A non-monotone trust-region method with noisy
oracles and additional sampling

Natasa Kreji¢!, ““Natasa Krklec Jerinkié¢!,
Angeles Martinez?, “Mahsa YousefiZ"

Department of Mathematics and Informatics, University of Novi Sad,
Trg Dositeja Obradovica 4, Novi Sad, 21000, Serbia.
Z*Department of Mathematics, Informatics, and Geosciences, University
of Trieste, Via Alfonso Valerio 12/1, Trieste, 34127, Italy.

*Corresponding author: mahsa.yousefi@phd.units.it;
Contributing authors: natasak@uns.ac.rs; natasa.krklec@dmi.uns.ac.rs;
amartinezQunits.it;

Abstract

In this work, we introduce a novel stochastic second-order method, within the
framework of a non-monotone trust-region approach, for solving the uncon-
strained, nonlinear, and non-convex optimization problems arising in the training
of deep neural networks. The proposed algorithm makes use of subsampling
strategies that yield noisy approximations of the finite sum objective function and
its gradient. We introduce an adaptive sample size strategy based on inexpen-
sive additional sampling to control the resulting approximation error. Depending
on the estimated progress of the algorithm, this can yield sample size scenarios
ranging from mini-batch to full sample functions. We provide convergence analy-
sis for all possible scenarios and show that the proposed method achieves almost
sure convergence under standard assumptions for the trust-region framework. We
report numerical experiments showing that the proposed algorithm outperforms
its state-of-the-art counterpart in deep neural network training for image clas-
sification and regression tasks while requiring a significantly smaller number of
gradient evaluations.

Keywords: Stochastic Optimization, Second-order Methods, Non-monotone
Trust-Region, Quasi-Newton, Deep Neural Networks Training, Adaptive Sampling

MSC Classification: 90C30 , 90C06 , 90C53 , 90C90 , 65K05

https://orcid.org/0000-0003-3348-7233
https://orcid.org/0000-0001-5195-9295
https://orcid.org/0000-0003-4826-1114
https://orcid.org/0000-0002-2937-9654

1 Introduction

Deep learning (DL) as a leading technique of machine learning (ML) has attracted
much attention and become one of the most popular directions of research. DL
approaches have been applied to solve many large-scale problems in different fields
by training deep neural networks (DNNs) over large available datasets. Let N =
{1,2,..., N} be the index set of the training dataset {(x;,y;)}~.; with N = || sample
pairs including input z; € R? and target y; € R®. DL problems are often formulated
as unconstrained optimization problems with an empirical risk function, in which a
parametric function il(.’L'Z';) : R? — R is found such that the prediction errors are
minimized. More precisely, we obtain the following problem

min f(w Zfz (1)

weR?

where w € R™ is the vector of trainable parameters and f;(w) £ L(y;, h(xs; w)) with
a relevant loss function L(-) measuring the prediction error between the target y; and
the network’s output iz(xl, w). The DL problem (1) is large-scale, highly nonlinear, and
often non-convex, and thus it is not straightforward to apply traditional (deterministic)
optimization algorithms like steepest descent or Newton-type methods. Recently, much
effort has been devoted to the development of DL optimization algorithms. Popular DL
optimization methods can be divided into two general categories, first-order methods
using gradient information, e.g. steepest gradient descent, and (higher-) second-order
methods using also curvature information, e.g. Newton methods [1]. On the other
hand, since the full (training) sample size N in (1) is usually excessively large for
a deterministic approach, these optimizers are further adapted to use subsampling
strategies that aim to reduce computational costs. Subsampling strategies employ
sample average approximations of the function and its gradient as follows

o (w Z filw), Vi (w Z V fi(w (2)

zENk lENk

where NV}, C N represents a subset of the full (training) sample set at iteration k and
Ny, is the subsample size, i.e., N = [Ng].

In this work, we propose a second-order trust-region (TR) algorithm [2] adapted
to the stochastic framework where the step and the candidate point for the next
iterate are obtained using subsampled function values and subsampled gradients (2).
The quadratic TR models are constructed by using Hessian approximations, without
imposing a positive definiteness assumption, as the true Hessian in DL problems may
not be positive definite due to their non-convex nature. Moreover, having in mind that
we work with noisy approximations (2), imposing a strict decrease might be unnec-
essary. Thus, we employ a non-monotone trust-region (NTR) approach; see e.g. [3]
or references therein. Unlike the classical TR, our decision on acceptance of the trial
point is not based only on the agreement between the model and the approximate

objective function decrease, but on the independent subsampled function. This ”con-
trol” function which is formed through additional sampling, similar to one proposed
in [4] for the line search framework, also has a role in controlling the sample average
approximation error by adaptively choosing the sample size. Depending on the esti-
mated progress of our algorithm, this can yield sample size scenarios ranging from
mini-batch to full sample functions. We provide convergence analysis for all possible
scenarios and show that the proposed method achieves almost sure convergence under
standard assumptions for the TR framework such as Lipschitz-continuous gradients
and bounded Hessian approximations.

Literature review. Stochastic first-order methods such as stochastic gradient
descent (SGD) method [5, 6], and its variance-reduced [7-10] and adaptive [11, 12]
variants have been widely used in many ML and DL applications likely because of their
proven efficiency in practice. However, due to the use of only gradient information,
these methods come with several issues like, for instance, relatively slow convergence,
high sensitivity to the hyper-parameters, stagnation at high training loss [13], diffi-
culty in escaping saddle points, and suffering from ill-conditioning [14]. To cope with
some of these issues, there are some attractive alternatives as well as their stochastic
variants aimed at incorporating second-order information, e.g. Hessian-Free methods
[15-20] which find an estimation of the Newton direction by (subsampled) Hessian-
vector products without directly calculating the (subsampled) Hessian matrix, and
limited memory Quasi-Newton methods which construct some approximations of the
true Hessian only by using gradient information. Furthermore, algorithms based on
Quasi-Newton methods have been the subject of many research efforts both in convex
(see e.g. [21, 22] and references therein) and non-convex settings (see e.g. [23—-25] and
references therein), or [26, 27] where the advantage of modern computational architec-
tures and parallelization for evaluating the full objective function and its derivatives
is employed. In almost all these articles, the Quasi-Newton Hessian approximation
used is BFGS or limited memory BFGS (L-BFGS) with positive definiteness property,
which is often considered in the line-search framework except e.g. [28, 29]. A disad-
vantage of using BFGS may occur when it tries to approximate the true Hessian of
a non-convex objective function in DL optimization. We refer to [30] as one of the
earliest works in which the limited memory Quasi-Newton update SR1 (L-SR1) allow-
ing for indefinite Hessian approximation was used in a trust-region framework with a
periodical progressive overlap batching.

The potential usefulness of non-monotonicity may be traced back to [31] where
a non-monotone line-search technique was proposed for the Newton method to relax
some standard line-search conditions and to avoid slow convergence of a deterministic
method. Similarly, the idea of non-monotonicity exploited for trust-region could be
dated back to [32] and later e.g. [3, 33] for a general unconstrained minimization prob-
lem. This idea was also used for solving problems such as (1) in a stochastic setting; in
[34], a class of algorithms was proposed that uses non-monotone line-search rules fit-
ting a variable sample scheme at each iteration. In [35], a non-monotone trust-region
algorithm using fixed-size subsampling batches was proposed for solving (1). Recently,
in [36] a noise-tolerant TR algorithm has been proposed at the time of writing this
paper, in which both the numerator and the denominator of the TR reduction ratio

are relaxed. The convergence analysis presented in [36] is based on the assumption
that errors in function and gradient evaluations are bounded and do not diminish as
the iterates approach the solution. In [37] the authors derive high probability complex-
ity bounds for first- and second-order trust-region methods with noisy oracles, where
the targeted vicinity of the solution depends on the quality of the stochastic estimates
of the objective function and its gradient. They analyze modified trust-region algo-
rithms that utilize stochastic zeroth-order oracles both in the bounded noise case and
the independent subexponential noise case. Inspired by [35], in this work, we intro-
duce a new second-order method in a subsampled non-monotone trust-region (NTR)
approach, which works well with any Hessian approximation and employs an adap-
tive subsampling scheme. The foundation of our method differs from that of [36, 37].
Our method is based on an additional sampling strategy helping to control the non-
martingale error due to the dependence between the non-monotone TR radius and the
search direction. To the best of our knowledge, there are only a few approaches using
additional sampling; see [4, 38, 39]. The rule that we apply in our method mainly
corresponds to that presented in [4] where it is used in a line-search framework and
plays a role in deciding whether to switch from the line-search to a predefined step
size sequence or not. We adapted this strategy to the TR framework and used it to
control the sample size in our method. It is worth pointing out that the additional
sampling can be arbitrarily small, i.e. the sample size can even be 1, and hence, it does
not increase the computational cost significantly. Adaptive sample size strategies can
be also found in other works, for instance, a type of adaptive subsampling strategy
was applied for the STORM algorithm [40, 41] which is also a second-order method
in a standard TR framework. A different strategy using inexact restoration was pro-
posed in [42] for a first-order standard TR approach. The variable size subsampling
is not restricted to TR frameworks, see e.g. [25] where a progressive subsampling was
considered for a line-search method.

Notation. Throughout this paper, vectors and matrices are respectively written in
lowercase and uppercase letters unless otherwise specified in the context. The symbol
£ is used to define a new variable. N and R™ denote the set of natural numbers and the
real coordinate space of dimension n, respectively. The set of positive real numbers and
non-negative integers are denoted by R and Ny, respectively. Subscripts indicate the
elements of a sequence. For a random variable X, the mathematical expectation of X
and the conditional expectation of X given the o-algebra F are respectively denoted
by E(X) and E(X|F). The Euclidean vector norm and the corresponding matrix norm
are denoted by ||.||, while the cardinality of a set or the absolute value of a number is
indicated by |.|. Finally, "a.s” abbreviates the expression ”almost surely”.

Outline of the paper. In Sect. 2, we describe the algorithm and all the nec-
essary ingredients. In Sect. 3, we state the assumptions and provide an almost sure
convergence analysis of the proposed method. Section 4 is devoted to the numerical
evaluation of a specific version of the proposed algorithm that makes use of an L-SR1
update and a simple sampling rule; we make a comparison with the state-of-the-art
method STORM [40, 41] to show the effectiveness of the proposed method for training
DNNs in classification and regression tasks. A comparison with the popular first-order
method ADAM [12] is also presented. Some conclusions are drawn in Sect. 5.

2 The algorithm

Within this section, we describe the proposed method called ASNTR (Adaptive Sub-
sample Non-monotone Trust-Region). At iteration k, given the current iteration wy,
we form a quadratic model based on the subsampled function (2), with gr = V far, (wi)
and an arbitrary Hessian approximation Bj satisfying

IBell < L, 3)

for some L > 0 and solve the common TR subproblem to obtain the relevant direction

, 1
pe = arg min Qx (p) £ 5P Bip+gip st lplly < o, (4)

for some TR radius §; > 0. We assume that at least some fraction of the Cauchy
decrease is obtained, i.e., the direction satisfies

1o it Il
Qulrr) < g llonlmin{sy, T E) 5)

for some ¢ € (0,1]. This is a standard assumption in TR and it is not restrictive
even in the stochastic framework. In the classical deterministic TR approach, the
trial point w; = wy + pi acceptance is based on the agreement between the decrease
in the function and that of its quadratic model. However, since we are dealing with
noisy approximations (2), we modify the acceptance strategy as follows. Motivated
by the study in [35], we propose a non-monotone TR (NTR) framework instead of
the standard TR one because we do not want to impose a strict decrease in the
approximate function. Therefore, we define the relevant ratio as follows

a I (we) =7,
A INe 8] " TN 6
where
TNy £ ka (wk) + tkék; ty > 0, (7)
and -
Dt <t < oo (8)
k=0

The sequence {tx} is a summable sequence of positive numbers and one can define it
in different ways to control the level of non-monotonicity in each iteration. Different
choices of {tx} lead to different upper bounds of its sum which we denote by ¢. We
allow N to be chosen arbitrarily in ASNTR. However, even if we impose uniform
sampling with replacement to N such that it yields an unbiased estimator fa, (wy) of
the objective function at wy,, the dependence between N, and w; may produce a biased
estimator far, (w;) of f(wy). This is because N, directly affects the TR model Q(p)
through the approximate gradient gr = V fa, (wg) and thus p; also depends on the
choice of NV. Thus, w; = wy + py is also dependent on Ny. To overcome this difficulty,

we apply an additional sampling strategy [4]. To this end, at every iteration at which
N < N, we choose another independent subsample set represented by the index set
Dy C N of size Dy = |Di| < N and calculate fp, (wg), fp, (w;) and g = V fp, (wg)
(see lines 5-6 of the ASNTR algorithm). There are no theoretical requirements on
the size of Dy, and hence, the additional sampling might be done cheaply, i.e. with a
modest number of additional samples. In fact, in our experiments, we set Dy = 1 for
all k. Furthermore, in the spirit of TR, we define a linear model as Ly (v) £ v” gy, and
consider another agreement measure defined as follows

A ka (wt) — 'Dy,
N ©)
where
D, £ ka (wk) + 5k£ka Ek >0, (10)
and -
it <i< oo (11)
k=0

We assume that {#;} is a summable sequence of positive numbers and that ¢ is an
upper bound of the sum of {#;}. Therefore, ¢ is controllable through the choice of
{#1}. Notice that choosing a greater ;, yields more chances for the trial point w; to
be accepted. The denominator in (9) is the linear model computed along the negative
gradient g and thus it is negative. Therefore, the condition pp, > v corresponds
to Armijo-like condition for the function fp,, similar to one in [4] i.e., fp, (w:) <
I (wi) — v||V fp, (wi)||? + 6ktr. If Ny < N, the trial point is accepted only if both
pn,, and pp, are bounded away from zero; otherwise, if the full sample is used, the
decision is made by pp, solely as in deterministic NTR (see lines 23-35 of the ASNTR
algorithm). The rationale behind this is the following: we double-checked that the trial
point obtained employing fas, is acceptable also with respect to another approximation
of the objective function fp,. Notice that Dy is chosen with replacement, uniformly
and randomly from N, independently from the choice of N}, and after the trial point
wy is already determined. Therefore, conditionally on o-algebra generated by all the
previous choices of Nj,j =1,...,k and D}, j = 1,...,k — 1, the approximation fp, (w;)
is an unbiased estimator of f(w;).

Another role of pp, is to control the sample size. If the obtained trial point w; yields
an uncontrolled increase in fp, in a sense that pp, < v, ie., fp,(wi) > fp,(wr) —
V||V fp,. (w)||?+0xts, we conclude that we need a better approximation of the objective
function and we increase the sample size N by choosing a new sample set A, for the
next iteration. Roughly speaking, an uncontrolled increase in fp, is possible if the
approximate function fp, is very different from fa, given that the search direction is
computed for fu, . The sample can also be increased if we are too close to a stationary
point of the approximate function fa, . This is stated in line 7 of ASNTR, where h
represents an SAA error estimate given by

N — Ng

h(Ny) £ N

Algorithm 1 ASNTR

1: Initialization: Choose Ny C N. Set k = 0, {t;} € RY satisfying (8), {f;} € RY satisfying
(11), do and dmaz € (0,00), € € [0,3), v € (0,1/4), 0 < 71 <05 < 7 < 1 < 73,
0<n<mnp<3/4, and 1 € (1,72).

2: Given far, (wg), g and By, satisfying (3), solve (4) for py such that (5) holds, and define
the trial iterate wy = wy, + pi.

3: Given fys, (wt), compute pps, using (6).

4: if N < N then

5: Choose Dy, C N randomly and uniformly, with replacement.
6: Given fp, (wg), Vfp, (wk), and fp, (w¢), compute pp, using (9).
7: if ||gx|| < eh(Ny) then

8: Increase Ny to Njy1 and choose Ny 1.

9: else

10: if pp, < v then

11: Increase Ni to N1 and choose Ny 1.

12: else

13: if pp;, <n then

14: Set N1 = Ni and Ny = N

15: else

16: Set Ni11 = Ni and choose Ny 1.

17: end if

18: end if

19: end if

20: else

21: Nk+1 =N

22: end if

23: if N < N then
24: if ppr, > n and pp, > v then

25: Wh41 = Wt

26: else

27: Wg41 = Wk-

28: end if

29: else

30: if pnr, > n then

31: Wh41 = Wt

32: else

33: Wg41 = Wk-

34: end if

35: end if

36: if ppnr, <71, then

37: 5k+1 = T1<5k

38: else if pp;, > 12 and ||pg|| > ™20k, then
39: 6k+1 = min{7'3§k, 5maz},

40: else

41: 6k+1 = 5k-

42: end if

43: if Some stopping conditions hold then
44: Stop training

45: else

46: Set k =k + 1 and go to step 2.
47: end if

The algorithm can also keep the same sample size (see lines 14 and 16 of the
ASNTR algorithm). Keeping the same sample N} in line 14 corresponds to the case
where the trial point is acceptable with respect to fp, , but we do not have a decrease
in fa,. In that case, the (non-monotone) TR radius (dy) is decreased (see line 37 of
ASNTR). Otherwise, we allow the algorithm in line 16 to choose a new sample of the
current size and exploit some new data points. The strategy for updating the sample
size is described in lines 7-19 of the ASNTR algorithm.

Notice that the sample size cannot be decreased, and if the full sample is reached
it is kept until the end of the procedure. Moreover, it should be noted that ASNTR
provides complete freedom in terms of the increment in the sample size as well as the
choice of samples NV},. This leaves enough space for different sampling strategies within
the algorithm. As we already mentioned, mostly depending on the problem, ASNTR
can result in a mini-batch strategy, but it can also yield an increasing sample size
procedure.

The TR radius is updated within lines 36-42 of ASNTR. We follow a common
update strategy for TR approaches. It is completely based on fa; since it is related
to the error of the quadratic model, and not to the SAA error which we control by
additional sampling. Thus, if the py, is small we decrease the trust-region size (see
lines 36-37 of ASNTR). Otherwise, the trust-region is either enlarged or kept the same
(see lines 38-42 of ASNTR). Notice that the additional condition that relates the norm
of the search direction py, and the current trust-region size J; does not play any role in
the theoretical analysis but it is important in practical implementation. We need some
predetermined hyper-parameters for ASNTR, which are established in the algorithm’s
initial line according to ones outlined in relevant references (e.g. [1, 30]), and to meet
the assumptions underlying the convergence analysis.

3 Convergence analysis

We make the following standard assumption for the TR framework needed to prove
the a.s. convergence result of ASNTR.

Assumption 1. The functions f;,i = 1,...,N are bounded from below and twice
continuously-differentiable with L-Lipschitz-continuous gradients.

First, we prove an important lemma that will help us prove the main result, the a.s.
convergence of ASNTR. There are two possible scenarios depending on the size of the
sample sequence: 1) mini-batch scenario - where the subsampling is employed in each
iteration; 2) deterministic scenario - where the full sample is reached eventually. We
start the analysis by considering the first, mini-batch scenario. In Lemma 1, we show
that in this case there holds pp, > v for any realization of Dy and all k sufficiently
large.

Let us denote by D,‘i‘ the subset of all possible outcomes of Dy, at iteration k that
satisfy pp, > v, i.e.,

D) ={Dr C N'| fo, (wi) < fp, (wi) — VIV fp, (wi)|I* + 6ktr}. (12)

Notice that if Dy, € D,j and ppr,, > 71 then wiy; = w;. On the other hand, if Dy, € D,j
and pp;, < n then wyi1 = wy. Finally, if Dy € D, , where

D, = {Dw CN | fp,(w) > fp, (wi) — V||V fp, (wi)||* + Orlr}, (13)

we have again wi41 = wy. Notice that D,” = () if and only if pp, > v for all possible
realizations of Dy,.

Lemma 1. Suppose that Assumption 1 holds. If Ni, < N for all k € N, then a.s. there
exists k1 € N such that pp, > v for all k > ki and for all possible realizations Dy,.

Proof. Assume that N, < N for all k € N. So, there exists some N < N and kg € N
such that N, = N for all k > ko. Now, let us use the notation as in (12)-(13) and
assume that there exists an infinite subsequence of iterations K C N, such that D, # 0
for all £ € K. Since Dy, is chosen randomly and uniformly with replacement from the
finite set N and Dy < N — 1, we know that each Dj, has only finitely many possible
outcomes. More precisely, we conclude that S(Dy) < S := (2N — 2)!/((N — 1)!)?
where the upper bound comes from the combinatorics of unordered sampling with
replacement!. Therefore, there exists p € (0,1) such that P(Dy € D) > p, ie.,

P(DLeDf)<l-p=p<lforallke K. So,

P(DyeDf ke K)< [[p=0.
keK

Therefore, a.s. there exists an iteration & > ki such tllat pp, < v and the sample
size is increased, which is in contradiction with Ny, = N for all k large enough. This
completes the proof.

O

Next, we prove that the mini-batch scenario implies a non-monotone type of
decrease for all k large enough.
Lemma 2. Suppose that Assumption 1 is satisfied and Ny < N for all k € N. Then
a.s.

flwe) < fwy) = VIV (wp)]|? + Oxit,
holds for all k > ky, where ky is as in Lemma 1.

Proof. Lemma 1 implies that pp, > v, i.e.,

fop(wi) < fp, (wi) = VIV fp, (wi) I” + i, (14)

for all £ > k; and for all possible realizations of Dy a.s.. Since the sampling of Dy, is
with replacement, notice that this further yields

fiwe) < filwy) = vV fi(wp)[|* + Skt (15)

1When D), = N — 1, which is its maximal size, we choose N — 1 element from the set of N numbers
with replacement. Then, there are (Nflbtlffl) different unordered subsamples, i.e., (2N — 2)!/((N — 1)!)?
possible choices for Dy,.

for all # € A and all k > k; a.s.. Indeed, if there exists i« € AN such that (15) is
violated, then (14) is violated for at least one possible realization of Dy, namely, for
Dy = {i,4,...,3}. Thus, a.s. for all k > k; there holds

1 & 1Y 3
Flwe) =+ > filwy) < N > (filw) = VIV fi(wi) 1> + Sxtr) (16)
=1 i=1

N
= Jwr) = vy YOIV AP + il

=1
< flwg) = V||V fwp)||* + Sity,

where the last inequality comes from the fact that || - ||? is convex and therefore

N N
IV £l = 15 S Vhwol? < 5 S I i)l
i=1 =1

O

Now, let us prove that starting from some finite but random iteration, the sequence
of iterates generated by ASNTR belongs to a level set of the original objective function
f a.s.. This level set is also random since it depends on the sample path?.

Lemma 3. Suppose that Assumption 1 holds. Then a.s.

fwiyy) < f(wg) + Omae max{t, i}, k=0,1,...

where k is some finite random number, t and t correspond to those in (8) and (11)
respectively.

Proof. Let us consider both scenarios, mini-batch and deterministic separately. In
the mini-batch case, when N < N for each k, Lemma 2 implies that a.s.

fwe) < fwi) = vV fwi) | + 0kte < f(wr) + Oxt,

holds for all £ > ky, where k; is as in Lemma 1. Since w41 = w; or wg41 = wy, there
a.s.
flwry1) < fwg) + Oxtr,
holds for all k¥ > k1. So, the summability of {f} (11) and the fact that §; < 6,4, for
all k together imply that the statement of this lemma holds with k= k.
Assume now that N is achieved at some finite iteration, i.e., there exists a finite
iteration ko such that Ny = N for all k¥ > ko. Thus, the trial point for all & > ko

2The sample path or, more precisely, the realization of the sequence of iterates generated by the algorithm,
{wk }ren, depends on realization of stochastic factors within the algorithm. In our case, stochasticity comes
from the random choices of subsamples N}, and Dy, in each particular iteration k.

10

is accepted if and only if pp, > 7. This implies that for all k¥ > ks we either have

f(wgs1) = f(wy) or

c .
Flwns) < fwn) + dute = Sl minfoe, {50} < F(00) + Syt (17)
where ||gx|| = ||V f(wy)]| in this scenario. Thus, using the summability of {¢;} in (8)
we obtain the result with & = ko. O]

In order to prove the main convergence result, we assume that the expected value
of f(wj) is uniformly bounded.

Assumption 2. There exists a constant C > 0 such that E(|f(wz)|) < C, where k is
as in Lemma 8 and the expectation is taken over all possible sample paths.

This assumption, together with the result of Lemma 3, implies that a.s. the
sequence {f(wg)},~; is uniformly bounded in expectation. Moreover, the Assump-
tion 2 also implies that E(|f(wj)| | A) < Ci, where A represents the subset of all
possible outcomes (sample paths) such that the full sample is reached eventually and
(1 is some positive constant. To see this, observe that the following holds

PAE(f(wp)l | A) < PAE(|f(wp)| | A) + P(AE(f(wp)] | 4) = E(|f(wp)]) < C,

where A represents all possible sample paths that remain in the mini-batch scenario.
Thus, we obtain

Ea(lf(wp)l) := E(|f (wp) [A) < C/P(A) =: C1.
Similarly, there exists a constant Co > 0 such that
Ex(lf (wp)l) := E(f(wp)] | A) < C/P(A) =: C».

Notice that Assumption 2 is satisfied under the assumption of bounded iterates
({witren C G, where G is a compact subset of R") which is fairly common in a
stochastic optimization framework.

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold. Then the sequence
{wg} generated by ASNTR algorithm satisfies

liminf |V f(wg)]| =0 a.s.
k—o0

Proof. Let us consider two different scenarios, namely, N = N for all k large enough,
and NV < N for all k. Let us start with the first one in which N, = N for all k& > 1?;,
where k is random but finite. In this case, ASNTR reduces to the non-monotone
deterministic trust-region algorithm applied on f. By L-Lipschitz continuity of Vf,
we obtain

[P+ p) = Flw) = V7 FCwn)pil < % Il (15)

11

Now, let us denote py 2 pp;, and assume that ||V f(wg)|| > e > 0 for all k > k. Then,

ok — 1] = |f (i + pr) — flwi) = St — V7 f (wi)pr — 0.5p; Brpy| (19)
|Qk(pr)|

< 0.5L||pk||* + dxtx + 0.5L]|px?
0.5¢||gx || min{dy, I‘\llgi’inl\ }

L|pxl* + dxts
= 0.5ce min{dy, £}’

where ||gr|| = ||V f(wg)|| in this scenario. Let us define § = 557 Without loss of

generality, given that the sequence {t;} is summable and hence ¢, — 0 (see (8)), we

can assume that ¢, < L6 for all k > k. Observe now the iterations k for k > k. If
0 < 4, then di41 > k. This is due to the fact that

2 ~
or—1] < Lék + Optr < 2L F— 2L e _
0.5¢ce6y, 0.5ce 0.5¢ce 20L

(20)

<1
4’

1
5
ie., pp > % > 19 which implies that the NTR radius is not decreased; see lines 36-42
in ASNIR. Further, there exists 5 > 0 such that O > 5 for all k > k. Moreover, for
all £ > k, the assumption py < 7, where n < 11, would yield a contradiction since

it would in}ply limy 00 0x = 0. Therefore, there must exist an infinite set X C N as
K ={k>k|pr >n}. Forall k € K, we have

llgwl
1Bl

c

8

3

€ min{0, L}.

flwrsr) < fwr) + dntr, — g”ng min{dg, } < f(wk) + Omastr

Now, let ¢ = se min{S7 7 }. Since t, tends to zero, we have dpastr < ¢ for all k large
enough. Without loss of generality, we can say that this holds for all £ € K, rewriting

K = {k;};en,, we have
c
f(wkj-‘rl) < f(wkj) -5

2
Since wy41 = wy, for all k > k and k ¢ K, i.e. when py < 7, we obtain
f(wkj+1) < f(wkj) -
Thus we obtain for all j € Ny

f(wkj) < f(wko) —Jjsz < f(w]}) + dmaz ma'X{tvtN} - Jga (21)

[\CH eV

where the last inequality is due to Lemma 3. Furthermore, applying the expectation
to both sides of (21) and using Assumption 2 we get

Ea(f(wk,;)) < C1 4 Opmag max{t, t} — jg. (22)

12

Letting j tend to infinity in (22), we obtain lim; ;o Ea(f(wk,)) = —oo, which is
in contradiction with the assumption of f being bounded from below. Therefore,
IV f(wg)|| > &> 0 for all k£ > k can not be true, so we conclude that

liminf |V f(wg)|| = 0.
k—o0

Now let us consider the mini-batch scenario, i.e., Ny < N for all k, i.e., the sample
size is increased only finitely many times. According to Lemma 1 and lines 7-8 of the
algorithm, the currently considered scenario implies the existence of a finite k; such
that R

Ne=N, llgell > eh(N) 2 eg >0 and pp, > v, (23)
for all k > k; and some N < N a.s. Now, let us prove that there exists an infinite
subset of iterations K C N such that pr > n for all k € K, i.e., the trial point w;
is accepted infinitely many times. Assume a contrary, i.e., there exists some finite ko
such that px < n for all k > k5. Since 7 < 11, this further implies that limy_, . 0 = 0;
see lines 36 and 37 in Algorithm 1. Moreover, line 13 of Algorithm 1 implies that the
sample does not change, meaning that there exists N C N such that N}, = N for all
k > ks £ max{k;, ks}. By L-Lipschitz continuity of V fxr, we obtain

ek +p) — Frlwn) = V7 Lol < 2 Il (24)

For every k > 1213, then we have

_ |fxr(wi + pi) = Frr(wi) — dkte — V7 f g (wi)pre — 0.5p) Bropi|

Pk — 1 25
| | |Qx(pr)| (25)
- 0.5L||p || + Sxtr + 0.5L]||pr ||?
0.5¢|gs || min{dy, 15}
L(SIQC + Ortr
= 0.5cey min{dy, £}
Since limy_, o 0 = 0, there exists k4 such that for all k > k, we obtain
2
|pk B 1| < L5k + Ortr _ Loy, +tk.
O-5C€N§k 0.506]\7
Due to the fact that t; tends to zero, we obtain that limg ... pr = 1 which is in

contradiction with p;, < n < 1/4. Thus, we conclude that there must exist KCN
such that pp > n for all k € K. Let us define K; 2 KN {I~€1,I~cl +1,...}. Notice that
we have pp, > v and pp > n for all k € K;. Thus, due to Lemma 2, a.s. the following
holds for all k € K;

(wi) — V||V f(wi)|* + Sk,

(wr) = V|V F i) + Smasi. (26)

13

Notice that wg41 = wy in all other iterations k& > ki and k ¢ K. Rewriting
Ky ={kj}jen,, for all j € Ny, we obtain

f(wkj+1) = f(wkj-H) < f(wkj) - V”Vf(wkj)HQ + 6mazgkj'

Then, due to the summability of the sequeence {fz} in (11), and Lemma 3, the
following holds a.s. for any s € Ny

f(wkerl) < f(wko) - VZ va(wkj)”Z + 6maw£
=0

(27)

< f(wg) + Omaz max{t, £} — v >[IV f(wk,) > + Smazt-
j=0

Now, applying the expectation to both sides of the second inequality in (27), using
Assumption 2 which implies E 1 (| f(wy,)|) < C2, and the boundedness of f from below,
letting s tend to infinity yields

S EA(IV S (wi,)|?) < oo

Jj=0

Moreover, the following holds as a consequence of an extended version of Markov’s
inequality with the specific choice of the nonnegative function ®(y) = y* nondecreasing
on y > 0: for any € > 0

Pi(|Vf(we)|| > ¢) < Ex(2(IVf(we)I) _ Ea(llVf(wr,)I?)

B(e) €2 ’

Therefore, we have
(oo}
S PA(IV £ wi,)| =) < .
j=0

Finally, Borel-Cantelli Lemma implies that (in the current scenario) almost surely
lim; o ||V f(wg;)|| = 0. Combining all together, the result follows as in both scenarios
we have at least

hknl)g.}f IVf(wg)]| =0 as.

O

Finally, we analyze the convergence rate of the proposed algorithm for a restricted
class of problems stated in the following theorem.
Theorem 2. Suppose that the assumptions of Theorem 1 hold and that v < L/2.
Moreover, suppose that f is m-strongly convex and the sequence {i},} converges to zero
R-linearly. If Ny, < N for all k € N, then the sequence {wg}rex, with Ky as in (26)
converges to the unique minimizer w* of f R-linearly in the mean squared sense.

14

Proof. Considering the mini-batch scenario in the proof of the previous theorem, we
obtain

f(wkj+1) < f(wk»g) - V”vf(wk'])HQ + 5ma$tk]‘5
for all j € N a.s.. Moreover, the strong convexity of f implies

* * 2 * 7
Fwgpn) = f(w?) < flwg,) = f(w") = v 7 (f(wr;) = F(w")) + dmasti;,
for all j € N a.s.. Now, applying the expectation and defining e; := Ej(f(wg,;) —
f(w*)), from the previous inequality we obtain

6j+1 S 9€j + 6]‘,

where ¢; = (Smwfkj and 0 :=1—2v/L € (0,1) according to the assumption on v
that is v € (0,1/4). Since the previous inequality holds for each j, we conclude via
induction that for all j € N there holds

€ < 0j60 +Sj,

where $; 1= Opmaz 1, 07 e;—;. Notice that {e;} converges to zero R-linearly accord-
ing to the assumption on #;. This further implies that s; converges to zero R-linearly
(see Lemma 4.2 in [34]). Thus, we conclude that {e;} converges to zero R-linearly.
Finally, since the strong convexity also implies

m
5 Ealllws, — w*[[?) < e,
we obtain the result. O

4 Numerical experiments

In this section, we provide some experimental results to make a comparison between
ASNTR and STORM (as Algorithm 5 in [41]). We examine the performance of both
algorithms for training DNNs in two types of problems: (i) Regression with synthetic
DIGITS dataset and (ii) Classification with MNIST and CIFAR10 datasets. *

We also provide additional results to give more insights into the behavior of the
ASNTR algorithm, especially concerning the sampling strategy. All experiments were
conducted with the MATLAB DL toolbox on an Ubuntu 20.04.4 LTS (64-bit) Linux
server VMware with 20GB memory using a VGPU NVIDIA A100D-20C.

4.1 Experimental configuration

All three image datasets are divided into training and testing sets including N and
N samples, respectively, and whose pixels in the range [0, 255] are divided by 255 so
that the pixel intensity range is bounded in [0,1] (zero-one rescaling). To define the

3Available online: https://www.kaggle.com/datasets/hojjatk/mnist-dataset (MNIST) https://www.
mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html (DIGITS and CIFAR10)

15

https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html

initialized networks and training loops of both algorithms, we have applied dlarray
and dlnetwork MATLAB objects.* The networks’ parameters in w € R™ are initialized
by the Glorot (Xavier) initializer [43] and zeros for respectively weights and biases of
convolutional layers as well as ones and zeros respectively for scale and offset variables
of batch normalization layers. Table 1 describes the hyper-parameters applied in both
algorithms.

Since ASNTR and STORM allow the use of any Hessian approximations, the
underlying quadratic model can be constructed by exploiting a Quasi-Newton update
for By. Quasi-Newton updates aim at constructing Hessian approximations using only
gradient information and thus incorporating second-order information without com-
puting and storing the true Hessian matrix. We have considered the Limited Memory
Symmetric Rank one (L-SR1) update formula to generate By rather than other
widely used alternatives such as limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS). The L-SR1 updates might better navigate the pathological saddle points
present in the non-convex optimization found in DL applications. Given By = ;I at
iteration k, and curvature pair (sg,yx) = (w¢ —wg, g¢ — gr) where g = V far, (wy) and
gt = Vfn, (w) provided that (yy — Brsg)? sk # 0, the SR1 updates are obtained as
follows
(y& — Bisk)(yx — Brsi)”

(yr — Brsk) sk
Using two limited memory storage matrices Sy and Y with at most [< n columns for
storing the recent [pairs {s;,y;} j € {1,...,l}, the compact form of L-SR1 updates
can be written as

Byy1 = B + , k=0,1,.... (28)

By = By + U, M UT, k=1,2,,..., (29)

where
U, =Y, — BySk, My = (Dk-‘rLk-l-L{—SgBoSk)_l

with matrices Ly and Dy which respectively are the strictly lower triangular part and
the diagonal part of S¥Yy; see [1]. Regarding the selection of the variable multiplier
vk in By, we refer to the initialization strategy proposed in [30]. Given the quadratic
model Qg (p) using L-SR1 in ASNTR and STORM, we have used an efficient algorithm
called OBS [44], exploiting the structure of the L-SR1 matrix (29) and the Sherman-
Morrison-Woodbury formula for inversions to obtain pg.

We have randomly (without replacement) chosen the index subset N} C
{1,2,...,N} to generate a mini-batch of size Ny for computing the required quan-
tities, i.e., subsampled functions and gradients. Given Ny = d + 1 where d is the
dimension of a single input sample z; € R%, we have adopted the linearly increased
sampling rule that Ny = min(N, max(100k + Ny, [6’%2]) for STORM as in [41] while
we have exploited the simple following sampling rule for ASNTR when the increase is
necessary

Nit1 = [1.01Ng], (30)
otherwise Nk+1 = Np. Using the non-monotone TR framework in our algorithm, we
set t, = W and t;, = W for some Cy,C3 > 0 in (7) and (10), respectively.
We have also selected Dy, with cardinality 1 at every single iteration in ASNTR.

4A MATLAB-based tutorial on implementing custom loops for training a deep neural network is available
here: http://doi.org/10.13140/RG.2.2.33008.94720/2

16

http://doi.org/10.13140/RG.2.2.33008.94720/2

In our implementations, each algorithm was run with 5 different initial random
seeds. The criteria of both algorithms’ performance (accuracy and loss) are compared
against the number of gradient calls (Ny) during the training phase. The algorithms
were terminated when N, reached the determined budget of the gradient evaluations
(Ng**¥). Each network is trained by ASNTR and STORM; then the trained network
is used for the prediction of the testing dataset. Notice that the training loss and
accuracy are the subsampled function’s value and the number of correct predictions
in percentage with respect to the given mini-batch.

Table 1: Hyper-parameters

STORM [
So=1, Smaz =10, 1 =30, 1 =102, na =103, y=2

ASNTR \
6o =1, dmaz =10, I =30, n=v = 10747 m =0.1, 2 =0.75, 11 =0.5, 2 =0.8,73 =2

4.2 Classification problems

To solve an image classification problem for images with unknown classes/labels,
we need to seek an optimal classification model by using a C-class training dataset
{(z:,9:)X,} with an image x; € R? and its one-hot encoded label y; € R®. To
this end, the generic DL problem (1) is minimized, where its single loss function
fi = L(y:, h(zy;.)) is softmax cross-entropy as follows

C
fitw) = =Y (yi)rlog(h(zi;w), i=1,...,N. (31)
k=1

In (31), the output h(z;; w) is a prediction provided by a DNN whose last layer includes
the softmax function. For this classification task, we have considered two types of net-
works, the LeNet-1ike network with a shallow structure inspired by LeNet-5 [48], and
the modern residual network ResNet-20 [46] with a deep structure. See Table 2 for the
network’s architectures. We have also considered the two most popular benchmarks;
the MNIST dataset [49] with 7 x 10% samples of handwritten gray-scale digit images of
28 x 28 pixels and the CIFAR10 dataset [50] with 6 x 10* RGB images of 32 x 32 pixels,
both in 10 categories. Every single image of MNIST and CIFAR10 datasets is defined as
a 3-D numeric array z; € R? where d = 28 x 28 x 1 and d = 32 x 32 x 3, respectively.
Moreover, every single label y; must be converted into a one-hot encoded label as
y; € RC, where C' = 10. In both datasets, N = 10* images are set aside as testing sets,
and the remaining N images are set as training sets. Besides the zero-one rescaling,
we implemented z-score normalization to have zero mean and unit variance. Precisely,
all N training images undergo normalization by subtracting the mean (an h x w X ¢
array) and dividing by the standard deviation (an h X w X ¢ array) of training images

17

8
C,=10

-
o
=]

=——=STORM
=—ASNTR

Training Accuracy
%]
o

Training Accuracy
(3]
o

-
=]
I=]

-
o
o
-
o
=]

Testing Accuracy
(4]
o

Testing Accuracy
(3]
o

Testing Accuracy
(3]
o

o

=)

o
o
1)
o
kS
o
o
o
o
)
o

0.4 0.6

N x10° Ny x10% N x10°

Fig. 1: The accuracy variations of STORM and ASNTR on MNIST.

o
o
o
I
IS
o
o

= -10° 8

100 C,=1 . C,=10 c,=10

3 2100 2100

g g e

S 3 5

Q Q o

o Q o

< 50 < 50 < 59

=) o o

£ £ =

c —STORM € c —STORM

© —ASNTR [S ——ASNTR

- 0 k0 = 0

0o 2 4 6 8 0o 2 4 6 8
N, x108 N, x108
C,=1 c,=10°

o
o
I=]

-
o
=]

Testing Accuracy
(3]
o

=——=STORM
=—ASNTR
4 6 8

N, x10° Ny x10° Ny x10°

o

Testing Accuracy
(4]
=]
1
>0
a
%o\
53
=
Testing Accuracy
o
8

o
o

o
N
I
o
©
o
~
IS
>
©
o
)

Fig. 2: The accuracy variations of STORM and ASNTR on CIFAR10.

as an array of size h X w X ¢ x N. Here, h, w, and ¢ denote the height, width, and
number of channels of the images, respectively, while N represents the total number
of images. Test data are also normalized using the same parameters as in the training
data.’

Figures 1 to 4 show the variations, the mean and standard error obtained from
5 separate runs, of the aforementioned measures for both train and test datasets of
ASNTR with Cy = 1,10%,10% in pp,, and C; = 1 in py, within fixed budgets of
gradient evaluations N = 6 x 10° for MNIST and N =9x 108 for CIFAR10. These
figures demonstrate that ASNTR achieves higher training and testing accuracy than
STORM in all considered values of Cy except in Fig. 2 with Cy = 1 by which ASNTR
can be comparable with STORM. Nevertheless, ASNTR is capable of achieving higher

5Mathematically, we have already denoted the i—th image of dimension d as z; € R? where d = h X w X c.

18

W

Training Loss
o - N
Training Loss
o - N w
N
- 1l
23
=
=
Training Loss

0 0 0.2 0.4 0.6
6
Ng x10
c, =102
3 3 2
2 @ ——STORM .
] —ASNTR @
S2 S2 3
[=2
£ 2 g
g1 1 71
F S 2
0 0 0
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
Ng x10° Ng x10° N, x108

Fig. 3: The loss variation of STORM and ASNTR on MNIST.

C, =1 — 102 — 108
. s \ c,=10 . c,=10
@ ——STORM @ ——STORM @ —STORM
s 3 ——ASNTR § 3 — ASNTR § 3 —ASNTR
22 22 22
£ £ =
©1 c1 c1
= = =
0 0 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Ng =108 Ng =108 Ng =108
C,=1 c, =102 c, =108

[
>0
73]
Z0
43
=

W b

Testing Loss
- N
Testing Loss
- N
Testing Loss
- N w »
>
q 23
33
o=

o
o
o

8 4 8 4 8

N, x10° N, x108 N, %108

o
N
IS
o
o
N
o
o
N
o

Fig. 4: The loss variation of STORM and ASNTR on CIFAR10.

accuracy (lower loss) with fewer N, in comparison with STORM. Moreover, these
figures indicate the robustness of ASNTR for larger values of C'; meaning higher rates
of non-monotonicity.

4.3 Regression problem

This example shows how to fit a regression model using a neural network to be able to
predict the angles of rotation of handwritten digits which is useful for optical character
recognition. To find an optimal regression model, the generic problem (1) is minimized,
where f; = L(y;, h(z;;.)) with a predicted output h(z;;w) is half~-mean-squared error

as follows |
fi(w):—i(yi—h(xi;w))z, 1=1,...,N. (32)

In this regression example, we have considered a convolutional neural network (CNN)
with an architecture named CNN-Rn as indicated in Table 2. We have also used the
DIGITS dataset containing 10 x 10% synthetic images with 28 x 28 pixels as well as
their angles (in degrees) by which each image is rotated. Every single image is defined
as a 3-D numeric array z; € R? where d = 28 x 28 x 1. Moreover, the response
y; (the rotation angle in degrees) is approximately uniformly distributed between
—45° and 45°. Each training and testing dataset has the same number of images
(N = N = 5x 10%). Besides zero-one rescaling, we have also applied zero-center
normalization to have zero mean. The problem (1) with single loss function (32) is
solved for w € R™ where n = 16, 881 using CNN-Rn for DIGITS. In this experiment, the
accuracy is the number of predictions in percentage within an acceptable error margin
(threshold) that we have set to be 10 degrees.

2 8
c,=10 C,=10

a
(=3
o

-
(=3
o
a
(=3
o

STORM
——ASNTR

Training Accuracy
(3]

o
Training Accuracy
3]

o
Training Accuracy
o
o

o

o
-
N

a
(=3
o

-
o
o

50

Testing Accuracy
Testing Accuracy
8
Testing Accuracy
8

o

o
o

2
N x108 N x108 N x108

o
-
)
o
-
)
o
-

Fig. 5: The accuracy variations of STORM and ASNTR on DIGITS.

=1 —102 _108
2 C,=10 C,=10

400
——STORM ——STORM
— ASNTR 300 — ASNTR

— e
0

2 0 1 2

1
Ng x108 Ng x108

2 8
C,=10 C,=10

» ——STORM » ——STORM
€ 300 =——ASNTR g 300 =——ASNTR

B
o
o
W b
o o
o O

ng
N
o
o
Training Loss
- N
(=3 o
o o
Training Loss
N
o
o

=)

N
o

(=]

Lo!

Testin
Testing
o
o
Testin:
s
o

0 —— 0
2 0 1 2

1
Ny x108 Ny x108

Fig. 6: The loss variation of STORM and ASNTR on DIGITS.

20

Figures 5 and 6 show training accuracy and loss, and testing accuracy and loss
variations of ASNTR, for DIGITS dataset with three values of Cy within a fixed budget
of gradient evaluations Nj™* = 2 x 108. These figures also illuminate how resilient
ASNTR is for the highest value of Cs. Despite several challenges in the early stages
of the training phase with C, = 1 and Cy = 102, ASNTR can overcome them and
achieve accuracy levels comparable to those of the STORM algorithm.

4.4 Additional results

We present two additional figures (Figs. 7 and 8) containing further details regarding
our proposed algorithm, ASNTR, with Cy = 1, 102, 10® in pp, and C; = 1 in py;,.
More specifically, these results aim to give useful insights concerning the sampling
behavior of ASNTR. Let S1 and S2 indicate the iterations of ASNTR at which steps
7 and 10, respectively, are executed using the increasing sampling rule (30). When the
cardinality of the sample set is not changed, i.e., N1 = N, let S3 and SO show the
iterations at which new samples through step 15 and current samples through step 13
are selected. We also define variable S4 representing the iteration of ASNTR at which
all available samples (N; = N) are needed for computing the required quantities.

Figure 7a shows the (average) contributions of the aforementioned sampling types
in ASNTR running with five different initial random generators for MNIST, CIFAR10,
and DIGITS with respectively predetermined N™* = 0.6 x 10°, 9 x 10% and 2 x 10°;
however, considering only a specific initial seed, e.g. rng(42), Figs. 7b, 7c and 7d
indicate when/where each of these sampling types is utilized in ASNTR. Obviously,
the contribution rate of S3 is influenced by S2, where ASNTR has to increase the
batch size if pp, < v. In fact, the larger C5 in pp, results in the higher portion of S3
and the smaller portion of S2. Moreover, using a large value of Cs, there is no need to
increase the current batch size unless the current iterate approaches a stationary point
of the current approximate function. This, in turn, leads to increasing the portion
of S1, which usually happens at the end of the training stage. In addition, we have
also found that the value of Cs in #; plays an important role in the robustness of our
proposed algorithm as observed in Figs. 1 to 6; in other words, the higher the Cs,
the more robust ASNTR is. These mentioned observations, more specifically, can be
followed for every single dataset as below:

® MNIST: according to Fig. 7a, the portion of the sampling type S3 is larger than the
others. This means many new batches without an increase in the batch size are
applied in ASNTR during training; i.e., the proposed algorithm can train a network
with fewer samples, and thus fewer gradient evaluations. Nevertheless, ASNTR with
different values of C3 in pp, increases the size of the mini-batches in some of its
iterations; see the portions of S1 and S2 in Fig. 7a or their scatters in Fig. 7b. We
should note that the sampling type S1 occurs almost at the end of the training
phase where the algorithm tends to be close to a stationary point of the current
approximate function; Fig. 7b shows this fact.

® CIFAR10: according to Fig. 7a, the portion of the sampling type S3 is still large.
Unlike MNIST, the sampling type S1 rarely occurs during the training phase. On the
other hand, a large portion of the increase of the sample size through S$2 may com-

21

Percent (%)

100

80

100 - 100 -

80 . 80

60 .

Percent (%)
Percent (%)

. C,= 10° ~ .
S0 mesT E—Sz ss —s4) S0 ms: msz Ess —sa)
(a) Sampling behaviour of ASNTR on MNIST (left), CIFAR10 (middle), DIGITS (right)
c,=1 c, =102 c, =10
s4 2 s4 2 s4 2
s3 s3
S2 D> Dbb RDHI> > S2
S1 D> DRI | S1 > Phib> D
S0 SO0» P > P
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
Ng x10° Ng x10° Ng x10°
(b) Sampling behaviour with initial rng(42) on MNIST
c,=1 c, =102 c,=10°
s4 2 s4 2 4 2
s3 s3 s3
s2 s2 s2
st s1 s1
sol—>— S0 S0
0 2 4 6 8 0o 2 4 6 8 0o 2 4 6 8
N, x10° N, x10° N, x10°
(c) Sampling behaviour with initial rng(42) on CIFAR10
c,=1 c, =10 c,=10°
s4 s4 s4
s3p S3p» > s3
S2 A— S2 — s2
s1 s1 s
S0 S0 S0
0 o5 1 15 2 0 05 1 15 2 0 05 1 15 2
N x10° N x10° N x10°

g

(d) Sampling behaviour with initial rng(42) on DIGITS

Fig. 7: Tracking subsampling in ASNTR.

22

pensate for the lack of sufficiently accurate functions and gradients required in
ASNTR. These points are also illustrated in Fig. 7c, which shows how ASNTR
successfully trained the ResNet-20 model without frequently enlarging the sam-
ple sizes. For both the MNIST and CIFAR10 problems, S3 as the predominant type
corresponds to Cy = 108.

® DIGITS: according to Fig. 7a, we observe that the main sampling types are S2 and
S4. As the portion of S2 increases, the portion of S3 decreases and the highest
portion of S3 corresponds to the largest value of C'5. This pattern is similar to what
is seen in the MNIST and CIFAR10 datasets. However, in the case of DIGITS, the
portion of S4 is higher. This higher portion of S4 in DIGITS may be attributed to
the smaller number of samples in this dataset (N = 5000), which causes ASNTR
to quickly encompass all the samples after a few iterations. Notably, the sampling
type S4 occurs towards the end of the training phase, as shown in Fig. 7d.

Figure 8 compares the progression of batch size growth in both ASNTR and
STORM. In contrast to the STORM algorithm, ASNTR increases the batch size only
when necessary, which can reduce the computational costs of gradient evaluations.
This is considered a significant advantage of ASNTR over STORM. However, accord-
ing to this figure, the proposed algorithm needs fewer samples than STORM during
the initial phase of the training task, but it requires more samples toward the end.
Nevertheless, we should notice that the increase in batch size that happened at the
end of the training phase is determined either by S1 or by S4 (see Figs. 7b and 7d).
In our experiments, we have observed that ASNTR does not use very large N;"**, as
it typically achieves the required training accuracy.

4.5 Comparison with ADAM

We have compared the proposed stochastic second-order method (ASNTR) with a
popular efficient first-order optimizer, i.e., Adaptive Moment Estimation (ADAM)
[12] used in DL. We have implemented ADAM using MATLAB built-in function
adamupdate in customized training loops. It’s widely recognized that this optimizer is
highly sensitive to the value of its hyper-parameters including the learning rate, ay,
the gradient decay factor, 51, the squared gradient decay factor, B2, a small constant
to prevent division by zero, €, and batch size. Users should be aware of the hyper-
parameter choices and invest time in tuning them using techniques such as grid search.
In our experiments, we set 5, = 0.9, S = 0.999, and ¢ = 1078, respectively, and
focus our tuning effort on learning rate and batch size. The specified choices for tuning
the learning rate were o, = o with o taking values from the set {107%,1073,1072},
and the corresponding values for batch size were Ny = bs where bs varied within
{128,256, 784} for both MNIST and DIGITS, and within {128,256,3072} for CIFAR10.

The best hyper-parameters were those that yielded the highest testing accuracy
within a fixed budget of gradient evaluations. In all experiments, the optimal perfor-
mance with Adam was consistently achieved using o = 1072 and bs = 128. These
settings were employed with ADAM in Figs. 9,10 and 11 (first rows) for compari-
son purposes against ASNTR with Co = 10® demonstrated in Figs. 1 to 6. As these
figures show, the tuned ADAM could produce the highest accuracy and lowest loss

23

3 2
8% 10
z 4 -
1
0 0.2 0.4 0.6
N 6
9 x10
_ 102 _ 108
10t Cp=10 3x1o4 C,=10
2 2
X x ol
z F3
1 1
= ASNTR s 1
=2+ STORM
0 0
0 2 4 6 8 0 2 4 6 8
N x108 Ng x10°

(b) CIFAR10 (N = 5 x 10%)

102
5><103 02_10

.
.

F3
2
1 ——ASNTR
++:x STORM
0 0 0
0 05 1 15 2 0 05 1 15 2 0 05 1 15 2
N x10° Ny x10° Ny x10°

(¢) DIGITS (N =5 x 10%)

Fig. 8: Batch size progress with initial rng(42)

with fewer gradient evaluations in comparison with ASNTR. The common observa-
tion of rapid initial improvement achieved by ADAM, followed by a drastic slowdown,
is well understood in practice for some first-order methods (see, e.g., [13]). First-order
methods such as ADAM are computationally less expensive per iteration compared to
second-order methods such as ASNTR, as they only involve the computation of one
gradient compared to two gradients. Moreover, as already mentioned the initial sam-
ple size for ASNTR was set as Ny = d 4+ 1 where d = 784 for both MNIST and DIGITS

24

and d = 3072 for CIFAR10. By initially employing such large batch sizes against an
obtained optimal batch size for ADAM, i.e., Ny = 128, there are only a small number
of updated iterates (wy) during training with both second-order methods within the
fixed budget of gradient evaluations. Therefore, allowing ASNTR to train networks
within a larger number of gradient evaluations helps it to eventually achieve a higher
level of accuracy while this cannot help ADAM. Note that we have performed this
analysis between the tuned ADAM (N = 128, and oy = 1073) and ASNTR, where
tuning the hyper-parameters of ADAM incurs significant time costs. When ADAM
is used with suboptimal hyper-parameters, its sensitivity becomes evident, as illus-
trated in Figs. 9,10 and 11 (second rows) where batch size Ny = d + 1 and different
learning rates are considered. As these figures show, for a challenging problem such
as CIFAR10 classification, ADAM may not achieve a lower loss value than ASNTR,
even when employing an optimal learning rate (o = 1072). Neither for the other chal-
lenging problem DIGITS ADAM could produce higher testing Accuracy than ASNTR.
All the results shown in the three figures were obtained using the same seed for the
random number generator (rng(42)). Moreover, due to awkward oscillations in Loss
and Accuracy obtained by ADAM in CIFAR10 and DIGITS classification problems, we
have imposed a filter using movmean MATLAB built-in function (moving mean with
a window of length ¢) in Figs. 10 and 11; in our experiments ¢ = 30.

1007 3
7
—ASNTR
3 80 25 s
g 8
3 o 2
Q 60 o 4
Q —
g ADAM 15
—ASNTR £
g’ 40 8| 2
= o 1
? =
(]
-2 o.sk‘
0 : 0
0 0.2 0.4 0.6 0 0.2 0.4 0.6
N, x10° N, x108
100 3 :
—ASNTR
— — 102
2 80 25 ADAM (o = 10%)
s | 2, —ADAM (a = 10°)
3 60 —ASNTR 2 S ADAM (a = 10°%)
S —ADAM (o = 10?) o5
o 10 —ADAM (a = 10°%) £
£ ADAM (o = 1074 A
[[
- 20} 05
0 . . 0 =
0 0.2 0.4 0.6 0 0.2 0.4 0.6
N, x10° N, <108

Fig. 9: Comparison of ASNTR vs. tuned ADAM (first row), and vs. untuned ADAM (second
row) on MNIST for training LeNet-like with rng(42).

25

Testing Accuracy
Testing Loss

o o
8
N =108 N =108

100 4
—ASNTR

— ADAM (o = 102)

— ADAM (o = 10°3)

> 3 . " o
8 > ADAM (o = 10%)
s g
g =2
g £
£ 2
=
§ —ASNTR = P
20 —ADAM (a = 1073)|{
—ADAM (o = 107%)
——ADAM (a = 107%),
(1] — (1]
o 2 4 6 8 o 2 4 6 8
Ny =108 Ng =108

Fig. 10: Comparison of ASNTR vs. tuned ADAM (first row), and vs. untuned ADAM
(second row) on CIFAR10 for training ResNet-20 with rng(42).

100 400
s S
80
= 300
g 2
g °° K
< =200
2 £
£ 40 @
2 =
= 100
20 L
o o
o 0.5 1 1.5 2 o 0.5 1 1.5 2
Ny x10° Ng x10°
400 ——
—ASNTR
— ADAM (a = 1073
—ADAM (o = 10°%)
g @ 300 ——ADAM (o = 107%)
3 S
< =200
= =
£ 2
T [
) —ASNTR
2
20 — ADAM (a = 107%) 100
——ADAM (a = 103)
o —— ADAM (o = 10 o A
o 0.5 1 1.5 2 o 0.5 1 1.5 2
Ng =x10° Ng x10°

Fig. 11: Comparison of ASNTR vs. tuned ADAM (first row), and vs. untuned ADAM
(second row) on DIGITS for training CNN-Rn with rng(42).

26

5 Conclusion

In this work, we have presented ASNTR, a second-order non-monotone trust-region
method that employs an adaptive subsampling strategy. We have incorporated addi-
tional sampling into the TR framework to control the noise and overcome issues in
the convergence analysis coming from biased estimators. Depending on the estimated
progress of the algorithm, this can yield different scenarios ranging from mini-batch
to full sample functions. We provide convergence analysis for all possible scenarios
and show that the proposed method achieves almost sure convergence under standard
assumptions for the TR framework. The experiments in deep neural network train-
ing for both image classification and regression show the efficiency of the proposed
method. In comparison to the state-of-the-art second-order method STORM, ASNTR
achieves higher testing accuracy with a fixed budget of gradient evaluations. However,
our experiments show that the popular first-order method, tuned ADAM using its
optimal hyper-parameters, can produce higher accuracy than ASNTR with fixed and
fewer gradient computations if one does not count the effort needed for tuning the
parameters. As expected, ASNTR is more robust and performs better than ADAM
with suboptimal parameters. Future work on ASNTR could include more specified
sample size updates and Hessian approximation strategies.

Acknowledgments. We are grateful to the two anonymous referees whose construc-
tive comments helped us to improve the paper.

The work of NK and NKJ was supported by the Science Fund of the Republic
of Serbia, Grant no. 7359, Project LASCADO. AM and MY gratefully acknowl-
edge the support of the INAAM-GNCS Project CUP_E53C22001930001. The work of
AM was carried out within the PNRR research activities of the consortium iNEST
(Interconnected North-Est Innovation Ecosystem) funded by the European Union
Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza (PNRR) — Missione
4 Componente 2, Investimento 1.5 — D.D. 1058 23/06,/2022, ECS_00000043). This
manuscript reflects only the Authors’ views and opinions, neither the European Union
nor the European Commission can be considered responsible for them.

Competing interests declarations

The authors have no relevant financial or non-financial interests to disclose.

Data availability statements

The datasets utilized in this research, DIGITS, MNIST, and CIFAR-10, are publicly
accessible and commonly employed benchmarks in the field of Machine Learning and
Deep Learning, see https://www.mathworks.com/help/deeplearning/ug/data-sets-
for-deep-learning.html, https://www.kaggle.com/datasets/hojjatk /mnist-dataset and
[49, 50].

27

https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
 https://www.kaggle.com/datasets/hojjatk/mnist-dataset

References

[1]

2]

[10]

[11]

Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York, NY (2006).
https://doi.org/10.1007 /978-0-387-40065-5

Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region Methods. STAM, Philadel-
phia, PA (2000). https://doi.org/10.1137/1.9780898719857

Ahookhosh, M., Amini, K., Peyghami, M.R.: A non-monotone trust-region line
search method for large-scale unconstrained optimization. Applied Mathematical
Modelling 36(1), 478-487 (2012) https://doi.org/10.1016/j.apm.2011.07.021

Di Serafino, D., Kreji¢, N., Krklec Jerinkié¢, N., Viola, M.: LSOS: line-search
second-order stochastic optimization methods for nonconvex finite sums. Math-
ematics of Computation 92(341), 1273-1299 (2023) https://doi.org/10.1090/
mcom,/3802

Robbins, H., Monro, S.: A stochastic approximation method. The Annals
of Mathematical Statistics 22, 400-407 (1951) https://doi.org/10.1214/aoms/
1177729586

Bottou, L., LeCun, Y.: Large scale online learning. In: Advances in Neural Infor-
mation Processing Systems, vol. 16, pp. 217-224 (2004). available at: https://
proceedings.neurips.cc/paper_files /paper/2003

Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In: Advances
in Neural Information Processing Systems, pp. 1646-1654 (2014). Available at:
https://proceedings.neurips.cc/paper_files/paper /2014

Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive
variance reduction. In: Advances in Neural Information Processing Systems, vol.
26, pp. 315-323 (2013). Available at: https://proceedings.neurips.cc/paper_files/
paper/2013

Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic
average gradient. Mathematical Programming 162(1-2), 83-112 (2017) https://
doi.org/10.1007/s10107-016-1030-6

Nguyen, L.M., Liu, J., Scheinberg, K., Taka¢, M.: SARAH: A novel method for
machine learning problems using stochastic recursive gradient. In: International
Conference on Machine Learning, pp. 2613-2621 (2017). PMLR. Available at:
https://proceedings.mlr.press/v70/

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research 12(7) (2011).
Available at: https://www.jmlr.org/papers/v12/

28

https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1016/j.apm.2011.07.021
https://doi.org/10.1090/mcom/3802
https://doi.org/10.1090/mcom/3802
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://proceedings.neurips.cc/paper_files/paper/2003
https://proceedings.neurips.cc/paper_files/paper/2003
https://proceedings.neurips.cc/paper_files/paper/2014
https://proceedings.neurips.cc/paper_files/paper/2013
https://proceedings.neurips.cc/paper_files/paper/2013
https://doi.org/10.1007/s10107-016-1030-6
https://doi.org/10.1007/s10107-016-1030-6
https://proceedings.mlr.press/v70/
https://www.jmlr.org/papers/v12/

[12]

[13]

[14]

Kingma, D.P.; Ba, J.: Adam: A method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings (2015). Available at: http://arxiv.org/abs/1412.6980

Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale
machine learning. Siam Review 60(2), 223-311 (2018) https://doi.org/10.1137/
16M1080173

Kylasa, S., Roosta, F., Mahoney, M.W., Grama, A.: GPU accelerated sub-sampled
Newton’s method for convex classification problems. In: Proceedings of the 2019
STAM International Conference on Data Mining, pp. 702-710 (2019). https://doi.
org/10.1137/1.9781611975673.79 . SIAM

Martens, J.: Deep learning via Hessian-free optimization. In: Proceedings of
the 27th International Conference on Machine Learning, pp. 735-742 (2010).
Available at: https://www.icml2010.org/abstracts.html

Martens, J., Sutskever, I.: Training deep and recurrent networks with Hessian-free
optimization. In: Neural Networks: Tricks of the Trade, pp. 479-535. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_27

Bollapragada, R., Byrd, R.H., Nocedal, J.: Exact and inexact subsampled Newton
methods for optimization. IMA Journal of Numerical Analysis 39(2), 545-578
(2019) https://doi.org/10.1093/imanum/dry009

Xu, P., Roosta, F., Mahoney, M.W.: Second-order optimization for non-convex
machine learning: An empirical study. In: Proceedings of the 2020 STAM Interna-
tional Conference on Data Mining, pp. 199-207 (2020). https://doi.org/10.1137/
1.9781611976236.23 . SIAM

Martens, J., Grosse, R.: Optimizing neural networks with Kronecker-factored
approximate curvature. In: International Conference on Machine Learning, pp.
2408-2417 (2015). PMLR. Available at: https://proceedings.mlr.press/v37/

Goldfarb, D., Ren, Y., Bahamou, A.: Practical quasi-newton methods for training
deep neural networks. In: Advances in Neural Information Processing Systems,
vol. 33, pp. 2386-2396 (2020). Available at: https://proceedings.neurips.cc/paper_
files/paper /2020

Mokhtari, A., Ribeiro, A.: Global convergence of online limited memory BFGS.
The Journal of Machine Learning Research 16(1), 3151-3181 (2015). Available
at: https://www.jmlr.org/papers/v16/

Gower, R., Goldfarb, D., Richtarik, P.: Stochastic block BFGS: Squeezing more
curvature out of data. In: International Conference on Machine Learning, pp.
1869-1878 (2016). PMLR. Available at: https://proceedings.mlr.press/v48/

29

http://arxiv.org/abs/1412.6980
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/1.9781611975673.79
https://doi.org/10.1137/1.9781611975673.79
https://www.icml2010.org/abstracts.html
https://doi.org/10.1007/978-3-642-35289-8_27
https://doi.org/10.1093/imanum/dry009
https://doi.org/10.1137/1.9781611976236.23
https://doi.org/10.1137/1.9781611976236.23
https://proceedings.mlr.press/v37/
https://proceedings.neurips.cc/paper_files/paper/2020
https://www.jmlr.org/papers/v16/
https://proceedings.mlr.press/v48/

[23]

[24]

[25]

[27]

[28]

[29]

[33]

Wang, X., Ma, S., Goldfarb, D., Liu, W.: Stochastic quasi-Newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization 27(2), 927—
956 (2017) https://doi.org/10.1137/15M 1053141

Berahas, A.S., Taki¢, M.: A robust multi-batch L-BFGS method for machine
learning. Optimization Methods and Software 35(1), 191-219 (2020) https://doi.
org/10.1080/10556788.2019.1658107

Bollapragada, R., Nocedal, J., Mudigere, D., Shi, H.-J., Tang, P.T.P.: A pro-
gressive batching L-BFGS method for machine learning. In: International Con-
ference on Machine Learning, pp. 620-629 (2018). PMLR. Available at: https://
proceedings.mlr.press/v80/

Jahani, M., Nazari, M., Rusakov, S., Berahas, A.S., Takd¢, M.: Scaling up
quasi-newton algorithms: communication efficient distributed SR1. In: et al.(ed.)
Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes
in Computer Science, vol. 12565, pp. 41-54. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64583-0_5

Berahas, A.S., Jahani, M., Richtérik, P., Taki¢, M.: Quasi-newton methods for
machine learning: forget the past, just sample. Optimization Methods and Soft-
ware 37(5), 1668-1704 (2022) https://doi.org/10.1080/10556788.2021.1977806

Rafati, J., Marcia, R.F.: Improving L-BFGS initialization for trust-region meth-
ods in deep learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 501-508 (2018). https://doi.org/10.
1109/ICMLA.2018.00081 . IEEE

Yousefi, M., Martinez Calomardo, A.: A stochastic modified limited memory
BFGS for training deep neural networks. In: Intelligent Computing: Proceedings
of the 2022 Computing Conference, Volume 2, pp. 9-28 (2022). https://doi.org/
10.1007/978-3-031-10464-0_2 . Springer

Erway, J.B., Griffin, J., Marcia, R.F.; Omheni, R.: Trust-region algorithms for
training responses: machine learning methods using indefinite Hessian approxi-
mations. Optimization Methods and Software 35(3), 460-487 (2020) https://doi.
org/10.1080/10556788.2019.1624747

Grippo, L., Lampariello, F., Lucidi, S.: A non-monotone line search technique for
Newton’s method. STAM Journal on Numerical Analysis 23(4), 707-716 (1986)
https://doi.org/10.1137/0723046

Deng, N., Xiao, Y., Zhou, F.: Nonmonotonic trust-region algorithm. Journal of
optimization theory and applications 76(2), 259-285 (1993) https://doi.org/10.
1007/BF00939608

Cui, Z., Wu, B., Qu, S.: Combining non-monotone conic trust-region and line

30

https://doi.org/10.1137/15M1053141
https://doi.org/10.1080/10556788.2019.1658107
https://doi.org/10.1080/10556788.2019.1658107
https://proceedings.mlr.press/v80/
https://proceedings.mlr.press/v80/
https://doi.org/10.1007/978-3-030-64583-0_5
https://doi.org/10.1007/978-3-030-64583-0_5
https://doi.org/10.1080/10556788.2021.1977806
https://doi.org/10.1109/ICMLA.2018.00081
https://doi.org/10.1109/ICMLA.2018.00081
https://doi.org/10.1007/978-3-031-10464-0_2
https://doi.org/10.1007/978-3-031-10464-0_2
https://doi.org/10.1080/10556788.2019.1624747
https://doi.org/10.1080/10556788.2019.1624747
https://doi.org/10.1137/0723046
https://doi.org/10.1007/BF00939608
https://doi.org/10.1007/BF00939608

[34]

[35]

[36]

[37]

[38]

[40]

[41]

[42]

[43]

search techniques for unconstrained optimization. Journal of computational and
applied mathematics 235(8), 2432-2441 (2011) https://doi.org/10.1016/j.cam.
2010.10.044

Krejié, N., Krklec Jerinki¢, N.: Non-monotone line search methods with vari-
able sample size. Numerical Algorithms 68(4), 711-739 (2015) https://doi.org/
10.1007/s11075-014-9869-1

Yousefi, M., Martinez Calomardo, A.: A stochastic nonmonotone trust-region
training algorithm for image classification. In: 2022 16th International Conference
on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 522-529
(2022). https://doi.org/10.1109/SITIS57111.2022.00084 . IEEE

Sun, S., Nocedal, J.: A trust-region method for noisy unconstrained optimiza-
tion. Mathematical Programming, 1-28 (2023) https://doi.org/10.1007/s10107-
023-01941-9

Cao, L., Berahas, A.S., Scheinberg, K.: First- and second-order high probability
complexity bounds for trust-region methods with noisy oracles. Mathematical
Programming (2023) https://doi.org/10.1007/s10107-023-01999-5

Tusem, A.N., Jofré, A., Oliveira, R.I., Thompson, P.: Variance-based extra gradi-
ent methods with line search for stochastic variational inequalities. STAM Journal
on Optimization 29(1), 175-206 (2019) https://doi.org/10.1137/17M1144799

Kreji¢, N., Luzanin, Z., Ovcin, Z., Stojkovska, I.: Descent direction method
with line search for unconstrained optimization in noisy environment. Optimiza-
tion Methods and Software 30(6), 1164-1184 (2015) https://doi.org/10.1080/
10556788.2015.1025403

Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis
of a stochastic trust-region method via supermartingales. INFORMS journal on
optimization 1(2), 92-119 (2019) https://doi.org/10.1287/ijo0.2019.0016

Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust-
region method and random models. Mathematical Programming 169(2), 447487
(2018) https://doi.org/10.1007/s10107-017-1141-8

Bellavia, S., Kreji¢, N., Morini, B., Rebegoldi, S.: A stochastic first-order
trust-region method with inexact restoration for finite-sum minimization. Com-
putational Optimization and Applications 84(1), 53-84 (2023) https://doi.org/
10.1007/s10589-022-00430-7

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics, pp. 249-256 (2010). JMLR Workshop and Conference
Proceedings. Available at: https://proceedings.mlr.press/v9/

31

https://doi.org/10.1016/j.cam.2010.10.044
https://doi.org/10.1016/j.cam.2010.10.044
https://doi.org/10.1007/s11075-014-9869-1
https://doi.org/10.1007/s11075-014-9869-1
https://doi.org/10.1109/SITIS57111.2022.00084
https://doi.org/10.1007/s10107-023-01941-9
https://doi.org/10.1007/s10107-023-01941-9
https://doi.org/10.1007/s10107-023-01999-5
https://doi.org/10.1137/17M1144799
https://doi.org/10.1080/10556788.2015.1025403
https://doi.org/10.1080/10556788.2015.1025403
https://doi.org/10.1287/ijoo.2019.0016
https://doi.org/10.1007/s10107-017-1141-8
https://doi.org/10.1007/s10589-022-00430-7
https://doi.org/10.1007/s10589-022-00430-7
https://proceedings.mlr.press/v9/

[44]

[49]

[50]

Brust, J., Erway, J.B., Marcia, R.F.: On solving L-SR1 trust-region subproblems.
Computational Optimization and Applications 66(2), 245-266 (2017) https://
doi.org/10.1007/s10589-016-9868-3

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge,
MA (2016). Available at: http://www.deeplearningbook.org

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770-778 (2016). https://doi.org/10.1109/CVPR.2016.90

Yousefi, M., Martinez, A Deep neural networks training by stochastic quasi-
newton trust-region methods. Algorithms 16(10), 490 (2023) https://doi.org/10.
3390/a16100490

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11), 2278-2324 (1998)
https://doi.org/10.1109/5.726791

LeCun, Y.: The MNIST database of handwritten digits. Available at: https://
www.kaggle.com/datasets/hojjatk /mnist-dataset (1998)

Krizhevsky, A.: Learning multiple layers of features from tiny images. Available
at: https://api.semanticscholar.org/CorpusID:18268744 (2009)

32

https://doi.org/10.1007/s10589-016-9868-3
https://doi.org/10.1007/s10589-016-9868-3
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/a16100490
https://doi.org/10.3390/a16100490
https://doi.org/10.1109/5.726791
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://api.semanticscholar.org/CorpusID:18268744

Table 2: Architectures of the networks.

Regression

(Conv(3 x 3@8,1,same)/BN/ReLU/AvgPool(2 X 2,2,0))
(Conwv(3 x 3@16,1,same)/BN/ReLU/AvgPool(2 x 2,2,0))
CNN-Rn (Conv(3 x 3@32,1,same)/BN/ReLU)

(Conv(3 x 3@32,1,same)/BN/ReLU/DropOut(0.2))
FC(1)

Classification

(Conv(3 x 3@16,1,1)/BN/ReLU)

(Conv(3 x 3@16,1,1)/BN/ReLU)

(Conwv(3 x 3@16,1,1)/BN) + addition(1)/ReLU
(Conv(3 x 3@16,1,1)/BN/ReLU)

(Conwv(3 x 3@16,1,1)/BN) + addition(1)/ReLU
(Conv(3 x 3@16,1,1)/BN/ReLU)

(Conv(3 x 3@16,1,1)/BN) + addition(1)/ ReLU
(Conwv(3 x 3@32,2,1)/BN/ReLU)

Bi { (Conv(3 x 3@32,1,1)/BN)

(Conv(1l x 1@32,2,0)/BN) + addition(2)/ReLU
(Conv(3 x 3@32,1,1)/BN/ReLU)

(Conv(3 x 3@32,1,1)/BN) + addition(1)/ReLU
(Conwv(3 x 3@32,1,1)/BN/ReLU)

(Conv(3 x 3@32,1,1)/BN) + addition(1)/ReLU
(Conv(3 x 3@64,2,1)/ BN/ReLU)

B; § (Conv(3 x 3@64,1,1)/BN)

(Conwv(1 x 1@64,2,0)/BN) + addition(2)/ReLU
(Conv(3 x 3@64,1,1)/BN/ReLU)

(Conwv(3 x 3@64,1,1)/BN) + addition(1)/ReLU
(Conv(3 x 3@64,1,1)/BN/ReLU)

(Conwv(3 x 3@64,1,1)/BN) + addition(1)/gAvgPool/ReLU)
FC(C/Softmazx)

By

B,

B3

ResNet-20 Bo

B3

B,

B3

Classification

(Conv(5 x 5@20,1,0)/ReLU/MazPool(2 x 2,2,0))
LeNet-like (Conv(5 x 5@50,1,0)/ReLU/MaxPool(2 X 2,2,0))
FC(500/ReLU)

FC(C/Softmax)

TABLE’S NOTES: See [45, 46] for more details about the different layers in a deep neural
network. The compound (Conv(5 x 5@32, 1,2)/BN/ReLu/MaxzPool(2 x 2, 1,0))) indicates
a simple convolutional network (ConvNet) including a convolutional layer (Conv) using 32
filters of size 5 x 5, stride 1, padding 2, followed by a batch normalization layer (BN), a
nonlinear activation function (ReLu) and, finally, a 2-D max-pooling layer with a channel
of size 2 x 2, stride 1 and padding 0. The syntax FC(C/Softmaz) denotes a layer of C
fully connected neurons followed by the softmazx layer. Moreover, (AvgPool), (gAvg.Pool),
and (DropOut) refer to the 2D average-pooling, global average-pooling, and drop-out layers,
respectively. The syntax addition(1)/ReLu indicates the existence of an identity shortcut
with functionality such that the output of a given block, say By (or Bs or Bs), is directly fed
to the addition layer and then to the ReLu layer while addition(2)/ReLu in a block shows
the existence of a projection shortcut with functionality such that the output from the two
first ConvNets is added to the output of the third ConvNet and then the output is passed
through the ReLu layer. An open-source implementation of the ResNet-20 and LeNet-1like
networks described above as components in Matlab programs of algorithms presented in [47]
is available on https://github.com/MATHinDL/sL_QN_TR/.)

33

https://github.com/MATHinDL/sL_QN_TR/

	Introduction
	The algorithm
	Convergence analysis
	Numerical experiments
	Experimental configuration
	Classification problems
	Regression problem
	Additional results
	Comparison with ADAM

	Conclusion
	Acknowledgments

