
IPAS: An Adaptive Sample Size Method for

Weighted Finite Sum Problems with Linear

Equality Constraints
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Abstract

Optimization problems with the objective function in the form of
weighted sum and linear equality constraints are considered. Given
that the number of local cost functions can be large as well as the
number of constraints, a stochastic optimization method is proposed.
The method belongs to the class of variable sample size first order
methods, where the sample size is adaptive and governed by the addi-
tional sampling technique earlier proposed in unconstrained optimiza-
tion framework. The resulting algorithm may be a mini-batch method,
increasing sample size method, or even deterministic in a sense that
it eventually reaches the full sample size, depending on the problem
and similarity of the local cost functions. Regarding the constraints,
the method uses controlled, but inexact projections on the feasible set,
yielding possibly infeasible iterates. Almost sure convergence is proved
under some standard assumptions for the stochastic framework, with-
out imposing the convexity. Numerical results on relevant problems
from CUTEst collection and real-world data sets for logistic regression
show the stability and the efficiency of the proposed method when
compared to the state-of-the-art methods.
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1 Introduction

We consider constrained optimization problem with the objective function
in the form of weighted finite sum and linear equality constraints, i.e.,

min
Ax=b

f(x) :=
N∑
i=1

wifi(x), (1.1)

where fi : Rn → R, i = 1, ..., N are continuously-differentiable functions,
w1, ..., wN represent the weights such that

N∑
i=1

wi = 1, wi ≥ 0, i = 1, .., N, (1.2)

b ∈ Rm and A ∈ Rm×n is assumed to be a full-rank matrix, rank(A) = m ≤
n.

The considered problems come from different fields, mainly including Big
Data (BD) problems commonly present in Machine Learning (ML). Notice
that the choice of wi = 1/N for all i = 1, ..., N yields the standard form of
the finite sum objective function f(x) = 1

N

∑N
i=1 fi(x). Introduction of pos-

sibly different weights is motivated by the so called local regression models
(see [19] for instance) in ML where the model parameters are recalculated
for any new data point depending on its position in the space of attributes.
In such approach, the objective function usually takes into account the dis-
tance between the new point and data points from the training data set.
The aforementioned distances represent the weights in problem (1.1). On
the other hand, the weights wi can be viewed as probabilities of choosing
the corresponding functions fi and, in that case, the objective function rep-
resents mathematical expectation. The motivation for emphasizing weights
and observing them separately from the functions fi comes from stochastic
framework. Namely, this allows stochastic algorithms to favor the functions
that are more important by giving them better chances to be chosen as
explained in the sequel of the paper. Moreover, some of the ML problems
also include linear constraints. One of the examples is a Ridge regression
which can be stated in the form of constrained optimization problem [19].
Another example would be Markowitz utility function minimization, i.e.,
the problems of finding optimal portfolio that minimizes the risk and max-
imizes the return, while the sum of unknowns must be equal to one. The
two mentioned examples include only modest number of constraints and the
projection on the feasible set is not a big challenge. However, data fitting
problems in general (e.g. least squares) may also include a large number of
(linear) constraints (see e.g. [36] for further references). In that case, pro-
jecting on the feasible set is too expensive and inexact projections may be a
better option. Therefore, the problem that we consider assembles different
types of problems and generalizes several important classes.
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A variety of line search and trust region methods have been proposed
to solve nonlinear constrained problems. Various algorithms have been
designed to solve deterministic equality-constrained optimization problems
(see [6,11] for further references), while recent research has focused on devel-
oping stochastic optimization algorithms. There has been a growing interest
in adapting line search and trust region methods in stochastic framework
for unconstrained optimization problems [1–5, 9, 10, 12, 14, 20, 22, 24, 26–28]
, but significantly fewer algorithms have been proposed to solve stochas-
tic equality-constrained optimization problems (see [6] for further references
and [7, 13,15,34,37]).

Projected gradient methods can be used to solve constrained optimiza-
tion problems, see [8]. Their upcoming generalization to stochastic frame-
work have been investigated in [23,25,33]. A novel class of projected gradient
methods for constrained minimization both in deterministic and stochastic
settings is proposed in [29]. Large scale problems require inexact projections
because of computational cost.

Numerous first order and second order algorithms have been developed
for solving unconstrained finite sum minimization [1–4, 14, 26, 28]. These
methods are based on nonmonotone line search or trust region technique.
The usefulness of line search nonmonotonicity in deterministic case [18, 30]
was also demonstrated in a stochastic case. A class of algorithms which uses
nonmonotone line search rule fitting a variable sample size scheme at each
iteration was proposed in [22].

In large-scale problems, the computation of the objective function and its
gradient and additionally its Hessian is expensive, so their approximations
are generally used in order to reduce the computational cost. Subsampling is
a natural way of computing these approximations, so the large dimension of
the problem and specific form of the objective function suggest an adaptive
subsampling. Adaptive sample size strategies for finite sum problems are
presented in [1–3, 14, 26, 28] and some other types of adaptive subsample
approach can also be found in [4, 9, 10,12,23].

Aditional sampling (two step sampling in each iteration) presented in
[14,26,28] plays an important role for controlling the sample size. It is used
as a control for accepting the step and increasing the sample size if necessary.
The additional sampling can be arbitrarily cheap, i.e., even the sample size 1
is sufficient, and hence it does not make the process more expensive. Other
additional line search and trust region sample size strategies can be found
in [20,27].

The method we propose here belongs to the family of projected gradient
methods, with the step size determined by a nonmonotone line search rule.
The specific form of the objective function, in particular the case of large
N and n motivates the adaptive subsample approach. Thus we work with
approximate objective function (and the corresponding gradient), in other
words with random linear models. The sample size that defines the model

3



in each iteration is computed according to the estimated progress towards
minimizer in each iteration. The approximate gradient direction is then pro-
jected inexactly to the feasible set, yielding a new iteration that might be
infeasible in a controlled way. Inexact projection in fact means that we will
solve the corresponding system of linear equations only approximately, using
any linear solver. The progress is measured by an additional approximation
of the objective function, which can be very rough, in fact even the sample of
size 1 will be suitable for this additional objective function approximation.
Besides the measure of progress the additional sampling done in each iter-
ation allows us to overcome theoretical difficulties that arise from the fact
that the direction and step size are not independent random variables and
hence one cannot apply the martingale theory for theoretical analysis. Such
difficulties can be overcame with the predetermined step size, for instance
1/k, which yields a.s. convergence in stochastic gradient descent framework
(see e.g. [1] for further references). But in that case the step sizes become
very small very fast and hence the method is very slow. Furthermore, the
method we propose here is adaptive in the sense that sample size increase is
problem dependent. Roughly speaking the similarity of functions fi governs
the process and the iterative procedure might end without reaching the full
sample, i.e., with very cheap iterations, or the exact objective function and
the gradient are used at the final stages of the iterative procedure.

Random linear models that we use can be more or less similar to the
original function f and thus the decrease of the model might not be a de-
crease for the true objective function. Therefore we use a nonmonomotone
line search procedure [18,30], that is more relaxed in accepting the step than
the classical Armijo rule. The same approach is exploited in several methods
with random models, [3, 5, 14, 23, 28]. Putting together the random linear
models, nonmonotone line search procedure, additional sampling and inex-
act projections we end up with an efficient and theoretically sound method
that is almost surely (a.s.) converging to a stationary point of (1.1).

To summarize, our main contributions may be listed as follows:

• The additional sampling concept for solving unconstrained finite sum
problems [14,26,28] is incorporated into the stochastic method to solve
constrained optimization problems with weighted sum objective func-
tions.

• The proposed method relaxes the common assumption of feasible iter-
ates in stochastic projected gradient framework (e.g. [23]) and allows
controlled, but inexact projections which can be of great significance
for problems with large number of constraints.

• Almost sure convergence is proved under rather standard assumptions
for stochastic optimization framework.
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• The efficiency of the proposed method is confirmed through a number
of tests performed on both academic and real-world data problems.

The paper is organized as follows. Section 2 contains basic definitions
and statements known from the literature. It also provides some basic con-
cepts and preliminary results needed for further analysis. The proposed
method - IPAS is stated and explained in Section 3, while the convergence
analysis is delegated to Section 4. Section 5 is devoted to numerical results,
while the main conclusions are derived in final section.

2 Preliminaries

Let us start with explaining the inexact projections we will use in the al-
gorithm. Under the assumption of fully ranked A, one can show that the
orthogonal projection πS(y) of a point y on the feasible set S := {x ∈
Rn | Ax = b} is given by

πS(y) = y −AT (AAT )−1(Ay − b). (2.1)

The above equality comes from the fact that πS(y) = argminAx=b
1
2∥y −

x∥2 and, since the orthogonal projection problem is convex, the solution is
determined by the KKT conditions

A πS(y) = b, ATλ = y − πS(y),

where λ represents the vector of Lagrange multipliers. Multiplying the sec-
ond equation with A from the left and using the first one, we obtain

AATλ = Ay − b. (2.2)

This together with πS(y) = y−ATλ yields (2.1). The important feature for
our analysis lies in the fact that the projection operator to the set S has the
following property.

Lemma 2.1. Let A ∈ Rm×n with rank(A) = m and wi ≥ 0, i = 1, . . . , N,∑N
i=1wi = 1. For any set of points yi ∈ Rn, i = 1, . . . , N there holds

πS(
N∑
i=1

wiy
i) =

N∑
i=1

wiπS(y
i). (2.3)

Proof. Using (2.1), there follows

πS(

N∑
i=1

wiy
i) =

N∑
i=1

wiy
i −AT (AAT )−1(A

N∑
i=1

wiy
i − b)

=

N∑
i=1

wiy
i −AT (AAT )−1(A

N∑
i=1

wiy
i −

N∑
i=1

wib)

=
N∑
i=1

wi(y
i −AT (AAT )−1(Ayi − b)) =

N∑
i=1

wiπS(y
i).
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□
To compute the exact projection on the set S one needs to solve the

system (2.2) exactly. In some applications, if the number of equalities is
modest one can use the closed form (2.1) for any given point y. However,
if the dimension of the problem is very large and/or the number of equality
constraints is large, finding the exact solution to (2.2) can be impractical.
Thus, we will assume that the linear system is solved only approximately.
The quality of inexact projection in each iteration will be controlled by the
norm of the residual vector defined as follows. Let us denote by π̃S(y) the
inexact projection of point y on feasible set S, more precisely,

π̃S(y) = y −AT λ̃(y), (2.4)

where λ̃(y) is an approximate solution of (2.2). The residual is denoted by

r(y) := AAT λ̃(y)−Ay + b, (2.5)

while the feasibility measure of point y is defined as

e(y) = ∥Ay − b∥. (2.6)

We will state the condition for the residual vector in each iteration a bit
ahead. The following simple lemma will be used later on.

Lemma 2.2. Let z ∈ Rn be an arbitrary point and λ̃(z) be an approximate
solution of (2.2) such that ∥r(z)∥ ≤ M with M > 0. Then e(π̃S(z)) ≤ M.

Proof. The condition

∥r(z)∥ = ∥AAT λ̃(z)−Az + b∥ ≤ M

implies

e(π̃S(z)) = ∥Aπ̃S(z)− b∥ = ∥A(z −AT λ̃(z))− b∥
= ∥Az − b−AAT ((AAT )−1(Az − b+ r(z)))∥
= ∥Az − b−Az + b− r(z)∥ = ∥r(z)∥ ≤ M,

which completes the proof. □
One can show that the projected gradient direction of the form

d(x) = πS(x−∇f(x))− x (2.7)

is a descent direction for function f at point x ∈ S unless x is a stationary
point for problem (1.1). More precisely, the following result is known.

Theorem 2.3. [8] Assume that f ∈ C1(S) and x ∈ S. Then the projected
gradient direction (2.7) satisfies:
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a) d(x)T∇f(x) ≤ −∥d(x)∥2.

b) d(x) = 0 if and only if x is a stationary point for problem (1.1).

The method we propose will be based on approximate objective function
and the gradient. Let us denote by fNk

the approximation of function f used
in iteration k, i.e.,

fNk
(x) :=

1

Nk

∑
i∈Nk

fi(x), (2.8)

where Nk := |Nk|, Nk = {ik1, ..., ikNk
}, and each ikj ∈ Nk takes the value

s ∈ N := {1, ..., N} with probability ws, i.e.,

P (ikj = s) = ws, s = 1, ..., N, j ∈ Nk, k ∈ N. (2.9)

This way we have an unbiased estimate of f , i.e.,

E(fNk
(x)|x) = E(

1

Nk

Nk∑
j=1

fikj
(x)|x) = 1

Nk

Nk∑
j=1

E(fikj
(x)|x) = 1

Nk

Nk∑
j=1

f(x) = f(x).

As already stated, in the proposed algorithm we use inexact projections
of the approximate gradient ∇fNk

which can yield nondescent directions pk
and infeasible points xk. Moreover, we deal with approximate functions and
thus imposing monotone line search is not beneficial in general. Thus, we
use nonmonotone Armijo-type line search, [30] to determine the step size tk

fNk
(xk + tkpk) ≤ fNk

(xk) + c1tk(∇fNk
(xk))

T pk + εk, (2.10)

with some εk > 0 which satisfies
∑∞

k=0 εk < ∞.
Clearly, the direction pk and the step size tk obtained in (2.10) both de-

pend on Nk. Therefore we can not rely on the martingale theory commonly
used in stochastic gradient methods such as SGD [35] where the predeter-
mined step size sequence is used. To overcome this difficulty and avoid
predefined step sizes we extend the idea of additional sampling. This simple
and computationally cheap remedy is successfully used in [14, 28]. Other
possibilities are given in [20, 27]. The method proposed in [26] also uses
additional sampling but in trust-region framework.

Similarly as for fNk
, we form an additional sampling approximation fDk

by

fDk
(x) :=

1

Dk

∑
i∈Dk

fi(x), (2.11)

where Dk := |Dk|, Dk = {lk1 , ..., lkDk
}, and each lkj ∈ Dk takes the value

s ∈ N := {1, ..., N} with probability ws, i.e.,

P (lkj = s) = ws, s = 1, ..., N, j ∈ Dk, k ∈ N. (2.12)
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The key point for the efficiency of this approach lies in the fact that the
cardinality of Dk is arbitrary, with only requirement being Dk ≤ N − 1.
Thus one can even takeDk = 1 in each iteration. The numerical experiments
presented in Section 4 are performed with Dk = 1.

The following technical lemmas will be used further on.

Lemma 2.4. Let ek+1 ≤ θek + ηk for all k ≥ 0 with ek ≥ 0, k = 1, 2, ..., θ ∈
[0, 1) and {ηk} satisfying limk→∞ ηk = 0. Then

lim
k→∞

ek = 0.

Proof. Applying the induction argument we can show that

ek ≤ θke0 + sk,

where sk =
∑k

j=1 θ
j−1ηk−j . Under the stated conditions there holds limk→∞ sk =

0 (see [38, Lemma 3.1, (a)]) and we conclude that limk→∞ ek = 0.
□

3 The Method

The method we consider will generate an infinite sequence of iterations xk.
As already stated in each iteration we will use a subsample Nk and the
corresponding function fNk

(xk) and the gradient ∇fNk
(xk). The inexact

projection π̃S will be used to generate the search direction with the approx-
imation error controlled by a nonincreasing sequence of positive numbers ηk
such that

∞∑
k=0

η2k ≤ η̄ < ∞. (3.1)

Thus, for yk = xk −∇fNk
(xk) we will require that the projection residuals

satisfy
∥r(yk)∥ ≤ ηk. (3.2)

Clearly, the inexactness of the projection will decrease as k increases and
eventually we will approach the feasible set. The search direction pk will be
computed as usual, as the difference of inexact projection π̃S(yk) and the
current approximation xk. After the computation of pk we distinguish two
cases. If Nk < N we proceed to determine the step size by the nonmonotone
rule (2.10) and define x̄k = xk + tkpk. The sequence of parameters εk
is taken as εk = η2k in Step 3 of the algorithm, (3.5). Theoretically, we
can take another sequence in the line search but this way the inexactness
of the projection is taken into account in computation of the step size tk
and we allow more freedom for lower accuracy projection and increase the
requirements as k increases. Adding η2k in the decrease condition allow us
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to compute a suitable step size even if the direction is nondecreasing and
hence the line search rule (3.5) is always well defined, even without the lower
bound tmin posed in the mini-batch case of Step S3.

In the case Nk = N, i.e., if the full precision in the objective function is
needed, the projection could still be inaccurate and hence we might search
along infeasible direction. In that case we check if the search direction is
decreasing. If yes, we proceed to the line search. Else, if the direction is
not sufficiently decreasing, we discard the search direction and take a new
projection of the current iteration xk to get xk+1 and terminate the iteration.
In this case we will call the iteration unsuccessful.

For all iterations where Nk < N in Step 4 of the algorithm we per-
form additional sampling, taking a new sample Dk, independently of Nk.
As already mentioned, this step is meant to be a computationally cheap
measure of progress as Dk can be arbitrary small and we will work with
Dk = 1 in our numerical tests. For this new sample Dk we compute the
direction uk = xk − ∇fDk

(xk) and then project it approximately to get
sk = π̃S(uk) − xk = −∇fDk

(xk) − AT λ̃k(uk). Here we keep the same ac-
curacy of the projection as in Step 2 for pk. Notice that for Nk = N this
additional sampling is not needed as the line search in Step 3 is performed
with the true objective function.

Finally, at Step 5 we update the iteration. So, if we have enough decrease
in the objective function fDk

, according to (3.7), we update the iteration and
keep the same sample size for the next iteration. Roughly speaking we are
saying here that fNk

is a good approximation of the objective function as
the decrease condition holds for another (independently sampled) function
fDk

. Notice that the condition (3.7) is looser than the step size rule (3.5) as
η2k is multiplied with some constant C which can be large.
Algorithm 1: IPAS (Inexact Projection with Additional Sampling)

S0 Initialization. Input: x0 ∈ Rn, N0 ∈ N, β, c, c1, tmin ∈ (0, 1), C > 0,
{ηk} satisfying (3.1), k := 0.

S1 Subsampling. If Nk < N , choose Nk via (2.9). Else, set fNk
= f .

S2 Search direction. Compute

pk = π̃S(yk)− xk = −∇fNk
(xk)−AT λ̃k(yk) (3.3)

with yk = xk −∇fNk
(xk), and λ̃k(yk) satisfying (3.2).

If Nk < N go to step S3.
If Nk = N , and

(∇f(xk))
T pk ≤ −c∥pk∥2 (3.4)

go to step S3.
Else set xk+1 = π̃S(xk) with λ̃k(xk) satisfying ∥r(xk)∥ ≤ ηk, set k =
k + 1 and go to step S1.
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S3 Step size. If Nk = N , find the smallest j ∈ N0 such that tk = βj

satisfies

fNk
(xk + tkpk) ≤ fNk

(xk) + c1tk(∇fNk
(xk))

T pk + η2k. (3.5)

Else, if Nk < N , starting with tk = 1, while tk ≥ tmin and

fNk
(xk + tkpk) > fNk

(xk) + c1tk(∇fNk
(xk))

T pk + η2k,

reduce tk by factor β.

Set x̄k = xk + tkpk.

S4 Additional sampling.
If Nk = N , set xk+1 = x̄k, k = k + 1 and go to step S1.
Else choose Dk via (2.12) and compute

sk = π̃S(uk)− xk = −∇fDk
(xk)−AT λ̃k(uk) (3.6)

with uk = xk −∇fDk
(xk) and λ̃k(uk) satisfying ∥r(uk)∥ ≤ ηk.

S5 The update. If

fDk
(x̄k) ≤ fDk

(xk)− c∥sk∥2 + Cη2k, (3.7)

set xk+1 = x̄k and Nk+1 = Nk.
Else set xk+1 = xk, choose Nk+1 ∈ {Nk + 1, ..., N}.
Set k = k + 1 and go to step S1.

If the condition (3.7) is not satisfied we take xk+1 = xk and increase the
sample size Nk+1 for the new iteration. Essentially we reason here that the
trial iteration should not be accepted because we need more precision and
hence we increase the sample size.
Remark. An important point here is to notice that we do not need to
specify how to increase the sample size if needed, i.e., we are free to choose
any Nk+1 > Nk. Naturally, one can choose to increase the sample size very
slowly to keep the iterations computationally cheap, or to increase the sam-
ple size faster to achieve a better approximation of the objective function
and the gradient, hoping to end up the process in fewer iterations. Clearly,
the sample size scheduling is problem dependent.

4 Convergence analysis

Assumption A 1. Each function fi, i = 1, ..., N is continuously differ-
entiable with Lispchitz continuous gradient and bounded from below by a
constant flow.
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This assumption implies that f(x) ≥ flow for all x ∈ Rn and it also holds
for any approximate function fNk

and fDk
. Furthermore all approximate

gradients are also Lipschitz continuous and without loss of generality we
may assume that L > 0 is a common Lispchitz constant.

The algorithm we consider generates a set of random iteration {xk}.
Nevertheless some properties hold for all iterations, independently of the
sample we use to generate them. First of all, we can show using the standard
arguments and Assumption A1 that the step size tk generated in Step 3, (3.5)
is bounded from below.

Lemma 4.1. Assume that Assumption A1 holds and that step size tk is
computed in Step 3 of IPAS algorithm. Then tk ≥ tmin provided that tmin <
min{1, 2βc(1−c1)

L }.

Proof. If the full sample is reached, the line search is performed only if
(3.4) holds and it can be proved (see [28] for example) that tk ≥ 2βc(1−c1)

L .
On the other hand, if Nk < N , the line search yields tk ≥ tmin by the
construction of Step 3 of IPAS algorithm. □

Furthermore, we can prove that the feasibility of iterations x̄k is eventu-
ally increasing although the projections are inexact. The following statement
holds.

Lemma 4.2. Assume that Assumption A1 holds. Then

e(x̄k) ≤ (1− tmin)e(xk) + ηk. (4.1)

Proof. Given that

x̄k = xk + tkpk = xk + tk(π̃S(yk)− xk)

= (1− tk)xk + tkπ̃S(yk),

and

e(x̄k) = ∥A((1− tk)xk + tkπ̃S(yk))− b∥ (4.2)

≤ (1− tk)∥Axk − b∥+ tk∥Aπ̃S(yk)− b∥ (4.3)

= (1− tk)e(xk) + tke(π̃S(yk)). (4.4)

Since tk ≥ tmin and the residual of π̃S(yk) satisfies (3.2), by Lemma 2.2 we
have e(π̃S(yk)) ≤ ηk. Therefore, the above inequalities imply

e(x̄k) ≤ (1− tmin)e(xk) + ηk.

□
Let us denote by D+

k the subset of all possible outcomes of Dk at iteration
k for which the condition (3.7) is satisfied, i.e.,

D+
k = {Dk ⊂ N | fDk

(x̄k) ≤ fDk
(xk)− c∥sk∥2 + Cη2k}. (4.5)
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We denote the complementary subset of outcomes at iteration k by

D−
k = {Dk ⊂ N | fDk

(x̄k) > fDk
(xk)− c∥sk∥2 + Cη2k}. (4.6)

Although the problem we consider is constrained and the algorithm is quite
different from the one in [26, 28] with sampling that is not uniform, the
following lemma, similar to the [28, Lemma 1] holds. Essentially, it says
that either Nk = N for k large enough or the condition (3.7) is satisfied
infinitely many times. We state the proof for completeness.

Lemma 4.3. Suppose that Assumption A1 holds. If Nk < N for all k ∈ N,
then a.s. there exists k1 ∈ N such that D−

k = ∅ for all k ≥ k1.

Proof. Assume that Nk < N for all k ∈ N. Since the sample size sequence
{Nk} in IPAS Algorithm is non-decreasing there exists some N < N such
that Nk = N for all k large enough. Now, let us assume that there is no
k1 ∈ N such that D−

k = ∅ for all k ≥ k1. Then there exists an infinite
sub-sequence of iterations K ⊆ N such that D−

k ̸= ∅ for all k ∈ K. Since Dk

is chosen with finitely many possible outcomes with the same distribution
for each k, there exists q > 0 such that P(Dk ∈ D−

k ) ≥ q for all k ∈ K. In
fact, given (2.12) and the fact that Dk ≤ N − 1 for each k, we can conclude
that q = (mins∈{1,2,...,N}{ws})N−1. So, we have

P(Dk ∈ D+
k , k ∈ K) ≤ Πk∈K(1− q) = 0.

Therefore we will almost surely encounter an iteration at which the sample
size will be increased due to violation of the condition (3.7). This is a
contradiction with the condition Nk = N for all k large enough and we
conclude that the statement holds.

As already stated, depending on the problem, IPAS algorithm yields
two possibilities - either we generate an infinite sequence {xk} such that
Nk < N for all k, or we end up with Nk = N for k large enough. So,
the convergence analysis will cover these two cases separately. Let us first
consider the mini-batch case, i.e. Nk < N for all k ∈ N.

The following lemma quantifies the progress in term of the (true) objec-
tive function and exact projections in the mini-batch case.

Lemma 4.4. Suppose that Assumption A1 holds. If Nk < N for all k ∈ N,
then a.s.

f(xk+1) ≤ f(xk)−
c

2
∥d(xk)∥2 + CLη

2
k

holds for all k ≥ k1 and some constant CL, where k1 is as in Lemma 4.3
and d(xk) is given by (2.7).
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Proof. First, we prove that

f(x̄k) ≤ f(xk)−
c

2
∥d(xk)∥2 + CLη

2
k

holds a.s. for all k ≥ k1, where k1 is as in Lemma 4.3 and some constant
CL.

Notice that Lemma 4.3 implies that a.s. (3.7) holds for all possible
realizations of Dk and for all k ≥ k1. Thus, we conclude that a.s. for every
i = 1, 2, ..., N and every k ≥ k1 we have

fi(x̄k) ≤ fi(xk)− c∥zik∥2 + Cη2k, (4.7)

where zik denotes the direction obtained for Dk = {i} in Step 4 i.e.,

zik = uik −AT λ̃k(u
i
k)− xk (4.8)

where uik = xk −∇fi(xk) and λ̃k(u
i
k) satisfies

∥AAT λ̃k(u
i
k)−Auik + b∥ ≤ ηk. (4.9)

Indeed, if there exists i ∈ N that violates (4.8), then there would exists at
least one possible realization of Dk (namely, Dk = {i, i, ..., i}) that violates
(4.7) and thus we would have D−

k ̸= ∅. Let us denote the residual by rik, i.e.,
we have

rik = AAT λ̃k(u
i
k)−Auik + b, ∥rik∥ ≤ ηk, (4.10)

and
λ̃k(u

i
k) = (AAT )−1rik + (AAT )−1(Auik − b). (4.11)

Moreover,

zik = uik −AT (AAT )−1rik −AT (AAT )−1(Auik − b)− xk. (4.12)

Next, multiplying both sides of (4.7) with wi satisfying (1.2) and summing
over all i ∈ N we obtain that a.s. the following holds for all k ≥ k1

f(x̄k) ≤ f(xk)− c
N∑
i=1

wi∥zik∥2 + Cη2k. (4.13)

Further, writing xk =
∑N

i=1wixk and using (2.3) in Lemma 2.1 with yi =
xk − ∇fi(xk) we obtain that the exact projection direction related to the

13



original objective function can be represented as follows

d(xk) = πS(xk −∇f(xk))− xk (4.14)

= πS(
N∑
i=1

wi(xk −∇fi(xk)))−
N∑
i=1

wixk

=

N∑
i=1

wi(πS(xk −∇fi(xk))− xk)

=
N∑
i=1

wi(z
i
k + πS(xk −∇fi(xk))− xk − zik)

=
N∑
i=1

wi(z
i
k + πS(u

i
k)− xk − zik).

Further, using (1.2) and the convexity of ∥ · ∥2, we obtain

∥d(xk)∥2 ≤
N∑
i=1

wi∥zik + πS(u
i
k)− xk − zik∥2 (4.15)

≤ 2
N∑
i=1

wi∥zik∥2 + 2
N∑
i=1

wi∥πS(uik)− xk − zik∥2.

Now, let us estimate ∥πS(uik)− xk − zik∥2. According to (2.1) and (4.12) we
obtain

πS(u
i
k)− xk − zik = uik −AT (AAT )−1(Auik − b)− xk (4.16)

− (uik −AT (AAT )−1rik −AT (AAT )−1(Auik − b)− xk)

= AT (AAT )−1rik.

Thus, for CA = ∥AT (AAT )−1∥ we get

∥πS(uik)− xk − zik∥2 ≤ ∥AT (AAT )−1∥2∥rik∥2 ≤ C2
Aη

2
k. (4.17)

Therefore, from (4.15) we obtain

−
N∑
i=1

wi∥zik∥2 ≤ −1

2
∥d(xk)∥2 +

N∑
i=1

wi∥πS(uik)− xk − zik∥2 (4.18)

≤ −1

2
∥d(xk)∥2 + C2

Aη
2
k.

Now, (4.13) implies

f(x̄k) ≤ f(xk)−
c

2
∥d(xk)∥2 + cC2

Aη
2
k + Cη2k =: f(xk)−

c

2
∥d(xk)∥2 + CLη

2
k.

(4.19)
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Next, we show that in the mini-batch scenario we accept the trial point x̄k
for all k ≥ k1. Since we know that a.s. D−

k = ∅ for all k ≥ k1, i.e., (3.7)
is satisfied, therefore, a.s., for all k ≥ k1 the trial point is accepted, i.e.,
xk+1 = x̄k, so the statement holds due to (4.19).

Now, let us denote by Ω all possible sample paths of the IPAS algorithm.
Further, let us denote by A ⊆ Ω all possible sample paths that yield mini-
batch scenario considered in the previous proposition and by Ā ⊆ Ω all
possible sample paths that reach the full sample size eventually, i.e., the
complement of A. We use the following notation for the corresponding
conditional expectations

EA(·) := E(·|A), EĀ(·) := E(·|Ā).

In order to prove the convergence results, we impose the following as-
sumption similar to one in [28].

Assumption A 2. There exists a constant CA such that EA(|f(xk1)|) ≤
CA, where k1 is as in Lemma 4.3.

The following result shows that d(xk) defined in (2.7) converges to zero
a.s. in the mini-batch scenario.

Corollary 4.5. Suppose that the assumptions of Lemma 4.4 hold together
with Assumption A2. Then

P ( lim
k→∞

d(xk) = 0|A) = 1

and every accumulation point of the sequence {xk} is a stationary point of
problem (1.1) a. s.

Proof. Lemma 4.4 implies that a.s.

f(xk+1) ≤ f(xk)−
c

2
∥d(xk)∥2 + CLη

2
k

holds for all k ≥ k1. Applying the conditional expectation EA, by the
induction argument we obtain that for each j there holds

EA(f(xk1+j)) ≤ EA(f(xk1))−
c

2

j−1∑
i=0

EA(∥d(xk1+i)∥2) + CL

j−1∑
i=0

η2k1+i.

Now, by using Assumptions A1, A2, and (3.1), letting j tend to infinity we
get

flow ≤ CA − c

2

∞∑
i=0

EA(∥d(xk1+i)∥2) + CLη̄
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and we conclude that

∞∑
i=0

EA(∥d(xk1+i)∥2) < ∞.

Now, by the extended version of Markov’s inequality we have that for any
ϵ > 0

P(∥d(xk1+i)∥ ≥ ϵ|A) ≤ EA(∥d(xk1+i)∥2)
ϵ2

which implies
∞∑
i=0

P(∥d(xk1+i)∥ ≥ ϵ|A) < ∞

and Borel-Cantelli Lemma [21] implies that P (limi→∞ ∥d(xk1+i)∥ = 0|A) =
1, i.e.,

P ( lim
i→∞

d(xk1+i) = 0|A) = 1. (4.20)

Now, recall that ek is the measure of infeasibility of xk defined in (2.6),
i.e., ek := ∥Axk − b∥. Lemma 4.2 implies that

ek+1 ≤ (1− tmin)ek + ηk

for all k ≥ k1. Therefore, due to Lemma 2.4 we obtain limk→∞ ek = 0. Let us
denote by x̃ = limk∈K xk an arbitrary accumulation point of IPAS algorithm
in the mini-batch scenario. Then, we have that ∥Ax̃ − b∥ = limk∈K ek = 0
and we conclude that x̃ is feasible. Moreover, due to (4.20) and continuity
of d, a.s.

d(x̃) = lim
k∈K

d(xk) = 0

and we conclude that x̃ is a.s. a stationary point of (1.1) according to
Theorem 2.3. □

Now, we analyze the case where the full sample is reached for some
k2 ∈ N0 and therefore Nk = N for k ≥ k2. We will distinguish between
two types of iterations for k ≥ k2, successful and unsuccessful, represented
by sets of indices Ksu and Kun. An iteration xk, k ≥ k2 is unsuccessful if
the condition (3.4) does not hold, i.e., if the direction pk is not sufficiently
decreasing and hence xk+1 = π̃S(xk) and r(xk) ≤ ηk. Otherwise, xk is
successful and the new iteration is determined by the line search rule (3.5)
and xk+1 = x̄k.

The following Lemma states that the sequence {xk}k≥k2 converges to a
feasible point and hence each accumulation point is feasible. We will rely
on Lemmas 2.2 and 2.4 from Section 2.
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Lemma 4.6. Assume that Assumption A1 holds and let {xk} be an iterative
sequence generated by IPAS algorithm such that Nk = N for k ≥ k2. Then
limk→∞ e(xk) = 0 and each accumulation point is feasible.

Proof. We will distinguish three different cases: 1) all iterations are
successful for k large enough; 2) all iterations are unsuccessful for k large
enough; and 3) we have an infinite sequence of successful and an infinite
sequence of unsuccessful iterations.

Case 1. Assume, without loss of generality, that for all k ≥ k2 we have
k ∈ Ksu. In that case we have xk+1 = x̄k and by Lemma 4.2

e(xk+1) ≤ (1− tmin)e(xk) + ηk,

so the statement holds by Lemma 2.4.
Case 2. Without loss of generality assume that k ∈ Kun for all k ≥ k2.

Then we have
xk+1 = π̃S(xk)

for all k and by Lemma 2.2

e(xk+1) ≤ ηk.

Given that limk→∞ ηk = 0 we obtain limk→∞ e(xk) = 0.
Case 3. Assume now that both Ksu and Kun are infinite. Let k−1 ≥ k2

and assume that k−1 ∈ Kun, k, . . . , k+ j−1 ∈ Ksu and k+ j ∈ Kun. Then
we have

e(xk) = e(π̃S(xk−1)) ≤ ηk−1

and for each i = 1, ..., j, by Lemma 4.2 there holds

e(xk+i) ≤ θe(xk+i−1) + ηk+i−1,

with θ := 1− tmin ∈ (0, 1) and thus by the induction argument we get

e(xk+i) ≤ θiηk−1 + ...+ θηk+i−2 + ηk+i−1.

Since {ηk} is nonincreasing, for each i = 1, ..., j there holds

e(xk+i) ≤ ηk−1

i∑
t=0

θt ≤ ηk−1

∞∑
t=0

θt = ηk−1
1

1− θ
= ηk−1

1

tmin
.

Thus, we can conclude that for each k ≥ k2 there holds

e(xk) ≤
1

tmin
ηkun ,

where kun represents the index of last unsuccessful iteration before the iter-
ation k. Letting k → ∞ we conclude that limk→∞ e(xk) = 0 in this case as
well.

Therefore, in all cases we have e(xk) → 0. If x̃ is an arbitrary accumula-
tion point of {xk} then clearly e(x̃) = 0 and hence x̃ is feasible. □
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Lemma 4.7. Assume that Assumption A1 holds and let {xk} be an iterative
sequence generated by IPAS algorithm such that Nk = N for k ≥ k2 and
assume that {xk}k≥k2 is bounded. If there exists k3 ≥ k2 such that k ∈ Ksu

for all k ≥ k3 then each accumulation point of {xk} is a stationary point of
(1.1).

Proof. For each k ≥ k3 we have that xk+1 is successful and hence we
have

f(xk+1) ≤ f(xk) + c1tk(∇f(xk))
T pk + η2k

≤ f(xk)− c1ctk∥pk∥2 + η2k

≤ f(xk)− c1ctmin∥pk∥2 + η2k.

Given that f is continuous and {xk}k≥k2 is assumed to be bounded, there
must exists a constant fup such that f(xk3) ≤ fup. Moreover, f(xk) ≥ flow
for each k and using the standard arguments we get

∑∞
k=k3

∥pk∥2 < ∞ and
limk→∞ ∥pk∥ = 0. Let us denote, as before, the exact projected gradient
direction at xk by d(xk). Then we have

∥d(xk)− pk∥ ≤ ∥AT (AAT )−1∥∥r(xk)∥ ≤ CAηk

and

lim
k→∞

∥d(xk)∥ ≤ lim
k→∞

∥pk∥+ lim
k→∞

∥d(xk)− pk∥ ≤ lim
k→∞

∥pk∥+ CAηk = 0.

So, for arbitrary accumulation point x̃ = limk∈K xk we have ∥d(x̃)∥ =
limk∈K ∥d(xk)∥ = 0. By Lemma 4.6 x̃ is feasible so the statement follows by
Lemma 2.3. □

The following inequality will be used for further analysis.

Lemma 4.8. For each k ≥ k2 there holds

∇T f(xk)pk ≤ −∥pk∥2 − pTk (πS(yk)− π̃S(yk))

+ (pk +∇f(xk) + πS(yk)− π̃S(yk))
T (πS(xk)− xk + π̃S(yk)− πS(yk)).

Proof. For any y ∈ Rn we have that πS(y) is a solution of convex problem

min
Az=b

1

2
∥z − y∥2.

Denoting h(z) = 1
2∥z − y∥2 we can state the KKT conditions as follows. A

point z∗ is a solution of minAz=b h(z) iff (∇h(z∗))T (z−z∗) ≥ 0 for all z such
that Az = b. The gradient of h is given by ∇h(z) = z − y and hence the
optimality condition yields

(πS(y)− y)T (z − πS(y)) ≥ 0, for all feasible z. (4.21)
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Let us now consider k ≥ k2 and take y = yk = xk −∇f(xk) and z = πS(xk)
in (4.21). We get

(πS(yk)− yk ± π̃S(yk))
T (πS(xk)± xk − πS(yk)± π̃S(yk)) ≥ 0.

Recall that pk = π̃S(yk)− xk. The previous inequality actually states

(pk+∇f(xk)+πS(yk)− π̃S(yk))
T (−pk+ π̃S(yk)−πS(yk)+πS(xk)−xk) ≥ 0

and the statement follows. □

Lemma 4.9. Assume that Assumption A1 holds and let {xk} be an iterative
sequence generated by IPAS algorithm such that Nk = N for k ≥ k2 and
assume that {xk}k≥k2 is bounded. If the sequence of unsuccessful iterations
{xk}k∈Kun is infinite then there exists an accumulation point x̃ of {xk} such
that x̃ is stationary point for the problem (1.1).

Proof. First of all let us notice that boundedness of {xk} together with
A1 implies that {pk} is bounded as well. Namely, for yk = xk −∇f(xk) we
have

pk = π̃S(yk)− xk = yk −AT λ̃(yk)− xk

= −∇f(xk)−AT ((AAT )−1(Ayk − b) + (AAT )−1r(yk)).

Now, for CA = ∥AT (AAT )−1∥, having ∥xk∥ ≤ Cx, ∥∇f(xk)∥ ≤ Cg, and
therefore ∥yk∥ ≤ ∥xk∥+ ∥∇f(xk)∥ ≤ Cx + Cg, with ∥r(yk)∥ ≤ ηk by condi-
tions of IPAS algorithm we get

∥pk∥ ≤ Cg + CA(∥A∥(Cx + Cg) + ∥b∥+ ηk) := Cp. (4.22)

Let us assume that there exists ε > 0 such that ∥pk∥ ≥ ε > 0 for all
k ≥ k2. We will consider unsuccessful iterations, i.e. k ≥ k2, k ∈ Kun. For
these iterations we have (∇f(xk))

Tdk > −c∥pk∥2. Lemma 4.8 implies

0 < −(1− c)∥pk∥2 − pTk (πS(yk)− π̃S(yk))

+ (pk +∇f(xk) + πS(yk)− π̃S(yk))
T (π̃S(yk)− πS(yk) + πS(xk)− xk)

≤ −(1− c)ε2 + ∥pk∥∥πS(yk)− π̃S(yk)∥
+ (∥pk∥+ ∥∇f(xk)∥+ ∥πS(yk)− π̃S(yk))∥)

·(∥π̃S(yk)− πS(yk)∥+ ∥πS(xk)− xk∥). (4.23)

As
πS(yk)− π̃S(yk) = AT (AAT )−1r(yk),

we have
∥π̃S(yk)− πS(yk)∥ ≤ CAηk. (4.24)
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Furthermore,

∥πS(xk)−xk∥ = ∥xk−ATλ(xk)−xk∥ = ∥AT (AAT )−1(Axk−b)∥ ≤ CAe(xk),
(4.25)

and e(xk) → 0 by Lemma 4.6. Putting together (4.22), (4.23)-(4.25) we get

0 < −(1− c)ε2 + CpCAηk + (Cp + Cg + CAηk)(CAηk + CAe(xk)).

Taking the limit for k ∈ Kun, k → ∞ in the above inequality we get

0 ≤ −(1− c)ε2

which can not be true. Thus there is no ε > 0 such that ∥pk∥ ≥ ε > 0 for
all k ≥ k2. Therefore there exists an infinite K ⊂ N such that limk∈K pk = 0
and therefore limk∈K d(xk) = 0, as in the proof of Lemma 4.7. As {xk}k≥k2

is bounded then there exists K̃ ⊂ K such that limk∈K̃ xk = x̃ and thus
d(x̃) = 0. By Lemma 4.6 x̃ ∈ S and hence the statement follows by Lemma
2.3.

Theorem 4.10. Let Assumption A1 holds and assume that {xk} generated
by IPAS algorithm is bounded. Then a.s. there exists an accumulation point
of {xk} which is a stationary point of (1.1).

Proof. If Nk < N for all k we have that the sequence {xk} is bounded
so Assumption A2 holds and there exists at least one accumulation point of
{xk}. That point is stationary by Corollary 4.5. In the case of Nk = N for
k large enough the statement follows by Lemma 4.7 and Lemma 4.9. □

5 Numerical results

In this section we will demonstrate the efficiency and effectiveness of the
IPAS algorithm through a series of experiments. The evaluation is con-
ducted in two parts, each focusing on different problems. In the first part,
we apply IPAS to some of equality constrained problems from CUTEst col-
lection [16], a standard set of optimization problems. This part of the eval-
uation explores how different parameters affect the performance of IPAS
algorithm. By varying parameters, we gain some insight into the algorithms
adaptability and robustness under diverse settings. The results provide our
view on parameter tuning and how the balance between the inexactness of
projections and subsampling size influences the algorithm’s behavior. In the
second part, we apply the IPAS algorithm to solve an equality constrained
logistic regression problem. Logistic regression is a widely used ML model
for binary classification, and by adding equality constraints the complexity
of the problem rises. To evaluate IPAS, we compare its performance with
two other notable methods, namely the Stochastic Sequential Quadratic Pro-
gramming method (Stochastic SQP) [6], and Fully Stochastic Trust-region
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Sequential Quadratic Programming method (TrStochasticSQP) [15]. Both
of these algorithms are designed to deal with equality constrained optimiza-
tion problems, making them suitable benchmarks for comparison. For all
the tests, we use the additional sample size equal to 1, i.e., |Dk| = 1.

5.1 CUTEst

We implemented a few optimization problems from the CUTEst [16] collec-
tion that include equality constraints to evaluate the performance of IPAS
algorithm. To adapt these CUTEst problems to IPAS, we transformed them
into finite sum problems. The transformation involved introducing the Gaus-
sian noise to simulate the stochastic nature commonly encountered in large-
scale optimization task. This is done by multiplying the noise with the
quadratic term in order to preserve the randomness in the derivatives of the
objective function, thereby mimicking the behavior of stochastic problem
while maintaining the structure of the problem. The transformed problems
have the following form

min
Ax=b

fN (x) := f(x) +
N∑
i=1

ε2i ∥x∥2, (5.1)

where f(x) is the objective of the CUTEst problem, and εi is drawn from the
N (0, σ2) distribution. The noise is squared to preserve lower boundedness
of the function. The gradient is then calculated in the following way

∇fN (x) = ∇f(x) +

N∑
i=1

2ε2ix. (5.2)

We control the inexactness of projections by setting the linear system solver
tolerance to ηk = 1

ks , where k is the number of iteration, and s > 0.5 for
the convergence of the sum (3.1). In Step 5 of the algorithm, in the case
the trial point is not accepted, we choose Nk+1 ∈ {Nk + 1, ..., N}, i.e., we
increase the subsample size by dNk ∈ {1, .., N − Nk}. Finding the balance
between the inexactness of projections and the subsampling updates turned
out to be one of the key issues influencing the behavior of the algorithm.

To evaluate the performance, we observe the norm of the exact projected
direction dk (2.7). The true projected direction is calculated for the sake of
plots only, and it serves as a measure of distance to the stationary point.
The computational cost is modeled by the total number of scalar products.
When calculating the number of scalar products, at each iteration we have
also taken into account the cost of making inexact projections. We used
Conjugate Gradient method to solve the linear systems inexactly at each
iteration. Hence, every time we needed to use the solver, we accounted
(m+4)·iter number of scalar products, where, iter is the number of iterations
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Conjugate Gradient method made to achieve the tolerance ηk. Function
evaluations also contribute to number of scalar products depending on the
subsampling size.

Results for HUESTIS and DTOC1L CUTEst problems [17] are show-
cased. The dimension of the HUESTIS problem is n = 10,m = 2, whereas
the dimension of the DTOC1L is n = 58,m = 36. For both problems the
total number of elements in the sum is N = 10000. For each problem, we
conducted 10 independent simulations, systematically varying standard de-
viation σ for the Gaussian noise, tolerance parameter s and subsample size
increments dNk. The number of iterations was fixed kmax = 500 for all
simulations. In order to emphasize the importance of choosing suitable pa-
rameters for the optimization process, we present our results in two different
ways. The Box plots capture the variability in performance across different
setups. Visualization provides insights into parameter identification that
lead to optimal performance and computational efficiency. We show the
resulting Box plots regarding the stationarity measure ∥d(xk)∥ and compu-
tational costs, i.e., budgets needed to achieve the relevant vicinity of the
solution.

In Figure 1, for σ = 3 we can see that choosing s = 3 and dNk = 100,
i.e., pushing ηk faster to zero and making larger subsample size increments,
the resulting point is the closest to the stationary point compared to the
rest of the configurations. The aforementioned configuration requires sig-

Figure 1: DTOC1L problem. Different configurations of IPAS algorithm regarding

inexact projections and sample size increment. Box plot of optimality measure ∥dk∥ and

scalar products (budget) based on 10 simulations for different levels of variance (σ). The

remaining parameters: c = 10−4, c1 = 10−2, β = 0.1, C = 10−2, kmax = 500.

nificantly more computations, as seen in the same Figure 1, whereas other
parameter configurations are magnitude of orders cheaper. The choice of
the parameters is highly dependent on the dimension of the problem, i.e.
choosing the right balance between the inexactness of projections and the
accuracy of the approximations is problem dependent.

The following plots in Figure 2 show the mean of ∥dk∥ and its confidence
interval for 10 simulations in terms of the average cost per iteration, for
σ ∈ {0.1, 1, 3}. In each subplot four parameter configuration are compared.
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The algorithm behaves differently depending on the configuration, however
in this example, s = 3 and dNk = 100 gave us the closest point to stationarity
in 105 scalar products.

Figure 2: DTOC1L problem. Different configurations of IPAS algorithm regarding

inexact projections and sample size increment. Mean optimality measure ∥dk∥ with the

confidence interval based on 10 simulations presented in log scale. Plots correspond to

different levels of variance: left σ = 0.1; middle σ = 1; right σ = 3. The remaining

parameters: c = 10−4, c1 = 10−2, β = 0.1, C = 10−2, kmax = 500.

For HUESTIS problem, in Figure 3 we see that choosing low increments
for subsample size yields highly efficient results for larger σ. The cost for
such computation is two order of magnitude less than the computation using
larger increments. The configuration comparison plots of mean ∥dk∥ are

Figure 3: HUESTIS problem. Different configurations of IPAS algorithm regarding

inexact projections and sample size increment. Box plot of optimality measure ∥dk∥ and

scalar products (budget) based on 10 simulations for different levels of variance (σ). The

remaining parameters: c = 10−4, c1 = 10−4, β = 0.7, C = 1, kmax = 500.

also shown for the HUESTIS problem (Figure 4). Considering this problem,
s = 3 and dNk = 1 yielded the best result.
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Figure 4: HUESTIS problem. Different configurations of IPAS algorithm regarding

inexact projections and sample size increment. Mean optimality measure ∥dk∥ with the

confidence interval based on 10 simulations presented in log scale. Plots correspond to

different levels of variance: left σ = 0.1; middle σ = 1; right σ = 3. The remaining

parameters: c = 10−4, c1 = 10−4, β = 0.7, C = 1, kmax = 500.

5.2 Equality constrained logistic regression

We consider the following finite sum problem

min
Ax=b

f(x) :=
1

N

N∑
i=1

log(1 + e(−yi(x
T zi))), (5.3)

where N is the number of samples, zi ∈ Rn are sample attributes, yi ∈
{−1, 1} respective labels, and A ∈ Rmxn, b ∈ Rm define equality constraint
system. The algorithm has been implemented and evaluated on several
datasets from LIBSVM repository [32]. In this discussion, we present re-
sults for Mushroom, MNIST and Diabetes dataset [31]. The performance
analysis has been done by comparing algorithms in terms of stationarity
measure ∥d(xk)∥ plotted against computational cost modeled by the num-
ber of scalar products needed to reach iteration k. The equality constraints
are created in a way that A ∈ Rm,n is a full rank matrix. Number of rows
of A, i.e., the number of equality constraints, is set to m = 0.5n. This
way we create robust problems, with number of equalities proportional to
the dimension of the problem. As in the CUTEst experiment, we set lin-
ear equation solver tolerance to ηk = 1

ks , s > 0.5, in accordance with the
convergence requirements outlined in (3.1).

The following Figures 5, 6 and 7 show the comparison of IPAS with
StochasticSQP [6] and TrStochasticSQP [15], all applied to solve the prob-
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lem (5.3) using Mushroom, Diabetes and MNIST dataset respectively. The
plots on the left show how the norm of the true projected direction d(xk)
(2.7) changes in terms of the number of scalar products. The plots on the
right show how the subsample size changes for the first 1000 iterations. No-
tice that some of the configurations do not reach the full sample size for the
length of the simulation.

Figure 5: Mushroom dataset, N = 8124, n = 112. Stationarity measure against

computational costs (left) and the sample size behavior (right). Parameters: x0 =

AT ((AAT )−1b), N0 = 0.01N, c = 10−4, c1 = 10−4, β = 0.7, C = 1, kmax = 1000.

Figure 6: Diabetes dataset, N = 773, n = 8. Stationarity measure against computational

costs (left) and the sample size behavior (right). Parameters: x0 = AT ((AAT )−1b), N0 =

0.01N, c = 10−4, c1 = 10−4, β = 0.1, C = 10−4, kmax = 1000.

We tested IPAS algorithm with different parameter configurations. When
applied to Mushrooms dataset (Figure 5), all the IPAS variants outper-
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Figure 7: MNIST dataset, N = 11774, n = 780. Stationarity measure against

computational costs (left) and the sample size behavior (right). Parameters: x0 =

AT ((AAT )−1b), N0 = 0.01N, c = 10−4, c1 = 10−4, β = 0.7, C = 1, kmax = 1000.

formed their state-of-the-art counterparts. Notice that higher increase rate
dNk = 100 yields smoother behavior, especially when combined with lower
inexactness such as the one governed by s = 1 or s = 3. However the best
stationarity was reached with IPAS s = 0.53, dNk = 1, although the pres-
ence of noise is evident through oscillations. Notice that the ad-hoc choice
of s = 1, dNk = 1 also yields satisfactory results. For MNIST dataset (Fig-
ure 7) the situation is similar, with a difference that the best performing
combination seems to be s = 1, dNk = 100. Diabetes dataset (Figure 6) is
smaller both in sample size (N) and number of variables (n). The best per-
forming algorithm seems to be IPAS s = 1, dNk = 100, together with IPAS
s = 3, dNk = 100. Both of these variants reach the full sample quickly.
The choice of IPAS s = 1, dNk = 1 seems to work well at the beginning of
the optimization process, but exhibits erratic behavior caused by the noise
coming from smaller sample sizes. Since the problem is relatively small as
well as the number of constraints, it is likely that the the savings of IPAS
were not big enough to show the advantages of all the configurations with
respect to StochasticSQP method.

6 Conclusions

The proposed algorithm represents a novel approach for solving weighted
sum problems with possibly large number of linear equality constraints. It
adapts additional sampling approach originally constructed for finite sum
unconstrained problems to more general problems of the form (1.1). This
yields adaptive sample size algorithm suitable for the considered constrained
framework. Moreover, inexact projections are allowed, but controlled by a
common parameter that also plays role in sample size update. Allowing inex-
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act projections shows to be very important in terms of computational costs,
especially when the number of constraints is large. The almost sure conver-
gence of the proposed method is proved under a set of standard assumptions
for the stochastic framework, without the convexity assumption. Prelimi-
nary numerical results on both academic and real-world data show that
IPAS is competitive with the relevant state-of-the-art methods in this field.
Possible future work may include fine-tuning for some special subclasses of
the considered problems, analysis of nonlinear and inequality constraints, as
well as nondifferential objective functions.
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[22] N. Krejić, N. Krklec Jerinkić, Nonmonotone line search methods
with variable sample size, Numer. Algorithms 68(4) (2015), pp. 711-
739, https://doi.org/10.1007/s11075-014-9869-1.
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