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Abstract

We propose a novel algorithm for solving non-convex, nonlinear
equality-constrained finite-sum optimization problems. The proposed
algorithm incorporates an additional sampling strategy for sample size
update into the well-known framework of quadratic penalty methods.
Thus, depending on the problem at hand, the resulting method may
exhibit a sample size strategy ranging from a mini-batch on one end,
to increasing sample size that achieves the full sample eventually, on
the other end of the spectrum. A non-monotone line search is used for
the step size update, while the penalty parameter is also adaptive. The
proposed algorithm avoids costly projections, which, together with the
sample size update, may yield significant computational cost savings.
Also, the proposed method can be viewed as a transition of an ad-
ditional sampling approach for unconstrained and linear constrained
problems, to a more general class with non-linear constraints. The al-
most sure convergence is proved under a standard set of assumptions
for this framework, while numerical experiments on both academic and
real-data based machine learning problems demonstrate the effective-
ness of the proposed approach.
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1 Introduction

We consider a nonlinear equality-constrained optimization problem of the
form

N
. 1 .
min f(z) = N Z;fi(x), subject to  h(x) =0, (1.1)
i
where f; : R - R, ¢ = 1,...,N and h : R — R™ are continuously

differentiable. Optimization problems of this structure naturally arise in
various real-world contexts, particularly in areas such as machine learning,
deep learning, and network system optimization. They are commonly en-
countered when training models such as logistic regression and deep neural
networks, where the goal is to minimize a cumulative loss across a dataset
while satisfying specific constraints. Owing to both their practical relevance
and mathematical complexity, these problems continue to attract significant
attention in contemporary research.

A wide range of deterministic algorithms has been developed for solving
equality-constrained nonlinear optimization problems. One of the frequently
used approaches is based on penalty methods and augmented Lagrangian
techniques [13]. In these methods one reformulates the constrained problem
by adding a penalty term to the objective function to penalize constraints
violation, governed by a penalty parameter, thereby transforming the prob-
lem into an unconstrained one. Penalty methods can also be effectively
applied in stochastic environments. In the stochastic case, when either the
objective function or the constraints are defined in terms of expectations,
several methods are proposed for solving such problems by penalty-based
techniques [19] 24 [33] 34].

Stochastic approaches that use stochastic approximations of the gradi-
ent have been proposed to reduce computational cost per iteration, leading
to various stochastic penalty and projection methods [28, 31 B2]. Also,
stochastic gradient methods have found wide application in classification
problems, especially in recent years, with variable metric methods emerg-
ing as one of the approaches for preconditioning the stochastic gradient, as
presented in the work [7].

Another popular class of algorithms for the considered problems is based
on Sequential Quadratic Programming (SQP). In the stochastic setting, the
search direction is typically generated by solving a quadratic subproblem
by using a stochastic gradient estimate [4], and the convergence complexity
of the method has been studied in [9]. Various extensions have been pro-
posed, including adaptive sampling techniques [2], variance reduction [5],
and structural improvements [3, 8, 29, B0]. In [II], the TR-StoSQP algo-
rithm is introduced, which combines a trust region approach with adaptive
trust region radii and allows indefinite Hessians in the subproblem.



In large-scale finite-sum minimization problems, exact evaluation of the
objective and its derivatives is computationally expensive. Hence, approx-
imation via subsampling is widely used. Adaptive subsampling - adjusting
sample size during iterations - has proven to be an efficient strategy when
coupled with line search or trust region mechanisms [I], 17, 18], 21}, 23]. Some
methods employ additional sampling to decide whether to increase the sam-
ple size. Moreover, additional sampling is also used to govern the acceptance
of a candidate point, and this approach proved to be very efficient for un-
constrained finite-sum minimization [10, 21} 26}, 27].

In [22], a stochastic first-order method with variable sample size was pro-
posed for minimizing a weighted finite sum under linear equality constraints,
using adaptive sampling and approximate projections. The method pro-
posed here generalizes this approach to nonlinear equality constraints, but
does not rely on the approximate projection strategy used in [22].

The non-monotone line search we propose is presented in [14] and is used
in many methods relax the strict Armijo line search conditions and enhance
convergence speed. In the stochastic framework, non-monotone strategies
have also proved their efficiency. Paper [20] proposed a class of algorithms
with adaptive sample size combined with non-monotone line search. Non-
monotonicity has also been employed in stochastic optimization settings in
[21 22| 25].

Solving nonlinear equality-constrained problems with finite-sum struc-
ture is challenging due to the high cost of evaluating the objective and its
derivatives at each iteration. While penalty methods and SQP-type algo-
rithms have been successfully applied in this setting, most of the existing
methods either assume access to full gradients or rely on expensive projection
steps. Motivated by these limitations, we designed an efficient first-order al-
gorithm that uses subsampling, avoids expensive projections and the strict
decrease imposed by the standard Armijo line search.

To summarize, our main contributions are as follows:

- We propose a novel first-order algorithm (ASPEN) for nonlinear equality-
constrained finite-sum problems that combines adaptive sampling, non-
monotone line search, and adaptive penalty parameter update;

- ASPEN extends the adaptive sampling framework of [22] to a more
general class of problems with nonlinear constraints, while avoiding
the (approximate) projections;

- The theoretical analysis of the proposed method is presented - almost
sure convergence of ASPEN is proved under some standard assump-
tions for the considered framework;

- The practical efficiency of ASPEN is demonstrated by comparing it to
the relevant state-of-the-art methods and by illustrating its adaptive
nature.



Paper organization. The paper is organized as follows. In Section
we present the proposed algorithm. Section [3| contains theoretical analysis
and convergence results. Section [4] presents numerical experiments. We
conclude the paper in Section [5| with a summary and directions for future
research.

Notation. Throughout the paper, we use the following notation: R
denotes the set of non-negative real numbers. Depending on the argument,
the symbol ||-|| represents the Euclidean vector norm and the spectral matrix
norm. We use “a.s.” to abbreviate “almost sure” /”almost surely”. E(-) and
E(- | ) denote mathematical expectation and conditional expectation with
respect to the o-algebra F, respectively. Finally, for a finite set N, |N|
denotes its cardinality.

2 The algorithm

The method that will be proposed within this section - ASPEN - belongs
to a class of first-order methods, i.e., we assume that only the relevant
functions and their first-order derivatives are attainable. Given that the full
sample size N (the number of data points in machine learning problems) is
typically and the data sets often include some data redundancy, we employ
a subsampling strategy to reduce the computational load. More precisely,
we use the standard Sample Average Approximations (SAA) to form the
objective function approximations. Furthermore, we use the same sample
to calculate the gradient approximation, i.e., we take

(2 Z fi(x), Vir (@ Z Vfilx (2.1)

ze./\/'k zENk

where MV, C N := {1,2,...,N} and Ny = |[Ng|. We emphasize that the
choice of sample N}, is arbitrary, i.e., we do not make any restrictions on the
sampling strategy for Nj.

ASPEN fits into the framework of penalty methods. In particular, we

use the quadratic penalty function, which takes the following form when
considering the original problem ([1.1)

F(x,p) = f(z) + g!lh(m)ll2 = f(x) + pg ().

Here, the parameter p is the penalty parameter, and by g we denote the
constraints violation function defined by the square norm of h. We assume
that the constraints are non-linear in general, but computable under rea-
sonable costs as well as their first-order derivatives. Therefore, we form an
approximation of the penalty function as follows

Ex (i) = fai (@) + EX|In(@)],



where py, represents the penalty parameter used at iteration k. We define
the gradientﬂ of the approximate (SAA) penalty function at iteration k
accordingly, i.e.,

gk = VEx (@, i) = Vi (@x) + eV h(@g)h(wy). (22)

Since we work with approximate functions, applying a monotone line search
may be too restrictive and ineffective. Therefore, we apply a nonmonotone
Armijo-type line search similar to one used in [22], for instance. Setting the
search direction to pr = —gi, we perform the backtracking line search with
respect to the approximate penalty function. More precisely, we determine
the step size «y, that satisfies the following condition

E, (w4 arpr, ix) < i (2, 1) + nowgl pe + e, (2.3)

where {ex }ren is assumed to be a sequence of summable positive numbers,

i.e., it satisfies
o0

Z € < 00.

k=0
After the line search, we set T = x + agpr to be the candidate point for
the subsequent iterate.

As mentioned before, depending on the problem, ASPEN may use sub-
sampling during the whole optimization process (i.e., we can have Ny < N
for all £ € N), or it can reach the full sample size (i.e., Ny = N for all k
large enough) and switch to the deterministic mode. We will refer to the
first scenario as mini-batch (MB), while the latter one will be referred to as
the full sample (FS) scenario. We assume that, if N, = N, then Ny = N,
i.e.,, we use the whole set of local cost functions f; (i.e., the whole set of
data points). If ASPEN is in the FS mode at iteration k (i.e., if N = N),
then the candidate point is unconditionally accepted, and we set xx11 = .
Moreover, since the sample size sequence is nondecreasing, the method be-
haves like a deterministi(ﬂ sequential programming penalty method - when
a vicinity of a stationary point of the penalty function F'(-, uy) is reached,
the penalty parameter is increased to ppy1; and an approximate solution
mingern F(2, pig41) is computed. The novelty of ASPEN lies in the MB
phase that we describe in detail as follows. If ASPEN is in the MB phase
at iteration k (Ny < N), then an additional check is performed to decide
whether to accept the candidate point or to reject the step completely. This
check is based on additional sampling [10] 21} 27], which also guides the sam-
ple size update. Namely, we use an independent, arbitrarily small subsample

'The gradient will always be taken with respect to variable z, i.e., VEn, (z, ) =
VaFn, (z, pr). We drop z from the subscript in order to simplify the notation.

2The method still yields a stochastic sequence of iterates since in the FS scenario there
exists a finite, but random iteration k such that Ny = N for all k > k.



Dy € N, which is selected randomly, without replacement, and check if the
candidate point is ”good enough” for the function

1 Pk
Fp, (g, p) = Dr > filwr) + 7”}%(96/@)”2,
1€Dy,

where Dy, = |Dg|. More precisely, we check if

Fp, Tk, i) < Poy 2k, ) — ¢V Fp, (g, i )||* + Cep, (2.4)

where ¢ and C are positive constants, arbitrarily small and arbitrarily large,
respectively. This is an important step because it allows for evaluating the
algorithm’s progress on independent data, with low computational cost (in
the experiments we use Dy = 1, but any other choice such that Dy < N is
eligible). If the condition is satisfied, we accept the candidate point;
otherwise, we set xx41 = k.

The additional check also serves as a test of the similarity of local cost
functions (see e.g. [2I] for more details). If the condition is met,
then we decide that the current approximation is sufficient to describe the
true objective function and keep the same sample size for the subsequent
iteration. On the contrary, if the condition does not hold, we try
to increase the level of precision and obtain a better approximation of the
objective function by increasing the sample size to N1 € {Np+1,...,N}.
This increase is arbitrary, which makes ASPEN very flexible and adaptive
to various types of problems.

The penalty parameter in the MB phase is updated according to the
constraint violation measure ||h(zy)||. If the current iterate is relatively far
away from the feasible set, i.e., if ||h(x)|| > €r, we increase the penalty
parameter in order to encourage feasibility improvement. Otherwise, we
keep it at the same level.

The algorithm is stated as follows.



Algorithm 1 ASPEN:
Additional Sampling Penalty method for Equality Nonlinear constraints

1: Input: g € R", Ng € N, ¢, 8 € (0,1), C, 7, po > 0, {ex}7-
2: For k=0,1,2,...

3: if Np < N then

4: choose NV}, C N

5: else

6: set N, = N.

7. end if

8: Calculate pp = —g via .

9: Find the smallest j € Ny such that oy, = 37 satisfies .
10: Set Ty = x + arpg.

11: if N, = N then

12: Set Tp4+1 =Tk

13: if ”VFNk(xkaﬂk)H < l%k then

14: Set pgr1 = Yig-

15: else

16: Set pr+1 = pk-

17 end if

18: else

19: Choose D € N randomly and uniformly, without replacement.
20: if holds then
21: Set xx4+1 =T and Ngiq = Ny.
22: else
23: Set z11 = x, and choose Ngy1 € {Ny +1,...,N}.
24: end if
25: if ||h($k)H > ¢, then
26: Set figr1 = Ypuk-
27: else
28: Set pip+1 = pg-
29: end if
30: end if




3 Convergence analysis

Within this section, we prove almost sure convergence results for ASPEN.
The analysis is conducted by observing two possible scenarios (MB and
FS) separately, and integrating them at the end. We start by stating the
following assumption.

Assumption A 1. The functions f;, i = 1,...,N are bounded from be-
low and continuously differentiable with L-Lipschitz continuous gradients.
Moreover, the constraints violation function q is continuously differentiable
with L-Lipschitz continuous gradient.

Notice that this assumption implies that all the sampled functions fa,
are also bounded from below and continuously differentiable with L-Lipschitz
continuous gradients. Notice that the penalty functions Fj, are also bounded
from below and continuously differentiable. Moreover, the gradients V Fy,
are also Lipschitz-continuous with the Lipschitz constant (1 + py)L. Since
the line search is performed with the negative gradient direction of the ap-
proximate penalty function, it can be shown that

: 26(L=m) | _. _
Q> min {1, (1+Mk)L} =: Oy (3.1)

Now, let us consider the MB phase of ASPEN. As usual for an additional
sampling-based method, we define the following sets needed for the analysis.
By D,‘: we denote the set of all possible outcomes of Dy at iteration k that

satisfy (2.4)), i.e.,

Df = {Dy C N | Fp, (Tk, i) < Fp, (w, ) — ||V Fp, (zk, ) ||* + Cer},
and by D, be the complementary subset, i.e.,

Dy = {Dx C N | Fp, (@, i) > Fpy (wx, ) — cllV Fpy (g, px)||” + Cer .

The following lemma shows that, if ASPEN stays in the MB phase during
the whole optimization process, then the condition (2.4]) is satisfied for all
possible choices of D. The proof of this lemma is essentially the same as
the proof of Lemma 1 [2I], but we state it here for completeness.

Lemma 3.1. Suppose that Assumption holds. If Ny, < N for all k € N,
then a.s. there exists k1 € N such that D, = 0 for all k > k.

Proof. Let us assume, aiming for contradiction, that the lemma does not
hold. Then there exists an infinite set of indices K C N such that D, = 1]
for all K € K. Since the sample size sequence is non-decreasing and satisfies
N < N for all kK € N by the assumption of this lemma, there must exist
some k; € N such that N, = N < N for all £ > k;. This implies that the



number of elements in the subset Dy, satisfies D, < N, < N < N — 1. Since
Dy, is selected randomly and uniformly from a finite collection, there exists
a constant ¢ > 0 such that

P(Dy € D) > q forallkc K.

Moreover, without loss of generality, we may assume that K C {k e N: k >
k1}, ie., every k € K satisfies k > ki. Therefore, choosing Dy € D,j for all
k € K is a.s. impossible since

P(Dye D ke K) < [[(1-g) =0
keK

This means that a.s. there exists an iteration k € K such that

’DI} € ’Df;
According to the algorithm, this implies that N, > Nj = N, contradicting
the assumption that N, = N for all £ > k1. Hence, the statement holds. [J

Again, following the concept of additional sampling, one can show that
the Armijo-like condition related to the full sample penalty function is sat-
isfied for all k£ large enough, even in the MB scenario.

Lemma 3.2. Suppose that the assumptions of Lemma[3.1] hold. Then, a.s.
the following holds for all k > Ky

F(zpyr, i) < F(xy, py) — | VF (@r, 1) | + Cey.

Proof. First, recall that Lemma [3.1] implies that a.s. for all k& > k; we have
D, = 0 and thus the condition ({2.4) is satisfied. Therefore, the candidate
point is accepted for all k large enough, i.e., 511 = T for all k > k.

Moreover, notice that D, = ) also impliesﬂ that for each i € NV we have

Fy(xpt1, i) < Fi(xg, p) — || VEFi(zg, ) |* + Cex, (3.2)

where

Fi( ) = fila) + 5 () 12

Thus, considering ([3.2)), by summing up and dividing by N we obtain that

N
F(xpi1, ) < Flag, ) — ¢ Y IV EFi (@, ) ||* + Cer (3:3)
=1
3Since Dy, is chosen uniformly, with replacement, one possible choice for Dy, is {iy...,i}.

If there exists 7 that violates the condition (3.2)), then the condition (2.4 would be violated
for Dy = {4, ..., 1} which would imply that D, # 0.



for all k > k;. Finally, using the convexity of the norm, we obtain

N N
1 1
IVF (g, )| = HN ZVFi(xkaNk)‘P <N Z IV E (g, i) ||
i=1 =1

Combining this with (3.3)), we conclude the proof. O

Before stating the next theorem, let us denote by Ejp(-) and Epg(-)
the conditional expectation concerning all the sample paths of ASPEN that
fall into the MB and FS scenario, respectively. Similarly, we define the
corresponding conditional probabilities Py;p(-) and Pgrg(-). The proof is
essentially the same as the proof of Theorem 1 in [27] e.g., but we state its
short version for completeness.

Theorem 3.3. Suppose that Assumption holds and that the sequence
{zk}ren generated by ASPEN is bounded. Then

Pyp(lim VF(xzg, pi) =0) = 1.
k—o0

Proof. Since we observe only the MB scenario sample paths, Lemma [3.2]
implies that a.s. the following holds for each [ € N

-1 -1
F(wk1+l,l1«k1+l) < F(xku:u'lﬂ) - CZ HVF('T/C1+J'MU1€1+J')H2 =+ Czek1+j'
Jj=0 Jj=0

Due to summability of €, and boundedness of iterates, applying the condi-
tional expectation Epsp(-) and letting [ — oo we obtain

o0
ZEMB(HVF(karja fiiy+5)|1%) < o0
=0

and the result follows from the extended form of Markov’s inequality and
the Borel-Cantelli lemma. O

Next, we prove a.s. convergence towards a KKT point in the MB case
by considering different scenarios with respect to the penalty parameter
sequence. The proof is conducted under the Linear Independence Constraint
Qualification (LICQ) assumption. The second part of the proof, considering
unbounded puy, follows the same steps as the deterministic quadratic penalty
method analysis, but we state it here for completeness.

Theorem 3.4. Let assumptions of Theorem[3.3 hold and assume that Nj, <
N for every k € N. Then, a.s., every accumulation point of the sequence
{zk}ken at which LICQ holds is a KKT point of problem (1.1)).

10



Proof. Recall that Theorem implies that limy_,oo VF(zk, ux) = 0 a.s.
Let 2* be an arbitrary accumulation point of the considered sequence, i.e.,
let

fi o ="
Under the MB scenario, we distinguish two possible cases regarding the
penalty parameter - bounded and unbounded .

First, let us assume that uj is bounded. Since the sequence of penalty
parameters is non-decreasing, this further implies the existence of i such
that pp = i for all k large enough. According to lines of ASPEN,
for all k large enough we have pp1 = pg and ||h(zg)|| < €. Since {€x}ren
is assumed to be summable, we know that limy_,o € = 0, which further
implies

lim A(zg) = 0.

k—o0

Thus, each accumulation point of {xy }ren is feasible and we have h(z*) =0
and therefore

0= lim VF(xg, pix) (Vf(xk) + eV h(zp)h(zr)) = V f(z*),

= lim

keK
holds a.s. and the statement is proved.

Now, let us consider the case where limy_,,, pr = oo. Then, according

to (2.2]) we have
1
IV h(ap)h(ap)|| < E(HVF(%M)H + IV f(i)l)

and taking the limit over K we obtain
IV h(z*)h(z*)]| = 0

and the LICQ condition implies h(z*) = 0. Moreover, LICQ also implies
that Vh(z*)VT h(z*) is non-singular and, due to continuity, Vh(xy,) VT h(zy)
is also non-singular for each k € K large enough. Thus, considering ([2.2)
again and defining A\ := pph(z)) we obtain

Mo = (Vh(zr) VT (k)" Vh(ag) (VF 2k, i) — Vf (2x)) (3.4)

for all k large enough and a.s.

11161% Me = —(Vh(z*)VTh(z*)) " 'Vh(z*)V f(z*) =: A*. (3.5)

Thus, a.s.,
0= lim VF(zy, py) = Vf(2") + VRN, (3.6)
which together with h(z*) = 0 implies that z* is a KKT point. O

11



Next, we prove a.s. convergence for the F'S scenario.

Theorem 3.5. Suppose that Assumption holds and that the sequence
{xk}kel\l generated by ASPEN is bounded. Moreover, suppose that there
exists k such that N, = N for all k > k. Then, a.s., there exists an ac-

cumulation point of the sequence {xy}ren which is a KKT point of problem
(1.1) provided that LICQ holds at that point.

Proof. Let us consider iterations k > k. Then, N}, = N and the line search
implies

F(@pi1, ) < Fag, i) — naw||VF (g, u) |* + ex
Notice that in the FS phase, the penalty parameter py is increased only if

\VF(zk, p)|| < 1/pk. On the other hand, if uy is kept fixed on some fi,
from (3.1) and the line search we obtain

F(aps1, 1) < Fwp, 1) — 0| VF (ax, @)|* + e

and, due to boundedness of iterates and summability of €, we conclude that
|VF (2, 1)||? tends to zero. This further implies that after a finite number
of iterations we will have ||V F(zk, )| < 1/f. Therefore, we conclude that
the penalty parameter cannot be fixed for an infinite number of iterations.
In fact, it must be increased infinitely many times, and thus limg_, o . = 00
holds. Moreover, we conclude that there exists a subset of iterations K such
that | VF(xg, ux)|| < 1/pe for all k € K which further implies that

lim VF(xg, px) = 0.
keK

Since the sequence of iterates is bounded, there exist * and K; C K such
that lim; _z 23 = 2™ and following the steps of the second part of the proof
of Theorem [3.4] we obtain the result. O

Finally, considering both possible scenarios (F'S and MB), we obtain the
main result for the ASPEN method.

Theorem 3.6. Suppose that Assumption holds and that the sequence
{z}ren generated by ASPEN is bounded. Then, a.s., there exists an accu-

mulation point of the sequence {xy}ren which is a KKT point of problem
(1.1) provided that LICQ holds.

4 Numerical results

In this section, we evaluate the performance of the proposed method on
real-data machine learning tasks, considering several binary classification
datasets from LIBSVM collection [6] listed in Table|l} Moreover, to provide
further insights into the behavior of the proposed method, we also consider

12



an academic problem (HS24) from the CUTEst collection [12] and modify
it by adding different levels of noise. Other benchmark datasets frequently
referenced in the literature include those from the UCI Machine Learning
Repository [15] and the MNIST handwritten digit database [16].

We begin our numerical study by demonstrating that ASPEN offers
benefits compared to the deterministic approach, where N, = N for all
k € N. We call this method ”Full” since it uses the full sample dur-
ing the whole optimization process. More precisely, Full follows the stan-
dard penalty approach by solving each subproblem approximately - until
|V En, (xk, pi)|] < 1/p is satisfied, and then it increases the penalty pa-
rameter by ppi1 = yug. Furthermore, we also compare ASPEN to a heuris-
tic method named ”"Heur” which starts with a subsample of size Ny and
increases it by Nj41 = min{[1.1Ny], N}) whenever |V Fn, (xk, i) || < 1/p
happens. The penalty parameter is updated as in the Full method, and the
same non-monotone line search is applied for solving the subproblems for
all the methods mentioned above.

The parameters of ASPEN are the following. The starting penalty pa-
rameter is po = 1, while the initial sample size is Ny = [0.01N]. The
additional sampling is applied with Dy = 1, ¢ = 107* and C = 1, while
the line search is performed with 8 = 0.1, n = 107 and ¢, = k~'''. When
needed, the sample size of ASPEN is increased by one, i.e., Nyy1 = Ni + 1
in line 23] of ASPEN. Heur uses the same starting values for the penalty pa-
rameter and the sample size. We set v = 1.1 for all the considered methods.
Starting points x( are equal for all the considered methods and are obtained
by normalizing random vectors with a Gaussian distribution.

Table 1: Binary classification data set details [6].

Dataset Dimension (n) | Datapoints (V)
ada 123 32,561
Australian 14 690

Heart 13 270
Mushrooms 112 8,124
Splice 60 1,000
MNIST 784 60000

We consider constrained logistic regression binary classification problems
as in [0], commonly used in machine learning applications. The form is the
following

N
1
min f(z) = & ;log (1 + e—bia?f) st ||lz)2 =1, (4.1)

where a; € R™ and b; € {—1, 1} represent the attributes and the correspond-
ing label for the i-th data point, respectively. We model the computational

13



cost by FEVj - the number of scalar products required by the specified
method to compute zp, starting from the initial point xg.

To evaluate the performance of the considered methods, we show:
1) the distance between xj and the solution z* of the considered problem,
i.e., ||z — 2*||, against computational cost measure F'EV}, in graphs a);
2) the sample size behavior across iterations, graphs b);
3) the penalty parameter update across iterations, graphs c).
The results for all the datasets from Table |1 in Figures are presented.

The results show that ASPEN manages to outperform Full and Heur
on most of the datasets, especially in light of achieving a better vicinity of
the solution with significantly lower computational costs. The results also
confirm the adaptive nature of ASPEN, especially when the sample size is
considered. The graphs b) reveal that the sample size is increased according
to the problem at hand, therefore highlighting ASPEN’s data-driven adap-
tivity. For instance, the MNIST dataset (Fig. [l) requires faster sample
size growth to cope with the diversity of the data, while the Mushrooms
dataset (Fig. [2|) obviously contains more similar data points, which allows
good approximate solutions even under modest sample sizes which practi-
cally fall into a mini-batch framework. Interestingly, the full sample is not
reached in any of the considered problems. Furthermore, as expected, the
penalty parameter is increased more rapidly for ASPEN than for the other
two methods (graphs c), but according to the optimality gap, it seems to be
beneficial - it allows the algorithm to progressively enforce feasibility while
maintaining efficiency.

Distance to x* vs FEV Sample Size per Iteration Penalty Parameter per Iteration
] 16000 o
12 —— ASPEN —— ASPEN 14001 — AspeEN
Full 14000 { —- Heur ! Full

1.0+ —-= Heur 12009 — - Heur

12000
1000

0.8 4
10000 4

0.6 4 8000

1 = %]
Ny

041 6000
|

0| Yo s

0.0 4

4000 4

2000 4
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Figure 1: MNIST dataset. ASPEN vs. Full and Heur: optimality gap vs. FEV (a);
sample size vs. iteration (b); penalty parameter vs. iteration (c).
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Figure 2: Mushrooms dataset. ASPEN vs. Full and Heur: optimality gap vs. FEV (a);
sample size vs. iteration (b); penalty parameter vs. iteration (c).
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Figure 3:

Splice dataset. ASPEN vs. Full and Heur: optimality gap vs. FEV (a);

sample size vs. iteration (b); penalty parameter vs. iteration (c).
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Figure 4: a9a dataset. ASPEN vs. Full and Heur: optimality gap vs. FEV (a); sample
size vs. iteration (b); penalty parameter vs. iteration (c).
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Figure 5:

Heart dataset. ASPEN vs. Full and Heur: optimality gap vs. FEV (a);

sample size vs. iteration (b); penalty parameter vs. iteration (c).
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Figure 6: Australian dataset. ASPEN vs. Full and Heur: optimality gap vs. FEV (a);
sample size vs. iteration (b); penalty parameter vs. iteration (c).

In the sequel, we compare ASPEN to the state-of-the-art stochastic opti-
mization methods of the relevant framework: Sto-SQP[4] and SVR-STOI5].
While the ASPEN keeps the same parameter settings as in the previous
experiments, the selected parameters for the competing methods are based
on empirical tuning and the recommendations from the literature. After
validation, the values were fixed and consistently applied across all exper-
iments, as was done in [5]. In detail, the setup is the following: Sto-SQP
uses § = 104, 71 = 0.1, ¢, = 1076, €1 = 0.1, e = 1072, 0510_50P = 0.5;
SVR-STO is employed with ogyr_sro = 0.5, 8 = 10*, T-10 = 0.1, ¢ =
1075, o, = 10%, Bsyr_sto = 1. Considering Figure E ASPEN shows to
be competitive with the state-of-the-art methods, outperforming them on
most of the considered datasets. The detailed analysis is provided below.

Figure m a) — Mushrooms dataset. ASPEN’s optimality gap drops down
sharply after only a few FEVs and continues to decline throughout the
interval. STO-SQP shows a stable, monotone decrease but with a much
smaller slope, indicating a higher computational cost for the same accuracy.
SVR-SQP with b = 16 converges more slowly than STO-SQP, whereas the
SVR-SQP with b = 128 yields only negligible improvement within the avail-
able FEV budget.

Figure [7|b) — a9a dataset. ASPEN is the only method achieving a pro-
nounced error reduction; after a brief plateau, it resumes decreasing, under-
scoring the effectiveness of its adaptive scheme. STO-SQP steadily lowers
the distance, albeit at a moderate rate. Both SVR-SQP variants display lim-
ited convergence, suggesting that this dataset would require more iterations
or a different batch-size schedule.

Figure [7|c) — Australian dataset. ASPEN again attains the largest error
reduction and maintains the lowest optimality gap across the entire FEV
horizon. STO-SQP provides a uniform but slower decrease. SVR-SQP with
b = 16 accelerates in the later phase and approaches STO-SQP’s accuracy,
highlighting the stochastic variant’s sensitivity to the data’s statistical prop-
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Figure 7: ASPEN vs. STO-SQP and two variants of SVR-SQP. Distance to the opti-
mal solution versus the number of scalar products (FEV): a) Mushrooms dataset; b) a9a
dataset; ¢) Australian dataset; d) Heart dataset; ) Splice dataset; f) MNIST dataset.

erties. The b = 128 variant shows the smallest improvement, confirming that
large batch sizes can hamper stochastic acceleration under a fixed evaluation
budget.

Figure [7] d) — Heart dataset. ASPEN demonstrates the fastest initial
convergence, rapidly reducing the distance to the optimal solution ||z —z*||
below 10! within just a few hundred FEVs. However, after this sharp drop,
its progress stagnates, maintaining a nearly constant level. Interestingly,
SVR-SQP (b = 16) continues to steadily decrease over time and eventually
surpasses ASPEN in terms of final accuracy, achieving the lowest distance to
the optimum. STO-SQP and SVR-SQP (b = 128) exhibit slower and more
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gradual convergence, remaining less competitive throughout.

Figure[fle) — Splice dataset. On this dataset, SVR-SQP (b = 16) even-
tually outperforms ASPEN in terms of final accuracy, although ASPEN
demonstrates a significantly faster initial convergence. ASPEN again achieves
strong early convergence but experiences prolonged stagnation between 2000
and 9000 FEV, only improving afterward. In contrast, SVR-SQP (b = 16)
exhibits consistent and monotonic progress and ultimately outperforms all
other methods by achieving the best final solution. STO-SQP remains mod-
erately effective, while SVR-SQP (b = 128) shows the slowest rate of im-
provement. These results highlight that while ASPEN excels in fast early
convergence, SVR-SQP (b = 16) demonstrates superior long-term accuracy
on both datasets.

Figure 7 f) — MNIST dataset. On this dataset, for the binary classi-
fication problem, we can conclude that the ASPEN algorithm is the most
successful in terms of solution accuracy, although it requires slightly more
function evaluations to outperform the other algorithms, which are also
reliable in terms of convergence but somewhat slower. The SVR-SQP algo-
rithms (with batch sizes b = 16 and b = 128) produced better results than
STO-SQP in scenarios with a larger number of FEV, even though STO-SQP
initially shows the best performance.

We end this section by providing some more insights on the sample size
behavior of the proposed method. To this end, we consider an academic
problem (HS24) from the CUTEst collection [12], modified by introducing
a Gaussian noise. More precisely, in order to simulate a stochastic environ-
ment, we consider a perturbed problem

1 N

min f(z) = Z;(f(l‘) +efllzl?) st llzl3=1, (4.2)

where f(z) = (z1—2)*+(z1—2x2)? is the objective function of problem HS24
in CUTEst collection, and ¢; values are drawn from Gaussian distribution
N(0,0?). Different levels of noise, i.e., variance, are employed to model
different levels of similarity of local cost functions, where higher level of
noise indicates more heterogeneous data.
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Figure 8: Influence of dissimilarity of local cost functions (modeled by o € {0.1,0.5,1,2})
on the behavior of ASPEN algorithm applied on problem (4.2)): a) optimality gap; b)
sample size increase.

The results presented in Figure[§show the robustness of ASPEN with re-
spect to the optimality gap and illustrate the adaptive nature of the proposed
method. As expected, more heterogeneous data require larger mini-batch
sizes to mimic the original objective function properly, and these results
clearly indicate that ASPEN is adaptable with respect to the sample size
increase.

5 Conclusions

We introduced a novel first-order adaptive sampling algorithm for finite-sum
minimization (ASPEN) that extends the work of [22] to a more general class
of problems with nonlinear equality constraints. The method combines an
additional sampling technique with non-monotone line search and puts it
into the framework of quadratic penalty methods. The resulting method
may behave like a mini-batch or an increasing sample method, depending
on the problem at hand. Besides the sample size, the penalty parameter is
also updated in an adaptive manner. We proved almost sure convergence
of ASPEN under some standard assumptions for the considered framework,
thus providing theoretical support for the proposed method. Numerical
results conducted on real-world binary classification problems show that
ASPEN is competitive with other state-of-the-art methods. Moreover, a
numerical study on an academic problem reveals ASPEN’s capability of
adapting to different data structures. Future work will include potential
extensions to problems with nonlinear inequality constraints.
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