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Abstract

We consider an unconstrained multi-criteria optimization problem
with finite sum objective functions. The proposed algorithm belongs
to a non-monotone trust-region framework where additional sampling
approach is used to govern the sample size and the acceptance of a
candidate point. Depending on the problem, the method can result
in a mini-batch or an increasing sample size approach. Therefore,
this work can be viewed as an extension of additional sampling trust
region method for scalar finite sum function minimization presented
in the literature. We show stochastic convergence of the proposed
scheme for twice continuously-differentiable, but possibly non-convex
objective functions, under assumptions standard for this framework.
The experiments on logistic regression and least squares problems show
the efficiency of the proposed scheme and its competitiveness with the
relevant state-of-the-art methods for the considered problems.

Key words: Additional sampling, non-monotone trust region, adaptive
sample size, multi-objective optimization, Pareto critical points, stochastic
convergence.

1 Introduction

Machine learning (ML) and deep learning (DL) have been widely researched
in optimization, and many crafty methods have been created to solve prob-
lems that arise in the domain. These problems are often nonlinear, noncon-
vex, and large-scale; hence it is an important task to create algorithms which
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can find the solution in an efficient manner. Multi-objective optimization
problems arise in ML and pose a great computational and logistic challenge.
Utilizing the stochastic approach, in the multi-criteria scenarios, showed to
be convenient considering the time and cost of obtaining the data and find-
ing the optimal result. Moreover, in ML applications often we encounter
finite sum problems, which due to their specific form allow us to employ
various subsampling techniques. This is crucial for our work, as it motivates
us to find a way to reduce costs by exploiting the problem’s structure. The
problem we are solving can be stated as

min
x∈Rn

f(x) := (f1(x), ..., f q(x)) (1)

where f : Rn → Rq and each component function is assumed to be smooth
with Lipschitz-continuous gradients. Let N i, i = 1, ..., q be the respective
index sets and N i = |N i| = N , for all i = 1, ..., q. We assume that each
component function has the following finite sum form

f i(x) :=
1

N

∑
j∈N i

f i
j(x), i = 1, ..., q. (2)

In ML terms, each component function f i(x) can be seen as a distinct av-
erage loss function, where x ∈ Rn is the vector of trainable parameters for
input-label pairs {(aij , yij)}Nj=1 of the training dataset, i.e.,

f i
j(x) := Li(aij , y

i
j ;x), j = 1, .., N, i = 1, ..., q,

where Li(·) measures the prediction error.
Since we are solving a multi-criteria problem, the points of interest are

Pareto critical points which cannot be locally improved in terms of all com-
ponent function values [12],[17]. Finding Pareto critical points yields pos-
sibility of finding an entire Pareto front - a set of globally optimal points
[18]. This is extremely important as in some applications the representation
of the entire front can provide crucial information. Pareto optimal (criti-
cal) points can be characterized as zeros of the marginal functions (see [12]
for details). In the scalar case this concept is reduced to the well known
first order optimality conditions, i.e., finding a stationary point where gra-
dient is equal to zero. Furthermore, in the stochastic setup, where only
approximate values of the functions and the gradients are available, the ap-
proximate marginal function with the corresponding scalar representation
of the problem plays a significant role [13],[11]. The common result within
this framework is (stochastic) convergence of the marginal function to zero.

Both the line search and the trust region approach has been researched
in multi-objective optimization, resulting in a number of deterministic and
stochastic algorithms. Deterministic multi-criteria steepest descent and
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Newton method, together with a projected gradient method for the con-
strained case has been discussed in [26]. The stochastic multi-gradient, an
extension of the classical stochastic gradient SG [16], can be found in [22],
in which sublinear convergence for convex and strongly convex functions is
shown.

In [14], the marginal function is utilized to define the trust region method,
and therein a convergence towards a critical point is shown. The complex-
ity of multi-objective problems motivates the development of the stochastic
and derivative free approaches. Models within the trust region framework
can utilize the inexact information, which can save time and reduce the
computational cost with adequate methods. In [13] one criterion is a black
box function, where the derivative is unknown. Therein it is showed that
using true function values and gradient approximations to create models
yields a convergence to a Pareto optimal point. It is also possible to use
approximate function and gradient values if the estimates are sufficiently
accurate with high probability (probabilistically fully linear), see [11], which
is a generalization of [15]. Therein, an adaptive subsampling technique is
used which depends on the trust region radius. It successfully reduced the
computational cost by using less data when the radius is larger.

The literature also provides methods designed for problems with the fi-
nite sum objective functions. These methods exploit the structure of the
function and their advantage lies in the subsampling techniques. It is shown
that subsampling can help in reducing the costs of deterministic schemes
where the full sample set is needed at all iterations, yielding excessive op-
timization costs. Some papers on this topic are [1],[2],[3],[4],[5],[6],[10]. In
[7] an additional sampling technique is employed within a non-monotone
trust-region framework, aiming to solve single-criterion problems. The idea
of non-monotonicity withing trust region can be found in [19],[20] and [21].
In [19] fixed size subsampling batches are proposed, whereas in [20] a relaxed
trust region ratio is utilized. The idea of relaxed trust region conditions in
a stochastic setting is what we will also benefit from. Our work will extend
the approach of [7] to vector functions, as we will explain further on. The
additional sampling technique which is prominent here, is also discussed in
[23],[25], and [24] in different framework and settings.

In this work, we propose a stochastic trust region algorithm for solving
multiobjective problems. At each iteration we employ subsampled func-
tions and gradients to find a candidate subsequent point. The acceptance of
that point is based on additional sampling technique which also governs the
subsampling strategy. This results in an adaptive subsampling technique.
Knowing that we are dealing with noisy approximations, we do not pose
strict monotonicity of the objective function through iterations, as men-
tioned. Similar as in [7] we rely on additional sampling as an independent
controlling factor, and we utilize it to determine the next subsampling set
and iteration. This means that together with model and approximate ob-
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jective function decrease, the behavior of independent subsampled functions
is monitored and used as a decision making criterion. By adaptively choos-
ing the sample size for each component, we also handle the sample average
approximation error for each function. Consequently, this leads to two dif-
ferent sample size scenarios: 1) mini-batch scenario where at least one of
the objective functions is inaccurate during the whole optimization process,
i.e., the full sample is not reached; 2) full sample scenario where the full
sample is reached for all the objective functions eventually. Regardless of
the scenario, we prove almost sure convergence to a Pareto critical point
under some standard assumptions for the stochastic framework.

The paper is organized as follows. Some basic concepts are covered in
the following section. Section 3 presents the proposed algorithm. Within
Section 4 the stochastic convergence of the proposed method is analyzed,
while Section 5 is devoted to numerical results. Some conclusions are drawn
in Section 6.

2 Preliminaries

We start this section by defining efficient and weakly efficient solutions of
problem (1).

Definition 1. [12] A point x∗ ∈ Rn is called (an) efficient (solution) for (1)
(or Pareto optimal) if there exists no point x ∈ Rn satisfying f i(x) ≤ f i(x∗)
for all i ∈ {1, 2, ..., q} and f(x) ̸= f(x∗). A point x∗ ∈ Rn is called (a) weakly
efficient (solution) for (1) (or weakly Pareto optimal) if there exists no point
x ∈ Rn satisfying f i(x) < f i(x∗) for all i ∈ {1, 2, ..., q}.

Thus, a Pareto point is such that for every direction d ∈ Rn, there exists a
function f i(x) with a nonnegative directional derivative in that direction d,
i.e., ⟨∇f i(x∗), d⟩ ≥ 0. The scalar problem’s stationarity condition - gradient
equal to zero - is replaced with another metric related to marginal function
defined as follows

ω(x) = − min
∥d∥≤1

(
max

i∈{1,...,q}
⟨∇f i(x), d⟩

)
. (3)

The marginal function generalizes the gradient norm in multi-objective set-
tings - notice that ω(x) = ∥∇f(x)∥ if q = 1 since the solution of problem
(3) is dopt(x) = ∇f(x)/∥∇f(x)∥ in that case. In general, marginal function
characterizes Pareto critical points as stated in the following lemma.

Lemma 1. [12] Let D(x) be the set of solutions of (3). Then

a) ω(x) ≥ 0, for every x ∈ Rn;

b) If x is Pareto critical for (1) then 0 ∈ D(x) and ω(x) = 0;
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c) If x is not Pareto critical of (1) then ω(x) > 0 and any d ∈ D(x) is a
descent direction for (1);

d) The mapping x → ω(x) is continuous.

The scalar representation of the multiobjective problem (1) (MOP) is defined
as

min
x∈Rn

ϕ(x), ϕ(x) := max
i∈{1,...,q}

f i(x).

This problem is not equivalent to problem (1), but it can be shown that
every solution this problem is a Pareto optimal point of problem (1).

Since we are dealing with finite sum objective functions (2), at each
iteration we form a sample average approximation functions and the corre-
sponding gradients as follows

f i
N i

k
(x) =

1

N i
k

∑
j∈N i

k

f i
j(x), ∇f i

N i
k
(x) =

1

N i
k

∑
j∈N i

k

∇f i
j(x), (4)

where N i
k ⊆ N i and N i

k = |N i
k|. Given that we work with approximate

functions, we consider the approximate marginal functions [13]

ωNk
(x) = − min

∥d∥≤1

(
max

i∈{1,...,q}
⟨∇f i

N i
k
(x), d⟩

)
. (5)

where Nk = (N 1
k , ...,N

q
k ) ⊆ N = (N 1, ...,N q) is the set q-tuple. The corre-

sponding scalar problem is then given by

min
x∈Rn

ϕNk
(x), ϕNk

(x) := max
i∈{1,...,q}

f i
N i

k
(x). (6)

In deterministic second order trust region framework, the quadratic model
of ϕ(x) is given by

mk(d) := max
i∈{1,...,q}

{f i(xk) + ⟨∇f i(xk), d⟩+
1

2
⟨d,H i

kd⟩},

where H i
k is a Hessian approximation of the respective component function.

In general, we will use approximate functions and the gradients as well and
thus we relate our quadratic model to (6) as follows

mNk
(d) = max

i∈{1,...,q}
mN i

k
(d), (7)

mN i
k
(d) := f i

N i
k
(xk) + ⟨∇f i

N i
k
(xk), d⟩+

1

2
⟨d,H i

kd⟩.

Notice that for each i = 1, ..., q, ∇mN i
k
(0) = ∇f i

N i
k
(xk), and mN i

k
(0) =

f i
N i

k
(xk). In SMOP [11], we assumed that the approximations are accurate
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enough with a high probability. This allowed us to control the approxima-
tions using adaptive subsampling which depends on the trust region radius.
Here, as in [7], we will rely on the independently sampled subsets and a
nondecreasing, adaptive subsampling strategy. The subsampling strategy is
constructed in such way to avoid employing the entire sample set for the
functions f i which are homogeneous, i.e., whose subsampled values do not
noticeably differ from the full sample values. This will create, as mentioned,
two possible scenarios: ”mini-batch” (MB) and ”full sample” (FS). Recall
that in the MB scenario, there exists at least one component function f i(x)
for which the subsampling size N i

k is strictly less than the sample size N
throughout the algorithm. On the other hand, FS does not imply fully de-
terministic approach, but rather an increasing sample mode where the full
sample is reached eventually. More formally, let us define

Mb := {i ∈ {1, ..., q} | N i
k < N, ∀k ∈ N}. (8)

Thus, Mb ̸= ∅ implies MB scenario, while Mb = ∅ implies FS scenario.

3 Algorithm

Within this section we describe the proposed Additional Sampling algorithm
for Multi-Objective Problems - ASMOP. As mentioned earlier, at each iter-
ation k, a quadratic model mNk

(d) is formed using the subsampled values
(4) and Hessian approximations H i

k. We find the direction by approximately
solving the problem

min
∥d∥≤δk

mNk
(d) (9)

in a such way to ensure the Cauchy decrease condition

mNk
(0)−mNk

(dk) ≥
1

2
ωNk

(xk)min{δk,
ωNk

(xk)

βk
} (10)

with
βk = 1 + max

i∈{1,...,q}
∥H i

k∥. (11)

It can be shown that such direction exists (see Lemma 2 of [11] with Hk =
maxi∈{1,...,q}H

i
k for instance). Similar to [7], we will take a trial point xt =

xk + dk, and check the ratio between the decrease of the scalar function and
the quadratic model. Since we are dealing with noisy approximations in
general, we adopt non-monotone trust region strategy to avoid imposing a
strict decrease and define the ratio as follows

ρNk
:=

ϕNk
(xt)− ϕNk

(xk)− δktk
mNk

(dk)−mNk
(0)

(12)
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where tk > 0 for all k and

∞∑
k=0

tk ≤ t < ∞. (13)

The role of tk is to control a potential increase of the scalar function. Fur-
thermore, throughout the whole MB phase of the algorithm, we perform
an additional sampling to form Dk = (D1

k, ...,D
q
k) with Di

k ⊂ N i such that
Di

k = |Di
k| < N for all i = 1, ..., q. This sampling is done independently of

Nk and it is used to calculate f i
Di

k
(xk), f

i
Di

k
(xt) and ∇f i

Di
k
(xk) by the follow-

ing formulas

f i
Di

k
(x) =

1

Di
k

∑
j∈Di

k

f i
j(x), ∇f i

Di
k
(x) =

1

Di
k

∑
j∈Di

k

∇f i
j(x), i = 1, ..., q. (14)

Keep in mind that it is possible that some component functions reached
the full sample, while the others did not. In such case we set Di

k = N i for
each i ∈ {1, ..., q} such that N i

k = N i to avoid unnecessary computations.
For all other components such that N i

k < N it is possible to use a single-
element subsample, i.e., Di

k = 1, which minimizes the computational cost of
additional sampling. The following ratio acts as an additional measure of
the adequacy of the trial point

ρDk
:=

ϕDk
(xt)− ϕDk

(xk)− δktk
−maxi ∥∇f i

Di
k

(xk)∥
(15)

where tk > 0 and
∞∑
k=0

tk ≤ t < ∞. (16)

Notice that if ρDk
≥ ν then we have

ϕDk
(xt) ≤ ϕDk

(xk) + δktk − νmax
i

∥∇f i
Di

k
(xk)∥ (17)

which is an Armijo-like condition. Throughout the MB phase of the algo-
rithm, the trial point is accepted if both ρNk

and ρDk
are big enough. On

the other hand, if the FS phase is reached, only ρNk
= ρN is considered as

in the deterministic version of the multi objective trust region [14]. If the
sampling of Dk is done uniformly and randomly, with replacements, then
f i
Di

k
(xt) represents a conditionally unbiased estimator of f i(xt). The ratio

ρDk
is also used to control the subsampling size. If ϕDk

increases a lot, more
precisely, if ρDk

< ν and thus ϕDk
(xt) > ϕDk

(xk)+δktk−νmaxi ∥∇f i
Di

k
(xk)∥,

the components which haven’t reached the full sample N need to increase
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the subsampling size N i
k and choose a new subsample for the subsequent

iteration. Using the stochastic average approximation error estimate

hik :=
N −N i

k

N
(18)

we can also increase the subsampling size N i
k if we get too close to the Pareto

optimal point of the approximate problem, i.e., if ωNk
(xk) gets relatively

close to 0. In other words, if for some i, N i
k << N , and ωNk

is extremely
small, we increase N i

k so that the algorithm does not get stuck near the
stationary point of the wrong function. In order to facilitate the exposition
of the algorithm, let us define

Mk
b := {i ∈ {1, ..., q} | N i

k < N}. (19)

Notice that Mb = ∅ implies that the algorithm is in the FS phase, while
Mb ̸= ∅ implies the MB phase. The algorithm can be stated as follows.
Algorithm 1. (ASMOP)

Step 0. Initialization.
Choose x0 ∈ Rn, δ0 ∈ (0, δmax), γ1 ∈ (0, 1), γ2 = 1/γ1, ν, ε > 0, η ∈
(0, 34), {tk} satisfying (13) and {tk} satisfying (16), N0 = (N 1

0 , ...,N
q
0 ).

Set k = 0.

Step 1. Candidate point.
Form the model (7) and find the step such that (10) holds.
Calculate ρNk

by (12) and ωNk
(xk) by (5).

Set xt = xk + dk.

Step 2. Sample update.

if Mk
b = ∅ then

go to Step 3.
else

For all i ∈ Mk
b :

Choose Di
k randomly and uniformly, with replacement, from N i and

calculate ρDk
by (15).

if ωNk
(xk) < εhik then

Choose N i
k+1 ∈ (N i

k, N ] and choose N i
k+1.

else
if ρDk

< ν then
Choose N i

k+1 ∈ (N i
k, N ] and choose N i

k+1.
else

if ρNk
< η then

Set N i
k+1 = N i

k and N i
k+1 = N i

k.
else

Set N i
k+1 = N i

k, and choose N i
k+1.
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end if
end if

end if
end if

Step 3. Iterate update.

if Mk
b ̸= ∅ then

if ρNk
≥ η and ρDk

≥ ν then
xk+1 = xt

else
xk+1 = xk

end if
else

if ρNk
≥ η then

xk+1 = xt
else

xk+1 = xk
end if

end if

Step 4. Radius update.

if ρNk
≥ η then

δk+1 = min{δmax, γ2δk}
else

δk+1 = γ1δk
end if

Step 5. Counter update. Set k = k + 1 and go to Step 1.

The algorithm is such that the sample sizes are nondecreasing, hence once
the full sample is reached, it does not change anymore. At Step 2, if ρDk

≥ ν
and ρNk

< η, the sample stays the same, however the radius decreases in
such case, hence we try to find new direction with the same approximate
functions, but different radius which improves the quadratic model’s accu-
racy. If the decrease (or more precisely - the controlled increase) happens for
both ϕNk

and ϕDk
, we find a new subsample of the same size, and increase

the trust region radius. Recall that we calculate ρDk
only during the MB

phase of the algorithm and there are no restrictions on how we choose Di
k

- in fact Di
k = 1 is a common choice in the additional sampling strategy

that we use and it is also the choice which we set for numerical experiments
presented in Section 5.
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4 Convergence analysis

Within this section we prove almost sure convergence of a subsequence of
marginal functions ω(xk), which is an equivalent of vanishing subsequence
of gradients in the scalar case (q = 1). We start the analysis by imposing
some standard assumptions for the considered framework.

Assumption 1. All the functions f i
j , j ∈ N i, i = 1, ..., q are twice continu-

ously differentiable and bounded from bellow.

Notice that this assumption implies that all the subsampled functions f i
N i

k
, i =

1, ..., q are twice continuously differentiable and bounded from bellow as well.

Assumption 2. There exists a positive constant ch such that

∥∇2f i
j(x)∥ ≤ ch for all x ∈ Rn, j ∈ N i, i = 1, ..., q,

and the sequence of βk defined by (11) is uniformly bounded, i.e., there
exists a positive constant cb such that

βk = 1 +max
i

∥H i
k∥ ≤ cb for all k ∈ N.

This assumption implies that all the Hessians ∥∇2f i
N i

k
(x)∥ are uniformly

bounded as well with the same constant ch.
The next lemma shows that the error of the approximate model mNk

can
be controlled by the trust region radius. The proof is similar to the proof of
Proposition 5.1 in [14] and we state it for the sake of completeness.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then there exists a
positive constant cf > 0 such that for each k ∈ N

|ϕNk
(xk + dk)−mNk

(dk)| ≤ cfδ
2
k.

Proof. Due to Assumption 1 and Taylor’s expansion, for each i we obtain

f i
N i

k
(xk+dk) = f i

N i
k
(xk)+⟨∇f i

N i
k
(xk), dk⟩+

1

2
⟨dk,∇2f i

N i
k
(xk+αidk)dk⟩, (20)

where αi ∈ (0, 1). By adding and subtracting 1
2⟨dk, H

i
kdk⟩ on the right-hand

side and using maximum over i we obtain

max
i∈{1,...,q}

f i
N i

k
(xk + dk) ≤ max

i∈{1,...,q}
{f i

N i
k
(xk) + ⟨∇f i

N i
k
(xk), dk⟩+

1

2
⟨dk, H i

kdk⟩}

+ max
i∈{1,...,q}

{1
2
⟨dk, (∇2f i

N i
k
(xk + αidk)−H i

k)dk⟩},

which is equivalent to

ϕNk
(xk + dk)−mNk

(dk) ≤ max
i∈{1,...,q}

{1
2
⟨dk, (∇2f i

N i
k
(xk + αidk)−H i

k)dk⟩}.
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By using the fact that ∥dk∥ ≤ δk and Assumption 2, we conclude that for
each i

1

2
⟨dk, (∇2f i

N i
k
(xk + αidk)−H i

k)dk⟩ ≤ 1

2
∥dk∥2(∥∇2f i

N i
k
(xk + αidk)∥+ ∥H i

k∥)

≤ 1

2
δ2k(ch + cb) := cfδ

2
k.

Thus, we obtain
ϕNk

(xk + dk)−mNk
(dk) ≤ cfδ

2
k. (21)

Moreover, by rearranging (20) we obtain

f i
N i

k
(xk) + ⟨∇f i

N i
k
(xk), dk⟩ = f i

N i
k
(xk + dk)−

1

2
⟨dk,∇2f i

N i
k
(xk + αidk)dk⟩.

Adding 1
2⟨dk,∇

2H i
kdk⟩ on both sides and using maximum over i we obtain

mNk
(dk) ≤ ϕNk

(xk + dk) + max
i∈{1,...,q}

{−1

2
⟨dk, (∇2f i

N i
k
(xk + αidk)−H i

k)dk⟩}

Since for each i there holds

−1

2
⟨dk, (∇2f i

N i
k
(xk+αidk)−H i

k)dk⟩ ≤ |−1

2
⟨dk, (∇2f i

N i
k
(xk+αidk)−H i

k)dk⟩| ≤ cfδ
2
k,

we get
mNk

(dk)− ϕNk
(xk + dk) ≤ cfδ

2
k (22)

and combining this with (21) we obtain the result. ■

Remark 1. Notice that if Mk
b = ∅, i.e., if the algorithm is in the FS phase,

Lemma 2 implies
|ϕ(xk + dk)−mk(dk)| ≤ cfδ

2
k. (23)

The further analysis is conducted by observing the two possible out-
comes of the algorithm with respect to sample size behavior (MB and FS)
separately. However, at the end we combine all the possible outcomes to
form the final result stated in Theorem 4.2. In order to do that, we follow
the similar path as in other papers dealing with the considered additional
sampling approach. Let us denote by D+

k the subset of all possible outcomes
of Dk such that ρDk

≥ ν, i.e.,

D+
k = {Dk ⊂ N | ϕDk

(xt) ≤ ϕDk
(xk) + δktk − ν max

i∈{1,..,q}
∥∇f i

Di
k
(xk)∥}. (24)

If Dk ∈ D+
k and ρNk

≥ η then xk+1 = xt, otherwise we have xk+1 = xk.
Similarly, we denote the set of outcomes where an increase occurs as

D−
k = {Dk ⊂ N | ϕDk

(xt) > ϕDk
(xk) + δktk − ν max

i∈{1,..,q}
∥∇f i

Di
k
(xk)∥}. (25)

Notice that if Dk ∈ D−
k , then xk+1 = xk Now, we proceed by observing the

MB scenario first. The following lemma states that, within this scenario, we
have ρDk

≥ ν for all k large enough.
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Lemma 3. If Mb ̸= ∅ then there exists random, finite iteration k0 ∈ N such
that D−

k = ∅ for all k ≥ k0.

Proof. Since the sample sizes are nondecreasing, for each i ∈ Mb there exist

a corresponding N
i
< N and ki0 ∈ N such that N i

k = N
i
for all k ≥ ki0.

Without loss of generality, let us assume that for all j /∈ Mb there holds
N j

k = N for all k ≥ k0 := maxi∈{1,..,q} k
i
0, i.e., for all k ≥ k0 the subsample

sizes reached their upper limit.
Let us assume the contrary, that there exist an infinite subsequence of

iterations K ⊂ N such that D−
k ̸= ∅ for all k ∈ K. That means that

for all k ∈ K there exists at least one possible choice of Dk such that
ρDk

< ν. Without loss of generality, assume that for all k ∈ K we have
that k ≥ k0. Since Di

k ≤ N − 1, there are finitely many combinations
with repetitions for Di

k and thus there are finitely many choices for q-tuples
Dk.

1 Therefore there exists p̃ ∈ (0, 1) such that P (Dk ∈ D−
k ) ≥ p̃, i.e.,

P (Dk ∈ D+
k ) ≤ 1− p̃ = p < 1. Hence

P (Dk ∈ D+
k , ∀k ∈ K) ≤

∏
k∈K

p = 0,

i.e., almost surely there exists k ≥ k0, such that ρDk
< ν. However, accord-

ing to Step 2 of the algorithm, the sample size is increased for all i ∈ Mk
b in

that case, which is a contradiction with the assumption that N i
k = N

i
for

all i ∈ Mb and k ≥ k0. This completes the proof. ■

The following lemma will help us to show that the marginal function
tends to zero in the MB scenario. In order to prove the convergence result,
we define an auxiliary function Φfix

Φfix(x) :=
1

N

N∑
j=1

max
i∈{1,...,q}

f i
j(x). (26)

The result is as follows.

Lemma 4. Suppose that Assumptions 1 holds and Mb ̸= ∅. Then

Φfix(xt) ≤ Φfix(xk)− νω(xk) + δktk

holds for all k ≥ k0, where k0 is as in Lemma 3.

1More precisely, the number of possible choices for Dk is S(Di
k) ≤ S̄i := (2N−2)!/((N−

1)!)2 where the upper bound follows from the combinatorics of unordered sampling with
replacement. Thus, the number of choices for q-tuples Dk is also finite and bounded by
S̄ =

∏
i∈Mb

S̄i.

12



Proof. Lemma 3 implies that we have ρDk
≥ ν, i.e.,

ϕDk
(xt) ≤ ϕDk

(xk) + δktk − ν max
i∈{1,...,q}

∥∇f i
Di

k
(xk)∥,

for all k ≥ k0 and for every possible choice of Dk. Since the choice of
each Di

k is uniform and random with replacements, this further implies2

that the previous inequality also holds for all the single-element choices of
Di

k and all their possible combinations forming Dk. Further, observing the
combinations of the form Dk = (j, ..., j) for j = 1, ..., N we obtain

max
i∈{1,...,q}

f i
j(xt) ≤ max

i∈{1,...,q}
f i
j(xk) + δktk − ν max

i∈{1,...,q}
∥∇f i

j(xk)∥.

Now, summing over j and dividing by N we obtain

Φfix(xt) ≤ Φfix(xk) + δktk − ν
1

N

N∑
j=1

max
i∈{1,...,q}

∥∇f i
j(xk)∥. (27)

Further, let us observe the marginal function and let us denote by d∗k the
solution of (3) at iteration k, i.e.,

ω(xk) = − max
i∈{1,..,q}

⟨∇f i(xk), d
∗
k⟩.

Then for every i ∈ {1, .., q} there holds

−ω(xk) = max
i∈{1,..,q}

⟨∇f i(xk), d
∗
k⟩ ≥ ⟨∇f i(xk), d

∗
k⟩.

Furthermore, by using the Cauchy-Schwartz inequality and the fact that
∥d∗k∥ ≤ 1 we obtain

−ω(xk) ≥ ⟨∇f i(xk), d
∗
k⟩ ≥ −∥∇f i(xk)∥∥d∗k∥ ≥ −∥∇f i(xk)∥.

Equivalently, ω(xk) ≤ ∥∇f i(xk)∥ for every i and thus we obtain

ω(xk) ≤ max
i∈{1,..,q}

∥∇f i(xk)∥ = max
i∈{1,..,q}

∥ 1

N

N∑
j=1

∇f i
j(xk)∥ (28)

≤ max
i∈{1,..,q}

1

N

N∑
j=1

∥∇f i
j(xk)∥ ≤ 1

N

N∑
j=1

max
i∈{1,..,q}

∥∇f i
j(xk)∥.

Combining this with (27) we obtain the result. ■

The following result states that in the MB case, eventually all the iterates
remain within a random level set of the function Φfix.

2Additional sampling is such that it is possible to have Di
k = {j, .., j} which is in fact

equivalent of choosing one-element Di
k = {j} due to sample average approximations.
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Corollary 4.1. Suppose that the assumptions of Lemma 4 hold. Then the
following holds for all k ∈ N

Φfix(xk0+k) ≤ Φfix(xk0) + δmaxt.

Proof. Since xk+1 is either xk or xt, Lemma 4 and nonnegativity of ω(xk)
(Lemma 1, a)) imply that in either case we have Φfix(xk+1) ≤ Φfix(xk)+δk t̄k
for every k ≥ k0. Then, the results follows from summability of t̄k (16) and
the fact that the sequence of δk is uniformly bounded by δmax. ■

Similar result can be obtained for the FS scenario as well.

Lemma 5. Suppose that the Assumptions 1 and 2 hold. If Mb = ∅, then
there exists a finite, random iteration k1 such that the following holds for
all k ∈ N

ϕ(xk1+k) ≤ ϕ(xk1) + δmaxt.

Proof. Since Mb = ∅, there exists a random, finite iteration k1 ∈ N such that
for all k ≥ k1 the full sample is reached, i.e., N i

k = N for all i = 1, ..., q, and
thus we have ϕNk

(xk) = ϕ(xk), mNk
(dk) = mk(dk) and ωNk

(xk) = ω(xk).
Let us observe iterations k ≥ k1 and denote ρk := ρN . Then, according
to the algorithm, the step is accepted if and only if ρk ≥ η. So, either
ϕ(xk+1) = ϕ(xk) or ϕ(xk+1) = ϕ(xt) and ρk ≥ η, i.e.,

ϕ(xk+1) ≤ ϕ(xk) + tkδk + η(mk(dk)−mk(0))

≤ ϕ(xk) + tkδk −
η

2
ω(xk)min{δk,

ω(xk)

βk
}

≤ ϕ(xk) + tkδmax

Hence the result follows from (13). ■

In order to prove the main result, we assume that the expected value
of any local cost function f i

j is uniformly bounded. For instance, this is
true under the bounded iterates assumption which is common is stochastic
framework. More precisely, we assume the following.

Assumption 3. There exists a positive constant C such that for every
i = 1, ..., q and j ∈ N i we have

E(|f i
j(xk0)| | MB) ≤ C and E(|f i

j(xk1)| | FS) ≤ C,

where MB (FS) represents all possible mini-batch (full sample) sample
paths of the algorithm, respectively.

Notice that Assumption 3 implies that

E(Φfix(xk0) | MB) ≤ C and E(ϕfix(xk1) | FS) ≤ C. (29)

14



In the sequel we will show the convergence result for ASMOP algorithm.
The analysis is conducted in a similar way as in the proof of Theorem 1
of [7], but adapted to fit the multi-objective framework. For the sake of
readability, we observe separately MB and FS case. First we consider the
MB scenario and show that lim infk→∞ ω(xk) = 0 almost surely.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Then

P (lim inf
k→∞

ω(xk) = 0 | MB) = 1.

Proof. Let us consider the MB scenario, i.e., the sample paths such that
Mb ̸= ∅. Then, Lemma 3 implies that we have ρDk

≥ ν, for all k ≥ k0 and
for every possible choice of Dk. Moreover, we know that for each i ∈ Mb we

have N i
k = N

i
< N , and for each i /∈ Mb we have N i

k = N for all k ≥ k0.
Moreover, according to Step 2 of the algorithm, we have

ωNk
(xk) ≥ εhik ≥ ε

1

N
=: εN > 0.

for all i ∈ Mb and k ≥ k0. Now, we will show that there exists an infinite
subset of iterations at which the trial point is accepted, i.e., that ρNk

≥ η
occurs infinite number of times.

Suppose the contrary, that there exists k3 ≥ k0 such that ρNk
< η for

all k ≥ k3. This further implies that limk→∞ δk = 0 due to Step 3 of the
algorithm. Moreover, in this scenario, we also have a fixed sample Nk = Nk3

for all k ≥ k3. Furthermore, since mNk
(0) = ϕNk

(xk), from Lemma 2 for all
k ≥ k3 we have that

|ρNk
− 1| = |ϕNk

(xt)− ϕNk
(xk)− tkδk

mNk
(dk)−mNk

(0)
− 1| = |ϕNk

(xt)− tkδk −mNk
(dk)

mNk
(dk)−mNk

(0)
|

≤
cfδ

2
k + tkδk

ωNk
(xk)

2 min{δk,
ωNk

(xk)

βk
}
≤

cfδ
2
k + tkδk

εN
2 min{δk, εNcb }

Since limk→∞ δk = 0, there exists k4 ≥ k3 such that δk < εN/cb for all
k ≥ k4 and thus

|ρNk
− 1| ≤

cfδ
2
k + tkδk
εN δk
2

=
2cfδk + 2tk

εN
.

Letting k → ∞ and using the fact that limk→∞ tk = 0 due to (13), we
obtain limk→∞ ρNk

= 1, which is in contradiction with the assumption of
ρNk

< η < 3
4 for all k ≥ k3.

Thus, we have just shown that there exists an infinite subsequence K2 ⊂
N such that ρNk

≥ η for all k ∈ K2. LetK3 = K2∩{k0, k0+1, ...} := {kj}j∈N.
Then, for all k ∈ K3 we have ρDk

≥ ν and ρNk
≥ η, and thus xk+1 = xt.
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Notice that for all the intermediate iterations, i.e., for all k ≥ k0, k /∈ K3 we
have xk+1 = xk. Thus, Lemma 4 implies

Φfix(xkj+1
) = ... = Φfix(xkj+1) ≤ Φfix(xkj )− νω(xkj ) + δkj tkj

and thus for each j ∈ N

Φfix(xkj ) ≤ Φfix(xk0)− ν

j−1∑
l=0

ω(xkl) + δmaxt.

Applying the conditional expectation E(· | MB) and using Assumptions 1
which implies that Φfix(xkj ) is bounded from below for any j, by employing
Assumption 3 and letting j → ∞ we conclude that

∞∑
l=0

E(ω(xkl) | MB) < ∞.

Now, for any ϵ, from Markov’s inequality we obtain

∞∑
l=0

P (ω(xkl) ≥ ϵ | MB) ≤ 1

ϵ

∞∑
l=0

E(ω(xkl) | MB) < ∞.

Finally, Borel-Cantelli Lemma implies that liml→∞ ω(xkl) = 0 which com-
pletes the proof. ■

Next, we show the same result for the FS scenario.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Then

P (lim inf
k→∞

ω(xk) = 0 | FS) = 1.

Proof. Let us consider the FS scenario, i.e., the sample paths such that
Mb = ∅. Then, as in the proof of Lemma 5, for all k ≥ k1 we have N i

k = N
for all i = 1, ..., q, and thus ϕNk

(xk) = ϕ(xk), mNk
(dk) = mk(dk), ωNk

(xk) =
ω(xk) and ρk := ρN .

Let us suppose the the statement of this theorem is not true, i.e., that
there exists ε > 0 and k2 ≥ k1 such that ω(xk) > ε for all k ≥ k2. Since (13)
implies that limk→∞ tk = 0, without loss of generality, assume that tk < cf
for all k ≥ k2. Then it can be shown that the sequence of δk is uniformly
bounded away from zero. Indeed, if at any iteration k ≥ k2 the value of δk
falls below δ̂ := ε/(20max{1, cf , cb}), then Lemma 2 implies

|ρk − 1| = |ϕ(xt)−mk(dk)− tkδk
mk(dk)−mk(0)

| ≤
cfδ

2
k + tkδk

ω(xk)
2 min{δk, ω(xk)

βk
}

≤
cfδ

2
k + tkδk

ε
2 min{δk, ε

cb
}
≤

cfδ
2
k + tkδk
ε
2δk

<
cf δ̂ + cf δ̂

ε
2

<
1

4
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which further implies that ρk > 3
4 > η, and, according to the algorithm, the

radius is increased, i.e., δk+1 > δk. Therefore, there exists δ̃ > 0, such that
δk > δ̃, for all k ≥ k2.

On the other hand, the existence of k3 such that ρk < η for every k ≥ k3
would imply limk→∞ δk = 0 due to Step 4 of the algorithm, which is in
contradiction with δk > δ̃, for all k ≥ k2. Thus, we conclude that there
must exist an infinite number of iterations K1 ⊂ N such that for all k ∈ K1

there holds k ≥ k2 and ρk ≥ η. Therefore, for all k ∈ K1 we have

ϕ(xk+1) ≤ ϕ(xk) + δktk + η(mk(dk)−mk(0))

≤ ϕ(xk) + δktk − η
ω(xk)

2
min{δk,

ω(xk)

βk
}

≤ ϕ(xk) + δktk − η
ε

2
min{δ̃, ε

cb
}

=: ϕ(xk) + δktk − ĉ.

Again, without loss of generality, we can assume that for all k ∈ K1 there
holds δktk ≤ ĉ/2 and thus

ϕ(xk+1) ≤ ϕ(xk)−
ĉ

2
, k ∈ K1.

Furthermore, by denoting K1 = {kj}j∈N and using the fact that for all
k ≥ k2 such that k /∈ K1 the trial point is rejected and thus ϕ(xk+1) = ϕ(xk),
we conclude that for all j ∈ N

ϕ(xkj+1
) = ... = ϕ(xkj+1) ≤ ϕ(xkj )−

ĉ

2
.

Applying the conditional expectation and using Assumption 3 we obtain
that for every j ∈ N

E(ϕ(xkj ) | FS) ≤ C − j
ĉ

2

and letting j → ∞ we obtain limj→∞ E(ϕ(xkj ) | FS) = −∞. This is
in contradiction with Assumption 1 which implies that the function ϕ is
bounded from below. This completes the proof. ■

Finally, we obtain the following result as a direct consequence of the
previous two theorems and Lemma 1.

Corollary 4.2. Suppose that Assumptions 1, 2 and 3 hold. Then the se-
quence of iterates {xk}k∈N generated by the ASMOP algorithm satisfies

lim inf
k→∞

ω(xk) = 0 a.s.

Moreover, if the sequence of iterates is bounded, then a.s. there exists an
accumulation point of the sequence {xk}k∈N which is a Pareto critical point
for problem (1).
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5 Numerical results

In this section we showcase numerical results obtained on machine learning
problems. The proposed algorithm - ASMOP is compared to the state-
of-the-art stochastic multi-gradient method SMG [22] for multi-objective
problems. We also compare ASMOP to SMOP [11] which also uses func-
tion approximations, but different sample size guidance. Additionally, we
will compare different parameter configurations of ASMOP and demonstrate
algorithm’s behavior under different sample size increments.

5.1 Logistic regression

In our experiments we created multi objective problems using different
methodologies. The first set of experiments consists of minimizing the
regularized logistic regression loss function with the CIFAR10 and MNIST
dataset. CIFAR10 is a dataset for an image classification problem, and it
consists of N = 5×104 RGB images of 32×32 pixels in 3 hues, which are in
10 categories, hence the dimension of the problem is n = 32×32×3 = 3072.
We create a model which differentiates category 0 (airplane) from 1 (car),
and also category 2 (bird) from 3 (cat) at the same time. Assuming N is the
set of indices of the training dataset, we split the dataset into two subsets
by creating two index subgroups N 1 and N 2 such that N 1 are indices of the
samples which are in categories 0 and 1, and N 2 are indices of the samples
in categories 2 and 3. The second dataset we used was the MNIST dataset
which consists of N = 7× 104 samples of gray-scale images of handwritten
digits with 32× 32 pixels, hence the dimension is n = 1024. Once again, we
created two datasets from MNIST, the first containing samples with labels
0 and 8, and the second with labels 1 and 4. This way the model differen-
tiates digits 0 or 8, and digits 1 and 4 at the same time, similarly as with
CIFAR10. We made both subgroups contain the same amount of elements
N = 104. As mentioned, we are minimizing a regularized logistic regression
loss function

min
x∈Rn

f(x) := (f1(x), f2(x)), (30)

where the function components are defined as follows:

f i(x) =
1

N

∑
j∈N i

log(1 + e(−yj(x
T aj))) +

λi

2
∥x̂∥2, i = 1, 2. (31)

Here, x ∈ Rn represents model coefficients we are trying to find, x̂ coefficient
vector without the intercept, aj the feature vector and yj the relevant label.

There are several factors and parameter choices which influence the be-
havior of the algorithm. For this experiment, we set the initial subsampling
size N i

0 = 0.05N , and we update the size at Step 2 when needed by a
small amount, ∆N i

k = 0.001N . For the nonmonotonicity parameters we
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set tk = 1
(k+1)1.1

, and tk = 1
(k+1)1.1

, which satisfy (13) and (16). Since the

power of the denominator is slightly larger than 1, the algorithm will slowly
and gradually decrease the tolerance towards the rise of the function value.
Both additional sampling sizes D1

k and D2
k are set to 1 for all iterations in

order to keep the additional sampling computationally cheap. We compare
algorithms’ true marginal function values ω(xk) as a measure of stationarity
for multi-objective problems. We calculate ω(xk) at each iteration and plot
it against the computational costs modeled by the number of scalar prod-
ucts. This serves as a reliable way to track the computational cost of the
algorithms since scalar products represent a dominant cost in the process
of evaluating the functions. The following Figures 1 and 2 compare the
three mentioned algorithms for the fixed budget of 106 scalar products for
CIFAR10 dataset and 5 · 105 for MNIST dataset. We have also included the
subsampling sizes of SMOP and ASMOP for both function components in
both figures. It is evident that ASMOP uses small amount of information
to achieve large function reduction. We have noticed that if we set 5% of
samples as a starting size, and increase the size of both subsamples by 1% of
the respective maximum sample size, the subsampling sizes update similarly
for both criteria f1 and f2.

Figure 1: CIFAR10 dataset, problem (31), N = 104, n = 3072. Optimality measure

against computational cost (left) and sample sizes behaviour (right). Parameters: x0 =

(0.1, 0.1, ..., 0.1), δ0 = 1, δmax = 8, γ1 = 0.5, γ2 = 2, ν = 10−4, η = 0.25, ε = 10−5.

19



Figure 2: MNIST dataset, problem (31), N = 104, n = 1024. Optimality measure

against computational cost (left) and sample sizes behavior (right). Parameters: x0 =

(0.05, 0.05, ..., 0.05), δ0 = 1, δmax = 8, γ1 = 0.5, γ2 = 2, ν = 10−4, η = 0.01, ε = 10−5.

Using a standard procedure, as in [18] and [11], it is possible to locate
the entire Pareto front by utilizing an algorithm which finds Pareto critical
points. The procedure is based on choosing the starting approximation of
the front, expanding it by adding points in its neighbourhood, applying the
chosen algorithm (ASMOP in our case) for several iterations for each point
and finally updating the front with the resulting points so that no point is
dominated by another. The following figure shows the approximation of the
convex Pareto front for the regularized logistic regression problem 31 with
CIFAR10 dataset.

Figure 3: CIFAR10 dataset, problem (31), N = 104, n = 3072. Pareto front approxi-

mation [18] using ASMOP. Parameters: δ0 = 1, δmax = 8, γ1 = 0.5, γ2 = 2, ν = 10−4, η =

0.25, ε = 10−5.
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5.2 Logistic regression and Least squares

We have also tested how the ASMOP behaves when the criteria are two
completely different loss functions. Once again we have used CIFAR10 and
MNIST dataset for an image classification problem. The problem we are
solving is (30), however this time the component functions are

f1(x) =
1

N

∑
j∈N 1

log(1 + e(−yj(x
T aj))) +

λ1

2
∥x̂∥2

and

f2(x) =
1

N

∑
j∈N 2

1

2
(xTaj − yj)

2 (32)

where N is the size of the respective sample groups, x ∈ Rn is the vector of
model coefficients, x̂ coefficient vector without the intercept, aj the attribute
vector of the sample and yj its respective label. By minimizing this loss
function, we get coefficients that are adjusted for both machine learning
models. Specifically, for CIFAR10 it will use a regularized logistic regression
to differentiate images of cars and planes, and weighted least squares method
to differentiate birds from cats, and analogously for MNIST. In the similar
manner, we set the initial subsampling sizes N i

0 = 0.05N , and the step size
update to ∆N i

k = 0.001N . The predetermined nonmonotonicity sequences
were set to tk = 1

(k+1)1.1
and tk = 1

(k+1)1.1
as in the previous experiment. The

following figures show ω(xk) values in terms of number of scalar products
for a fixed budget of 2 · 106 for CIFAR10, and 5 · 105 for MNIST dataset.
In both Figures 4 and 5 it can be seen that for the given budget ASMOP
shows efficiency and a large decrease in ω(xk) value for a small cost.

Figure 4: CIFAR10 dataset, problem (32), N = 104, n = 3072. Optimality measure

against computational cost (left) and sample sizes behavior (right). Parameters: x0 =

(0, 0, ..., 0), δ0 = 1, δmax = 8, γ1 = 0.5, γ2 = 2, ν = 10−4, η = 0.05, ε = 10−5.

21



Figure 5: MNIST dataset, problem (32), N = 104, n = 1024. Optimality measure

against computational cost (left) and sample sizes behavior (right). Parameters: x0 =

(0.1, 0.1, ..., 0.1), δ0 = 0.1, δmax = 3, γ1 = 0.5, γ2 = 2, ν = 10−4, η = 0.1, ε = 10−5.

5.3 Nonmonotonicity parameters

In the previous experiments, we set parameters tk and tk to be 1
(k+1)1.1

. By

adjusting these settings it is possible to increase or decrease the tolerance of
the nonmonotonicity, which leads to different algorithm behavior. We set

tk =
C2

(k + 1)1.1

and tested three different scenarios (C2 ∈ {1, 100, 1000}) in order to see
how the relaxation of the condition ρDk

> ν impacts the performance. The
following table shows the chosen settings of the compared algorithms for
MNIST dataset, whereas the rest of the parameters were set as in the second
experiment.

(MNIST) C2

ASMOP1 1

ASMOP2 102

ASMOP3 103

Table 1: MNIST dataset. Different nonmonotonicity settings for ASMOP versions

We compared these three algorithms similarly as in previous experi-
ments, by criticality measure ω(xk) in terms of number of scalar products.
The problem being solved is (32), and we showcase results for both datasets.
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Figure 6: MNIST dataset, problem (32) different settings 5.3,N = 104, n = 1024. Op-

timality measure against computational cost. Parameters: x0 = (0.1, 0.1, ..., 0.1), δ0 =

0.1, δmax = 3, γ1 = 0.5, γ2 = 2, ν = 10−4, η = 0.1, ε = 10−5.

Figure 7: MNIST dataset, problem (32) different settings 5.3,N = 104, n = 1024. Sample

sizes behavior. Parameters: x0 = (0.1, 0.1, ..., 0.1), δ0 = 0.1, δmax = 3, γ1 = 0.5, γ2 =

2, ν = 10−4, η = 0.1, ε = 10−5.

It is noticeable that the subsampling sizes are increased less frequently
for the versions that have a more relaxed coefficient ρDk

, which means that
the higher tolerance leads to the condition ρDk

> ν being satisfied more
often in Step 2 of the algorithm. For the CIFAR10 dataset, we increased C2

parameter as in the following table

(CIFAR10) C2

ASMOP1 1

ASMOP2 105

ASMOP3 107

Table 2: CIFAR10 dataset. Different nonmonotonicity settings for ASMOP versions
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The following figures show that for the budget of 3 · 105, the ASMOP3
version doesn’t increase the subsampling size, however it showcases similar
behaviour as other algorithms.

Figure 8: CIFAR10 dataset, problem (32) different settings 5.3,N = 104, n = 1024.

Optimality measure against computational cost. Parameters: x0 = (0.1, 0.1, ..., 0.1), δ0 =

1, δmax = 8, γ1 = 0.5, γ2 = 2, ν = 10−4, η = 0.05, ε = 10−5.

Figure 9: CIFAR10 dataset, problem (32) different settings 5.3,N = 104, n = 1024.

Sample sizes behavior. Parameters: x0 = (0.1, 0.1, ..., 0.1), δ0 = 1, δmax = 8, γ1 = 0.5, γ2 =

2, ν = 10−4, η = 0.05, ε = 10−5.

6 Conclusion

We proposed an additional sampling algorithm for minimization of finite sum
vector functions and thus extend additional sampling trust-region approach
to multi-objective optimization problems. This way we create a stochastic
MOP method that, depending on a problem at hand, behaves like a mini-
batch or increasing sample scheme. The proposed method is supported by
theoretical analysis which shows the almost sure convergence of a subse-
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quence of iterates towards a Pareto critical point under some standard as-
sumptions for stochastic and MOP framework. Numerical results conducted
on several configurations of some representative machine learning problems
show the efficiency of the proposed scheme and its competitiveness with
relevant existing counterparts for multi-objective problems.
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(2023) LSOS: Line-search Second-Order Stochastic optimization meth-
ods for nonconvex finite sums Math. Comp, 92, 1273-1299
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