior of AS-BOX.

When comparing the results obtained on the IJCNN1 and Mushrooms
datasets, a consistent trend emerges: the AS-BOX algorithm achieves the
biggest decrease in both cross-entropy loss and stationarity measure within
the considered FEV budget, outperforming SIPM and PSGM across all ex-
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a) b)

Figure 4: Part a): Cross-entropy loss versus FEVk for the IJCNN1 dataset. Part b):
Stationarity measure ∥d(xk)∥ versus FEVk for the IJCNN1 dataset.

periments. However, the rate of convergence differs between the datasets
due to their structural properties. The Mushrooms dataset, being smaller
and with more separable data, allows all algorithms to achieve lower loss val-
ues more quickly, with AS-BOX reaching near-optimal performance within
105 evaluations. In contrast, IJCNN1 is higher-dimensional and less sepa-
rable, which slows down convergence for all methods; nevertheless, AS-BOX
maintains a significant advantage over SIPM and PSGM, achieving roughly
twice the reduction in stationarity by the end of the run.

6 Conclusions

A novel method (AS-BOX) for box-constrained weighted finite sum prob-
lems has been proposed. This method falls into the framework of stochastic
projected gradient methods and uses non-monotone line search to adaptively
determine the step size sequence, while retaining the feasibility of the iter-
ates. The main novelty of AS-BOX lies in the adaptation of an additional
sampling technique to box-constrained weighted finite-sum problems. Thus,
the resulting method adaptively changes the sample size and conforms to
different structures of the problems. AS-BOX also has a theoretical back-
ground - a.s. convergence is proved under a standard set of assumptions,
without imposing the convexity. This makes it suitable for NN problems
as well. Moreover, complexity analysis has been conducted as well, and a
stronger convergence result is provided for strongly convex problems such
as regularized logistic regression. Numerical study showed the efficiency of
AS-BOX.

Future work naturally tends to additional sampling methods for finite-
sum problems with general, nonlinear equality and inequality constraints.
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A Appendix

The proof of Lemma 3.1

Proof. Assume that Nk < N for all k ∈ N. Since the sample size sequence
{Nk} in IPAS Algorithm is non-decreasing, there exists some N < N such
that Nk = N for all k large enough. Now, let us assume that there is no
k1 ∈ N such that D−

k = ∅ for all k ≥ k1. Then there exists an infinite
sub-sequence of iterations K ⊆ N such that D−

k ̸= ∅ for all k ∈ K. Without
loss of generality, let us assume that Nk = N for all k ∈ K. Since Dk is
chosen with finitely many possible outcomes with the same distribution for
each k, there exists q > 0 such that P(Dk ∈ D−

k ) ≥ q for all k ∈ K. In fact,
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given (2.6) and the fact that Dk ≤ N − 1 for each k, we can conclude that
q = (mins∈{1,2,...,N}{ws})N−1. So, we have

P(Dk ∈ D+
k , k ∈ K) ≤ Πk∈K(1− q) = 0.

Thus, a.s. there exists an iteration k̃ ∈ K such that Dk̃ ∈ D−
k̃
and according

to the algorithm, this further implies that Nk̃+1 > Nk̃ = N̄ , and thus Nk >
N̄, for all k large enough. This contradicts the assumption of Nk = N̄ for
all k large enough.
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