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Abstract Equality constrained optimization problems with deterministic objective
function and constraints in the form of mathematical expectation are considered. The
constraints are approximated by employing the sample average where the sample size
varies throughout the iterations in an adaptive manner. The proposed method incor-
porates variable sample size scheme with cumulative and unbounded sample into the
well known quadratic penalty iterative procedure. Line search is used for globaliza-
tion and the sample size is updated in a such way to preserve the balance between
two types of errors - errors coming from the sample average approximation and the
approximation of the optimal point. Moreover, the penalty parameter is also updated
in an adaptive way. We prove that the proposed algorithm pushes the sample size and
the penalty parameter to infinity which further allows us to prove the almost sure con-
vergence towards a Karush-Kuhn-Tucker optimal point of the original problem under
the rather standard assumptions. Numerical comparison on a set of relevant problems
shows the advantage of the proposed adaptive scheme over the heuristic (predeter-
mined) sample scheduling in terms of number of function evaluations as a measure
of the optimization cost.
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1 Introduction

We consider equality constrained problems

min
x

f (x) subject to h(x) = 0, (1)

where f : Rn → R is bounded from below and the constraints are assumed to be in
the form of mathematical expectation. More precisely,

h(x) = E[H(x,ξ )],

where ξ represents a random vector defined on a probability space (Ω ,F ,P) and
H : Rn×Ω →Rm. We state the needed assumptions regarding the objective function
and the constraints below.

Assumption 1 Function f is continuously differentiable and bounded from below.
Moreover, H(·,ξ ) ∈C1(Rn) for every ξ .1

Stochastic optimization problems arise from various scientific fields and they
have been studied extensively in a past few decades (see [4,22,23] for further ref-
erences). The stochastic nature of the relevant functions is often removed by employ-
ing mathematical expectation and the stochastic problem is then transformed into
the deterministic one. However, analytical form of the mathematical expectation is
rarely available and it is often approximated by the sample average yielding the so
called Sample Average Approximation (SAA) methods [9,10,15,19–22,24]. Since
the sample needed for a reasonable approximation of the original function is usually
very large, evaluations of the sample average functions tend to be costly. This mo-
tivated the development of Variable Sample Size (VSS) methods such as [1–3,5,8,
11–14]. The main reasoning behind the VSS approach is to use smaller samples in
the early iterations, while the vicinity of the solution is still to be reached, and save
some costs by saving (usually significant) number of function evaluations. Although
heuristic approaches such as increasing the sample size at every iteration are straight
forward and easy to implement, recent numerical studies indicate that an adaptive
sample size scheduling may improve the performance of the algorithm significantly
[11–14]. The method proposed in this paper uses an adaptive VSS scheme similar
to one developed in [11,12] for line search methods (its trust region counterparts are
developed earlier in Bastin et al. [1–3]).

Methods presented in [11,12] are developed to solve only the SAA variant of
an unconstrained problem where the objective function is an SAA estimator of the
mathematical expectation. Namely, although the motivation comes from the problems
where the objective function is in a form of mathematical expectation, it is assumed
therein that the (large, but finite) sample is generated in advance. This practically
yields deterministic optimization problem and the algorithms are constructed in a way
to reach the full sample eventually and provide classical (deterministic) convergence
results. The method proposed in this paper differs in several ways. The problem that

1 In order to obtain the final convergence result stated in Theorem 3, one may relax this assumption and
state ”almost every” instead of ”every” ξ (see the remark after the proof of Theorem 3).
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we observe is a constrained optimization problem. Although the objective function is
not explicitly in a form of mathematical expectation, the analysis can be extended to
this case as well. However, we decided to focus on the constraints as in [14] where
the SAA variant of problem (1) is solved.

In this paper, we aim to solve the original problem (1) by using a sequence of
SAA estimators. This leads us to an unbounded sample and stochastic convergence
theoretical results and requests nontrivial modifications (with respect to [14]) con-
cerning both convergence analysis and the construction of algorithm itself. Similar
transfer from bounded to unbounded sample case was done in [13]. However, in that
paper, constraints are assumed to be deterministic and easy to project on which is
not the case here. Instead, we use the quadratic penalty method to cope with the con-
straints as it was done in [14]. We use the SAA estimator of the constraints h(x) given
by

hN(x) =
1
N

N

∑
i=1

H(x,ξi), (2)

where ξ1,ξ2, . . . ,ξN represent a sample realization with N ∈N being the sample size.
At each iteration we use potentially different sample size, but we assume that the sam-
ple is cumulative. Therefore, although the stochastic nature of the algorithm yields
different sample paths, the sample size uniquely determines the sample within one
sample path and thus we may use the SAA form defined above.

We use the quadratic penalty function

φN(x; µ) = f (x)+µθN(x)

where the (approximate) measure of infeasibility is given by 2

θN(x) := ‖hN(x)‖2

and µ represents the penalty parameter. At each iteration we update: a) the decision
variable x; b) the sample size N; c) the penalty parameter µ . As in the classical penalty
method, µ needs to be pushed to infinity. This is ensured by an adaptive rule similar
to one in [14]. Furthermore, in order to reach the mathematical expectation at limit,
we need to push N to infinity as well. This is also done adaptively and this result
makes one of the key points of our analysis. Having the sample size and the penalty
parameter tend to infinity, we prove that a Karush-Kuhn-Tucker (KKT) point of the
problem (1) is attainable under rather standard assumptions.

At every iteration k, line search backtracking technique with respect to the deci-
sion variable x is applied on the penalty function φNk(xk; µk) along the search direc-
tion dk which is assumed to be descent. More precisely, we assume that dk satisfies
the following two inequalities

dT
k gk ≤−λmin‖gk‖2, (3)

‖dk‖ ≤ λmax‖gk‖ (4)

2 We use ‖ · ‖ to denote Euclidean norm.
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where λmin and λmax are some positive constants and

gk := ∇xφNk(xk; µk).

One possible approach is to set dk = −Bkgk where Bk is a symmetric matrix, uni-
formly bounded and uniformly positive definite across all iterations. Obviously, the
steepest descent direction satisfies (3)-(4). Moreover, the spectral gradient method
with the projection of the spectral coefficient on the interval [λmin,λmax] also makes a
feasible choice. More generally, a Quasi-Newton method with a suitable safeguarding
would also be applicable (see [16] for further references). For example, one may em-
ploy some update-type (inverse) Hessian approximation method such as BFGS and
skip the update if the eigenvalues of the proposed matrix Bk+1 fall out of the interval
[λmin,λmax]. Notice that (3) implies that gk tends to zero if dT

k gk does. Moreover, (4)
implies that the sequence of dk is uniformly bounded if {gk} is.

Since the search direction is assumed to be descent, the monotone line search is
applicable. Although nonmonotone line search methods could be employed, we focus
on Armijo line search for simplicity. More precisely, given the search direction dk,
the step size αk is determined such that

φNk(xk +αkdk; µk)≤ φNk(xk; µk)+ηαkgT
k dk, (5)

fore some η ∈ (0,1). This means that the penalty function is decreased for some
portion of the scalar product on the right hand side of the previously stated inequality.
We denote the measure of decrease by

dmk :=−αkgT
k dk. (6)

Notice that dmk ≥ 0. This measure plays an important role in the sample size update.
It can be viewed as a measure of distance of xk from the stationary point of φNk(·; µk).
On the other hand, SAA estimator (2) produces another type of error. We denote
the measure of this error by e(x;N). The main idea behind the sample size update
is to keep these two types of errors balanced. If the stationary point of the current
penalty function is approached (that is, if dmk is relatively small), we increase the
precision of the SAA by increasing the sample size. This mechanism is similar to one
in the so-called diagonalization, [17,18], where the sequence of SAA problems is
solved. However, the method that we use differs in a way that it allows the decrease
of the sample size if the stationary point is still far away in order to diminish the
optimization costs. The sample size update is similar to one in [14], but it is stated
for completeness in Algorithm 2 (Step 1). The main difference lies in Step 2 where
the sample size lower bound Nmin

k is updated. This part is modified to cope with
unbounded samples and it plays an important role in the convergence analysis.

The remainder of this paper is organized as follows. Details of the proposed algo-
rithm are presented in the next section. Section 3 provides convergence analysis and
numerical results are presented in Section 4. Some conclusions are drawn in the final
section.
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2 The Algorithm

We start this section by stating the framework algorithm while the sample size update
is stated in Algorithm 2.

Algorithm 1
Step 0 Input parameters: N0 ∈ N, x0 ∈ Rn, β ,η ∈ (0,1), µ0 > 0, ρ > 1.
Step 1 Set k = 0, Nk = N0, xk = x0, µk = µ0, t = 1, Nmin

0 = N0.
Step 2 If

gk = 0 and hNk(xk) = 0 (7)

set
Nk+1 = Nk +1 and Nmin

k+1 = max{Nk+1,Nmin
k +1}

and go to Step 7.
Step 3 Determine the search direction dk that satisfies (3)-(4).
Step 4 Determine the step size αk:

Find the smallest nonnegative integer j such that αk = β j satisfies (5).
Set xk+1 = xk +αkdk and dmk =−αkgT

k dk.
Step 5 Determine the sample size Nk+1 by applying Algorithm 2.
Step 6 Determine the penalty parameter µk+1:

If
dmk ≤

αk

µ2
k
,

set µk+1 = ρµk, zt = xk and t = t +1.
Else set µk+1 = µk.

Step 7 Set k = k+1 and go to Step 2.

Assumption 1 ensures that the Algorithm 1 is well defined. It implies that hN
is continuously differentiable for every N ∈ N and thus the penalty function is also
continuously differentiable, i.e. gk is available at every iteration.

Notice that, besides in Step 5, the sample size can be updated in Step 2 of Algo-
rithm 1 as well. The reasoning behind this additional update lies in the fact that (7)
implies that xk is a KKT point of the relevant SAA problem

min
x

f (x) subject to hNk(x) = 0,

and thus the higher level of precession is to be used in the next step. Indeed, since

gk = ∇ f (xk)+2µk∇
T hNk(xk)hNk(xk),

the KKT conditions are satisfied with the Lagrange multiplier λk = 2µkhNk(xk).
In Step 3 we calculate the descent search direction and in Step 4 we determine

the step size via Armijo line search. The objective function is assumed to be bounded
from below and the penalty part is nonnegative, so the penalty function is also bounded
from below and the line search is well defined. Moreover, since the search direction
satisfies (4), gk = 0 implies dk = 0 and the Armijo condition is trivially satisfied with
the full step. Within this step we also calculate dmk needed for determining the sub-
sequent sample size.
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The main sample size update is performed in Algorithm 2 stated below where the
lower bound sample size Nmin

k+1 is also determined. Finally, in Step 6 we update the
penalty parameter. If the measure of stationarity related to the current penalty func-
tion is small enough, we increase the penalty parameter and update the sequence {zt}.
This sequence is actually a subsequence of {xk} and it plays an important role in con-
vergence analysis. More precisely, we prove that, under rather standard assumptions,
the sequence {zt} is infinite and it converges towards a KKT point of the original
problem almost surely.

Next, we state the algorithm for the sample size update. Although it is similar to
one in [14] and [11,12], we state it here for completeness and give a brief description.
Assumption concerning SAA error measure e(x,N) is given below.

Assumption 2 Function e : Rn×N→ R+ is such that for any finite valued N there
exists eN such that e(x;N)≥ eN > 0 for every x ∈ Rn.

Assumption 2 is as in [13]. It is rather mild and it allows many different choices for
the function e, including e(x;N) = 1/N. Moreover, since we also update the sample
size lower bound in Algorithm 2, we provide the assumption on the relevant mapping
γ(N) presented in [13] as well.

Assumption 3 γ : N→ (0,1) is an increasing function such that limN→∞ γ(N) = 1.

Notice that γ(N) = exp(−1/N) is one suitable choice.

Algorithm 2
Step 0 Input parameters: dmk, e(xk;Nk), xk, Nk, Nmin

k .
Step 1 Determine Nk+1:

1) If dmk = e(xk;Nk), set Nk+1 = Nk.
2) If dmk > e(xk;Nk), set N = Nk.

While dmk >
Nk

N
e(xk;N) and N > Nmin

k set N = N−1.
Set Nk+1 = N.

3) If dmk < e(xk;Nk), set N = Nk +1.

While dmk <
Nk

N
e(xk;N) and ‖hN(xk)‖<

Nk

N(N−Nk)
e(xk;N) set N = N+1.

Set Nk+1 = N.
Step 2 Determine Nmin

k+1:
If Nk+1 6= Nk and there exists i ∈ {1, ..,k−1} such that Ni = Nk+1, determine

l(k) = max{i ∈ {1, . . . ,k−1} | Ni = Nk+1,Ni−1 6= Nk+1}.

If
θNk+1(xl(k))−θNk+1(xk+1)

k+1− l(k)
< γ(Nk+1)e(xk+1;Nk+1), (8)

set Nmin
k+1 = max{Nk+1,Nmin

k +1}.
Else Nmin

k+1 = Nmin
k .
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In Step 1 we update the sample size such that two error measures - dmk and
e(xk;Nk+1) - are balanced. The first one is defined above in (6) and the second one
represents the error of approximation (2) with properties defined in Assumption 2.
For example, one can view e(xk;Nk+1) as the loglog bound proposed in [8] for cumu-
lative samples. However, numerical study implies that less conservative (for example,
variance-related) bound works well in practice. Theoretically, key issues provided in
this step are:

a) Nk+1 is strictly larger than Nk if dmk < e(xk;Nk);
b) Nk ≥ Nmin

k −1 for all k = 0,1, . . ..

The first issue (a)) is provided by Step 1 3) where the sample size is increased
until dmk and e(xk;Nk+1) are in balance or until the SAA error reaches the measure of
infeasibility. Adding the second condition is motivated as follows - it aims to prohibit
unproductively large increase of the sample size. The ratio Nk/Nk+1 present in Step
1 2) and Step 1 3) is here to motivate less changes on smaller samples when the
accuracy is not that good and to allow greater leaps when the sample is already large
and the solution is probably approached. The ratio Nk/(Nk+1(Nk+1−Nk)) in Step 1
3) shares the same role.

The main reasoning behind Step 2 is to increase the lower level of precision (that
is, to set Nmin

k+1 =max{Nk+1,Nmin
k +1}) if the decrease of infeasibility measure related

to the sample size Nk+1 (that is, to θNk+1 ) is not satisfactory. The left hand side of (8)
represents average decrease from the iteration at which the same level of precision
Nk+1 was used. More precisely, l(k) represents the iteration at which we started to use
Nk+1 for the last time before iteration k+1. Notice that l(k) is calculated only if there
exists i ∈ {1, . . . ,k−1} such that Ni = Nk+1 as stated in Step 2. Otherwise, the lower
bound is not altered. The right hand side of (8) represents a ”sufficient” decrease.
It is given by the product of the SAA error measure e(xk+1;Nk+1) and mapping γ

determined by Assumption 3. The key property of this mapping is that it is increasing,
positive and bounded from above. The bottom line of this step is that the obtained
decrease is compared to the SAA error - similar to Step 1 - and the role of γ is just
provide a more rigorous treatment of higher levels of precision in order to improve
the precision even more.

Now, let us show that the second issue (b)) holds. Initially we set Nmin
0 = N0,

so the inequality is obviously true for k = 0. Let us assume that Nk ≥ Nmin
k − 1 and

observe Algorithm 2. Considering Step 1, we have the following cases.

1) If the sample size is unchanged, then the same is true for Nmin
k and we have

Nk+1 = Nk ≥ Nmin
k −1 = Nmin

k+1−1.

2) If Nk = Nmin
k − 1, then the same analysis as in Step 1) applies. Otherwise, if the

sample size decrease is attempted, the algorithm ensures that Nk+1 ≥Nmin
k . More-

over, according to Step 2 we obtain

Nmin
k+1 ≤max{Nk+1,Nmin

k +1} ≤max{Nk+1 +1,Nmin
k +1}= Nk+1 +1,

which obviously implies Nk+1 ≥ Nmin
k+1−1.
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3) If the sample size is increased, then we know that Nk+1 ≥ Nk +1 and the assump-
tion yields Nk + 1 ≥ Nmin

k , so there holds Nk+1 ≥ Nmin
k . Now, Step 2 yields the

following possibilities.
i) If Nmin

k+1 = Nk+1, then obviously Nk+1 ≥ Nmin
k+1−1.

ii) If Nmin
k+1 = Nmin

k +1, then we obtain the same result as

Nk+1 ≥ Nmin
k = Nmin

k+1−1.

iii) If Nmin
k+1 = Nmin

k , then

Nk+1 ≥ Nmin
k = Nmin

k+1 ≥ Nmin
k+1−1.

Finally, if the sample size is updated within Step 2 of Algorithm 1, the analysis similar
to one in part 3) shows that Nk+1 ≥ Nmin

k+1− 1. Therefore, b) holds and we conclude
that the sequence Nmin

k −1 is the lower bound sequence of Nk.
At the end of this section, notice that Algorithms 1 - 2 ensure that the sequences

{µk} and {Nmin
k } are nondecreasing.

3 Convergence analysis

We start the analysis by proving that the above algorithms push the sample size se-
quence to infinity. The proof of Lemma 1 follows the ideas from [14]. It represents
an intermediate result which states that the sequence of sample sizes cannot become
stationary. The key point lies in Step 1 of Algorithm 2. On the other hand, the result
of Theorem 1 heavily leans on Step 2.

Remark 1 The sequences generated by the main algorithm are obviously random. On
the other hand, the following two results are stated in deterministic manner. This is
possible because they hold for any given sample path. Of course, almost every object
within the proofs is random, i.e., sample path-dependent, but the lines in the proofs
hold surely since they fix an arbitrary sample path and observe what happens within
it.

Lemma 1 Suppose that Assumptions 1 - 2 hold. Then there cannot exist q ∈ N such
that Nk+1 = Nk for every k ≥ q.

Proof Let us assume a contrary, i.e., suppose that there are q̄, N̄ ∈ N such that

Nk+1 = Nk = N̄ for every k ≥ q̄. (9)

We will prove that this implies that

liminf
k→∞

dmk = 0. (10)

Consider the penalty parameter. There are two possibilities:

P1 µk changes finitely many times,
P2 µk changes infinitely many times.
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Having in mind that the sequence of penalty parameters is nondecreasing, P1
means that there exists µ̄ such that µk = µ̄ for every k large enough. Without loss of
generality, we can say that µk = µ̄ for every k ≥ q̄. Consequently, denoting φ(xk) :=
φN̄(xk; µ̄), Step 4 of Algorithm 1 implies that

φ(xk+1)≤ φ(xk)−ηdmk

for every k ≥ q̄. Furthermore, Assumption 1 implies the existence of a constant M
such that φ(xk)≥M for every k and thus we obtain

∞

∑
k=q̄

dmk ≤
1
η
(φ(xq̄)−M)< ∞.

Therefore, there holds that limk→∞ dmk = 0.
On the other hand, since changing µk actually means increasing µk, P2 implies

that limk→∞ µk = ∞. Let K ⊆N be an infinite subset of iterations at which the penalty
parameter is increased, i.e., µk+1 = ρµk for every k ∈ K. Since the step size αk is
bounded from above, Step 6 of Algorithm 1 furthermore implies that limk∈K dmk = 0.

We have just proved that both P1 and P2 imply (10). On the other hand, since the
sample size is assumed to be fixed, Assumption 2 implies that e(xk;Nk) is bounded
away from zero. More precisely, e(xk;Nk)≥ eN̄ > 0 for every k ≥ q̄. Therefore, (10)
implies the existence of finite iteration s ≥ q̄ such that dms < eN̄ ≤ e(xs; N̄), so Step
1 3) of Algorithm 2 implies that Ns+1 > Ns which is in contradiction with (9). This
completes the proof. ut

Next, we prove that the sample size sequence tends to infinity under the additional
assumption on γ , i.e., Assumption 3.

Theorem 1 Suppose that Assumptions 1-3 hold. Then

lim
k→∞

Nk = ∞.

Proof If the sample size Nk changes in Step 2 of Algorithm 1 infinitely many times,
then the statement trivially holds since Nmin

k tends to infinity. Thus, let us assume that
Step 2 activates the increase only finitely many times, i.e., there exists q∈N such that
for every k≥ q conditions (7) are not fulfilled and the sample size update can only be
conducted within Algorithm 2.

Let us consider the lower bound sequence {Nmin
k }k≥q. Recall that this sequence

is nondecreasing and Nk ≥ Nmin
k − 1, so if Nmin

k tends to infinity, the results holds as
stated above. Therefore, let us consider the case where the sequence {Nmin

k }k≥q is
bounded. That means that there are q̄≥ q and Nmin

max ∈ N such that

Nmin
k = Nmin

max for every k ≥ q̄. (11)

Now, suppose that the statement of this theorem does not hold, i.e., suppose that there
is a bounded infinite subsequence of {Nk}k∈N. This furthermore implies the existence
of N̄ ∈N and infinite subsequence {k̄1, k̄2, . . .} ⊂ {k ∈N : k≥ q̄} such that Nk̄i+1 = N̄
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for i = 1,2, . . . . Due to Lemma 1, the sequence of sample sizes cannot be stationary
and thus there must exist an infinite subsequence {k1,k2, . . .} ⊂ {k̄1, k̄2, . . .} such that

N̄ = Nki+1 6= Nki for i = 1,2, . . . .

Since we assumed (11), Step 2 of Algorithm 2 implies that

θN̄(xl(ki))−θN̄(xki+1)

ki +1− l(ki)
≥ γ(N̄)e(xki+1; N̄)

for every i = 1,2, . . .. Let us use the notation k+i := ki+1 for convenience. Notice that
l(ki) = k+i−1 and the previous inequality together with Assumptions 2-3 implies that

θN̄(xk+i−1
)−θN̄(xk+i

)≥ γ(N̄)eN̄ :=C > 0,

for every i = 2,3, .... However, this is in contradiction with the fact that θN is bounded
from below, so there cannot exist a bounded subsequence of sample sizes and the
statement of this theorem is proved. ut

In order to prove the main convergence result, we need additional assumption to
ensure some nice stochastic properties of the SAA estimators. The subsequent results
lean on the uniform law of large numbers which provides almost sure convergence of
the relevant functions. As a consequence, all the subsequent convergence results are
stated in a stochastic sense - they hold almost surely.

Assumption 4 The sample ξ1,ξ2, ... is i.i.d. and H and its Jacobian ∇H are domi-
nated by P-integrable functions on any compact subset of Rn.

There is more that one important consequence of Assumptions 1 and 4 ([22]).
First, the mapping h is well defined and differentiable. Moreover, the expectation and
the gradient are interchangeable ∇h(x) = E[∇H(x,ξ )] and the SAA estimators are
unbiased. Furthermore, the uniform law of large numbers implies that the following
holds almost surely for any given compact set S

lim
N→∞

max
x∈S
‖∇hN(x)−∇h(x)‖= 0, lim

N→∞
max
x∈S
‖hN(x)−h(x)‖= 0. (12)

This furthermore implies that the same is true if we substitute h in (12) for θ . It
also holds for φ with the fixed penalty parameter. We state this within the following
technical lemma which is a direct consequence of Theorems 7.48 and 7.52 from [22].

Lemma 2 Suppose that Assumptions 1 and 4 hold. Then, for any given compact set
S⊂ Rn and penalty parameter µ > 0 there holds

lim
N→∞

ϕ
S
N = 0 a.s., where ϕ

S
N := max

x∈S
|φN(x; µ)−φ(x; µ)|.

Moreover, for any ψ ∈ {h,∇h,θ ,∇θ ,φ(·; µ),∇φ(·; µ)} there holds

lim
x→x∗,N→∞

ψN(x) = ψ(x∗) a.s.
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The subsequent result states that the sequence of penalty parameters tends to
infinity, almost surely, if (7) happens only finitely many times. As in the standard
quadratic penalty framework, this is needed for ensuring the feasibility. On the other
hand, if there are infinitely many iterations such that (7) holds, the feasibility will also
be achieved under the additional assumptions stated above, so (7) does not effect the
main result.

Theorem 2 Suppose that Assumptions 1-4 hold and that the sequence {xk}k∈N0 gen-
erated by Algorithm 1 is bounded. If there is a finite q such that (7) is violated for
every k ≥ q , then

lim
k→∞

µk = ∞ a.s.

Proof Suppose that there exist q̄≥ q and µ̄ such that

µk = µ̄ for every k ≥ q̄.

Considering Step 6 of Algorithm 1, this means that

dmk >
αk

µ2
k

for every k ≥ q̄, (13)

i.e.,

−gT
k dk >

1
µ̄2 > 0 for every k ≥ q̄. (14)

Furthermore, since the sequence of iterates is assumed to be bounded, there exists a
compact set S such that {xk}k∈N0 ⊆ S. Moreover, Theorem 1 implies that Nk tends to
infinity and thus Lemma 2 implies the existence of the sequence ϕS

Nk
such that

|φNk(x j; µ̄)−φ(x j; µ̄)| ≤ ϕ
S
Nk

for every k, j ≥ q̄

and ϕS
Nk

tends to zero a.s.
In order to prove the statement of this theorem by contradiction, we observe two

complementarity cases regarding the step size. First, assume that the step size se-
quence is bounded away from zero, i.e., there is ᾱ > 0 such that αk ≥ ᾱ for every
k ≥ q̄. This, together with (13), implies that dmk ≥ ᾱ/µ̄2 := d̄ for every k ≥ q̄ so the
line search implies

φ(xk+1; µ̄)≤ φNk(xk+1; µ̄)+ϕ
S
Nk
≤ φNk(xk; µ̄)−ηdmk+ϕ

S
Nk
≤ φ(xk; µ̄)−η d̄+2ϕ

S
Nk
.

Now, since ϕS
Nk
→ 0 a.s., there exist k̄ ≥ q̄ and c > 0 such that

φ(xk+1; µ̄)≤ φ(xk; µ̄)− c a.s. for every k ≥ k̄.

This furthermore implies that φ(xk; µ̄) is a.s. unbounded from below which is in
contradiction with the Assumption 1.

Now, let us consider the remaining case where limk∈K αk = 0 for some infinite
subset K1 ⊆ N

⋂
{k̄, k̄+1, ...}. Without loss of generality we can assume that αk < 1
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for every k ∈ K1. This means that the full step is not accepted by the line search and
that for every k ∈ K1 there exists α ′k such that αk = βα ′k and

φNk(xk +α
′
kdk; µ̄)> φNk(xk; µ̄)+ηα

′
kgT

k dk.

Due to mean value theorem, for every k ∈ K1 there exists tk ∈ (0,1) such that

∇
T
x φNk(xk + tkα

′
kdk; µ̄)dk−ηgT

k dk > 0. (15)

Since {xk} is bounded, there exist K2⊆K1 and x∗ such that limk∈K2 xk = x∗. Moreover,
Lemma 2 implies that limk∈K2 gk = ∇xφ(x∗; µ̄) := g∗ a.s., which together with (4)
implies that {dk}k∈K2 is bounded a.s. Thus, a.s., there are K3 ⊆ K2 and d∗ such that
limk∈K3 dk = d∗. Now, using the fact that limk∈K3 α ′k = 0 and taking a limit over K3 in
(15) we obtain (g∗)T d∗(1−η)≥ 0, that is, (g∗)T d∗ ≥ 0 a.s. which is in contradiction
with (14).

Since both complementarity cases led to contradiction, we conclude that the se-
quence of penalty parameters is a.s. unbounded and the statement of this theorem
follows from the fact that {µk}k∈N is nondecreasing. ut

Finally, we prove the main result. Notice that the consequence of the previous
theorem is that the sequence of zt generated in Step 6 of the main algorithm is infinite
under the stated conditions. In that case we prove below that every accumulation point
of that sequence is stationary for infeasibility measure θ a.s. Moreover, it is a KKT
point of (1) if linear independence constraint qualification (LICQ) holds. Therefore,
including the case when (7) happens infinitely many times, we obtain the following
result.

Theorem 3 Suppose that Assumptions 1-4 hold and that the sequence {xk}k∈N0 gen-
erated by Algorithm 1 is bounded. Then there exists an accumulation point x∗ of the
sequence {xk}k∈N0 which is stationary for θ almost surely. Moreover, if LICQ holds,
then x∗ is almost surely a KKT point of the original problem (1).

Proof First, assume that there is an infinite subsequence J1 ⊆ N such that (7) holds
for every k ∈ J1. Since {xk}k∈N0 is assumed to be bounded, there exist J2 ⊆ J1 and x∗

such that limk∈J2 xk = x∗. Moreover, Theorem 1 implies that Nk tends to infinity and
thus Lemma 2 implies that

h(x∗) = lim
k∈J2

hNk(xk) = 0 a.s.

so the accumulation point is feasible and consequently ∇θ(x∗) = 0 a.s. Furthermore,
since for every k ∈ J2 there holds

0 = gk = ∇ f (xk)+2µk∇
T hNk(xk)hNk(xk) = ∇ f (xk),

taking the limit over J2 we obtain that ∇ f (x∗) = 0 and thus x∗ is obviously a KKT
point of (1).

Now, let us consider the remaining case where (7) happens at most finitely many
times. In this case it also holds that Nk → ∞. Moreover, Theorem 2 implies that µk
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tends to infinity a.s. and, consequently, the subsequence {zt} of {xk}k∈N is a.s. infi-
nite. We will prove that every accumulation point of the sequence {zt}t∈N is stationary
for θ almost surely. In order to do that, let x∗ be an arbitrary accumulation point of
the sequence {zt}, i.e.,

lim
k∈K1

xk = x∗

for some infinite K1 ⊆N. Moreover, Step 6 of Algorithm 1 implies that dmk ≤ αk/µ2
k

holds for every k ∈ K1. According to the definition of dmk, this is equivalent to

−gT
k dk ≤

1
µ2

k
for every k ∈ K1.

So, taking a limit over K1 and using (3) we conclude that

lim
k∈K1

gk = 0. (16)

Moreover, since gk = ∇ f (xk)+µk∇θNk(xk), we obtain

‖∇θNk(xk)‖ ≤
1
µk

(‖gk‖+‖∇ f (xk)‖)

and taking a limit yields limk∈K1 ‖∇θNk(xk)‖= 0. Furthermore, Lemma 2 implies that
limk∈K1 ∇θNk(xk) = ∇θ(x∗) a.s. so

∇θ(x∗) = 0 a.s.

Moreover, suppose that LICQ holds. Then ∇h(x∗) has a full rank and since ∇θ(x∗)=
2∇T h(x∗)h(x∗), we conclude that h(x∗) = 0 a.s. Furthermore, let us define

λk := 2µkhNk(xk).

Then it holds
∇

T hNk(xk)λk = gk−∇ f (xk). (17)
Moreover, Lemma 2 implies that limk∈K1 ∇hNk(xk) = ∇h(x∗) a.s. so ∇hNk(xk) has a
full rank a.s. for all k ∈ K1 large enough and we can use the following representation

λk =
(
∇hNk(xk)∇

T hNk(xk)
)−1

∇hNk(xk)(gk−∇ f (xk)) .

Now, taking a limit over K1 and using (16) we obtain

lim
k∈K1

λk =−
(
∇h(x∗)∇T h(x∗)

)−1
∇h(x∗)∇ f (x∗) a.s. (18)

Hence, denoting the right hand side of (18) by λ ∗ and taking a limit over K1 in (17)
we conclude that

∇ f (x∗)+∇
T h(x∗)λ ∗ = 0 a.s.,

which together with the feasibility implies that x∗ is a KKT point of the problem (1)
a.s. This completes the proof. ut
Remark 2 Notice that the same result can be stated if we assume that H(·,ξ ) ∈
C1(Rn) for almost every ξ instead of ”every ξ ” as stated within the Assumption
1. However, the intermediate results such as one stated in Theorem 1 no longer hold
since the sample size tends to infinity almost surely in that case. Moreover, the gradi-
ent gk is well defined almost surely and the same is true for the proposed algorithm.
Although the concept alters, the final result still holds under this relaxation.
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4 Numerical results

In this section we present the numerical results obtained on 13 equality constrained
optimization problems from Hock and Schittkowski [7] (problems 6, 27, 28, 42, 46-
52, 61 and 79). All the problems have unique solutions and the objective functions
bounded from below. We randomize the original constraints c(x) as follows:

H(x,ξ ) = c(ξ x)

where ξ follows the normal distribution N (1,1).
The proposed sample size update (VSS) is compared with the heuristic scheme

(HEUR) where
Nk+1 = dmin{1.1Nk}e,

as in [6,12,14,17]. The penalty parameter is updated as in Algorithm 1. We per-
formed 10 runs of each method for every considered problem. The runs are con-
ducted in Matlab. We used the built-in function randn to generate the random sam-
ples. Within each run, VSS and HEUR are tested with the same sample realization.
Moreover, all the remaining common parameters are identical. Both methods use the
BFGS search direction where the gradient difference is calculated as

yk = ∇xφNk+1(xk+1; µk)−∇xφNk(xk; µk)

and sk = xk+1− xk. The descent property of dk is provided by using the safeguard -
starting with the identity matrix, the BFGS matrix is updated only if yT

k sk > 10−6.
The increase factor of the penalty parameter is ρ = 1.5 and the initial value is µ0 = 1.
The initial iteration points x0 are as in Hock and Schittkowski [7] and the starting
sample size is N0 = 3. The line search parameters are β = 0.5 and η = 10−4.

We specify VSS algorithm as follows. Function γ used in Step 2 of Algorithm 2
is defined as

γ(N) = exp(−1/N),

which satisfies Assumption 3. On the other hand, the SAA error measure is set to

e(x;N) =
1.96σ̂N(x)√

N
,

where σ̂2
N(x) represents the measure of the sample variance

σ̂
2
N(x) =

1
N−1

N

∑
i=1
‖H(x,ξi)−hN(x)‖2

and 1.96 stands for approximation of the 0.975 quantile of the standard normal dis-
tribution. This choice corresponds to the confidence interval width measure for hN(x)
estimator. Although it is not bounded away from zero in general, we use this type of
measure as it is commonly used as a less conservative variant of the log bound, [1,
11–15,18], and it takes into account the current point x. Assumption 2 can be sat-
isfied simply by adding 1/N, for instance, to the measure e defined above. In our
experience, the less conservative case works well in practice.
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The comparison of the procedures is based on the number of evaluations of the
constraints function H and the components of its Jacobian ∇H denoted by FEV. Since
the algorithms do not have a stopping criterion, the runs are stopped when 106 of
FEVs is reached. For problems with linear constraints, the transformed problems
of the form (1) are equivalent to the original ones from [7] and thus we can use
the solutions provided therein. Solutions of the problems with nonlinear constraints
are obtained by finding the analytical form of the relevant mathematical expectation
and solving the obtained deterministic problem approximately with a high precision
by applying the built-in Matlab function fmincon. Knowing the optimal or nearly-
optimal solutions gives us a chance to have more insights in the performance of the
proposed scheme.

Let us denote the obtained solution of the considered problem by x∗. Our aim is
to show that VSS scheme reaches the vicinity of the solution with less efforts (i.e.,
FEVs) than the HEUR scheme. In order to do that, we observe different precisions τ

of the solution approximations. In other words, we seek for a number of FEVs which
provides a τ-optimal solution for different values of τ . More precisely, we track the
solution estimate xk and the relevant FEVk = FEV (xk) at every iteration for both
methods and, considering 10 runs of each problem, we find the empirical probability
(denoted by PE ) that the method is not worse than the other one. In order to make a
fair comparison, if the same number of FEVs is needed we assume that both VSS and
HEUR are the winners and we present empirical probabilities for both schemes:

pV SS
τ :=PE

{
min

k
{FEVV SS

k : ‖xV SS
k − x∗‖ ≤ τ} ≤min

l
{FEV HEUR

l : ‖xHEUR
l − x∗‖ ≤ τ}

}
and

pHEUR
τ :=PE

{
min

k
{FEV HEUR

k : ‖xHEUR
k − x∗‖ ≤ τ} ≤min

l
{FEVV SS

l : ‖xV SS
l − x∗‖ ≤ τ}

}
for different levels of precision τ ∈ (0,2]. The results presented in Figure 1 show
that the proposed scheme outperforms the observed heuristic approach. Moreover, if
less precise approximation of the solution is needed, the advantage is even bigger. Of
course, these conclusions are based only on the tested problems experience. More-
over, for any given problem, one can always find a heuristic that outperforms VSS,
but we believe that the advantage of the proposed scheme lies in its adaptive nature.
We present a typical behavior of the sequences {Nk} and {µk} in Figure 2.

5 Conclusions

Focus of this research is on the problems with equality constraints in the form of
mathematical expectation. The proposed method incorporates the sample average ap-
proximations with adaptive sample size scheduling into the quadratic penalty frame-
work. Sample is assumed to be cumulative and the sample size update is based on
balancing of two types of errors - the SAA error and the measure of optimality.

The proposed algorithm represents nontrivial generalization of the method that
copes with the finite sample and solves only an approximate problem. Instead of that,
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Fig. 2 Typical behavior of the sample size and penalty parameter sequences

we aim to solve the original problem and thus the sample size needs to tend to infin-
ity. In Theorem 1 we prove that the proposed mechanism ensures that if the objective
function is bounded from below and all the considered functions are continuously
differentiable. We also prove (Theorem 2) that the penalty parameter tends to infinity
almost surely if the function under the mathematical expectation and its Jacobian are
dominated by P-integrable functions on any compact set. Since the penalty parame-
ter is also updated adaptively, this result requests nontrivial analysis. The remaining
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assumptions can be considered as a guidance for choosing dk, e(x;N) and γ(N) and
they are easy to satisfy. Finally, under the stated assumptions, we prove (Theorem 3)
that there is a subsequence of iterates which converges to a KKT point almost surely
if the sequence of iterates is bounded and LICQ hold.

Numerical study is performed on a class of test problems with the objective
function bounded from below. We considered both linear and nonlinear constrained
cases. The results show that the proposed adaptive scheme outperforms the consid-
ered heuristic with predetermined sample scheduling in terms of optimization costs
measured throughout the number of function evaluations. More precisely, by em-
ploying the empirical probability, we show that the proposed scheduling attains a
near-optimal solution with less efforts than the heuristic.

Although the number of tested problems is modest, the difference in favor of the
proposed method is rather significant and we believe that the adaptive scheme has a
potential to be highly competitive in general. On the other hand, tuning the functions
e(x;N) and γ(N) for specific classes of problems would surely provide even better
performance and this will be the topic of our future research.

Acknowledgements We are grateful to the anonymous referee whose comments and suggestions helped
us to improve the quality of this paper.
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