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Chapter 1

Introduction

Hinge Loss are problems of binary classification which are very common in
the field of machine learning. The Hinge Loss function is non-smooth, thus in
solving these kind of problems one has to use subgradient methods. Regardless
of non-differentiability, recent research [21] shows us that if we include infor-
mation about second order derivatives we can notice an improvement of the
algorithm performances compared to first order subgradient methods. Because
of that in this thesis we will take a closer look on BFGS variants of algorithms
adjusted to non-differentiable functions.

On the other hand, the problems of machine learning mostly fall into so-
called big data problems. The big amount of data generated by us humans is
constantly growing (online learning, stochastic optimization) which addition-
ally complicates the application process of classical methods, so it is necessary
to apply algorithms with variable sample size. Even if we are talking about
problems with finite amount of data - problems of finite sums, classical methods
are often not efficient and expensive because they are considering all individual
(local) functions. Because of this it is necessary to apply algorithms which will
on the most sophisticated way determine the sample size, i.e., the number of
local functions which will be considered in each iteration and thus reduce the
computational costs of the whole optimization process. One of the most effi-
cient methods for this is the Inexact Restoration method [17]. The strength of
this method lies in adaptive decision making, that is updating the sample sizes
through iterations. The main idea is to work with as small as possible sample
size, but in such way that the optimization process and the convergence of the
algorithm is intact.

The adaptation of the Inexact Restoration method on problems which are
non-smooth is dealt with in a recent paper [15] and this will be the backbone
of this thesis. However, the main focus will be implementing, testing and the
applications of the method on real world problems, including the ones from
IoT sector [1]. First we will test the algorithms on three fairly similar datasets.
The first being a mushroom dataset, where we are interested in determining
whether a specific mushroom is edible or not. After that we will take a look on
a splice dataset which are DNA sequences to recognize two types of junctions

1



exon/intron or intron/exon. Next in the adult dataset we will tell if the person
is making more than some fixed amount of money on a yearly basis. Lastly
we have the IoT dataset which is a bit different from others in a sense that
we don’t have labels on the training data so it will be an unsupervised task.
Here we will try to predict is the given sample an anomaly or not. In industry,
detecting anomalies within the operating systems can be beneficial, as we can
predict the malfunctioning of the equipment and mitigate the potential losses.
Beside these classification tasks our goal is to measure the performances of
these algorithms especially in terms of computational cost measured by FEV -
the number of scalar products. The algorithm will be implemented and tested
in the programming language Python.
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Chapter 2

Machine learning problems

Machine learning (ML) is defined as a discipline of artificial intelligence
(AI) and computer science that provides machines the ability to automatically
learn from data and past experiences to identify patterns and make predic-
tions with minimal human intervention. Machine learning is an important
component of the growing field of data science. Through the use of statistical
methods, algorithms are trained to make classifications or predictions, uncov-
ering key insights within data mining projects. These insights subsequently
drive decision making within applications and businesses, ideally impacting
key growth metrics. As big data continues to expand and grow, the market
demand for data scientists will increase, requiring them to assist in the identi-
fication of the most relevant business questions and subsequently the data to
answer them. But how does machine learning works? First there is a deci-
sion process where in general, machine learning algorithms are used to make a
prediction or classification. Based on some input data, which can be labelled
or unlabeled, your algorithm will produce an estimate about a pattern in the
data, and the error function serves to evaluate the prediction of the model. If
there are known examples, an error function can make a comparison to assess
the accuracy of the model. Lastly there is a model optimization process. If
the model can fit better to the data points in the training set, then weights
are adjusted to reduce the discrepancy between the known example and the
model estimate. The algorithm will repeat this evaluate and optimize process,
updating weights autonomously until a threshold of accuracy has been met.

Let us mention a few applications of machine learning. In today day and
age a vast majority of people around the world are using social media plat-
forms such as Facebook and Instagram. These companies are actively using
artificial intelligence tools to process and analyze photos, videos and text to
enhance the user experience buy the data which is collected by our actions on
these platforms. They are showing us what is the most valued and relevant for
each user to create a personalised experience. Also we must not forget the tar-
geted advertising which brings a company the biggest profit. By assessing the
search preferences and engagement insights from its users, Instagram can sell
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advertising to companies who want to reach that particular customer profile
and who might be most interested in receiving a particular marketing message.
Let us move to the medical diagnosis and healthcare because we can make use
of these tools in this field also. Machine Learning incorporates techniques and
tools to deal with the diagnostic and prognostic issues in the diverse medical
realms. They are highly used for, the analysis of medical data for detecting
regularities in data, handling inappropriate data, explaining data generated
by medical units, also for effective monitoring of patients. Machine learning
also helps in estimating disease breakthroughs, driving medical information for
outcomes research, planning and assisting therapy, and entire patient manage-
ment. Machine learning classifiers fall into three primary categories supervised
learning, unsupervised learning and semi-supervised learning.

Supervised learning, also known as supervised machine learning, is de-
fined by its use of labeled datasets to train algorithms to classify data or
predict outcomes accurately. As input data is fed into the model, it adjusts
its weights until the model is fitted appropriately. This occurs as part of the
cross validation process to ensure that the model avoids overfitting or underfit-
ting. Supervised learning helps organizations solve for a variety of real-world
problems at scale, such as classifying spam in a separate folder from your in-
box. Some methods used in supervised learning include neural networks, naive
Bayes, linear regression, logistic regression, random forest, support vector ma-
chine (SVM), and more.

Unsupervised learning, also known as unsupervised machine learning,
uses machine learning algorithms to analyze and cluster unlabeled datasets.
These algorithms discover hidden patterns or data groupings without the need
for human intervention. Its ability to discover similarities and differences in
information make it the ideal solution for exploratory data analysis, cross-
selling strategies, customer segmentation, image and pattern recognition. It
is also used to reduce the number of features in a model through the process
of dimensionality reduction - principal component analysis (PCA) and singu-
lar value decomposition (SVD) are two common approaches for this. Other
algorithms used in unsupervised learning include neural networks, k-means
clustering, probabilistic clustering methods, and more.
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Figure 2.1: Unsupervised and Supervised approach, Source: [5]

Semi-supervised learning offers a happy medium between supervised
and unsupervised learning. During training, it uses a smaller labeled dataset
to guide classification and feature extraction from a larger, unlabeled dataset.
Semi-supervised learning can solve the problem of having not enough labeled
data (or not being able to afford to label enough data) to train a supervised
learning algorithm.
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2.1 L2 - Regularized binary hinge loss

Hinge loss is cost function which is used for training binary classification
models. It is mostly used in the support vector machines (SVM). The main
idea in the SVM approach is to find the most optimal hyperplane in the n-
dimensional space, where n represents the number of features. That hyperplane
will separate the data points into two classes. It is clear that this hyperplane
is a n− 1 dimensional subspace of the n-dimensional space.

Figure 2.2: Representation of the hyperplanes in R2, Source: [2]

We can see that there are more available hyperplanes, however we are
interested in the one that has the widest margin. Because with that one the
separation between the two classes will be the best. More precisely, the best
margin is the minimal distance from the hyperplane to the dataset points. The
desired maximized hyperplane is the red one in Figure 2.2.

Let x be the coefficient vector of the hyperplane, then the width of the
margin can be calculated as 2

||x|| . If we want to maximize it, we need to
minimize ||x||. So we end up with the following optimization problem

min
x

1

2
||x||2, subject to zixTωi ≥ 1, i = 1, . . . , N, (2.1)

where N is the number of samples, wi, i = 1, . . . , N are the attribute vec-
tors, and zi ∈ {−1, 1} is the target value of the sample wi. Our problem 2.1
has a unique solution, since it is a convex function with affine constraint so the
problem is convex. For this type of problem we know that a local solutions are
also global.

This kind of a problem is used only in linearly separable datasets. As we
know in reality datasets often needs to be separated by nonlinear classifiers.
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In order to cope with this nonlinearity, one can apply a penalty function which
is "softening" the constrains by moving them into the objective function. We
end up with hinge loss problem with regularization. In particular, hinge loss
with L2 regularization objective function is defined as follows

f(x) :=
λ

2
||x||2 + 1

N

N∑
i=1

l(ωi, zi, x), (2.2)

where N ∈ N is the number of samples, λ > 0 a regularization parameter,
wi ∈ Rn, i = 1, . . . , N are the feature vectors of each sample, and z ∈ RN is
the vector of corresponding true labels, with zi ∈ {−1, 1} and x is the decision
variable which represents a vector of coefficients for the classifier. The function
l(ωi, zi, x) is the hinge loss defined as

l(ωi, zi, x) := max(0, 1− zix
Tωi).

The loss l is a non-negative convex function of x which measure the dis-
crepancy between wi and the predictions arising from using x.

Figure 2.3: Hinge loss function, Source: [3]

On Figure 2.3 the x-axis represents the distance from the boundary, and
the y-axis represents the penalty that the function will incur depending on its
distance. The dotted line on the x-axis represents the number 1. This means
that when the distance from the boundary is greater than or at 1, our loss
size is 0. If the distance from the boundary is 0, meaning that the instance
is exactly on the boundary, then we incur a loss size of 1. We can see that
correctly classified points will have a small loss size, while incorrectly classified
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instances will have a high loss size. A negative distance from the boundary is
resulting a high hinge loss value. This essentially means that we are on the
wrong side of the boundary, and that the instance will be classified incorrectly.
On the other hand, a positive distance from the boundary yields a low hinge
loss, or no hinge loss at all. The further we are away from the boundary to the
right side, the lower our hinge loss will be.

Let us remind ourselves what was our initial goal. It was to find the
coefficient vector x, which we achieve by solving the following optimization
problem

min
x
f(x) := min

x

(
λ

2
||x||2 + 1

N

N∑
i=1

l(ωi, zi, x)

)
.

The objective function that we consider is nonsmooth and usually very
costly to evaluate since N can be very large. Thus, the Variable Sample Size
(VSS) is commonly used and the function f is usually approximated by the
Sample Average Approximation (SAA) function. For a given sample size N ,
the SAA approximate objective function for Nk ≤ N is defined as

fNk
(x) =

1

Nk

Nk∑
i=1

fi(x) =
λ

2
||x||2 + 1

Nk

Nk∑
i=1

max(0, 1− zix
Tωi). (2.3)

In order to determine the subgradient of the SAA function, we define the
set of points which are in error (Ek), on the margin (Mk) and well classified
(Wk) are respectively

Ek := {i ∈ {1, . . . , Nk} : 1− zix
Tωi > 0}

Mk := {i ∈ {1, . . . , Nk} : 1− zix
Tωi = 0}

Wk := {i ∈ {1, . . . , Nk} : 1− zix
Tωi < 0}.

The subgradient is defined as

∂fNk
(x) = λx− 1

Nk

Nk∑
i=1

βiziωi = x− 1

Nk

∑
i∈Mk

βiziωi, (2.4)

where x := λx− 1
Nk

∑
i∈Ek ziωi and
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βi :=


1, i ∈ Ek
[0, 1], i ∈ Mk

0, i ∈ Wk.

One thing that is necessary to mention is that the descentDirection al-
gorithm that will be explained in detail in section 3.2 requires an oracle that
provides arg supg∈∂fNk

(xk)
gT p for a given direction p. For this problem we can

implement such an oracle at a computational cost of O(n|Mk|), where n is di-
mension of direction p and |Mk| the number of current margin points. Using
the subgradient from 2.4 we get

sup
g∈∂fNk

(xk)
gT p = sup

βi,i∈Mk

xk − 1

Nk

∑
i∈Mk

βiziωi

T

p

= xTk p−
1

Nk

∑
i∈Mk

inf
βi∈[0,1]

(βiziω
T
i p),

where x is the same as above mentioned. Since, for a given direction p the
first term of the right-hand side is a constant, the supremum is attained when
we set βi, ∀i ∈ Mk in the following way

βi :=

{
0, ziω

T
i p ≥ 0,

1, ziω
T
i p < 0.
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2.2 Hinge loss for anomaly detection

Datasets often have outliers. Detecting such points can be of great importance.
For example we can prevent some unwanted malfunctioning or mitigate some
potential losses in systems. There are various method for achieving this goal.
One such method is the "one class SVM", which is an unsupervised machine
learning method because we don’t have any information about training labels.
As in standard binary classification SVM are also trying to find the best sep-
arating hyperplane with the largest margin, but we will have to make some
adjustiment to this problem.

To find the optimal hyperplane we have to solve the following minimization
problem

min
x,r

1

2
||x||2 − r, subject to xTωi ≥ |r|, i = 1, . . . , N

The samples ωi for which xTωi ≤ |r| is true, will be considered as anomalies.
Adding this regularization parameter and the penalization component, we can
rewrite the problem as

min
x,r

f(x, r) = min
x,r

(
λ||x||2

2
− λr +

1

N

N∑
i=1

max{0, r − xTωi}

)

The subgradients have the following form

∂xf(x, r) = λx− 1

N

N∑
i=1

βiωi = λx− 1

N

∑
i∈E′

ωi −
1

N

∑
i∈M′

βiωi

∂rf(x, r) = −λ+
1

N

∑
i∈E′

1 +
1

N

∑
i∈M′

βi

∂f(x, r) =

∂xf(x, r)∂rf(x, r)


where,
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E′ = {i ∈ {1, . . . , N}, r − xTωi > 0}

M′ = {i ∈ {1, . . . , N}, r − xTωi = 0}

W′ = {i ∈ {1, . . . , N}, r − xTωi < 0}

and βi is

βi :=


1, i ∈ E′

[0, 1], i ∈ M′

0, i ∈ W′.

Same as in the L2 - regularized binary hinge loss case, here for the anomaly
detection we are also in the need for the the supg∈∂f(x,r) g

T p. The only differ-
ence that occurs is that we are optimizing for two unknown vectors x and r,
so we have the following slightly complicated form of the desired quantity

sup
g∈∂f(x,r)

gT p = λpTxx− 1

N

∑
i∈E

pTxωi − λpr + pr
|E|
N

+
1

N

∑
i∈M

β∗i (pr − pTxωi)

with

β∗i :=

{
1, pr − pTxωi > 0,

0, pr − pTxωi ≤ 0.

where β∗i (pr − pTxωi) = supβi∈[0,1] βi(pr − pTxωi). We can replace sup with
max and get

arg max
g∈∂f(x,r)

gT p =


−λ+

|E|
N

+
1

N

∑
i∈M β

∗
i

λx− 1

N

∑
i∈E ωi −

1

N
β∗i ωi
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Chapter 3

The algorithm

In this chapter, we are going to present the application of the method on
the real world problems. This method has three main ingredients: 1) it uses
BFGS update rule adapted to the VSS framework to utilize some second order
information; 2) it uses descent directions so that the line search is well defined;
3) it uses IR approach to update the sample size used for the SAA estimators.
We describe these ingredients in the sequel.

3.1 BFGS update

In numerical optimization Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm is an iterative method for solving unconstrained nonlinear optimiza-
tion problems and it belongs to Quasi-Newton methods. It was named after
Charles George Broyden, Roger Fletcher, Donald Goldfarb and David Shanno
who each came up with the algorithm independently in 1970. The algorithm
determines the descent direction by preconditioning the gradient with curva-
ture information. It does so by gradually improving an approximation to the
hessian matrix of the loss function. Since the updates of the BFGS curvature
matrix do not require matrix inversion, its computational complexity is only
O(n2) compared to O(n3) in Newton’s method [4]. The main advantage of
this algorithm is that it converges fast to a solution if the objective function is
convex. Let us denote by Hk the approximation of the Hessian matrix. Then,
quasi-Newton direction dk satisfies

Hkd
k = −∇f(xk)

Assume that we have an approximation Hk and that we performed the
iteration to obtain xk+1. Then we need to update the Hessian approximation
Hk+1. One requirement is that Hk+1 satisfies the secant equation Hk+1s

k = yk
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where sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk) and f is the objective
function.

The secant equation does not determine an unique Hk+1. Therefore, be-
sides the symmetry which is a natural requirement for Hessian approximation,
other conditions are imposed. The least-change update condition is the most
successful one and it states that the next approximation matrix should be as
close as possible to the current approximation. Therefore Hk+1 is a solution
of the following optimization problem

min ||H −Hk|| subject to HT = H , Hsk = yk

Clearly, the solution of the above problem depends on the norm we use in
the objective function. The BFGS formula is given as

Hk+1 = Hk +
yk(yk)T

(yk)T sk
− Hks

k(sk)THk

(sk)THksk

By using the SMW (Sherman-Morrison-Woodbury) formula, one can also
get update for the inverse Hessian matrix approximation, i.e.,

Bk+1 = Bk −
Bky

k(yk)TBk
(yk)TBkyk

+
sk(sk)T

(ykT )sk

Above we described the basic case where the function is smooth, but our
problem requires to work with subradients and the approximate functions, so
we present the BFGS update that can be used in the considered environment.
To get the descent direction pk we need the corresponding BFGS matrix Bk.

pk = −Bk(xk)gk.

Let yk := gk+1 − gk and sk = xk+1 − xk where gk ∈ ∂fNk
(xk), gk+1 ∈

∂fNk+1
(xk+1) are the subgradients. The matrices have to be uniformly positive

definite so, we skip the BFGS update if sTk yk ≥ 10−4||yk||2 and we start with
B0 as an identity matrix. The BFGS update can be represented by:

Bk+1 = (I − ρksky
T
k )Bk(I − ρkyks

T
k ) + ρksks

T
k , (3.1)

where

ρk =
1

yTk sk
.
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3.2 Descent directions

The main procedure uses line search method, and thus it requires a descent
direction. As for the start, let us define what is a descent direction for nons-
mooth case. We say that p is descent direction for a function ψ at the point
x ∈ Rn if

gT p < 0 for all g ∈ ∂ψ(x),

or equivalently, if the following holds

sup
g∈∂ϕ(x)

gT p < 0. (3.2)

The pseudo-quadratic model of ψ at x ∈ Rn is given by

Qk(p) = ϕ(x) + Y (p),

where

Y (p) =
1

2
pTB−1p+ sup

g∈∂ϕ(x)
gT p, (3.3)

and B ∈ Rn×n is a nonsingular matrix. The algorithm below will return a
decent direction p for ψ(x).

The input parameters are a subgradient g̃0 ∈ ∂(x), tolerance ϵ ≥ 0, it-
eration bound imax ∈ N and the BFGS matrix. It is assumed that g̃i+1 =
arg supg∈∂ψ(x) g

T pi is provided, and the first subgradient g̃0 ∈ ∂ψ(x) is arbi-
trarily chosen. In general, providing g̃i+1 = arg sup

g∈∂ψ(x)
gT pi is extremely hard, but

it can be determined analytically for the problems that we consider such as
Hinge loss and IoT as explained in the previous section. Below we present the
algorithm which returns a descent direction p at the point x.

Algorithm 1 [21]: p =descentDirection (g̃0 ∈ ∂ψ(x), ϵ, imax, B)

S0 Initialize i = 0, ḡ0 = g̃0, p0 = −Bg̃0

S1 Calculate the next subgradient g̃1 = arg sup
g∈∂ψ(x)

gT p0

S2 Compute ϵ0 := pT0 g̃1 − pT0 ḡ0
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S3 While (g̃Ti+1pi > 0 or ϵ0 > ϵ) and ϵi > 0 and i < imax do

µ∗ := min

[
1,

(ḡi − g̃i+1)
TBḡi

(ḡi − g̃i+1)TB(ḡi − g̃i+1)

]
ḡi+1 = (1− µ∗)ḡi + µ∗g̃i+1

pi+1 = (1− µ∗)pi − µ∗Bg̃i+1

g̃i+2 = arg sup
g∈∂ψ(x)

gT pi+1

ϵi+1 = min
j≤i+1

[
pTj g̃j+1 −

1

2
(pTj ḡj + pTi+1ḡi+1)

]
i := i+ 1

End

S4 Compute p = argminj≤i Y (pj)

S5 If supg∈∂ψ(x) gT p < 0 then return p, else return failure.

Let us briefly explain some key points of this algorithm. For nonsmooth
functions the direction pk = −Bkgk may not always fulfill the descent condition
3.2, where Bk is a BFGS matrix that will be explained in section below. If the
desired direction is not descent the process in line search algorithm will not be
able to find a suitable step size α > 0. For this aim the iterative approach for
finding this direction was employed, namely the Algorithm 1. Our goal is to
minimize the speudo-quadratic model 3.3. This problem can be solved using
quadratic programming, but it would be computationally expensive, instead we
adopt an alternative approach which does not solve this problem to optimality.
The key idea is to write the proposed direction at ireration k + 1 as a convex
combionation of pk and −Bkgk+1, more precisely pi+1 = (1− µ∗)pi − µ∗Bg̃i+1

where the coefficient µ∗ is a dual variable of the subproblem. More details
about this algorithm can we found in [21]. It can be be proven that at a
non-optimal iterate a direction finding tolerance ϵ ≥ 0 exists such that the
search direction produced by Algorithm 1 is a descent direction. Also that
the algorithm converges to a solution with precision ϵ in O(1/ϵ) iterations.
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3.3 Inexact Restoration approach

In this section we are putting together the above presented descentDirection
and the BFGS algorithm in action.

Algorithm 2: IRNS

S0 Given x0 ∈ Rn, N0 ∈ N, θ0 ∈ (0, 1),m, β, γ, γ > 0, ϵ ≥ 0, imax ∈ N.
Set k = 0, B0 = I and compute g0 ∈ ∂fN0(x0).

S1 Restoration phase. Find Ñk+1 ≥ Nk such that

h(Ñk+1) ≤ rh(Nk), (3.4)

fÑk+1
(xk)− fNk

(xk) ≤ βh(Nk). (3.5)

S2 If

Φ(xk, Ñk+1, θk)− Φ(xk, Nk, θk) ≤
1− r

2
(h(Ñk+1)− h(Nk)) (3.6)

set θk+1 = θk. Else

θk+1 :=
(1 + r)(h(Nk)− h(Ñk+1))

2[fÑk+1
(xk)− fNk

(xk) + h(Nk)− h(Ñk+1)]
. (3.7)

S3 Optimization Phase.

a) Choose Nk+1 ≤ Ñk+1 such that for
pk = descentDirection (g̃0 ∈ ∂fNk+1

(xk), ϵ, imax, Bk)

and for α ∈ (0, τk] for some τk > 0 we have

fNk+1
(xk + αpk)− fÑk+1

(xk) ≤ −γα||pk||2, (3.8)

h(Nk+1) ≤ h(Ñk+1) + γα2||pk||2. (3.9)

b) Find αk ∈ (0, 1] as large as possible such that (3.8) and (3.9) hold for
α = αk and in addition

Φ(xk+αkpk, Nk+1, θk+1)−Φ(xk, Nk, θk+1) ≤
1− r

2
(h(Ñk+1)−h(Nk)). (3.10)

S4 Set sk = αkpk and xk+1 = xk + sk.

S5 Choose a subgradient gk+1 ∈ ∂fNk+1
(xk+1) and compute yk := gk+1−gk.
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If sTk yk ≥ m||yk||2, update Bk+1 by (3.1).
Else Bk+1 = Bk.

S6 Set k := k + 1 and go to S1.

Now that we have seen all parts of the main algorithm, let us dive deep
into and give a detailed explanations of each step.

S0: Before the first step we have to initialize a number of parameters in
orders to start the algorithm. Although some other choices are possible, we
opted for following ones in the applications presented in the following chapter:
x0 is a vector with random numbers generated from uniform distribution of
length n which is number of features, N0 is the first sample size which is
obtained by taking 10% of the full sample size. Other parameters are: the
penalty parameter θ0 = 0.9, regularization parameter l = 10−5,m = 10−4, γ =
10−4, γk = 1, r = 0.95, the initial BFGS matrix B0 = I, iteration limit imax =
100, direction finding tolerance ϵ = 10−4. Notice that ϵ and imax are used for
Algorithm 1 which is called within the main IRNS Algorithm.

S1: Step one is the restoration phase where the feasibility is improved.
Here we want to find the next sample size denoted by Ñk+1, it has to be larger
or equal then the previous sample size i.e. Ñk+1 ≥ Nk. We obtain it in the
following way

N(1− rh(Nk)) ≤ Ñk+1 (3.11)

for r < 1, where we choose h to be (N − Nk)/N . Inequality 3.11 is just
the explicit expression of 3.4. The value of our objective function fÑk+1

(xk)

can increase with respect to fNk
but only by at most βh(Nk) which is told

by the second inequality in this step 3.5. We can look at this condition in a
way that the optimality can deteriorate with respect to the previous iteration,
but it is controlled by the function h. In other words, if the approximation
of the objective function is looser for smaller sample sizes the deterioration of
optimality can be relatively large.

S2: In the second step, we update the penalty parameter θk ∈ (0, 1) with
the help of merit function

Φ(x,N, θ) := θfN (x) + (1− θ)h(N)
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This parameter plays the role in giving different weights to the objective
function. If inequality 3.6 is not satisfied this parameter is updated by 3.7.
It can be proved that θk is bounded away from zero under some standard
conditions.

S3: Step S3 tries to decrease the computation costs if such decrease is
relevant. So, we choose the sample size Nk+1 ≤ Ñk+1. Then we calculate the
descent direction pk with help of function descentDirection for the function
fNk+1

at the current iteration xk. There is no predetermined rule for finding
Nk+1 only that it has to be less or equal then Ñk+1. The most efficient choice
is unknown and it is most likely dependent on a given problem. When S3 a)
is done we perform a line search backtracking for the merit function ϕ along
the descent search direction pk. The backtracking process is performed in the
following way. We estimate the sample size lower bound N trial

k+1 derived from
(3.10). The value of N trial

k+1 is calculated as follows:

N trial
k+1 := Nk +

1− r

2
· Ñk+1 −Nk

1− θk+1
− θ̂k+1(γα||pk−1||2 − fÑk+1

(xk) + fNk
(xk)),

(3.12)
where θ̂k+1 = N · θk+1

1−θk+1
. Than we get three candidates for Nk+1 which are:

Nk+1 ∈ {
⌈
N trial
k+1

⌉
,
⌈
(N trial

k+1 + Ñk+1)/2
⌉
, Ñk+1}. (3.13)

In the first iteration we set αk = 0.5j for counter j = 0, we try all three
candidates above mentioned and when all three inequalities namely 3.8, 3.9
and 3.10 are satisfied we return Nk+1 and αk. If none of three candidates
satisfies the condition we increase j by one and repeat the whole process until
we find one that satisfies the conditions.

We implemented also a safeguard which ensures that the number of sam-
ples can’t be less than the initial sample size. This was necessary because
without this safeguard sometimes N trial

k+1 tend to be negative number which is
not acceptable and makes no sense for the algorithm.

S4: Here we perform a quick update to our solution iterate xk+1 with
obtained step size αk and descent direction pk from previous steps.

S5: The goal of step S5 is to calculate the next gk+1 and also yk which is
necessary to update the BFGS matrix by 3.1. If the current Bk is not uniformly
positive definite, in other words sTk yk ≥ m||yk||2 is not satisfied we skip the
BFGS update and use the same one for the next iteration. Than we update
our iteration counter k by one and go to S1.

At this point we are familiar with the details and the functionality of the
algorithm, but what about some theoretical facts? The following assumption
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describes some properties of our problem and are necessary for the corollary
which states the convergence result for the finite sum case.

Assumption 3.1. For any give N, x and B such that mI ⪯ B(x) ⪯ MI,
for some positive and bounded constants m ≤ M we can compute a direction
pN ∈ Rn such that

pN (x) = −B(x)ḡN (x) and

sup
g∈∂fN (x)

gT pN (x) ≤ −m
2
||ḡN (x)||2, ḡN (x) ∈ ∂fN (x).

Parameter β which is used in inequality 3.5 can be arbitrary large, but has
to be finite number. In our case, finite sums, we can prove that under the
standard conditions such β exists. Since we do not impose differentiablity of
the objective function nor any other special property, the following assumption
is necessary.

Assumption 3.2. Suppose that there exists β such that inequality 3.5 holds
for each k.

Corollary 3.1. Let Assumptions 3.1 and 3.2 hold and assume
∑

k αk = ∞.
If f = fNmax and fi, i = 1, . . . , Nmax are continuous and strongly convex, then
limk→∞ xk = x∗, where x∗ denotes the solution of the finite sum problem.
Moreover, if αk ≥ ᾱ > 0 for all k ∈ N, then the worst-case complexity is of
order O(ϵ−2).
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Chapter 4

Numerical results

Here we test the presented IRNS algorithm with variable sample size scheme
on a non-smooth convex finite sum problems i.e., bounded sample size with
real world data. We are interested in quantifying the computation cost savings
obtained from this approach.

In this chapter we will test the performance of the algorithms on three
supervised problems namely: Mushroom, Adult, Splice and an unsupervised
IoT problem. Beside this, we are interested in computation saving which is
measure by FEV - the number of scalar products. It will be tested against
the heuristic and the full sample counterpart, showing the advantages of the
adaptive sample size IRNS scheme. In the field of machine learning and specif-
ically the problem of statistical classification, a confusion matrix, also known
as an error matrix, is a specific table layout that allows visualization of the
performance of an algorithm, typically a supervised learning one.

[
TN FP
FN TP

]

True positive (TP) - Correctly indicates the presence of a condition or char-
acteristic. True negative (TN) - Correctly indicates the absence of a condition
or characteristic. False positive (FP) - Wrongly indicates that a particular
condition or attribute is present. False negative (FN) - Wrongly indicates that
a particular condition or attribute is absent.

From these, we derive the standard measures:

Precision (P) =
TP

TP + FP

Recall (R) =
TP

TP + FN

Accuracy (A) =
TP + TN

FP + FN + TN + TP
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F1 score (F1) =
2 · P ·R
P +R

4.1 Binary classification

This is a machine learning framework and considers L2-regularized binary hinge
loss functions for binary classification. The problem is of the form

f(x) :=
λ

2
||x||2 + 1

N

N∑
i=1

l(ωi, zi, x)

The columns of ω are different attributes, and the samples are represented
by rows. The vector x ∈ Rn is the vector of weight coefficient, that we are
searching for in our algorithm. The data [6] and [18] did not need any ad-
ditional preprocessing, that means after checking for various properties like
missing data everything was ready to pass on to the algorithm. The parame-
ters of the algorithms are θ0 = 0.9, r = 0.95, γ̃ = 1 and γ = 10−4. The function
h is defined as h(Nk) = (N − Nk)/N with N0 = ⌈0.1N⌉. The computation
cost is measured by FEV which is is the number of scalar products. The al-
gorithms are stopped when the maximum MaxFEV value is attained. The
regularization constant is set to λ = 10−5 and the initial point x0 is random
vector from uniform distribution. Other parameters are imax=100, ϵ = 10−4,
γ = 1, γ = 10−4. The experiments were conducted on three datasets com-
monly used in binary classification studies, namely SPLICE, MUSHROOMS
and ADULT9. Table 4.1 summarizes the properties of the datasets, where N
is the number of data points including both training and testing sets and n is
the dimension of the decision variable. We use the classical split, 80% of data
as training set and the remaining 20% as testing set, where Ntrain and Ntest

are the cardinal numbers of those sets respectively.

Dataset N n Ntrain Ntest MaxFEV
1 SPLICE [6] 3175 60 2540 635 105

2 MUSHROOMS [18] 8124 112 6500 1624 105

3 ADULT9 [6] 32561 123 26049 6512 106

Table 4.1: Properties of the datasets used in the experiments

Each dataset has been split into training and test set. The algorithm
is using the training set to find the optimal solution, and it validates the
predictions after each iteration with the test set.
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4.1.1 Mushroom dataset

In Mushroom dataset we are given attributes of a mushrooms with 8124
samples, and 112 features, all of which only consists of 1 and -1 values. Our
goal is to predict whether a given mushroom is edible (1) or not (-1). The algo-
rithms are stopped when the maximum number of scalar products, MaxFEV
is reached. We also track the value of the true relevant objective function
fNtrain(xk) or fNtest(xk). If the predicted value was negative it was classified
as (-1) edible and (1) if its poisonous.

Figure 4.1: Mushrooms - Training loss versus FEV

It appears that the full sample method is unstable in the beginning, but
we can notice as the iterations increase the value is decreasing to the levels of
other two algorithms.
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Figure 4.2: Mushrooms - Training loss versus iteration

Figure 4.3: Mushrooms - Accuracy versus iteration

As mentioned above, the instability in the beginning of the full sample
algorithm can be seen in the Accuracy and F1 Score metrics. But in the end
all three algorithms achieves very good performance
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Figure 4.4: Mushrooms - F1 Score versus iteration

Figure 4.5: Mushrooms - FEV versus iteration
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Figure 4.6: Mushrooms - Sample size representation

In Figure 4.6 we can see the sample sizes picked over the iteration. Ñk+1

is represented with blue, and Nk+1 with green and the heuristics i.e. when
Nk+1 = min{⌈1.1Nk⌉, N} with orange. We can see the advantages of this
method from the figures, because it provides savings in the computational
costs and achieving the same amount of accuracy as in the heuristic and full
sample size approach.
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4.1.2 Splice dataset

This dataset comes from the UCI repository of machine learning databases.
The task is to recognize two types of splice junctions in DNA sequences;
exon/intron (EI) or intron/exon (IE) sites. A splice junction is a site in a
DNA sequence at which "superflous" DNA is removed during protein creation.
Intron refers to the portion of the sequence spliced out while exon is the part
of the sequence retained. We have 3175 samples and 60 features.

Figure 4.7: Splice - Training loss versus FEV

Figure 4.8: Splice - Training loss versus iteration
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Figure 4.9: Splice - Accuracy versus iteration

Figure 4.10: Splice - F1 Score versus iteration
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Figure 4.11: Splice - FEV versus iteration

Figure 4.12: Splice - Sample size representation
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4.1.3 Adult dataset

In Adult dataset, we want to determine whether the person makes more or less
than 50000$ a year. We have 32561 samples and 123 features which are: age,
working class, education etc.

Figure 4.13: Adult - Training loss versus FEV

Figure 4.14: Adult - Training loss versus iteartion
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Figure 4.15: Adult - Accuracy versus iteration

Figure 4.16: Adult - F1 Score versus iteration
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Figure 4.17: Adult - FEV versus iteration

Figure 4.18: Adult - Sample size representation
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4.2 Anomaly Detection for Cellular IoT

So far we have seen the application of the IRNS algorithm on three dataset,
in this section we will consider an industrial problem. Finding anomalies is of
great importance in industry because we can predict malfunctioning of some
infrastructures, and thus prevent unnecessary losses. The goal of this section
is to implement the algorithms on the dataset from [1] in order to find the
anomalies. The research is part of the H2020 C4IIoT project-Cyber security
4.0: protecting the Industrial Internet of Things.

Lets talk more about how the data was acquired. It was generated using
NB-IoT edge nodes and created a setup where an edge node has been attached
to a box-shaped container inside a transport vehicle moving throught the city
of Novi Sad. The devices were initially connected to the NB-IoT network, and
they had the uninterrupted connectivity along their paths. The positions data
was collected from GNSS module (timestamp, latitude, longitude, altitude,
speed and number of satellites in range), as well as the outputs of the IMU
(acceleration and magnetic field along the 3 spatial axes). The time resolution
(sampling period) of the GNSS samples was approximately 10 s. The sampling
period of the IMU was approximately 15 ms.

The dataset is arranged by timestamps, and it had been split to training
and test sets, they have 12678 and 1571 samples respectively. There are 13
attributes which are numerical. For the test data ground truth anomalies are
given. In the first few experiments the results that the algorithm were produc-
ing was not acceptable, so there had to be done some transformations on the
data. Namely, normalization and standardisation. The normal scaling scales
and translates each feature such that it is in the given range on the training
set. We used (0, 1) range, and it is calculated as: z = (x−xmin)/(xmax−xmin).
The standard scaling is calculated as: z = (x − u)/s where u is the mean of
the training samples and s is the standard deviation of the training samples.
Also various values for the parameter λ was tested for the both data trans-
formations. We present here only the best performance which was obtained
by standardisation the data and λ = 0.005. Test were concluded when the
features that represent location where present and omitted. We get slightly
better results without information about the location. Although the classifi-
cation results are not great, we can see that the IRNS approach achieves the
best results on train loss figure 4.19. In the following tables we can observe
the classification results. On the test dataset there were 166 samples labelled
as anomalies and 1405 which are not.
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IRNS Heuristics Full sample size
TP 95 118 88
FP 336 395 189
FN 71 48 178
TN 1069 1010 1216

Table 4.2: Confusion matrix for IoT data

IRNS Heuristics Full sample size
Accuracy 0.741 0.718 0.830
Precision 0.220 0.230 0.318
Recall 0.572 0.711 0.530

F1 score 0.318 0.348 0.397

Table 4.3: Classification results

Figure 4.19: IoT - Training loss versus FEV

Figures 4.19 and 4.20 show the training loss of the algorithms with respect
to FEV and number of iterations. It is clear that the IRNS approach achieves
better result and is faster than other two, so it appears to be the most efficient.
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Figure 4.20: IoT - Training loss versus iteartion

From a recent master thesis The gradient sampling algorithm for solving
binary classification problems [19] we can make a comparison how well our
model performed on a training data regarding the loss function. The main
purpose of the thesis was to test the SVM gradient sampling models on similar
data sets and IoT data. Gradient sampling methods had been tested therein,
as well as Nonnormalized grandiant sampling, Limiting ls gradient sampling
and Trust region gradient sampling.

Figure 4.21: Figure from [19] representing the training loss of the IoT dataset
with location

On a training set SVM models achieves decrease of magnitude of 10−6 over
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200 iterations, and as we can see on figures 4.19 and 4.20 the IRNS approach
have yield better results of order 10−7. The main reason for this performance
increase is the inclusion of the second order derivaties.

Figure 4.22: IoT - Accuracy versus iteration

Figure 4.23: IoT - F1 Score versus iteration

We have to mention that the performance metrics are less satisfying as the
gradient sampling methods. We can clearly see this on Figures 4.22 and 4.23.
The reason for this is yet unknown and are open for further investigation in
the space of parameters, maybe with application of some powerful grid search
algorithm.
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Figure 4.24: IoT - FEV versus iteration

Figure 4.25: IoT - Sample size representation

36



Chapter 5

Conclusion

Withing this thesis first we have revised some of the fundamental princi-
ples of Machine learning, the Inexact Restoration method and the Hinge loss
binary classification method for the usual case and for the anomaly extraction.
Than we deep dived into the details of the algorithm. We successfully imple-
mented IRNS algorithm in Python. The method was tested on a set of real
data problems. It was tested against the heuristic and the full sample coun-
terpart, showing the advantages of the adaptive sample size scheme, especially
in terms of computational cost measured by FEV - the number of scalar prod-
ucts. Furthermore, the method was tested on IoT problem. The dataset had
been generated for a C4IIoT project. Namely, this dataset had been created
using NB-IoT edge nodes which were attached to the transport vehicle moving
through the city of Novi Sad. The positioning data had been collected from
the GNSS and IMU modules respectively.

Again, adaptive sample size strategy proved to be beneficial with respect
to the core optimization problem which falls into the domain of support vector
machine approach (SVM). It also shows the advantage of using second order
information when the results about the training objective function’s value are
considered. More precisely, when the same number of iterations are considered,
there can be seen that IRNS achieves better vicinity of the solution than the
first order (Gradient Sampling) method. However, the results on the test set
are not as expected since the metrics such as precision and accuracy are not
at the satisfactory level. This indicates the potential problem with overfitting.
Resolving this issue could be a subject of the future work.
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Appendix A

The Python code

Code for Mushrooms, Adult and Splice datasets.

def aimh(N_k):
return (N_max-N_k)/N_max

def hinge_loss(x,N):
prediction = train.iloc[:N,:].dot(x)
maximums = np.maximum(0,1-labels[:N]*prediction)
return l/2*LA.norm(x)**2+1/N*maximums.sum()

def hl_der(x,N):
y=train.iloc[:N,:].dot(x)*labels[:N]
maximums=1-y
all_der = (train.iloc[:N,:].T*labels[:N]).T
greater_der = all_der[maximums>0]
zero_der = all_der[maximums==0]
beta=np.random.uniform(0,1,np.size(zero_der))
if len(zero_der)!=0:

return np.array(l*x-greater_der.sum()/N-np.dot(zero_der,beta)/N)
elif len(zero_der)==0:

return np.array(l*x-(greater_der.sum())/N)

def new_sample(N_k):
return math.ceil(N_max*(1-r*aimh(N_k)))

def merit_function(x_k, N_k, theta_k):
return theta_k*hinge_loss(x_k, N_k)+(1-theta_k)*aimh(N_k)

def find_theta(x, N_tilda, N, theta):
sum1 = merit_function(x, N_tilda, theta)-merit_function(x, N, theta)
sum2 = (1-r)/2*(aimh(N_tilda)-aimh(N))
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if sum1 <= sum2:
return theta

else:
sum3 = (1+r)*(aimh(N)-aimh(N_tilda))
sum4 = hinge_loss(x, N_tilda)-hinge_loss(x, N)+aimh(N)-aimh(N_tilda)
return sum3/(2*sum4)

def sup_gp(x, p, N):
sum1 = 0
sum2 = 0
for i in range(N):

check = 1-labels[i]*np.matmul(train.iloc[i,:],x)
if check == 0:

inf = labels[i]*np.matmul(train.iloc[i,:],p)
if inf < 0:

sum1 += inf
if check > 0:

sum2 += labels[i]*train.iloc[i,:]
return np.matmul(l*x - (sum2/N),p) - sum1/N

def model_Y(x, p, N, B):
return np.matmul(np.matmul(p,np.linalg.inv(B)),p)/2 + sup_gp(x, p, N)

def argsup_gp(x, p, N):
sum1 = np.zeros(x.shape)
sum2 = np.zeros(x.shape)
for i in range(N):

check = 1-labels[i]*np.matmul(train.iloc[i,:],x)
if check > 0:

sum1 += labels[i]*train.iloc[i][:]
if check == 0:

if labels[i]*np.matul(train.iloc[i,:],p) < 0:
sum2 += lables[i]*train.iloc[i][:]

return np.array(l*x-sum1/N-sum2/N)

def descentDirection(g0_tilda, e, i_max, B, x, N):
G_tilda = []
G_bar = []
P = []
E = []

#Step 0
g0_bar = g0_tilda
G_bar.append(g0_bar)
G_tilda.append(g0_tilda)
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P.append(np.matmul(-B, G_tilda[0]))

#Step 1
G_tilda.append(argsup_gp(x, P[0], N))

#Step 2
E.append(np.matmul(P[0],G_tilda[1])-np.matmul(P[0],G_bar[0]))

#Step 3
i = 0
while (np.matmul(G_tilda[i+1],P[i])>0 or E[0]>e) and E[i]>0 and i<i_max:

first = np.matmul(G_bar[i]-G_tilda[i+1],np.matmul(B,G_bar[i]))
second = np.matmul(G_bar[i]-G_tilda[i+1],np.matmul(B,G_bar[i]-G_tilda[i+1]))
ni = min(1,first/second)
G_bar.append((1-ni)*G_bar[i]+ni*G_tilda[i+1])
P.append((1-ni)*P[i]-ni*np.matmul(B,G_tilda[i+1]))
G_tilda.append(argsup_gp(x, P[i+1], N))
e_list = []
j = 0
while j <= i+1:

sum1 = np.matmul(P[j],G_tilda[j+1])
sum2 = np.matmul(P[j],G_bar[j])+np.matmul(P[i+1],G_bar[i+1])
e_list.append(sum1-sum2/2)
j += 1

E.append(min(e_list))
i += 1

#Step 4
list_p = []
j = 0
while j <= i:

list_p.append(model_Y(x, P[j], N, B))
j += 1

p_final = P[np.argmin(list_p)]

#STEP5
if sup_gp(x, p_final, N) < 0:

return p_final
else:

print("Failed to find direction")

def check1(x, alpha, p, N_trial, N_tilda):
sum1 = hinge_loss(x+alpha*p, N_trial)
sum2 = hinge_loss(x, N_tilda)
sum3 = -gama*alpha*(LA.norm(p,2)**2)
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return (sum1-sum2)<=sum3

def check2(N_trial, N_tilda, alpha, p):
sum1 = aimh(N_trial)
sum2 = aimh(N_tilda)
sum3 = gama_k*alpha*alpha*(LA.norm(p,2)**2)
return sum1<=(sum2+sum3)

def check3(x, alpha, p, N_trial, theta, N_start, N_tilda):
sum1 = merit_function(x+alpha*p, N_trial, theta)
sum2 = merit_function(x, N_start, theta)
sum3 = (1-r)*(aimh(N_tilda)-aimh(N_start))/2
return (sum1-sum2)<=sum3

def BFGS(B, g_new, g_old, x_new, x_old):
I = np.identity(g_new.size)
y = g_new-g_old
s = x_new-x_old
sT = np.reshape(s,(1,-1))
s = np.reshape(s,(-1,1))
yT = np.reshape(y,(1,-1))
y = np.reshape(y,(-1,1))
ro = 1/(yT@s)
sum1 = I-ro*(s@yT)
sum2 = I-ro*(y@sT)
sum3 = ro*(s@sT)
return (np.matmul(np.matmul(sum1,B),sum2)+sum3)

def theta_k(theta):
return N_max*theta/(1-theta)

def p_N_trial(N_start, N_tilda, theta, theta_k, alpha, p ,x):
sum1 = N_start + ((1-r)/2)*(N_tilda-N_start)/(1-theta)
sum2 = theta_k*(gama*alpha*(LA.norm(p,2)**2) - hinge_loss(x, N_tilda)\
+ hinge_loss(x, N_start))
return round(math.floor(sum1-sum2))

def first_N_trial(N_start, N_tilda, theta, theta_k, alpha, x):
sum1 = N_start+(1-r)/2*(N_tilda-N_start)/(1-theta)
sum2 = theta_k*(gama*alpha-hinge_loss(x, N_tilda)+hinge_loss(x, N_start))
return math.ceil(sum1-sum2)

def candidates(N_trial, N_tilda):
storage = []
storage.append(int(N_trial))
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storage.append(int(math.ceil((N_trial+N_tilda)/2)))
storage.append(N_tilda)
return storage

def backtracking_IRNS(B, x, N_trial, N_tilda, N_start, theta):
alpha_start = 0.5
degree = 0
g0 = hl_der(x, N_trial[0])
g1 = hl_der(x, N_trial[1])
g2 = hl_der(x, N_trial[2])

p0 = descentDirection(g0, e, i_max, B, x, N_trial[0])
p1 = descentDirection(g1, e, i_max, B, x, N_trial[1])
p2 = descentDirection(g2, e, i_max, B, x, N_trial[2])

while True:
alpha = alpha_start**degree

first = check1(x, alpha, p0, N_trial[0], N_tilda)
second = check2(N_trial[0], N_tilda, alpha, p0)
third = check3(x, alpha, p0, N_trial[0], theta, N_start, N_tilda)
if first and second and third:

print("Alpha: %s | Trial value: %s" %(alpha,0))
return alpha, p0, N_trial[0]
break

else:
first = check1(x, alpha, p1, N_trial[1], N_tilda)
second = check2(N_trial[1], N_tilda, alpha, p1)
third = check3(x, alpha, p1, N_trial[1], theta, N_start, N_tilda)
if first and second and third:

print("Alpha: %s | Trial value: %s" %(alpha,1))
return alpha, p1, N_trial[1]
break

else:
first = check1(x, alpha, p2, N_trial[2], N_tilda)
second = check2(N_trial[2], N_tilda, alpha, p2)
third = check3(x, alpha, p2, N_trial[2], theta, N_start, N_tilda)
if first and second and third:

print("Alpha: %s | Trial value: %s" %(alpha,2))
return alpha, p2, N_trial[2]
break

else:
if degree >= 10:

print("forced to stop")
return alpha, p2, N_trial[2]
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break
degree += 1
print(degree)

def backtracking_normal(B, x, N_trial, N_tilda, N_start, theta):
alpha_start = 0.5
degree = 0
g = hl_der(x, N_trial)
p = descentDirection(g,e,i_max,B,x,N_trial)
while True:

alpha = alpha_start**degree
first = check1(x, alpha, p, N_trial, N_tilda)
third = check3(x, alpha, p, N_trial, theta, N_start, N_tilda)
if first and third:

return alpha, p
break

else:
if degree >= 10:

return alpha, p
break

degree += 1

def algorithm(method):
start = time()

max_fev = 0
MAX_FEV = []
MAX_FEV.append(max_fev)
f_Ntrain = []
N_tilda = []
trial_N = []
ITER = []
ACC = []
F1 = []
T = []
X = []
P = []
B = []
G = []
C = []
A = []
N = []

X.append(x0)
if method == "IRNS":
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N0 = math.ceil(0.1*N_max)
N.append(N0)
g0 = hl_der(x0, N[0])
G.append(g0)
max_fev += N[0]
MAX_FEV.append(max_fev)
f_Ntrain.append(hinge_loss(X[0],N_max))

if method == "HEUR":
N0 = math.ceil(0.1*N_max)
N.append(N0)
g0 = hl_der(x0, N[0])
G.append(g0)
max_fev += N[0]
MAX_FEV.append(max_fev)
f_Ntrain.append(hinge_loss(X[0],N_max))

if method == "FSS":
N0 = train.shape[0]
N.append(N0)
g0 = hl_der(X[0], N[0])
G.append(g0)
max_fev += N[0]
MAX_FEV.append(max_fev)
f_Ntrain.append(hinge_loss(X[0],N_max))

N_tilda.append(0)
T.append(theta0)
B.append(B0)

k = 0
ITER.append(0)
#while max_fev <= 10**6:
while k <= 100:

if method == "IRNS":
N_tilda.append(new_sample(N[k]))
T.append(find_theta(X[k], N_tilda[k+1], N[k], T[k]))

if k == 0:
N_trial = first_N_trial(N[0], N_tilda[1], T[1],\
theta_k(T[1]), 1, X[0])

else:
N_trial = p_N_trial(N[k], N_tilda[k+1], T[k+1],\
theta_k(T[k+1]), A[-1], P[k-1] ,X[k])
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trial_N.append(N_trial)
three_canditates = candidates(N_trial, N_tilda[k+1])
C.append(three_canditates)
print(C[k])
alpha, p, N_new = backtracking_IRNS(B[k],X[k],three_canditates,\
N_tilda[k+1],N[k],T[k+1])
N.append(N_new)
max_fev += N[-1]
MAX_FEV.append(max_fev)

if method == "HEUR":
N_tilda.append(new_sample(N[k]))
T.append(find_theta(X[k], N_tilda[k+1], N[k], T[k]))
N_trial = round(min(1.1*N[k],N_max))
N.append(N_trial)
alpha, p = backtracking_normal(B[k],X[k],N_trial,\
N_tilda[k+1],N[k],T[k+1])
max_fev += N[-1]
MAX_FEV.append(max_fev)

if method == "FSS":
N_tilda.append(train.shape[0])
T.append(find_theta(X[k], N_tilda[k+1], N[k], T[k]))
N_trial = train.shape[0]
alpha, p = backtracking_normal(B[k], X[k], N_trial,\
N_tilda[k+1], N[k], T[k+1])
N.append(train.shape[0])
max_fev += N[-1]
MAX_FEV.append(max_fev)

P.append(p)
A.append(alpha)

#Step 4
sk = alpha*P[k]
X.append(X[k]+sk)
f_Ntrain.append(hinge_loss(X[-1],N_max))

F, Accuracy = scores(k, X[-1])
F1.append(F)
ACC.append(Accuracy)

#Step 5
G.append(hl_der(X[k+1], N[k+1]))
yk = G[k+1]-G[k]
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if np.matmul(sk,yk) >= m*LA.norm(yk,2)**2:
B.append(BFGS(B[k], G[k+1], G[k], X[k+1], X[k]))

else:
B.append(B[k])

#Step 6
k += 1
ITER.append(k)
print("-------------------------------------")

end = time()
b = end - start
print(' ')
print('Time elapsed: %s minutes and %s seconds.\
'%(np.floor(b / 60), np.round(b % 60)))
return F1, ACC, MAX_FEV, f_Ntrain, N, ITER

Code for the anomaly detection is the same as above except for these
four functions:

def hinge_loss(y, N):
x = y[:-1]
r = y[-1]
prediction = train.iloc[:N,:].dot(x)
maximums = np.maximum(0,r-prediction)
return (l*LA.norm(x,2)**2)/2-(l*r)+(np.sum(maximums)/N)

def hl_der(y, N):
ro=y[-1]
x=y[:-1]
y=train.iloc[:N,:].dot(x)
maximums=ro-y
all_der=train.iloc[:N,:]
greater_der=all_der[maximums>0]
zero_der=all_der[maximums==0]
beta=np.random.uniform(0,1,np.size(zero_der))
if len(zero_der)!=0:

new_x = l*x-greater_der.sum()/(N)-np.dot(zero_der,beta)/(N)
new_r = np.array([sum(beta)/(N)+len(greater_der)/(N)-l])
return np.concatenate(new_x,new_r)

elif len(zero_der)==0:
return np.concatenate((l*x-greater_der.sum()/N,\
np.array([len(greater_der)/(N)-l])))

def sup_gp(y, p, N):
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x = y[:-1]
r = y[-1]
px = p[:-1]
pr = p[-1]

y=train.iloc[:N,:].dot(x)
decision = r - y
all_der = train.iloc[:N,:]
greater_der = all_der[decision>0]
zero_der = all_der[decision==0]
h = zero_der.dot(px)
h1 = pr - h
check = zero_der[h1>0]
a = l*(px.dot(x))
b = (greater_der.dot(px)).sum()
c = l*pr
d = pr*len(greater_der)
e = pr-check.dot(px)
if len(e)==0:

return a-b/N-c+d/N
else:

return a-b/N-c+d/N+e/N

def argsup_gp(y, p, N):
x = y[:-1]
r = y[-1]
px = p[:-1]
pr = p[-1]

sum1 = 0
sum2 = 0
sum3 = np.zeros(x.shape[0])
sum4 = np.zeros(x.shape[0])
for i in range(N):

decision1 = r - np.matmul(x,train.iloc[i,:])
if decision1 > 0:

sum1 += 1
sum3 += train.iloc[i,:]

if decision1 == 0:
if pr-np.matmul(px,train.iloc[i,:]) > 0:

sum2 += 1
sum4 += train.iloc[i,:]

new_x = np.array(l*x-sum3/N-sum4/N)
new_r = -l+sum1/N+sum2/N
return np.concatenate((new_x, new_r), axis=None)
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