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Abstract

We consider strongly convex distributed consensus optimization
over connected networks. EFIX, the proposed method, is derived us-
ing quadratic penalty approach. In more detail, we use the stan-
dard reformulation – transforming the original problem into a con-
strained problem in a higher dimensional space – to define a sequence
of suitable quadratic penalty subproblems with increasing penalty pa-
rameters. For quadratic objectives, the corresponding sequence con-
sists of quadratic penalty subproblems. For generic strongly convex
case, the objective function is approximated with a quadratic model
and hence the sequence of the resulting penalty subproblems is again
quadratic. EFIX is then derived by solving each of the quadratic
penalty subproblems via a fixed point (R)-linear solver, e.g., Jacobi
Over-Relaxation method. The exact convergence is proved as well
as the worst case complexity of order O(ε−1) for the quadratic case.
In the case of strongly convex generic functions, the standard result
for penalty methods is obtained. Numerical results indicate that the
method is highly competitive with state-of-the-art exact first order
methods, requires smaller computational and communication effort,
and is robust to the choice of algorithm parameters.

Key words: Fixed point methods, quadratic penalty method, dis-
tributed optimization, strongly convex problems
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1 Introduction

We consider problems of the form

min
y∈Rn

f(y) =
N∑
i=1

fi(y), (1)

where fi : Rn → R are strongly convex local cost functions. A decentralized
optimization framework is considered, more precisely, we assume decentral-
ized but connected network of N nodes.

Distributed consensus optimization over networks has become a main-
stream research topic, e.g., [2, 3, 4, 6, 9, 11], motivated by numerous appli-
cations in signal processing [13], control [16], Big Data analytics [23], social
networks [1], etc. Various methods have been proposed in the literature, e.g.,
[22, 24, 28, 29, 30, 31, 33, 34, 35, 37].

While early distributed (sub)gradient methods exhibit several useful fea-
tures, e.g., [18], they also have the drawback that they do not converge to
the exact problem solution when applied with a constant step-size; that is,
for exact convergence, they need to utilize a diminishing step-size [39]. To
address this issue, several different mechanisms have been proposed. Namely,
in [25] two different weight-averaging matrices at two consecutive iterations
are used. A gradient-tracking technique where the local updates are modified
so that they track the network-wide average gradient of the nodes’ local cost
functions is proposed and analyzed in [12, 21]. The authors of [2] incorporate
multiple consensus steps per each gradient update to obtain the convergence
to the exact solution.

In this paper we investigate a different strategy to develop a novel class
of exact distributed methods by employing quadratic penalty approach. The
method is defined by the standard reformulation of distributed problem (1)
into constrained problem in RnN with constraints that penalize the differ-
ences in local approximations of the solution. The reformulated constrained
problem is then solved by a quadratic penalty method. Given that the se-
quence of penalty subproblems is quadratic, we employ a fixed point linear
solver to find zeroes of the corresponding gradients. Thus, we abbreviated
the method as EFIX - Exact Fixed Point.

The proposed approach is as follows. The constrained distributed problem
in RnN is reformulated by adding a quadratic penalty term that penalizes the
differences of solution estimates at neighbouring nodes across the network.
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Then the sequence of penalty problems are solved inexactly, wherein the
corresponding penalty parameters increase over time to make the algorithm
exact. The algorithm parameters, the penalty parameter sequence and the
levels of inexactness of the (inner) penalty problems, are designed such that
the overall algorithm exhibits efficient behaviour. We consider two types of
strongly convex objective functions - quadratic and generic strongly convex
function. For quadratic objective function the subproblems are quadratic,
while in the generic case we approximate the objective function at the cur-
rent iteration with a quadratic model. Solving these problems boils down to
finding zeroes of the gradients, i.e. to solving systems of linear equations and
one can employ any distributed linear solver like fixed point iterative meth-
ods. The proposed framework is general and we exemplify it by employing
the Jacobi Over-Relaxation (JOR) method for solving the penalty subprob-
lems. Numerical tests on both simulated and real data sets demonstrate that
the resulting algorithms are (at least) comparable with existing alternatives
like [21], [36] in terms of the required computational and communication
costs, as well as the required knowledge of global system parameters such
as the global (maximal) Lipschitz constant of the local gradients L, strong
convexity constant µ and the network parameters.

From the theoretical point of view the following results are established.
First, for the quadratic cost functions, we show that either a sequence gener-
ated by the EFIX method is unbounded or it converges to the exact solution
of the original problem (1). The worst-case complexity result of order O(ε−1)
is proved. For strongly convex costs with Lipschitz continuous gradients, the
obtained result corresponds to the well-known result in the classical, central-
ized optimization - if the iterative sequence converges then its limit is the
solution of the original problem. Admittedly, this result is weaker than what
is known for existing alternatives like, e.g., [21], but are enough to theoreti-
cally certify the methods and are in line with the general theory of quadratic
penalty methods; see, e.g., [19]. Numerical examples nevertheless demon-
strate advantages of the proposed approach. Moreover, the convergence re-
sults of the proposed method are obtained although the Linear Independence
Constraint Qualification, LICQ is violated.

It is worth noting that penalty approaches have been studied earlier in
the context of distributed consensus optimization, e.g., [14, 15, 27, 40]. The
authors of [40] allow for nondifferentiable costs, but their analysis relies on La-
grange multipliers and the distance from a closed, convex feasible set which
plays a crucial role in the analysis. In [27], a differentiable exact penalty
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function is employed, but the problem under consideration assumes local
constraints and separable objective function. Moreover, LICQ is assumed to
hold. In our case, separating the objective function yields the constrained
optimization problem (2) where the LICQ is violated. The authors of [15]
consider more general problems with possibly nondiffrenetiable part of the
objective function and linear constraints and provide the analysis for the
decentralized distributed optimization problems (Section 4 of [15]). They
show the convergence to an exact solution by carefully designing the penalty
parameters and the step size sequence. The proposed algorithm boils down
to the distributed gradient with time-varying step sizes. The convergence is
of the order O(1/

√
k), i.e., O(1/k) for the accelerated version. We notice

that EFIX algorithm needs the gradient calculations only in the outer itera-
tions, whenever the penalty parameter is increased and a new subproblem is
generated, which makes it computationally less demanding. The numerical
efficiency of the method in [15] is not documented to the best of out knowl-
edge, although the convergence rate results are very promising. The strong
convexity is not imposed in [15], and possibilities for relaxation of convexity
requirements in EFIX are going to be the subject of further research. The
algorithm presented in [14] is also based on penalty approach. A sequence
of subproblems with increasing penalty parameters is defined and solved by
accelerated proximal gradient method. Careful adjustment of algorithmic
parameters yields a better complexity result than the results presented here.
However, with respect to existing work, the proposed EFIX framework is
more general in terms of the subsumed algorithms and can accommodate ar-
bitrary R-linearly-converging solver for quadratic penalty subproblems. Fi-
nally, another important advantage of EFIX is the robustness with respect
to algorithmic parameters.

The paper is organized as follows. In Section 2 we give some preliminaries.
EFIX method for quadratic problems is defined and analyzed in Section 3.
The analysis is extended to general convex case in Section 4 and the numerical
results for both quadratic and general case are presented in Section 5. Some
conclusions are drawn in Section 6. All proofs are moved to the Appendix.

2 Preliminaries

The notation we will use further is the following. With A,B, . . . we denote
matrices in RnN×nN with block elements A = [Aij], Aij ∈ Rn×n and elements
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aij ∈ R. The vectors of corresponding dimensions will be denoted as x ∈ RnN

with sub-blocks xi ∈ Rn as well as y ∈ Rn. The vector (matrix) norm ‖ · ‖ is
the Euclidean (spectral) norm.

Let us specify more precisely the setup we consider here. The network of
connected computational nodes is represented by a graph G = (V,E), where
V is the set of nodes {1, ..., N} and E is the set of undirected edges (i, j).
Denote by Oi the set of neighbors of node i and let Ōi = Oi

⋃
{i}. Let W

and L = I − W denote the communication matrix and the corresponding
Laplacian matrix. The communication matrix W is a weighted adjacency
matrix of G with additional properties as stated in Assumption 1 below. We
also define augmented communication matrix W = W ⊗ I ∈ RnN×nN and
augmented weighted Laplacian matrix L = I−W, where I ∈ RnN×nN is the
identity matrix and ⊗ denotes the Kronecker product. The properties of the
communication matrix W are stated as follows.

A 1. The matrix W ∈ RN×N is symmetric, doubly stochastic and

wij > 0 if j ∈ Ōi, wij = 0 if j /∈ Ōi

The network G is connected and undirected.

Let us assume that each of N nodes has its local cost function fi and
has access to the corresponding derivatives of this local function. Under the
assumption A1, the problem (1) has the equivalent form

min
x∈RnN

F (x) :=
N∑
i=1

fi(xi) s. t. L1/2x = 0, (2)

where x = (x1; ...;xN) ∈ RnN . Notice that under Assumption A1 the con-
straint L1/2x = 0 is actually stating that the feasible vectors x = (x1; ...;xN)
have the property xi = xj, i, j = 1, . . . , N. Hence, the equivalence of (1) and
(2) is in the following sense. Let us denote by y∗ ∈ Rn the solution of (1).
Then x∗ = (y∗, . . . , y∗) ∈ RnN is a solution of (2). Conversely, let x∗ be the
solution to (2). Then, x∗ = (y∗...., y∗), where y∗ is the solution to (1). Now,
the quadratic penalty reformulation of this problem associated with graph G
is

min
x∈RnN

Φθ(x) := F (x) +
θ

2
xTLx, (3)

where θ > 0 is the penalty parameter. Clearly, each solution of (3) depends
on the value of θ. Given that the quadratic penalty is not exact, to achieve
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equivalence we need θ →∞. Otherwise, for any fixed value of θ one can show
that the solution of (3), say x̃ ∈ RnN has the property that for any i = 1, .., N ,
there holds ‖x̃i− y∗‖ = O(θ). For further details one can see [38]. The EFIX
method proposed in the sequel follows the sequential quadratic programming
framework where the sequence of problems (3) with increasing values of the
penalty parameters are solved approximately. Therefore, asymptotically we
reach an exact solution of (1) as the penalty parameter goes to infinity. The
communication matrix W influences the rate of convergence of the method
but given that Wx = x is the constraint that ensures x1 = x2 = . . . =
xN for all W that satisfy A1, it does not influence the equivalence of the
reformulation, i.e., equivalence of the problems (1) and (2). Regarding the
influence of matrix W on the relation between (2) and (3), it can be shown
that, for a fixed θ, the difference between the solutions of (2) and (3) is on
the order O(1/(1 − λ2)), where λ2 is the modulus of the second largest in
modulus eigenvalue of W . See, e.g., Theorem 4 in [38] or equations (7) and
(8) in [7].

3 EFIX-Q: Quadratic problems

Quadratic costs are very important subclass of problems that we consider.
One of the typical example is linear least squares problem which comes from
linear regression models, data fitting etc. We start the analysis with the
quadratic costs given by

fi(y) =
1

2
(y − bi)TBii(y − bi), (4)

where Bii = BT
ii ∈ Rn×n, bi ∈ Rn. Let us denote by B = diag(B11, ..., BNN)

the block-diagonal matrix and b = (b1; ...; bN) ∈ RnN . Then, the penalty
function defined in (3) with the quadratic costs (4) becomes

Φθ(x) =
1

2
(x− b)TB(x− b) +

θ

2
xTLx

and
∇Φθ(x) = (B + θL)x− Bb.

Thus, solving ∇Φθ(x) = 0 is equivalent to solving the linear system

A(θ)x = c, A(θ) := B + θL, c := Bb. (5)
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Clearly, matrix A(θ) depends on parameter theta as well as a number of
matrices and vectors derived from A below. To simplify the notation we will
omit θ further on if θ is a generic parameter and place it whenever θ has some
specific value. Under the following assumptions, this system can be solved in
a distributed, decentralized manner by applying a suitable linear solver. To
make the presentation more clear we concentrate here on the JOR method,
without loss of generality.

A 2. Each function fi, i = 1, . . . , N is µ-strongly convex.

This assumption implies that the diagonal elements of Hessian matrices
Bii are positive, bounded by µ from below. This can be easily verified by the
fact that yTBiiy ≥ µ‖y‖2 for y = ej, j = 1, ..., n where ej is the j-th column
of the identity matrix I ∈ Rn×n. Clearly, the diagonal elements of A are
positive. Moreover, A is positive definite with minimal eigenvalue bounded
from below with µ. Therefore, for arbitrary x0 ∈ RnN and A, c given in (5),
we can define the JOR iterative procedure as

xk+1 = Mxk + p, (6)

M = qD−1G + (1− q)I, p = qD−1c, (7)

where D is a diagonal matrix with dii = aii for all i = 1, ..., nN , G = D− A,
I is the identity matrix and q is the relaxation parameter. The structure of
A and M makes the iterative method specified in (6) completely distributed
assuming that each node i has the corresponding (block) row of M, and
thus we do not need any additional adjustments of the linear solver to the
distributed network.

The JOR method (6)-(7) can be stated in the distributed manner as
follows. Notice that the blocks of A are given by

Aii = Bii + θ(1− wii)I, and Aij = −θwijI for i 6= j. (8)

Therefore, we can represent JOR iterative matrix M in similar manner, i.e.,
M = [Mij] where

Mii = qD−1
ii Gii + (1− q)I, Mij = qθwijD

−1
ii for i 6= j, (9)

and p = (p1; ...; pN) is calculated as

pi = qD−1
ii Biibi. (10)
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Thus, each node i can update its own vector xi by

xk+1
i =

∑
j∈Ōi

Mijx
k
j + pi. (11)

Notice that (11) requires only the neighbouring xkj , and the corresponding
elements of Mij, j ∈ Ōj, i.e. the method is fully distributed.

The convergence interval for the relaxation parameter q is well known in
this case, see e.g. [8].

Lemma 3.1. Suppose that the assumptions A1-A2 are satisfied. Then the
JOR method converges for all q ∈ (0, 2/σ(D−1A)), with σ(D−1A)) being the
spectral radius of (D−1A)).

Lemma 3.1 gives the interval for relaxation parameter q that ensures that
the spectral radius of M is smaller than 1 and hence gives the sufficient and
necessary condition for convergence. Estimating the spectral radius of D−1A
is not an easy task in general and several results are derived for specific
matrix classes that specify the interval for q such that a sufficient condition
for convergence holds, i.e. values of q that give ‖M‖p < ρ ≤ 1 for p = 1, 2,∞.

Let us now estimate the interval stated in Lemma 3.1. We have

σ(D−1A) ≤ ‖D−1A‖ ≤ ‖D−1‖‖A‖.

Since the diagonal elements of Bii are positive and D is the diagonal matrix
with elements dii = bii + θ`ii, i = 1, . . . , nN, with L = [`ij] ∈ RnN×nN , we can
upper bound the norm of D−1 as follows

‖D−1‖ ≤ 1

θ(1− w̄)
,

where w̄ := maxiwii < 1. On the other hand,

‖A‖ ≤ ‖B‖+ 2θ ≤ max
i
li + 2θ := L+ 2θ,

where li is the largest eigenvalue of Bii. So, the convergence interval for the
relaxation parameter can be set as

q ∈ (0,
2θ(1− w̄)

L+ 2θ
). (12)
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Alternatively, one can use the infinity norm and obtain a bound as above
with B̄ := maxi ‖Bii‖∞ instead of L.

The iterative matrix M depends on the penalty parameter and the EFIX
algorithm we define further on solves a sequence of penalty problems defined
by a sequence of penalty parameters θs, s = 0, 1, . . . . Thus (12) can be up-
dated for each penalty subproblem, defined with a new penalty parameter.
However the upper bound in (12) is monotonically increasing with respect
to θ, so one can set q ∈ (0, 2θ0(1− w̄)/(L+ 2θ0)) without updating with the
change of θ. In the test presented in Section 5 we use θ0 = 2L, which further
implies that the JOR parameter can be fixed to any positive value smaller
than 4(1− w̄)/5.

The globally convergent algorithm for problem (1) with quadratic func-
tions (4) is given below. In each subproblem we have to solve a linear system
of type (5). The algorithm is designed such that these linear systems are
solved within an inner loop defined by (11). The penalty parameters {θs}
with the property θs →∞, s→∞, and the number of inner iterations k(s)
of type (11) are assumed to be given. Also, we assume that the relaxation
parameters q(s) are defined by a rule that fulfills (12). Thus, for given θs
the linear system A(θs)x = c is solved approximately in each outer iteration,
with the iterative matrix

M(θs) = q(s)D−1G + (1− q(s))I.
The global constants L and w̄ are needed for updating the relaxation param-
eter in each iteration but the nodes can settle them through initial commu-
nication at the beginning of iterative process. Thus, they are also treated as
input parameters for the algorithm. Notice that constants L and w represent
maxima of certain scalar quantities distributed across nodes in the network.
Let us consider L, while similar arguments hold for w as well. Assuming
that each node i knows the Lipschitz constant li of ∇fi, then each node can
obtain L after the nodes perform a distributed algorithm to calculate L that
can be taken as L = maxi li. There are several ways to calculate maximum
in a fully distributed way inexpensively, e.g., [26]. Such algorithm converges
in O(diam) iterations (communication rounds), where diam is the network
diameter.
Algorithm EFIX-Q.

Given: {θs}, x0
i ∈ Rn, i = 1, ..., N , {k(s)} ⊂ N, L, w̄. Set s = 0.

S1 Set k = 0 and choose q according to (12) with θ = θs. Let M =
M(θs), z

0
i = xsi , i = 1, . . . , N.
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S2 For each i = 1, . . . , N compute the new local solution estimates

zk+1
i =

∑
j∈Ōi

Mijz
k
j + pi

and set k = k + 1.

S3 If k < k(s) go to step S2. Else, set xs+1 = (zk1 , . . . , z
k
N), s = s+ 1 and

go to step S1.

The above algorithm relies on distributed implementation of the fixed
point solver JOR. Thus each node has a set of local information, to be more
specific each node i has the corresponding ith block-row of the matrix M and
the corresponding vector pi. In fact, having in mind the structure of matrix
M, one can see that each node i, besides the input parameters, only needs to
store the following: the Hessian of the local cost function, i.e., Bii ∈ Rn×n;
the vector bi ∈ Rn; and the weights (wi1, wi2, ..., wiN) ∈ RN , i.e., the ith row
of the matrix W . For instance, notice that the block Mij of the matrix M
can be derived from the stored data since it varies through j directly with
wij and Dii is the diagonal matrix with the diagonal which coincides with
the diagonal of Aii = Bii + θ(1 − wii)I. Additionally, node i can also store
the vectors pi, diag(D−1

ii ) ∈ Rn and the matrix Mii ∈ Rn×n in order to avoid
unnecessary calculations within inner iterations. Each node computes zk+1

i

in Step 2, using zkj , j ∈ Ōi from its neighbors and computing Mijz
k
j and after

that transmits the new approximation zk+1
i to the neighbors. Thus, at each

iteration, each node i sends to its immediate neighbors in graph G vector
zk+1
i ∈ Rn and receives the corresponding estimates of the neighboring nodes
zk+1
j ∈ Rn, j ∈ Oi.

Our analysis relies on the quadratic penalty method, so we state the
framework algorithm (see [19] for example). We assume again that the se-
quence of penalty parameters {θs} has the property θs → ∞ and that the
tolerance sequence {εs} is such that εs → 0.
Algorithm QP.

Given: {θs}, {εs}. Set s = 0.

S1 Find xs such that
‖∇Φθs(x

s)‖ ≤ εs. (13)

S2 Set s = s+ 1 and return to S1.
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Let us demonstrate that the EFIX-Q fits into the framework of Algo-
rithm QP, that is given a sequence {εs} such that εs → 0, there exists a
proper choice of the sequence {k(s)} such that (13) is satisfied for all penalty
subproblems.

Lemma 3.2. Suppose that the assumptions A1-A2 are satisfied. If ‖∇Φθs(x
s)‖ ≤

εs then ‖∇Φθs+1(x
s+1)‖ ≤ εs+1 for

k(s) =

⌈∣∣∣ log(µεs+1)− log(L+ 2θs+1)(εs + 2c̄)

log(ρs+1)

∣∣∣⌉, (14)

where ρs+1 is a constant such that ‖M(θs+1)‖ ≤ ρs+1 < 1 and c̄ = ‖c‖.

The previous lemma shows that EFIX-Q fits into the framework of quadratic
penalty methods presented above if we assume εs → 0 and set k(s) as in (14),
with {xs} being the outer iterative sequence of Algorithm EFIX-Q. Notice
that the inner iterations (that rely on the JOR method) stated in steps S2-S3
of EFIX-Q can be replaced with any solver of linear systems or any optimizer
of quadratic objective function which can be implemented in decentralized
manner and exhibits linear convergence with factor ρs. Moreover, it is enough
to apply a solver with R-linear convergence, i.e., any solver that satisfies

‖zk − x∗θs+1
‖ ≤ Cs+1‖xs − x∗θs+1

‖ρks+1,

where Cs+1 is a positive constant. In this case, the slightly modified k(s)
with (L+ 2θs+1) multiplied with Cs+1 in (14) fits the proposed framework.

Although the LICQ does not hold for (2), following the steps of the stan-
dard proof and modifying it to cope with LICQ violation, we obtain the
global convergence result presented below.

Theorem 3.1. Suppose that the assumptions A1-A2 are satisfied. Assume
that εs → 0 and k(s) is defined by (14). Let {xs} be a sequence generated
by algorithm EFIX-Q. Then, either the sequence {xs} is unbounded or it
converges to a solution x∗ of the problem (2) and x∗i is the solution of problem
(1) for every i = 1, ..., N .

The previous theorem states that the only requirement on {εs} is that
it is a positive sequence that tends to zero. On the other hand, quadratic
penalty function is not exact penalty function and the solution x∗θ of the
penalty problem (3) is only an approximation of the solution y∗ of problem
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(1). Moreover, it is known (see Corollary 9 in [38]) that for every i = 1, ..., N,
there holds

e1
i,θ := ‖x∗i,θ − y∗‖ = O(θ−1).

More precisely, denoting by λ2 the second largest eigenvalue of W in modulus,
we have

e1
i,θs ≤

LJ

θsκ(1− λ2)

√
4− 2κθ−1

s +
J

θs(1− λ2)
, (15)

where κ = µL/(µ + L) and J =
√

2Lf(0) since the optimal value of each
local cost function is zero. Thus, looking at an arbitrary node i and any
outer iteration s we have

‖xsi − y∗‖ ≤ ‖xsi − x∗i,θs‖+ ‖x∗i,θs − y
∗‖ := e2

i,θs + e1
i,θs . (16)

So, there is no need to solve the penalty subproblem with more accuracy
than e1

i,θ - the accuracy of approximating the original problem. Therefore,
using (27) and (15) and balancing these two error bounds we conclude that
a suitable value for εs, see (27), can be estimated as

εs = µ

(
LJ

θsκ(1− λ2)

√
4− 2κθ−1

s +
J

θs(1− λ2)

)
(17)

Similar idea of error balance is used in [39], to decide when to decrease the
step size.

Assume that we define εs as in (17) Together with (27) we get

‖xsi − x∗i,θs‖ = O
(

1

θs

)
.

Furthermore, using (15) and (16) we obtain

‖xsi − y∗‖ = O
(

1

θs

)
.

Therefore, the following result concerning the outer iterations holds.

Proposition 3.1. Suppose that the assumptions of Theorem 3.1 hold and
that εs is defined by (17). Let {xs} be a bounded sequence generated by
EFIX-Q . Then for every i = 1, ..., N there holds

‖xsi − y∗‖ = O
(

1

θs

)
.
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The complexity result stated below for the special choice of penalty pa-
rameters, θs = s can be easily derived using the above Proposition.

Corollary 3.1. Suppose that the assumptions of Proposition 3.1 hold and
θs = s for s = 1, 2, . . .. Then after at most

s̄ =

⌈
2J(3 + 2L/µ)

(1− λ2)
ε−1

⌉
iterations we have ‖xs̄i − y∗‖ ≤ ε for all i = 1, ..., N and any ε > 0, where J
and λ2 are as in (15).

Notice that the number of outer iterations s̄ to obtain the ε-optimal point
depends directly on J , i.e., on f(0) and the Lipschitz constant L. Moreover,
it also depends on the network parameters - recall that λ2 represents the
second largest eigenvalue of the matrix W , so the complexity constant can
be diminished if we can chose the matrix W such that λ2 is as small as
possible for the given network.

4 EFIX-G: Strongly convex problems

In this section, we consider strongly convex local cost functions fi that are
not necessarily quadratic. The main motivation comes from machine learning
problems such as logistic regression where the Hessian is easy to calculate
and, under regularization, satisfies Assumption A2. The main idea now is
to approximate the objective function with a quadratic model at each outer
iteration s and exploit the previous analysis. Instead of solving (13), we form
a quadratic approximation Qs(x) of the penalty function Φθs(x) defined in
(3) as

Qs(x) := F (xs−1) +∇TF (xs−1)(x− xs−1) + (18)

+
1

2
(x− xs−1)T∇2F (xs−1)(x− xs−1) +

θs
2
xTLx

and search for xs that satisfies

‖∇Qs(x
s)‖ ≤ εs. (19)

In other words, we are solving the system of linear equations

Asx = cs,
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where
As := ∇2F (xs−1) + θsL,

cs := ∇2F (xs−1)xs−1 −∇F (xs−1).

Under the stated assumptions, As is positive definite with eigenvalues bounded
with µ from below and the diagonal elements of As are strictly positive.
Therefore, using the same notation and formulas as in the previous section
with ∇2fi(x

s−1
i ) instead of Bii in (8) we obtain the same bound for the JOR

parameter, (12).
Before stating the algorithm, we repeat the formulas for completeness.

The matrix As = [Aij] has blocks Aij ∈ Rn×n given by

Aii = ∇2fi(x
s−1
i ) + θs(1− wii)I, and Aij = −θswijI for i 6= j. (20)

The JOR iterative matrix is Ms = [Mij] where

Mii = qsD
−1
ii Gii + (1− q)I, Mij = qsθswijD

−1
ii for i 6= j, (21)

and the vector ps = (p1; ...; pN) is calculated as ps = qD−1
s cs, where Ds is a

diagonal matrix with dii = aii for all i = 1, ..., nN and Gs = Ds − As, i.e.,

pi = qD−1
ii ci, where ci = ∇2fi(x

s−1
i )xs−1

i −∇fi(xs−1
i ). (22)

The algorithm presented below is a generalization of EFIX-Q and we
assume the same initial setup: the global constants L and w̄ are known,
the sequence of penalty parameters {θs} and the sequence of inner iterations
counters {k(s)} are input parameters for the algorithm.
Algorithm EFIX-G.

Input: {θs}, x0
i ∈ Rn, i = 1, ..., N , {k(s)} ⊂ N, L, w̄. Set s = 0.

S1 Each node i sets q according to (12) with θ = θs.

S2 Each node calculates ∇fi(xsi ) and ∇2fi(x
s
i ). Define M = Ms given by

(21), z0
i = xsi , i = 1, . . . , N and set k = 0.

S3 For i = 1, . . . , N update the solution estimates

zk+1
i =

∑
j∈Ōi

Mijz
k
j + pi

and set k = k + 1.
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S4 If k < k(s) go to step S3. Else, set xs+1 = (zk1 ; . . . ; zkN), s = s+ 1 and
go to step S1.

The algorithm differs from the quadratic case EFIX-Q in step S2, where
the gradients and the Hessians are calculated in a new point at every outer
iteration. Each node i, besides the input parameters, stores the weights
(wi1, wi2, ..., wiN) ∈ RN . Moreover, it calculates the Hessian of the local cost
function ∇2fi(x

s
i ) ∈ Rn×n and the corresponding gradient ∇fi(xsi ) ∈ Rn at

each outer iteration and stores them through the inner iterations. Similarly
to the EFIX-Q case, node i can also store the vectors pi, diag(D−1

ii ) ∈ Rn and
the matrix Mii ∈ Rn×n calculated at each outer iteration in order to avoid
unnecessary calculations within the corresponding inner iterations. At each
iteration, each node exchanges the current estimates of the solution (vectors
zkj ) with its immediate neighbors as explained in EFIX-Q case.

Following the same ideas as in the proof of Lemma 3.2, we obtain the
similar result under the following additional assumption.

A 3. For each y ∈ Rn there holds ‖∇2fi(y)‖ ≤ li, i = 1, ..., N .

Notice that this assumption implies that ‖∇2F (x)‖ ≤ L := maxi li.

Lemma 4.1. Suppose that Assumptions A1-A3 hold. If ‖∇Qs(x
s)‖ ≤ εs

holds then ‖∇Qs+1(xs+1)‖ ≤ εs+1 for

k(s) =

⌈∣∣∣ log(µεs+1)− log(L+ 2θs+1)(εs + c̄s + c̄s+1)

log(ρs+1)

∣∣∣⌉, (23)

where ρs+1 is a constant such that ‖Ms+1‖ ≤ ρs+1 < 1 and c̄s = ‖cs‖.

The Lemma above implies that EFIX-G is a penalty method with the
penalty function Q instead of Φ, i.e., with (19) instead of (13). Notice that
due to assumption A2, without loss of generality we can assume that the
functions fi are nonnegative and thus the relation between εs and θs can re-
main as in (17). We have the following convergence result which corresponds
to the classical statement in centralized optimization, [19].

Theorem 4.1. Let the assumptions A1-A3 hold. Assume that {xs} is a
sequence generated by Algorithm EFIX-G such that k(s) is defined by (23)
and εs → 0. If {xs} is bounded then every accumulation point of {xs} is
feasible for the problem (2). Furthermore, if lims→∞ xs = x∗ then x∗ is
the solution of problem (2), i.e., x∗i is the solution of problem (1) for every
i = 1, ..., N .
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5 Numerical results

5.1 Quadratic case

We test EFIX-Q method on a set of quadratic functions (4) defined as in [12].
Vectors bi are drawn from the Uniform distribution on [1, 31], independently
from each other. Matrices Bii are of the form Bii = PiSiPi, where Si are
diagonal matrices with Uniform distribution on [1, 101] and Pi are matrices
of orthonormal eigenvectors of 1

2
(Ci +CT

i ) where Ci have components drawn
independently from the standard Normal distribution.

The network is formed as follows, [12]. We sample N points randomly
and uniformly from [0, 1]× [0, 1]. Two points are directly connected if their
distance, measured by the Euclidean norm, is smaller than r =

√
log(N)/N .

The graph is connected. Moreover, if nodes i and j are directly connected,
we set wi,j = 1/max{deg(i), deg(j)}, where deg(i) stands for the degree of
node i and wi,i = 1−

∑
j 6=iwi,j. We test on graphs with N = 30 and N = 100

nodes.
The error metrics is the following

e(xk) :=
1

N

N∑
i=1

‖xki − y∗‖
‖y∗‖

, (24)

where y∗ 6= 0 is the exact (unique) solution of problem (1).
The parameters are set as follows. The Lipschitz constant is calculated

as L = maxi li, where li is the largest eigenvalue of Bii. The strong convexity
constant is calculated as µ = mini µi, where µi > 0 is the smallest eigenvalue
of Bii.

The proposed method is denoted by EFIX-Q k(s) balance to indicate
that we use the number of inner iterations given by (14) where L, µ, c̄ are
calculated at the initial phase of the algorithm and imposing (17) to balance
two types of errors as discussed in Section 3. The initial value of the penalty
parameter is set to θ0 = 2L. The choice is motivated by the fact that the
usual step size bound in many gradient-related methods is α < 1/(2L) and
1/α corresponds to the penalty parameter. Hence, we set θ ≥ 2L. Further,
the penalty parameter is updated by θs+1 = (s+1)θs. The inner solver used at
Step 3 of EFIX-Q method is the Jacobi method, i.e., JOR method with q = 1.
In the quadratic case, the Jacobi method converged and the bounds derived
in (12) were not needed. The Jacobi method (JOR method in general) is used
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to solve the sequence of quadratic problems up to accuracy determined {εs}.
Clearly, the precision, measured by εs determines the computational costs.
On the other hand it is already discussed that the error in solving a particular
quadratic problem should not be decreased too much given that the quadratic
penalty is not an exact method and hence each quadratic subproblem is
only an approximation of the original constrained problem, depending on
the penalty parameter θs. Therefore, we tested several choices of the inner
iteration counter and parameter update, to investigate the error balance and
its influence on the convergence. The method abbreviated as EFIX-Q k(s)
is obtained with ε0 = θ0 = 2L, εs = ε0/s for s > 0, and k(s) defined by
(14). Furthermore, to demonstrate the effectiveness of k(s) stated in (14) we
also report the results from the experiments where the inner iterations are
terminated only if (13) holds, i.e. without a predefined sequence k(s). We
refer to this method as EFIX-Q stopping. Notice that the exit criterion of
EFIX-Q is not computable in the distributed framework and the test reports
here are performed only to demonstrate the effectiveness of (14).

The proposed method is compared with the state-of-the-art method [21,
17] abbreviated as DIGing 1/(mL), where 1/(mL) represents the step size,
i.e., α = 1/(mL) for different values of m ∈ {2, 3, 10, 20, 50, 100}. This
method is defined as follows

xk+1
i =

N∑
j=1

wijx
k
j − αuki , uk+1

i =
N∑
j=1

wiju
k
j +Bii(x

k+1
i − xki ), u0

i = ∇fi(x0
i ).

We model the total computational cost by counting the total number of
n-dimensional SPs (scalar products of two n-dimensional real vectors) per
node evaluated during the algorithm run, i.e., we let the unit computational
cost be a single n-dimensional SP evaluation. Here, we model a single N -
dimensional scalar product computational cost as ξ := N/n unit costs. Thus,
the computational cost of DIGing method per node, per iteration, can be
estimated to n + 2nξ since

∑
j wijx

k
j takes nξ unit computational costs (n

N -dimensional SPs) as well as
∑

j wiju
k
j , and Bii(x

k+1
i − xki ) takes n unit

computational costs (n n-dimensional SPs). In the sequel, we refer to unit
computational costs as SPs.

In order to compare the costs, we unfold the proposed EFIX-Q method
considering all inner iterations consecutively (so k below is the cumulative
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counter for all inner iterations) as follows

xk+1
i = qD−1

ii Giix
k
i + (1− q)xki + qθD−1

ii

∑
i 6=j

wijx
k
j + qD−1

ii Biibi.

Since Dii is a diagonal matrix, qD−1
ii Giix

k
i takes n+1 SPs and D−1

ii

∑
i 6=j wijx

k
j

takes 1+nξ SPs. Moreover, Biibi is calculated only once, at the initial phase,
so D−1

ii Biibi costs only 1 SPs (unit costs). Thus, the cost of EFIX-Q method
can be estimated to n + 3 + nξ SPs per node, per iteration. The difference
between EFIX-Q and DIGing can be significant especially for larger value of
N , given the relative difference between quantities 3 and nξ = N. Moreover,
DIGing method requires at each iteration the exchange of two vectors, xj
and uj among all neighbors, while EFIX requires only the exchange of xj, so
it is 50% cheaper than the DIGing method in terms of communication costs
per iteration.

We set x0 = 0 for all the tested methods and consider n = 10 and n = 100.
Figure 1 presents the errors e(xk) throughout iterations k for N = 30 and
N = 100. The results for different values of n appear to be very similar and
hence we report only the case n = 100.

Figure 1: The EFIX methods (dotted lines) versus the DIGing method, error (24) prop-

agation through iterations for n = 100, N = 30 (left) and n = 100, N = 100 (right).

Comparing the number of iterations of all considered methods, from Fig-
ure 1 one can see that EFIX-Q methods are highly competitive with the best
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DIGing method in the case of N = 30. Furthermore, EFIX-Q outperforms
all the convergent DIGing methods in the case of N = 100. Moreover, we
can see that EFIX-Q k(s) balance behaves similarly to EFIX-Q stopping, so
the number of inner iterations k(s) given in Lemma 3.2 is well estimated.
Also, EFIX-Q k(s) balance improves the performance of EFIX-Q k(s) and
the balancing of errors yields a more efficient method.

We compare the tested methods in terms of computational costs, mea-
sured by scalar products and communication costs as well. The results are
presented in Figure 2 where we compare EFIX-Q k(s) balance with the
best convergent DIGing method in the cases n = 10, N = 30 (top) and
n = 100, N = 100 (bottom). The results show clear advantages of EFIX-Q,
especially in the case of larger n and N .

5.2 Strongly convex problems

EFIX-G method is tested on the binary classification problems for data sets:
Mushrooms [32] (n = 112, total sample size T = 8124), CINA0 [5] (n = 132,
total sample size T = 16033) and Small MNIST [20] (n = 100, total sample
size T = 7603). For each of the problems, the data is divided across 30
nodes of the graph described in Subsection 5.1 The logistic regression with
the quadratic regularization is used and thus the local objective functions
are of the form

fi(y) =
∑
j∈Ji

log(1 + e−ζjd
T
j y) +

µ

2
‖y‖2 :=

∑
j∈Ji

f̃j(y),

where Ji collects the indices of the data points assigned to node i, dj ∈ Rn is
the corresponding vector of attributes and ζj ∈ {−1, 1} represents the label.
The gradient and the Hessian of f̃j(y) are given by

∇f̃j(y) =
1− ψj(y)

ψj(y)
ζjdj + µy, ∇2f̃j(y) =

ψj(y)− 1

ψ2
j (y)

djd
T
j + µI,

ψj(y) := 1 + e−ζjd
T
j y.

Thus, evaluating the gradient of f̃i(y) costs 1 SPs. Also, we estimate the
cost of calculating the Hessian of f̃i(y) with n/2 SPs. Moreover, (ψj(y) −
1)/ψ2

j (y) ∈ (0, 1) and thus all the local cost functions are µ-strongly convex.
The data is scaled in a such way that the Lipschitz constants li are 1 and
thus L = 1 + µ. We set µ = 10−4.
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Figure 2: The proposed method (dotted line) versus the DIGing method, error (24) and

the computational cost (left) and communications (right) for n = 10, N = 30 (top) and

n = 100, N = 100 (bottom).
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We test EFIX-G k(s) balance, the counterpart of the quadratic version
EFIX-Q k(s) balance, with k(s) defined by (23). The JOR parameter qs is
set according to (12), more precisely, we set q = 2θs(1 − w̄)/(L + 2θs). We
report here that, unlike the quadratic case, Jacobi method did not converge
and we had to use the estimate (12). A rough estimation of c̄s is s 3L

√
N

since

‖cs‖ ≤ ‖∇2F (xs−1)‖‖xs−1‖+‖∇F (xs−1)−∇F (x̃)‖ ≤ L3 max{‖xs−1‖, ‖x̃‖},

where x̃ is a stationary point of the function F . The remaining parameters
are set as in the quadratic case.

Since the solution is unknown in general, the different error metric is
used - the average value of the original objective function f across the nodes’
estimates

v(xk) =
1

N

N∑
i=1

f(xki ) =
1

N

N∑
i=1

N∑
j=1

fj(x
k
i ). (25)

We compare the proposed method with DIGing which takes the following
form for general, non-quadratic problems

xk+1
i =

N∑
j=1

wijx
k
j−αuki , uk+1

i =
N∑
j=1

wiju
k
j+∇fi(xk+1

i )−∇fi(xki ), u0
i = ∇fi(x0

i ).

For each of the data sets we compare the methods with respect to iterations,
communications and computational costs (scalar products). The communi-
cations of the DIGing method are twice more expensive than for the proposed
method, as in the quadratic case. Denote ξ̃ = |Ji|/n. The computational cost
of the DIGing method is estimated to 2nξ + nξ̃ + |Ji| SPs per iteration, per
node: weighted sum of xkj (nξ SPs); weighted sum of ukj (nξ SPs); evaluating

∇fi(xki ) (nξ̃ + |Ji| SPs) because evaluating of each gradient ∇f̃j(xki ), j ∈ Ji
costs 1 SP (for dTj x

k
i needed for calculating ψj(x

k
i )) and evaluating the gra-

dient ∇fi(xki ) takes the weighted sum of dj vectors

∇fi(xki ) =
∑
j∈Ji

1− ψj(xki )
ψj(xki )

ζjdj + µxki ,

which costs nξ̃ SPs (n |Ji|-dimensional scalar products). On the other hand,
the cost of EFIX-G k(s) balance per node remains nξ+n+3 scalar products
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at each inner iteration while in the outer iterations (s) we have additional
|Ji|+2nξ̃+ ξ̃n2/2 scalar products for evaluating Hessian (ξ̃n2/2) and ci given
by

ci =
∑
j∈Ji

ψj(x
s−1
i )− 1

ψ2
j (x

s−1
i )

djd
T
j x

s−1
i + µxs−1

i −∇fi(xs−1
i ),

i.e., in order to evaluate ci we have |Ji| scalar products of the form dTj x
s−1
i , a

weighted sum od dj vectors which costs nξ̃ SPs and the gradient ∇fi(xs−1
i )

which costs only nξ̃ SPs since the scalar products dTj x
s−1
i are already evalu-

ated and calculated in the first sum.
The results are presented in Figure 3, (y-axes is in the log scale). The first

column contains graphs for EFIX - G k(s)balance and all DIGing methods
with error metrics through iterations. Obviously, the EFIX -G method is
either comparable or better in comparison with DIGing methods in all tested
problems, except for Small MNIST dataset . To emphasize the difference in
computational costs we plot in column two the graphs of error metrics with
respect to SPs for EFIX -G and the two best DIGing method. The same is
done in column three of the graph for the communication costs.

5.3 Additional comparisons

We provide additional comparisons with the very recent algorithm termed
OPTRA in [36], as a further representative of state of the art. The au-
thors of [36] show that, up to universal constants and in the smooth convex
(non strongly convex) setting, OPTRA matches theoretical lower complexity
bounds in terms of communication and computation, with respect to oracles
as defined in [36]. Also, the numerical examples in [36] show that OPTRA is
competitive with several state of the art alternatives. Therefore, we compare
EFIX also with OPTRA. We perform tests on well connected communication
matrix W defined at the beginning of Subsection 5.1 and on ring structure
represented by Wring communication matrix to examine the behavior on the
network which is not well connected. In this case, we set diagonal elements
of Wring to 0.5 and the relevant (nonzero) off-diagonal elements are 0.25.

All the parameters for EFIX methods are the same as in the previous two
subsections and we consider the same set test problems. We test OPTRA
algorithm with number of inner consensus iterations set to K = 2 and the
parameter which influences the step size set to ν = 100. The choice was
motivated by the the numerical results presented in [36]. The total number
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Figure 3: The proposed method (dotted line) versus the DIGing method on Mushrooms

(top), CINA0 (middle) and Small MNIST data set (bottom).
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of (outer) iterations along which the algorithms will be run is set to T = 200.
This is also the number of EFIX overall (total number of inner) iterations.
Notice that this is relevant for OPTRA as certain OPTRA’s parameters
explicitly depend on T . On the other hand, for EFIX, no parameter depends
on T .

The metrics and the cost measures are retained as in the previous sub-
sections. Using the same logic, we conclude that the communication cost
of each OPTRA iteration is 2K (i.e., 2K times more costly that EFIX it-
eration). This comes from the fact that each OPTRA iteration calls the
inner procedure named AccGossip two times and each AccGossip performs
K consensus steps. For the quadratic case, the computational cost (in SPs)
is 2Knξ + n per node per iteration - the cost of calculating the gradient is
n SPs per node and the of each consensus step is nξ SPs. For the logistic
regression case, the cost of calculating the gradient is nξ̃ + |Ji| SPs and we
obtain the total cost of (2Kξ + 1)n+ |Ji|+ nξ̃ SPs per node, per iteration.

The results are presented at Figures 4-6. Figure 4 represents the results
obtained on quadratic costs for the two types of communication graphs and
n = 100, N = 30. Figures 5-6 correspond to logistic regression problem with
datasets Small MNIST, Mushrooms and CINA0. Figure 5 represents the
results on well connected graph, while Figure 6 deals with the ring graph.

Notice that, for the considered iteration horizon T , OPTRA achieves a
very precise final accuracy for certain experiments, like for datasets Small
MNIST and Mushrooms in Figures 5-6 (top and bottom rows). On the other
hand, OPTRA seems to saturate at a plateau or progresses very slowly on
other experiments, like for the quadratic case in Figure 4. This behavior is
not in contradiction with the theory of OPTRA in [36], where the authors
are concerned with providing the number of iterations needed to reach a pre-
scribed finite accuracy, and are not concerned with asymptotic convergence
as k tends to infinity. (See Theorem 7 in [36]). Both methods exhibit ini-
tial oscillatory behavior on CINA0 dataset in Figures 5-6 (middle), but it
seems that EFIX stabilizes sooner, while OPTRA continues to oscillate. So,
for CINA0 dataset, EFIX method outperforms OPTRA. On the other hand,
after the initial advantage of EFIX in terms of communication costs and it-
erations, OPTRA takes the lead and outperforms EFIX. The advantage of
OPTRA is obvious in terms of computational costs measured in SPs (Figures
5-6, middle). Notice that the conclusions are rather similar on both tested
graphs. Taking into account all the presented results, the tested methods
appear to be competitive.
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We also comment on an advantage of EFIX with respect to OPTRA in
terms of parameter tuning. Notice that for each problem at hand, we apply
the same universal rules to set the EFIX parameters. In contrast, OPTRA
has a free parameter ν > 0 that seems to be difficult to tune. In terms of
guidelines for setting ν, reference [36] suggests (up to universal constants) a
theoretical optimized value of ν. For such value of ν, OPTRA achieves the
lower complexity bounds with respect to the oracle defined in [36]; however,
the optimized value of ν depends on the gradient of the cost function at
the solution and is hence difficult to specify. Reference [36] does not give
guidelines how to approximate the optimized value of ν, but it rather hand-
tunes ν for each given data set and each given network. Another advantage of
EFIX over OPTRA is that OPTRA’s parameters τ and γ depend on the total
iteration budget T. In other words, for different total iteration budgets T,
OPTRA parameters should be set differently. In contrast, EFIX parameters
are set universally irrespective of a value of T set beforehand.

6 Conclusions

The quadratic penalty framework is extended to distributed optimization
problems. Instead of standard reformulation with quadratic penalty for dis-
tributed problems, we define a sequence of quadratic penalty subproblems
with increasing penalty parameters. Each subproblem is then approximately
solved by a distributed fixed point linear solver. In the paper we used the
Jacobi and Jacobi Over-Relaxation method as the linear solvers, to facili-
tate the explanations. The first class of optimization problems we consider
are quadratic problems with positive definite Hessian matrices. For these
problems we define the EFIX-Q method, discuss the convergence properties
and derive a set of conditions on penalty parameters, linear solver precision
and inner iteration number that yield an iterative sequence which converges
to the solution of the original, distributed and unconstrained problem. Fur-
thermore, the complexity bound of O(ε−1) is derived. In the case of strongly
convex generic function we define EFIX-G method. It follows the reasoning
for the quadratic problems and in each outer iteration we define a quadratic
model of the objective function and couple that model with the quadratic
penalty. Hence, we are again solving a sequence of quadratic subproblems.
The convergence statement is weaker in this case but nevertheless corre-
sponds to the classical statement in the centralized penalty methods - we
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Figure 4: The proposed method (dotted line) versus the OPTRA methods on strongly

convex quadratic functions (n = 100, N = 30) on well connected graph represented by W

(left) and ring graph represented by Wring (right).26



Figure 5: The proposed method (dotted line) versus the OPTRA methods on Mushrooms

(top), CINA0 (middle) and Small MNIST data set (bottom) on well connected graph with

30 nodes.
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Figure 6: The proposed method (dotted line) versus the OPTRA methods on Mushrooms

(top), CINA0 (middle) and Small MNIST data set (bottom) on ring graph with 30 nodes.
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prove that if the sequence converges then its limit is a solution of the orig-
inal problem. The method is dependent on penalty parameters, precision
of the linear solver for each subproblem and consequently, the number of
inner iterations for subproblems. As quadratic penalty function is not ex-
act, the approximation error is always present and hence we investigated
the mutual dependence of different errors. A suitable choice for the penalty
parameters, subproblem accuracy and inner iteration number is proposed
for quadratic problems and extended to the generic case. The method is
tested and compared with the state-of-the-art first order exact method for
distributed optimization, DIGing. It is shown that EFIX is comparable with
DIGing in terms of error propagation with respect to iterations and that
EFIX computational and communication costs are lower in comparison with
DIGing methods. EFIX is also compared to recently developed primal-dual
method - OPTRA. The comparison is made on both well connected and
weekly connected graphs and the EFIX method proves to be at least com-
petitive with the tested counterpart with respect to practical performance,
while the advantage of EFIX lies in universal parameter settings.
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7 Appendix

Proof of Lemma 3.2
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Proof. Notice that A(θ) is positive definite for all θ > 0 and thus there exists
an unique stationary point x∗θ of Φθ, i.e., an unique solution of A(θ)x = c.
With notation zk = (zk1 ; . . . ; zkN), z0 = xs, we have

‖∇Φθs+1(z
k)‖ = ‖∇Φθs+1(z

k)−∇Φθs+1(x
∗
θs+1

)‖ (26)

≤ ‖A(θs+1)‖‖zk − x∗θs+1
‖

≤ (L+ 2θs+1)‖zk − x∗θs+1
‖

≤ (L+ 2θs+1)ρks+1‖xs − x∗θs+1
‖

≤ (L+ 2θs+1)ρks+1(‖xs − x∗θs‖+ ‖x∗θs − x∗θs+1
‖).

Let us now estimate the norms in the final inequality. First, notice that

∇Φθs(x
s) = ∇Φθs(x

s)−∇Φθs(x
∗
θs) = A(θs)(x

s − x∗θs).

Thus, since µI � A(θs) we obtain

‖xs − x∗θs‖ ≤ ‖A
−1(θs)‖‖∇Φθs(x

s)‖ ≤ εs
µ
. (27)

Moreover, for any θ we have

‖x∗θ‖ ≤ ‖A−1(θ)‖‖c‖ ≤ c̄

µ
. (28)

Putting (27) and (28) into (26) we obtain

‖∇Φθs+1(z
k)‖ ≤

(L+ 2θs+1)ρks+1(εs + 2c̄)

µ
.

Imposing the inequality

(L+ 2θs+1)ρks+1(εs + 2c̄)

µ
≤ εs+1,

and then applying the logarithm and rearranging, we obtain that ‖∇Φθs+1(z
k)‖ ≤

εs+1 for all k ≥ k(s) defined by (14). Therefore, for zk(s) = xs+1 we get the
statement.

Proof of Theorem 3.1
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Proof. Assume that {xs} is bounded and consider the problem (2), i.e.,

minF (x), s.t. h(x) = 0

where
h(x) = L1/2x.

Let x∗ be an arbitrary accumulation point of the bounded sequence {xs}
generated by algorithm EFIX-Q, i.e., let

lim
s∈K1

xs = x∗.

The inequality (13) implies

θs‖∇Th(xs)h(xs)‖ − ‖∇F (xs)‖ ≤ εs. (29)

Since ∇Th(xs) = (L1/2)T = L1/2, we obtain

∇Th(xs)h(xs) = Lxs,

and (29) implies

‖Lxs‖ ≤ 1

θs
(‖∇F (xs)‖+ εs). (30)

Taking the limit over K1 we have Lx∗ = 0, i.e., h(x∗) = 0, so x∗ is a feasible
point. Therefore Wx∗ = x∗, or equivalently x∗1 = x∗2 = ... = x∗N , so the
consensus is achieved.

Now, we prove that x∗ is an optimal point of problem (2). Let us define
λs := θsh(xs). Considering the gradient of the penalty function we obtain

∇Φθs(x
s) = ∇F (xs) + θsLxs = ∇F (xs) + L1/2λs. (31)

Since xs → x∗ over K1 and εs → 0, from (30) we conclude that ζs := θsLxs
must be bounded over K1. Therefore, λs = θsL1/2xs is also bounded over K1

and thus, there exist K2 ⊆ K1 and λ∗ such that

lim
s∈K2

λs = λ∗. (32)

Indeed, by the eigenvalue decomposition, we obtain L = UVUT , where U is
an unitary matrix and V is the diagonal matrix with eigenvalues of L. Let
us denote them by vi. The matrix is positive semidefinite, so vi ≥ 0 for all
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i and we also know that L1/2 = UV1/2UT . Since ζs is bounded over K1, the
same is true for the sequence UT ζs = VθsUTxs := Vνs. Consequently, all the
components vi[ν

s]i are bounded over K1 and the same is true for
√
vi[ν

s]i.
By unfolding we get that V1/2θsUTxs is bounded over K1 and thus the same
holds for

UV1/2θsUTxs = θsL1/2xs = λs.

Now, using (32) and taking the limit over K2 in (31) we get

0 = ∇F (x∗) + L1/2λ∗,

i.e., ∇F (x∗) + ∇Th(x∗)λ∗ = 0, which means that x∗ is a KKT point of
problem (2) with λ∗ being the corresponding Lagrange multiplier. Since F
is assumed to be strongly convex, x∗ is also a solution of the problem (2).
Finally, notice that x∗i is a solution of the problem (1) for any given node
i = 1, ..., N .

We have just proved that, for an arbitrary i, every accumulation point
of the sequence {xsi} is the solution of problem (1). Since the function f is
strongly convex, the solution of problem (1) must be unique. So, assuming
that there exist accumulation points x∗ and x̃ such that x∗ 6= x̃ yields con-
tradiction. Therefore we conclude that all the accumulation points must be
the same, i.e., the sequence {xs} converges. This completes the proof.

Proof of Corollary 3.1

Proof. Notice that (16), (15) and (27) imply for arbitrary i

‖xsi − y∗‖ ≤
εs
µ

+ e1
i,θs ≤ 2

(
LJ

θsκ(1− λ2)

√
4− 2κθ−1

s +
J

θs(1− λ2)

)
≤ 2J

θs(1− λ2)

(
2(µ+ L)

µ
+ 1

)
≤ 2J

θs(1− λ2)
(3 + 2L/µ).

For θs = s, the right-hand side of the above inequality is smaller than ε for

s ≥ 2J(3 + 2L/µ)

(1− λ2)
ε−1 (33)

which completes the proof.

Proof of Lemma 4.1
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Proof. Notice that Qs is strongly convex for all θ > 0, i.e., for all s. Moreover,
its Hessian As satisfies µI � As � (L + 2θs)I. Thus, there exists an unique
stationary point x∗θs ofQs, i.e., an unique solution of Asx = cs. With notation
zk = (zk1 ; . . . ; zkN), z0 = xs, we have

‖∇Qs+1(zk)‖ = ‖∇Qs+1(zk)−∇Qs+1(x∗θs+1
)‖ (34)

≤ ‖As+1‖‖zk − x∗θs+1
‖

≤ (L+ 2θs+1)‖zk − x∗θs+1
‖

≤ (L+ 2θs+1)ρks+1‖xs − x∗θs+1
‖

≤ (L+ 2θs+1)ρks+1(‖xs − x∗θs‖+ ‖x∗θs − x∗θs+1
‖).

Let us now estimate the norms in the final inequality. First, notice that

∇Qs(x
s) = ∇Qs(x

s)−∇Qs(x
∗
θs) = As(x

s − x∗θs).

Thus, we obtain

‖xs − x∗θs‖ ≤ ‖A
−1
s ‖‖∇Qs(x

s)‖ ≤ εs
µ
. (35)

Moreover, for any s we have

‖x∗θs‖ ≤ ‖A
−1
s ‖‖cs‖ ≤

c̄s
µ
. (36)

Putting (35) and (36) into (34) we obtain

‖∇Qs+1(zk)‖ ≤
(L+ 2θs+1)ρks+1(εs + c̄s + c̄s+1)

µ
.

Imposing the inequality

(L+ 2θs+1)ρks+1(εs + c̄s + c̄s+1)

µ
≤ εs+1,

and then applying the logarithm and rearranging, we obtain that ‖∇Qs+1(zk)‖ ≤
εs+1 for all k ≥ k(s) defined by (14). Therefore, for zk(s) = xs+1 we get the
statement.

Proof of Theorem 4.1
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Proof. Let us consider the problem (2) and denote h(x) = L1/2x. Let x̃ =
lims∈K xs be an arbitrary accumulation point. Notice that for the penalty
function Φθs defined in (3) there holds

‖∇Φθs(x
s)−∇Qs(x

s)‖ (37)

= ‖∇F (xs)−∇F (xs−1) +∇2F (xs−1)(xs − xs−1)‖
≤ 2L‖xs − xs−1‖ := rs

and thus the error of the quadratic model rs is also bounded over K. Now,
inequality (19) together with the previous inequality implies that

‖∇Φθs(x
s)‖ ≤ εs + rs, (38)

i.e., we obtain

‖Lxs‖ ≤ 1

θs
(‖∇F (xs)‖+ εs + rs).

Taking the limit over K in the previous inequality, we conclude that Lx̃ = 0,
so the feasibility condition is satisfied, i.e., we have x̃1 = x̃2 = ... = x̃N .

If lims→∞ xs = x∗ we have that the error in quadratic model converges
to zero from (37), i.e. lims→∞ rs = 0 and thus (38) implies that

lim
s∈K
∇Φθs(x

s) = 0.

Following the same steps as in the second part of the proof of Theorem 3.1,
we conclude that x∗ is optimal and the statement follows.
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