
Fodor et al.

RESEARCH

Performance evaluation and analysis of distributed
multi-agent optimization algorithms with sparsified
directed communication
Lidija Fodor*, Dušan Jakovetić, Nataša Krejić, Nataša Krklec Jerinkić and Srđan Škrbić

*Correspondence:

lidija.fodor@dmi.uns.ac.rs

Department of Mathematics and

Informatics, Faculty of Sciences,

University of Novi Sad, Trg

Dositeja Obradovića 4, 21000

Novi Sad, Serbia

Full list of author information is

available at the end of the article

Abstract

There has been significant interest in distributed optimization algorithms,

motivated by applications in Big Data analytics, smart grid, vehicle networks, etc.

While there have been extensive theory and theoretical advances, a proportionally

small body of scientific literature focuses on numerical evaluation of the proposed

methods in actual practical, parallel programming environments. This paper

considers a general algorithmic framework of first and second order methods with

sparsified communications and computations across worker nodes. The

considered framework subsumes several existing methods. In addition, a novel

method that utilizes unidirectional sparsified communications is introduced and

theoretical convergence analysis is also provided. Namely, we prove R-linear

convergence in the expected norm. A thorough empirical evaluation of the

methods using Message Passing Interface (MPI) on a High Performance

Computing (HPC) cluster is carried out and several useful insights and guidelines

on the performance of algorithms and inherent communication-computational

trade-offs in a realistic setting are derived.

Keywords: Distributed optimization; High performance computing; Performance

evaluation

1 Introduction

Distributed multi-agent optimization is today a mature theoretical area, e.g. [1].

Several first [1, 2, 3] and second order [4, 5, 6] distributed methods have been

proposed, and their theoretical properties have been well understood, e.g., in terms

of theoretical iteration-wise convergence rates.

Fodor et al. Page 2 of 40

Distributed multi-agent optimization methods have a great potential in various

application domains, including distributed machine learning [7], distributed control

[8], vehicular networks [9], smart grid [10], etc. Relevant applications have been also

demonstrated [11]. However, there is a restricted amount of scientific investigation

of distributed multi-agent optimization methods in realistic distributed computa-

tional/High Performance Computing (HPC) systems. Carrying out such studies is

extremely important as there is a significant gap between theoretical studies of

the methods and actual performance in practical infrastructures. For example, it is

very hard to understand the relationship between iteration-wise convergence rate

and actual communication and computational costs without empirical evaluation.

In this paper, a thorough and systematic empirical study of a class of distributed

multi-agent optimization methods is carried out. All these methods are defined by

different variants of sparsification of communications and/or computations along

iterations. In more detail, we consider both first and second order methods that

exhibit either unidirectional or bidirectional randomized sparsified communications.

The considered sparsification strategies involve parameter pk that represents the

probability that a node communicates at iteration k; the quantity pk is a design

parameter that is either increasing, decreasing, or constant.These strategies give rise

to a number of methods summarized in Table 1[1]. The studied class of methods

subsumes several existing algorithms [12, 13, 14, 15, 16, 17] but also includes several

methods that have not been studied before, neither numerically nor analytically.

Further contribution to the literature body of analytical results is the presented

convergence analysis of the FUI method.

The main aims of the empirical evaluation are as follows: 1) to assess real benefits

of sparsifying communications and/or computations across nodes, which have been

proved to be beneficial theoretically [12]; 2) to compare different alternatives of the

sparsification strategies; and 3) to compare unidirectional and bidirectional com-

[1]Our convention for abbreviating the methods uses a three letter system, where

the first letter represents whether the method is first or second order (F or S); the

second letter represents the type of the communication (B for bidirectional and

U for unidirectional); the third letter represents the communication sparsification

type, i.e. the probability used for communication (I for increasing, D for decreasing

and C for constant)

Fodor et al. Page 3 of 40

munication strategies. One of the main motivations for using sparsified, randomized

communication is to reduce the amount of time spent on data exchange. The choice

of omitting to communicate in some cases can also lead to savings in bandwidth or

transmission power of wireless devices, when considering wireless networks. Using

randomized communication at the level of algorithm design is a well established

topic, where, e.g., gossip [18] is an outstanding example. It is also of interest to

explore the case when communication sparsification is not fully determined by the

algorithm designer, but instead is dictated by random link failures (e.g., packet

dropouts in wireless networks).

The underlying implementation framework is the MPI (Message Passing Interface,

[19]) running on an HPC computer cluster, which is a standard and widely adopted

computational system.

The rest of the paper is organized as follows. An overview of the work related to

this topic is presented in Subsection 1.1.We briefly describe the optimization model

and the algorithmic framework for the Distributed Quasi Newton (DQN) method

in Subsection 2.1. The algorithmic framework is described in Subsection 2.2. Con-

vergence analysis of the novel FUI method that uses unidirectional communication

is presented in Subsection 2.3. Implementation and infrastructure are described in

Subsection 2.4. The simulation setup is described in Subsection 2.5 and the proposed

set of methods that fit the introduced algorithm is presented in Subection 2.6. The

results are highlighted in Section 3, organized in the following manner: Subsection

3.1 contains an analysis of different graph types; Subsection 3.2 is dedicated to the

analysis of scaling properties of the algorithm; Subsection 3.3 contains an analysis

and comparison of execution time, regarding all the considered methods; an analysis

and discussion on the effects of communication sparsification is given in Subsection

3.4; and Subsection 3.5 is dedicated to the comparison of Algorithm 1 to ADMM

(Alternating Direction Method of Multipliers, see [11]). Finally, the conclusions are

made in Section 4.

1.1 Related work

There has been a large body of literature on theoretical development of distributed

optimization methods. A proportionally much smaller body of scientific literature

focuses on testing and evaluation of the methods over actual distributed infrastruc-

Fodor et al. Page 4 of 40

tures. Existing studies include, e.g., [20], for the dual averaging method, and [11] for

the alternating direction method of multipliers. Distributed convex optimization by

alternating direction method of multipliers is studied in [11]. A stochastic, efficient

quasi-Newton method, using the BFGS update formula, is introduced in [21] in

order to take advantage of the curvature information. A fast distributed proximal

gradient method is proposed in [22]. An incremental sub-gradient approach, suitable

for distributed optimization in networked systems, is presented in [23]. An impor-

tant aspect in evaluation in distributed optimization is the nature of the network

of nodes itself. The effects of this aspect are highlighted in [24].

More recently, there have been works that include MPI-based empirical studies

of the methods. In [25] an asynchronous subgradient-push method is proposed and

its performance is evaluated on an MPI cluster, whereas in [26] an empirical com-

parison of several distributed first order methods is given. An exact asynchronous

method and its performance analysis using an MPI cluster are presented in [27].

A theoretical and empirical study of communication and computational trade-offs

for the distributed dual averaging method is given in [20]. Finally, the focus of [28]

is on the distributed dual averaging method with several useful guidelines about

practical design and performance of the methods.

With respect to existing studies, this paper differs along several lines. First, it con-

siders a different class of methods with respect to existing empirical studies, as the

considered methods include various strategies for communication sparsification (see

[12, 13, 14, 15, 16, 17]). Second, it provides a novel insights into comparison among

different sparsification strategies, as well as the practical benefits with respect to the

corresponding always-communicating benchmark. The empirical results show that

communication sparsification can lead to significant execution time reductions. To

the best of our knowledge, this is the first empirical evaluation reported on the class

of algorithms with sparsified communications presented in [12].

Also, a theoretical convergence analysis of the FUI method is carried out in this pa-

per. While [17] also considers unidirectional communications, it studies the specific

problem of distributed estimation, which translates into quadratic objective func-

tions and stochastic gradient updates. In contrast, our analysis considers generic

strongly convex costs. An important aspect of the framework considered in this

paper is that it includes both first and second order methods.

Fodor et al. Page 5 of 40

2 Methods

2.1 Optimization and network models

Consider a connected network of n nodes, where each node has access to a convex

cost function fi : IRs → IR, and assume that fi is known only by the node i. The

goal is to solve the following unconstrained optimization problem

minf(x) :=

n∑
i=1

fi(x). (1)

With problem (1) a graph G = (N,E) can be associated, where N = {1, ..., n} is

the set of nodes, and E is the set of edges {i, j}, i.e., pairs of nodes i and j that

can directly communicate.

As it will be seen, graph G represents a collection of realizable communication

links; actual algorithms that are considered here may utilize subsets of these links

over iterations in possibly unidirectional, sparsified communications.

The assumption is that G is connected, undirected and simple (no self nor mul-

tiple links). Denote by Ωi the neighborhood set of node i and associate an n × n

symmetric, doubly stochastic matrix W with graph G. The matrix W has positive

diagonal entries and respects the sparsity pattern of graph G, i.e., for i 6= j,Wij = 0

if and only if {i, j} /∈ E. On the other hand, it is important to note, that in the

cases of unidirectional communication between the nodes, the graph instantiations

over iterations (subgraphs of G) can be directed. Also, assume that Wii > 0,∀i.

It can be shown that λ1(W) = 1, and λ̄2(W) < 1, where λ1(W) is the largest

eigenvalue of W , and λ̄2(W) is the modulus of the eigenvalue of W that is second

largest in modulus. Denote by λn(W) the smallest eigenvalue of W . There also

holds |λn(W)| < 1.

The following optimization problem can be associated with (1),

min
x∈Rns

Ψ(x) :=

n∑
i=1

fi(xi) +
1

2α

∑
i<j

Wij ||xi − xj ||2, (2)

where x = (xT1 , ..., x
T
n)T ∈Rns is the optimization variable partitioned into s × 1

blocks x1, ..., xn. The reasoning behind this transformation is the following. Assume

that s = 1 for simplicity. Under the stated assumptions on matrix W , it can be

Fodor et al. Page 6 of 40

shown that Wx = x if and only if x1 = x2 = ... = xn, so the problem (1) is

equivalent to

min
x∈Rns

F (x), s.t. (I −W)x = 0, (3)

where F (x) :=
∑n
i=1 fi(xi) and I is the identity matrix. Moreover, I−W is positive

semidefinite, so (I −W)x = 0 is equivalent to (I −W)1/2x = 0. Therefore, (3) can

be replaced by

min
x∈Rns

F (x), s.t. (I −W)1/2x = 0, (4)

In other words, the constraint Wx = x enforces that all the feasible xi’s in opti-

mization problem (3) are mutually equal, thus ensuring the equivalence of (1) and

(3) and the equivalence of (1) and (4). Further, a penalty reformulation of (4) can

be stated as

min
x∈Rns

F (x) +
1

2α
xT (I −W)x, (5)

where 1
α is the penalty parameter. Therefore (5) represents a quadratic penalty

reformulation of the original problem (1). After standard manipulations with the

penalty part we obtain

min
x∈Rns

F (x) +
1

2α

∑
i<j

Wij(xi − xj)2, (6)

which is the same as (2) for s = 1. These considerations are easily generalized for

s > 1.

It is well known, [1], that the solutions of (1) and (2) are mutually close. More

specifically, for each i = 1, ..., n, ||x◦i − x∗|| = O(α) where x∗ is the solution to (1)

and x• = ((x◦1)T , ..., (x◦n)T)T is the solution to (2). In more details, Theorem 4 in [29]

says that under strongly convex local costs fi’s with Lipschitz continuous gradients

(see ahead Assumption 2.1 for details), the following holds, for all i = 1, ..., n:

‖x◦i − x?‖ ≤ (
αLD

1− λ̄2(W)
)
√

4/c2 − 2α/c+
αD

1− λ̄2(W)

= O(
α

1− λ̄2(W)
),

(7)

Fodor et al. Page 7 of 40

D =

√√√√2L(

n∑
i=1

fi(0)−
n∑
i=1

fi(x′i)); c =
µL

µ+ L
. (8)

Here, x′i is the minimizer of fi, L is the Lipschitz constant of the gradients of the

fi’s, and µ is the strong convexity constant of the fi’s.

The usefulness of formulation (2) is that it offers a solution that is close (on

the order O(α)) to the desired solution of (1), while, unlike formulation (1), it

is readily amenable for distributed implementation. A key insight known in the

literature (see, e..g, [4, 30]) is that applying a conventional (centralized) gradient

descent method on (2) precisely recovers the distributed gradient method proposed

in [1]. In other words, it has been shown that the distributed method in [1] – that

approximately solves (1) – actually converges to the solution of (2). This insight has

been significantly explored in the literature to derive several distributed methods,

e.g., [4, 5, 12]. The class of methods considered in this paper also exploits this

insight and therefore harnesses formulation (2) to carry out convergence analysis of

the considered methods.

2.2 Algorithmic framework

The algorithmic framework is presented in this Section. The framework subsumes

several existing methods [12, 13, 14, 15, 16, 17], and it also includes a new method

that will be analysed in this paper.

Within the considered framework, each node i in the network maintains xki ∈

Rs, its approximate solution to (1), where k is the iteration counter. In addition,

let us associate a Bernoulli random variable zki to each node i, that governs its

communication activity at iteration k. If zki = 1, node i communicates; if zki = 0,

node i does not exchange messages with neighbors. When zki = 1, node i transmits

xki to all its neighbours j ∈ Ωi, and it receives xkj , from all its active (transmitting)

neighbours.

The intuition behind the introduction of quantities zki is the following. It has been

demonstrated (see, e.g., [13]) that distributed methods to solve (1) and (2) exhibit

certain “redundancy” in terms of the utilized communications. In other words, it is

not necessary to activate all communication channels at all times for the algorithm

to be convergent. Moreover, communication sparsification may lead to convergence

Fodor et al. Page 8 of 40

speed improvements in terms of communication cost [13]. Communication sparsifi-

cation and introduction of the zki ’s leads to less expensive but inexact algorithmic

updates. A proper design of the zki ’s can lead to a positive resolution of the inexact-

less expensive updates tradeoff; see, e.g., [13] for details.

Assume that the random variables zki are independent both across nodes and

across iterations. Denote by pk = Prob(zki = 1), assumed equal across all nodes.

The quantity pk is a design parameter of the method; strategies for setting pk

are discussed further ahead. Intuitively, a large pk corresponds to “less inexact”

updates but also to lower communication savings. With the considered algorithmic

framework, solution estimate update at node i is as follows:

dki = −
[
(Mk

i)−1[α∇fi(xki) +
∑
jεΩi

Wij(x
k
i − xkj)ξki,j]

]
, (9)

xk+1
i = xki + dki . (10)

Here, α is a positive parameter, known as the step-size. The values of α differ

depending on the input data (See ahead Section 2.5). Further, ξki,j is in general a

function of zki and zkj that encodes communication sparsification; and Mk
i is a local

second order information-capturing matrix, i.e., the Hessian approximation.

The following choices of the quantities ξki,j and Mk
i will be considered: 1) ξki,j =

1: no communication sparsification; 2) ξki,j = zki · zkj bidirectional communication

sparsification (that is, node i includes node j’s solution estimate in its update only if

both i and j are active in terms of communications); and 3) ξki,j = zkj (unidirectional

communication); that is, node i includes node j’s solution estimate in its update

whenever node j transmits, irrespective of node i being transmission-active or not.

Regarding the matrix Mk
i , two options can be considered. First, Mk

i = I and

this corresponds to first order methods, where one has no second order information

included. Second option is Mk
i = Dk

i , where:

Dk
i = α∇2fi(x

k
i) + (1−Wii)I. (11)

Fodor et al. Page 9 of 40

This corresponds to the second order methods of DQN-type [12] (See ahead Section

2.6).

We now provide intuition behind the the generic method (9)-(10) and the choices

of ξki,j ’s and Mk
i ’s. The method (9)-(10) corresponds to an inexact first order or an

inexact second order method to solve (2) – and hence to approximately solve (1).

The main source of inexactness is due to the sparsification (ξki,j ’s). The bidirectional

communication (ξki,j = zki · zkj) is appealing as it preserves symmetry in the under-

lying weight matrix, which is known to be a beneficial theoretical property. On the

other hand, the bidirectional sparsification is also wasteful in that a node ignores

the received message from a neighbor if its own transmission to the same neighbor

is not successful (see formula (9)). With respect to the choice first versus second

order method (the choice of Mk
i), the second order choice is computationally more

expensive per iteration due to the Hessian computations; on the other hand, it can

improve convergence speed iteration-wise.

The pseudocode for the general algorithmic framework is in Algorithm 1. A sum-

mary of all the considered methods within the framework of Algorithm 1 is given

in Table 1.

Algorithm 1 Pseudocode for the proposed algorithmic framework
Require: at each node i: α > 0; {Wij}j∈Ωi

; {pk}k≥0

repeat
Each node i generates zki and computes:

Mk
i and ξki,j , j ∈ Ωi

if ξki,j = 1 then
Each node i receives xkj from node j, j ∈ Ωi

end if
Each node i updates xki via (9) – (10)

until a stopping criterion is met

2.3 Convergence analysis

In this section, a convergence analysis of the algorithm variant with unidirectional

communications is carried out (See ahead Method FUI in Section 2.6). More pre-

cisely, in this section we assume the following choice of Mk
i and ξkij :

Mk
i = I, ξkij = zkj . (12)

Fodor et al. Page 10 of 40

To the best of our knowledge, except for a different estimation setting [17], this

algorithm has not been studied before. The following assumptions are needed.

Assumption 2.1 (a) Each function fi : IRs → IR, i = 1, ..., n is twice differen-

tiable, strongly convex with strong convexity modulus µ > 0, and it has Lipschitz

continuous gradient with the constant L, L ≥ µ.

(b) The graph G is undirected, connected and simple.

(c) The step size α in (2) satisfies α < min{ 1
2L ,

1+λn(W)
L }.

By Assumption 2.1, Ψ is strongly convex with modulus µ. Moreover, the gradient

is Lipschitz continuous with the constant

LΨ := L+
1− λn(W)

α
. (13)

Notice that Assumption 2.1 (c) implies that α < (1+λn(W))/L, which is equivalent

to

α <
2

LΨ
. (14)

Let xk = ((xk1)T , ..., (xkn)T)T . We have the following convergence result for the

first order method with unidirectional communications.

Theorem 2.1 Let {xk} be a sequence generated by Algorithm 1, method FUI, and

Assumption 2.1 holds. Then, the following results hold:

(a) Assume that the sequence {pk} converges to one as k →∞. Then, the sequence

of iterates {xk} converges to x• in the expected error norm, i.e., there holds:

lim
k→∞

E[‖xk − x•‖] = 0. (15)

(b) Assume that the sequence {pk} converges to one geometrically as k →∞, i.e.,

pk = 1− δk+1, for all k, Then, there holds:

E[‖xk − x•‖] = O(γk), (16)

where γ < 1 is a positive constant.

Fodor et al. Page 11 of 40

(c) Assume that pk ≥ pmin for all k and for some pmin ∈ (0, 1) and that the

iterative sequence {xk} is uniformly bounded, i.e., there exists a constant C1 > 0

such that E[‖xk‖] ≤ C1, for all k. Then, there holds:

E[‖xk − x•‖] ≤ θk‖x0 − x•‖+ (1− pmin)2 C2, (17)

where C2 = 2nC1

αµ and θ ∈ (0, 1).

Theorem 2.1 demonstrates that the Algorithm 1 with sparsified and unidirectional

communications converges. More precisely, as long as the sequence pk converges to

one, even arbitrarily slowly’, the sequence {xk} converges to the solution of (2) in

the expected error norm sense. When the convergence of pk to one is geometric, we

have that xk converges geometrically, i.e., at a linear rate. Finally, when pk stays

bounded away from one, under the additional assumption that the sequence {xk} is

uniformly bounded, the algorithm converges to a neighbourhood of the solution to

(2), where the neighbourhood size is controlled by parameter pmin (the closer pmin

to one, the smaller the error). This complements the existing results in [12] which

concerns bidirectional communications.

Next, the proof of Theorem 2.1 will be carried out. To avoid notation clutter, let

the dimension of the original problem (1) be s = 1. The proof relies on the fact that

the method can be written as an inexact gradient method for minimization of Ψ.

More specifically, it can be shown that the algorithm determined by (9) – (12) is

equivalent to the following:

xk+1 = xk − α[∇Ψ(xk) + ek], (18)

where ek = (ek1 , ..., e
k
n)T is given by

eki =
1

α

∑
j∈Ωi

Wij(z
k
j − 1)(xki − xkj) (19)

and ek ∈Rn. Indeed, in view of (12), method (9)-(10) can be represented as

xk+1 = xk − α∇F (xk)− (I −Wk)xk, (20)

Fodor et al. Page 12 of 40

where

F : IRn → IR, F (x) =

n∑
i=1

fi(xi), (21)

[Wk]ij =

Wijz

k
j , if {i, j} ∈ E, i 6= j,

0, if {i, j} /∈ E, i 6= j,

1−
∑
l 6=i[Wk]il, if i = j.

(22)

Thus,

xk+1 = xk − α(∇F (xk) +
1

α
(I −Wk)xk ± 1

α
(I −W)xk)

= xk − α(∇Ψ(xk) +
1

α
((I −Wk)xk − (I −W)xk)).

(23)

Therefore, for each component i, the error is determined by

eki =
1

α
(
∑
j∈Ωi

Wijz
k
j (xki − xkj)−

∑
j∈Ωi

Wij(x
k
i − xkj)), (24)

and (19) follows.

Next we state and prove an important result. Here and throughout the paper, || · ||

denotes the vector 2-norm and the corresponding matrix norm.

Lemma 2.2 Suppose that Assumption 2.1 holds. Then for each k we have

||xk − x•|| ≤ θk||x0 − x•||+ α

k∑
t=1

θk−t||et−1||, (25)

where x0 is the initial iterate and θ = max{1− αµ, αLΨ − 1} < 1.

Proof. Using (18) and the fact that ∇Ψ(x•) = 0 we obtain

xk+1 − x• = xk − x• − αek − α(∇Ψ(xk)−∇Ψ(x•)). (26)

Further, there exists a symmetric positive definite matrix Bk such that

∇Ψ(xk)−∇Ψ(x•) = Bk(xk − x•) (27)

and its spectrum belongs to [µ,LΨ]. Thus, we obtain

‖I − αBk‖ ≤ max{1− αµ, αLΨ − 1} := θ. (28)

Fodor et al. Page 13 of 40

Notice that the Assumption 2.1 (c) implies that θ < 1 since (14) holds and L ≥ µ.

Moreover, putting together (26) - (28), we obtain

‖xk+1 − x•‖ ≤ θ‖xk − x•‖+ α‖ek‖ (29)

and applying the induction argument we obtain the desired result. �

To complete the proof of parts (a) and (b) of Theorem 2.1, we need to derive an

upper bound for ||ek|| in the expected-norm sense. In order to do so, it is needed to

establish the boundedness of iterates xk in the expected norm sense.

Lemma 2.3 Let Assumption 2.1 hold, and consider the setting of Theorem 2.1

(a). Then, there holds E[||xk||] ≤ Cx for all k, where Cx is a positive constant.

Proof. The update rule (20) can be written equivalently as follows

xk+1 = Wkx
k − α∇F (xk). (30)

Introduce W̃k = Wk −W , and rewrite (30) as

xk+1 = Wxk − α∇F (xk) + W̃kx
k. (31)

Denote by x′ the minimizer of F . Then, by the Mean Value Theorem, there holds

∇F (xk)−∇F (x′) =
[∫ 1

0

∇2F (x′ + t(xk − x′))dt
]

︸ ︷︷ ︸
Hk

(xk − x′)

= Hk(xk − x′) = Hkx
k −Hkx

′,

(32)

and

xk+1 = (W − αHk)xk + W̃kx
k + αHkx

′ − α∇F (x′). (33)

Note that ||Hk|| ≤ L, by Assumption 2.1. Also, note that ||W − αHk|| ≤ 1− αµ,

for α ≤ 1
2L . Therefore, the following can be stated

Fodor et al. Page 14 of 40

||xk+1|| ≤ (1− αµ)||xk||+ α(L||x′||+ ||∇F (x′)||)︸ ︷︷ ︸
C′

+ ||W̃k|| · ||xk||

= (1− αµ)||xk||+ C ′ + ||W̃k|| · ||xk||.

(34)

Next, ||W̃k|| will be upper bounded. Note that

||W̃k|| ≤
√
n||W̃k||1 ≤

√
n

n∑
i=1

n∑
j=1

|[W̃k]ij |. (35)

Therefore,

||W̃k|| ≤ 2
√
n

n∑
i=1

n∑
j=1

Wij(1− zkj). (36)

Taking expectation and using the fact that E[zkj] = pk, for all k, it can be con-

cluded that

E[||W̃k||] ≤ C̃(1− pk) (37)

for some positive constant C̃. Now, using independence of W̃k and xk, the following

can be obtained from (34),

E[||xk+1||] ≤ (1− αµ)E[||xk||] + C ′ + (1− pk+1)C̃E[||xk||]

= (1− αµ+ C̃(1− pk+1))E[||xk||] + C ′.

(38)

As pk → 1, i.e., (1− pk)→ 0, it is clear that, for sufficiently large k, there holds

E[||xk+1||] ≤ (1− 1

2
αµ)E[||xk||] + C ′. (39)

This implies that there exists a constant Cx such that E[||xk||] ≤ Cx, for all k =

0, 1, �

Applying Lemma 2.3, the following result is obtained.

Fodor et al. Page 15 of 40

Lemma 2.4 Suppose that the Assumption 2.1 holds and E(‖xk‖) ≤ C1 for all k

and some constant C1. Then the error sequence {‖ek‖} satisfies

E[||ek||] ≤ (1− pk)Ce, (40)

for the constant Ce = 2n
α (1− pmin)C1.

Proof. The proof follows straightforwardly from (19) and Lemma 2.3. Consider

(24). Then, |eki | can be upper bounded as follows:

|eki | ≤
1

α

∑
j∈Ωi

wij |1− zkj |2‖xk‖. (41)

This yields:

‖ek‖ ≤ ‖ek‖1 =

n∑
i=1

2

α

∑
j∈Ωi

wij |1− zkj |‖xk‖. (42)

Taking expectation while using independence of zkj and xk, and using E(‖xk‖) ≤

C1;
∑
j∈Ωi

≤ 1; and E(|1− zkj |) = 1− pk, the result follows. �

Now, Theorem 2.1 can be proved as follows.

Proof of Theorem 2.1. We first prove part (a). Taking expectation in Lemma 2.2,

and using Lemma 2.4, we get

E[||xk − x•||] ≤ θk||x0 − x•||+ α

k∑
t=1

θk−tE[||et−1||]

≤ θk||x0 − x•||+ α

k∑
t=1

θk−t · Ce(1− pt−1).

(43)

Next, applying Lemma 3.1 in [31], it follows that

E[‖xk − x•‖]→ 0, (44)

as we wanted to prove.

Let us now consider the part (b). Note that, in this case, we have that 1 − pk =

δk+1, for all k. Specializing the bound in (43) to this choice of pk, the following

holds

Fodor et al. Page 16 of 40

E[||xk − x•||] ≤ θk||x0 − x•||+ αCe

k∑
t=1

θk−tδt, (45)

and using the fact that sk :=
∑k
t=1 θ

k−tδt converges to zero R-linearly (see Lemma

II.1 from [12]), we obtain the result.

Finally, we prove part (c). Here, we upper bound the term (1− pt−1) in (43) with

(1− pmin). For this case we obtain

E[||xk − x•||] ≤ θk||x0 − x•||

+ (1− pmin)Ce
1

µ
,

(46)

which completes the proof of part (c).�

2.4 Implementation and infrastructure

A parallel implementation of Algorithm 1 was developed, using MPI [19]. The test-

ing was performed on the AXIOM computing facility consisting of 16 nodes (8 x

Intel i7 5820k 3.3GHz and 8 x Intel i7 8700 3.2GHz CPU - 96 cores and 16GB

DDR4 RAM/node) interconnected by a 10 Gbps network.

Network configurations of grid and regular graphs are taken into consideration for

graph G. A set of tests is conducted for the same data set with the same number

of nodes for both types of graphs - d-regular graphs and grid.

The input data for the algorithm are read from binary files by the master process.

The master process then scatters the data to other processes in equal pieces. If the

data size is not divisible by the number of processes, then the remaining data is

assigned to the master process. Therefore, the data are in the memory during com-

putation and there is no Input/Output (I/O) operation performed while executing

the algorithm.

The communication between the nodes is realized by creating a set of communi-

cators – one for each node. The i-th communicator contains the i-th node as the

master, and the nodes that are its neighbors. When sparsifying the communication

between the nodes, the communicators should be recreated across the iterations, in

order to ensure that only active nodes can send their results, see [11]. When using

bidirectional communications, an active node is being included into its own com-

municator and into the communicators of its active neighbours. An inactive node is

Fodor et al. Page 17 of 40

not included in the communicators of its neighbors, and also does not need its own

communicator at the current iteration. In the case of unidirectional communication,

an inactive node is included in its own communicator, but not in the communicators

of its neighbors.

The data distribution process does not consume a large amount of the execution

time. For example, considering a data set that contains a matrix of 5000 × 6000

elements and a vector of 5000 elements, the initial setup, including reading and

scattering the data, as well as the creation of the communicators, takes about 0.3s

per process. When compared to the overall run-time of the tests it represents a

relatively small percentage. Regarding the case with the lowest execution time this

percentage is 5%. On the other hand it is only 0.0007%, in the case with the highest

execution time.

Regarding the stopping criteria, we let the algorithms run until ||∇Ψ(xk)|| ≤ ε,

where ε = 0.01. Note that the gradient ∇Ψ(xk) is not computable by any node in

a distributed graph G in general. In our implementation ∇Ψ(xk) is maintained by

the master node. While not being a realistic stopping criterion in a fully distributed

setting, it allows us to adequately compare different algorithmic strategies,

The implementation relies on efficient LAPACK [32] and BLAS [33] linear algebra

operations, applied on the nodes, while performing local calculations.

2.5 Simulation setup

The tests were performed on two types of graphs: d-regular and grid graphs with

different number of nodes. We constructed the d-regular graphs in the following

way. For 8-regular graphs, for each number of nodes n, we construct an 8-regular

graph starting from a ring graph with nodes {1, 2, ..., n} and then adding to each

node i the links to the nodes i− 4, i− 3, i− 2, and i+ 2, i+ 3, and i+ 4, where the

subtractions and additions here are modulo n. The same principle was also used for

4-regular and 16-regular graphs used in this paper.

The tests are performed for the logistic loss functions given by

fi(x) =

J∑
j=1

Jlogis(bij(x>1 aij + x0)) +
τ

n
||x||2. (47)

Fodor et al. Page 18 of 40

Here, x = (xT1 , x0) ∈ Rs−1 × R represents the optimization variable and τ is the

penalty parameter. The input values are ai ∈ Rs−1 and bi ∈ R.

The testing is performed on different versions of Algorithm 1 with sparsified com-

munication, for both bidirectional and unidirectional communication strategies (see

ahead Table 1).

The input data are represented as an r× (s−1) sized matrix of features, and an r

sized vector of labels. Both the matrix and the vector are then divided into n parts

corresponding to the nodes as explained in the previous section. We then vary n

(and the corresponding graph G) and investigate the performance of Algorithm 1.

The following data sets were used for testing.

• The Conll data set [34, 35], that concerns language-independent named entity

recognition. It has r = 220663 and s = 20 as the input data sizes. This data set

is only used for comparing the performance of the algorithm between regular

and grid graphs.

• The Gisette data set [36, 37, 38], known as a handwritten digit recognition

problem. Its input data sizes are r = 6000 and s = 5001. The data set is used

for testing the different alternatives of the algorithm as well as for determining

the most suitable value of d for d-regular graphs.

• The YearPredictionMSD train data set is used to predict the release year of a

song from audio features [39, 40, 37]. Here r and s are r = 463715 and s = 91.

The data set is also used for testing the different alternatives of the algorithm.

• The MNIST data set represents a database of handwritten digits [41, 42], with

input data sizes r = 60000 and s = 785. This data set is also used for testing

the different alternatives of the algorithm.

• The Relative location of CT slices on axial axis data set (referred to as CT

data set further on), containing features extracted from CT images [43, 37, 44].

The data sizes are r = 53500 and s = 386. This data set is also used for testing

the different alternatives of the algorithm.

• The p53 Mutants data set [45, 37, 46, 47, 48] (referred to as p53 data set

further on) is used for modelling mutant p53 transcriptional activity (active

or inactive) based on data extracted from biophysical simulations. The data

set sizes are r = 31159 and s = 5410. The data set is also used for testing the

different alternatives of the algorithm.

Fodor et al. Page 19 of 40

The parameters for Algorithm 1 are set according to the experimentally obtained

conclusions. The value α can be defined as α = 1
KL , where L is the Lipschitz gradient

constant and K ∈ [10, 100], as proposed in [5]. The value of α can be fine-tuned

according to the data set used for the tests. Increasing this value can lead to faster

convergence. However, if the value is too large, then the algorithm might converge

to a coarse solution neighbourhood. The values of α used for the mentioned 5 data

sets are obtained experimentally and are listed below:

• α = 0.0001 for the Gisette data set;

• α = 0.001 for the p53 data set;

• α = 0.1 for the YearPredictionMSD, MNIST, Conll and CT data sets.

A larger value of α = 0.1 can be applied in the cases of relatively small number of

features, compared to the number of instances (i.e. rows of data). Here, in all the 3

cases for α = 0.1, the number of features is smaller than 1000.

The probability of communication pk is set as follows: pk = 1 − 0.5k, where k is

the iteration counter, or as pk = (k+1)−1. In other words, we consider an increasing

and a decreasing sequence for the pk’s. The decreasing sequence for the probability

is of interest for analysis, as it gradually reduces the communication time over

the iterations. This might require more iterations as the communication links are

sparser. The increasing sequence for the probability may, on the other hand require

less iterations, but those iterations are becoming increasingly more time consuming

as the number of communication lines increases. It is of interest to investigate both

possibilities.

The local second order information-capturing matrix Mk
i can be included to the

computation as Mk
i = Dk

i , where Dk
i is defined as in (11), or it can be replaced

by an identity matrix Mk
i = I. Both possibilities are of interest for testing as it is

of interest to establish empirically if the additional computation required to solve

the system of linear equations in (9) pays off. With Mk
i = I we are performing

(probably larger) number of cheaper iterations.

2.6 Description of the methods

Table 1 lists the different methods as alternatives of Algorithm 1, considering the so-

lution update, defined in (9), (10) and (11). The naming convention for the methods

was already described in the introductory section (see page 2).

Fodor et al. Page 20 of 40

Table 1 Different alternatives of Algorithm 1 [2]

Method Type Mk
i ξki,j pk Relevant reference

FBI First order I zki · zkj pk = 1− 0.5k [13]

FBD First order I zki · zkj pk = (k + 1)−1 [16]

FUI First order I zkj pk = 1− 0.5k this paper

FUD First order I zkj pk = (k + 1)−1 [17]

FBC First order I 1 1 [14]

SBC Second order Dk
i 1 1 [5]

SBI Second order Dk
i zki · zkj pk = 1− 0.5k [12]

SBD Second order Dk
i zki · zkj pk = (k + 1)−1 [12, 16]

SUI Second order Dk
i zkj pk = 1− 0.5k this paper

SUD Second order Dk
i zkj pk = (k + 1)−1 this paper

Method SBC represents the initial version of the algorithm, used as the benchmark

here, where Method FBC is its first order equivalent. These methods does not utilize

any communication sparsification.

Note that Methods FBI, FBD, FUI, FUD, SBI, SBD, SUI, SUD use sparsification

with either increasing or decreasing communication probabilities pk. The rationale

for choosing a linearly increasing pk and a sub-linearly decreasing pk is adopted

according to insights available in the literature; see, e.g., [12], [17]. While it is

possible to consider other choices and fine-tuning of the sequence pk, this topic is

outside of the paper’s scope. Our primary aim is to investigate the feasibility and

performance of increasing and of decreasing sequence of pk’s relative to the always-

communicating strategy (Method SBC and Method FBC), as well as relative to the

unidirectional versus bidirectional communication, and the first order versus second

order methods.

The convergence analysis for the novel method with unidirectional communication

Method FUI is presented here, where Methods SUI and SUD, that also rely on

unidirectional communication, remain open for theoretical analysis. The Methods

FBI, FBD, SBI and SBD, using bidirectional communication are already analysed

in the literature (see [12, 13, 14, 15, 16, 17]).

[2]The considered communication probability in [5] is 1. References [12, 13], in ad-

dition to communication sparsification, also consider sparsification in search direc-

tions (of second and first order, respectively). However, the analysis therein can

be extended to also cover communication sparsification-only. Also, as noted above,

reference [17] considers a distributed estimation setting, but we also include it in

Table 1 for completeness.

Fodor et al. Page 21 of 40

Figure 1 Comparing the execution time using regular and grid graphs, CT data set, for Method

SBC

The listed methods and data sets described before are used to derive some empiri-

cal conclusions. As expected, the analysis of obtained results provides some insights

about the optimal number of nodes for different setups. Also, the advantages of

particular methods are clearly visible and one can estimate the usefulness of spar-

sification based on these results, keeping in mind that the tests might be influenced

by the selection of data sets. Nevertheless, we believe that the obtained insights are

useful.

3 Results and Discussion

We now present the experimental results. First, we investigate the behaviour of

the Algorithm 1 for two types of graphs - d-regular graphs and grid graphs. After

that, we perform a sequence of tests using all the methods and the data sets stated

above on d-regular graphs. These test are used to gain insight into effectiveness

of different sparsification alternatives and differences between the first and second

order methods in the framework of Algorithm 1.

3.1 Analysis of different graph types

The tests on different graph types are performed using the data sets Conll and CT

with Method SBC. Fig. 1 and 2 represent a performance comparison between the

executions of the algorithm using different d-regular and grid graphs with Method

SBC on CT and Conll data set, respectively.

Fodor et al. Page 22 of 40

Figure 2 Comparing the execution time using regular and grid graphs, Conll data set, for Method

SBC

Observing Fig. 1, it can be clearly concluded that d-regular graphs perform better

than grid graphs, which becomes more evident with increasing number of nodes.

However, d-regular graphs perform similarly on this data set for different values of

d. The execution times for d = 4 and d = 8 are almost the same here. Therefore, it

is important to examine the performance for different graphs on another data set.

From Fig. 2, it is evident that the execution time decreases until the optimal number

of nodes is reached, and starts to grow after that point. The same trend is present

in Fig. 1, but the optimal number of nodes is higher here. Fig. 2 clearly shows the

difference between d-regular and grid graphs. It also identifies 8-regular graphs as

the most suitable choice for different number of nodes. Therefore, in the rest of the

paper we consider 8-regular graphs, based on the derived empirical conclusions. For

the cases, where the number of nodes n is smaller than 8, the value d = n − 1 is

used, leading to all-to-all graphs for n < 8.

3.2 Analysis of scaling properties

A sequence of tests with different number of computational nodes n is performed

next to give an insight into the most suitable number of nodes for the data sets.

Fig. 3 and Fig. 4 represent examples of the scaling properties of the algorithm, for

Method FBI on the YearPredictionMSD data set and forMethod FUI on the MNIST

data set, respectively. Here, when varying n we keep the graph structure to the 8-

regular graph. The optimal number of nodes can be identified in both cases. These

Fodor et al. Page 23 of 40

Figure 3 Scaling properties of Method FBI, for the YearPredictionMSD data set

Figure 4 Scaling properties of Method FUI, for the MNIST data set

graphs obviously show the usual expected trend where the execution time decreases

until the optimal number of nodes is reached, while after that further enhancement

in number of nodes leads to time increase. Intuitively, the larger number of workers

n means that the same overall workload is parallelized over more workers, leading

to time reduction. However, the beneficial effect is lost for sufficiently large n when

the communication overhead time starts to dominate. Interestingly, the optimal

number of nodes is mostly constant for the first order methods as well as for the

second order methods, irrespective of the data set.

Table 2 shows the percentages of successful tests for all methods, i.e., of tests that

satisfy the stopping criteria ‖Φ(xk)‖ < 0.01 within the maximal execution time of

15 hours. In the failed tests the iterations are also approaching the solution, but

Fodor et al. Page 24 of 40

Table 2 Percentages of successful test with respect to the overall number of tests

Method Percentage

FBI 99.1

FBD 100

FUI 100

FUD 100

FBC 100

SBC 98.3

SBI 84.1

SBD 95.8

SUI 95.8

SUD 35

Table 3 Execution time for different variations of Algorithm 1, for 20 nodes, p53 data set

Method Execution time (s)

FBI 4.64

FBD 1.89

FUI 6.04

FUD 3.56

FBC 3.16

SBC 9661.42

SBI 43126.71

SBD 22683.84

SUI 22029.20

SUD 9651.77

they did not reach it within the given time limit. The results indicate that the first

order methods are better choice in this environment as Method SUD is the one

with the smallest number of successful tests. This fact can be easily explained as

the method computes the expensive second order direction and the communication

probability decreases while the communications are unidirectional. All this leads to

the lack of communication epochs needed to ensure convergence during the time

consuming iterations.

3.3 Analysis and comparison of execution time for the introduced methods

Table 3 lists the execution time for each of the 10 methods, for the p53 data set and

20 nodes. The maximal execution time, i.e. the time for the slowest process, is taken

into account for all the cases. As this amount of time can vary on different processes,

all processes are waiting for the slowest one in the communicator in order to suc-

cessfully exchange the data. All first order methods introduce significant execution

time reduction. In this case, Method FBD has the best performance. When compar-

ing Method FBC to Method SBC, it is clear that the computation of second order

Fodor et al. Page 25 of 40

Table 4 Execution time for different variations of Algorithm 1, for 12 nodes, MNIST data set

Method Execution time (s)

FBI 336.31

FBD 118.16

FUI 353.31

FUD 342.59

FBC 161.33

SBC 19045.00

SBI 3124.56

SBD 11853.99

SUI 12259.79

SUD N/A

direction dki significantly increases the execution time. Reducing the amount of com-

munication across the iterations with Method FBD leads to even faster execution

here. However, this behaviour may be highly dependent on the nature of the data

set. The algorithms for p53 data set converge fast, within relatively small number

of iterations. An equally important aspect here is also the fact that Method FUD,

using unidirectional communication and decreasing communication probability per-

forms better than Method FBI, with bidirectional and increasing communication.

Observing the execution times for the second order methods proves that introduc-

ing communication sparsification mostly does not pay off as the computation of the

second order direction is time consuming.

As the nature of the data can highly influence the results, let us consider another

example. Table 4 also contains the execution time for each of the 10 algorithms

with 12 nodes for the MNIST data set (Method SUD does not converge for the

given execution time limit). The behaviour of this data set differs from the p53

data set, observed in Table 3. For example, for 12 nodes Method FBD requires 4795

iterations to converge for the MNIST data set. When considering the p53 data set

for the same setup with 12 nodes, it converges after only 3 iterations. However, the

conclusions based on Table 4 are very similar to those from Table 3. In fact, it seems

that the properties of particular methods are similar as long as the data sets are of

similar volume.

Fig. 5 and Fig. 6 represent the execution times for first order methods with com-

munication sparsification, i.e.Methods FBI, FBD, FUI, FUD for the CT and Gisette

data set, respectively. From Fig. 5, it can be concluded that the optimal number of

nodes for Methods FBI, FUI and FUD, is the same value n = 6. However, Method

Fodor et al. Page 26 of 40

FBI

FUI

FUD

FBD

Figure 5 Execution times for the first order Methods FBI, FBD, FUI, FUD on CT data set

Figure 6 Execution times for the first order Methods FBI, FBD, FUI, FUD on Gisette data set

Figure 7 Average cost reduction compared to the worst relevant tested method, Methods FBI,

FBD, FUI, FUD

FBD performs differently. It shows lower execution time values generally, and its

optimal number of nodes is n = 10. Similar conclusions could be made based on Fig.

Fodor et al. Page 27 of 40

Figure 8 Comparison between using different values of pk ≤ 1, first order method, unidirectional

communication, Conll data set

6. Here, the optimal number of nodes for Methods FBI, FUI and FUD is again the

same, n = 8. Method FBD also performs differently here, with lower execution time

values, compared to other first order methods. The optimal number of nodes for

the second order methods tends to be a larger number. This is a direct consequence

of the fact that the time consuming computations for the direction are faster with

smaller portions of data on a node.

3.4 Analysis of the effects of communication sparsification

Fig. 7 represents the average cost reduction for different number of nodes, compared

to the method of the weakest performances for each data set, where the average is

taken across different data sets. These tests were performed for first order methods

with communication sparsification, i.e.,Methods FBI, FBD, FUI and FUD. For each

data set, we divide the execution time for a given number of nodes with the worst

execution time on the same data set, and compute the average value over methods

for all the data sets, for different numbers on nodes. The conclusions based on this

figure are consistent with the ones in Fig. 5 and Fig. 6. Method FBD has the best

performance properties. Also, for each method, an optimal number of nodes can be

identified.

An evaluation of the algorithm execution with different sequences {pk} that stay

bounded away from one as k grows large is presented in Fig. 8. The unidirectional,

first order method was tested on the Conll data set, using α = 0.1. We observed

the value of Ψ as in (2) during the execution of the algorithm. The value of Ψ

decreases over time for all choices of pk, as expected. The zoomed part of the figure

is included in order to present the last few seconds of the execution before reaching

Fodor et al. Page 28 of 40

the minimal values of Ψ. Fig. 8 shows that for different values of pk the iterative

sequences do not converge to the same value, but also that for the constant pk

choices the obtained limiting values are close.

Fig. 9 - 16 displays the performance profile [49] for the described methods. Perfor-

mance profiles enable evaluating the performance of different solvers running on a

large number of tests. We consider the execution time as the comparison criterion.

To compute the performance profile let us denote the execution time for a method

Mi and test problem j by T ji . Then, given the value on the x-axis β ≥ 1, the method

Mi obtains a point for the performance on test j if there holds T ji ≤ βT
j
min, where

T jmin is the smallest execution time of all tested methods considering that problem,

i.e., T jmin = mini T
j
i . The performance profile for a given β of the method Mi is

then calculated as the number of points divided by the number of the performed

tests. For example, on the y-axis where the parameter β = 1, we obtain the statis-

tical probability that the method is the best one among all the tested methods in

terms of the execution time. It is noticeable that the value range on the x axis is

large, on these figures. This is due to the fact that there are very large differences

in execution times, ranging from a few seconds to values larger that 18000 seconds.

Fig. 9 shows the performance profile for all the tests on all data sets for the 10

methods, where Fig. 10 and Fig. 11 display the performance profile for first and sec-

ond order methods, respectively. Fig. 9 and Fig. 10 identify Method FBD as the best

choice within the framework for Algorithm 1. Observing the methods without spar-

sification, i.e. Methods SBC and FBC, Fig. 9 indicates that the first order method,

Method FBC, performs better than the second order method, Method SBC. The

same is true if we consider the methods with sparsification. Considering methods

with decreasing communication probability and using bidirectional communication,

Method FBD performs clearly much better than Method SBD. When comparing the

other first and second order methods using the same sparsification (Method FBI and

Method SBI, Method FUI and Method SUI, Method FUD and Method SUD), first or-

der methods performs better in 61% of test cases. Also, the convergence rate for first

order methods is higher (See Table 2). It can also be concluded that the sparsifica-

tion of second order methods gives no advantages probably because the computation

of the second order direction is time consuming. Furthermore, with communication

sparsification the second order information is incorporated only partially and hence

Fodor et al. Page 29 of 40

it does not provide enough advantage to compensate for computational load. On

the other hand, communication sparsification can be beneficial for the first order

methods, as evidenced by Method FBD. Generally, the best performing method is a

first order method using the appropriate sparsification (bidirectional with decreas-

ing communication probability), Method FBD.

Fig. 12 represents the performance profile for the tests on the Gisette data set.

Here, Method FBD can be also identified as the most suitable, followed by Method

FBC, and later by Method FUI, Method FBI and Method FUD, where the second

order methods show poorer performance profiles. The dimension s for this data set

is a large value s = 5001, resulting with time consuming calculations in the sec-

ond order methods as the Hessian approximation matrices are of large dimensions.

Therefore, the first order methods perform better than second order methods. Fig.

14 displays the performance profile for the tests on the p53 data set. The conclusions

for this data set, are very similar to those for Fig. 12. Similarly, the dimension s is

also a larger value here, s = 5410, so the first order methods also performs better

than the second order methods and again, Method FBD represents the best choice.

Similar conclusions are emerging from Fig. 13, that represents the performance pro-

file for the MNIST data set. The dimension s = 785 is around 6 times smaller here,

compared to Gisette and p53 data sets, but the dimension r = 60000 is 10 times

larger than for Gisette, and 2 times larger than for p53. This results with similar

load when distributing the data and calculation of the second order direction is too

costly again.

The performance profile for the CT data set is displayed on Fig. 15. Here, the

second order method Method SUI dominates, as the data set dimension s = 386

enables faster calculations of the second order direction. Comparison between the

first and second order methods with the same communication sparsification yields

the following conclusion - with the increasing communication probability the second

order methods (Methods SBI and SUI) perform better (for both unidirectional and

bidirectional communication). With the decreasing communication probability the

first order methods (Methods FBD and FUD) give better results.

Fig. 16 represents the performance profile for the YearPredictionMSD data set.

Here, the dimension s = 91 is the smallest among the observed data sets. Therefore

the second order methods performs better. But the sparsification does not improve

Fodor et al. Page 30 of 40

FBI
FBD

FUD

FBC
SBC

SBI

SBD

SUI
SUD

FUI

Figure 9 Performance profile for the all 10 methods, based on all the performed tests

Figure 10 Performance profile for first order Methods FBI, FBD, FUI, FUD, FBC, for all

performed tests

the first order nor the second order methods for these data. This fact might be

explained by the large dimension r = 463715, and therefore each node gets a large

subset. Sparsifying the communication means ignoring a large portion of data on

idle nodes, even if there is only one idle node. Thus, the gradient and Hessian are

poorly approximated with idling.

3.5 Comparison of Algorithm 1 to ADMM

Fodor et al. Page 31 of 40

Figure 11 Performance profile for second order Methods SBC, SBI, SBD, SUI, SUD, for all

performed tests

Figure 12 Performance profile for all 10 methods, for the tests performed on the Gisette data set

Table 5 Comparison of the second order Methods SBC and SBI with ADMM

Method Execution time

ADMM 4.487

Method SBC 0.247

Method SBI 0.226

As problem (1) can be solved using the Alternating Direction Method of Multi-

pliers (ADMM) [11], we compared Algorithm 1 to an ADMM implementation for

logistic regression [50], on the Conll data set. More precisely, the method in [11]

Fodor et al. Page 32 of 40

MNIST dataset

Figure 13 Performance profile for all 10 methods, for the tests performed on the MNIST data set

Figure 14 Performance profile for all 10 methods, for the tests performed on the p53 data set

solves problem (1) assuming the presence of a central node that communicates to

all other nodes in the network. Henceforth, we adapt our algorithmic framework to

the latter setting by letting the underlying network G to be fully connected and

by setting the matrix W to have all its entries equal 1/n. The comparison between

the second order Methods SBC and SBI and ADMM is shown in Table 5. We cal-

culate the value of Φk = 1
n

∑n
i=1 f(xki), i.e., the average global cost in (1) averaged

across all nodes’ estimates, at the end of each iteration and we also measure the

execution time. The second column in Table 5 represents the time required to sat-

Fodor et al. Page 33 of 40

Figure 15 Performance profile for all 10 methods, for the tests performed on the CT data set

Figure 16 Performance profile for all 10 methods, for the tests perfomed on the

YearPredictionMSD data set

isfy the condition Φk−f∗
f∗ < 0.1. Here, f? is numerically evaluated by ADMM. The

rationale for this comparison is the following. All the methods converge to a neigh-

borhood of the solution to (1), while ADMM converges to the exact solution of

(1). Therefore, it is meaningful to compare the times that each method needs to

reach a certain accuracy level, measured with respect to the cost function in (1).

We tested all the methods and finally included the results for the best performing

second order methods, i.e. Methods SBC and SBI. More precisely, Method SBI (a

Fodor et al. Page 34 of 40

Figure 17 The comparison between ADMM and Method SBI on Conll data set

second order method with sparsification) is here the best performing method across

all methods, while Method SBC is taken as the baseline (second order) method

without sparsification. The fact that second order methods perform better than

first order methods here is consistent with our previous conclusion that for smaller

data sets, second order methods perform better than first order methods. It is clear

that our second order methods converge faster than ADMM. Fig. 17 shows the

comparison between Method SBI and ADMM. Method SBI takes a larger number of

significantly faster iterations, compared to ADMM, and hence results with shorter

execution time needed to approach Φ∗.

4 Conclusions

In this paper, we consider a class of first and second order distributed optimiza-

tion methods which utilize different versions of the communication sparsification

strategies. While the framework subsumes several existing recent methods, we also

introduce a novel method with unidirectional communication and give its conver-

gence analysis.

The paper provides a comprehensive empirical evaluation of various communica-

tion sparsification strategies on a HPC cluster. The tests of the algorithms without

communication sparsification as well as with sparsified communications for different

number of nodes [12, 13] are described in this paper. The overall execution time is

measured for different data sets in order to identify the most suitable methods for

different setups.

The tests were performed on an MPI cluster with a usual configuration, where

each cluster node contains one processor with 6 CPU cores, and the nodes are con-

Fodor et al. Page 35 of 40

nected by an Ethernet network with speed of 10Gbps. Therefore, we do not expect

variations in the behavior of the tested programs on other MPI clusters. On the

other hand, execution and results may depend on the speed of the cores themselves

and on the speed of the network. Given that we used a cluster with eighth-generation

Core i7 cores, a performance jump can be expected if newer-generation CPUs and /

or more powerful Xeon processors were used. This effect would refer to the shorten-

ing of the absolute execution time per core, but overall performance characteristics

would remain the same. The scaling properties would still be present, as well as the

preferences of certain methods for the specified scenarios regarding the data. The

factor that can mostly affect the execution of the program is the speed of the net-

work. In the case of clusters with higher network speeds, the general expectation is

to achieve good program performance with more nodes than in our experiments. In

these cases, communication saturation, which we have shown to be present in this

type of algorithm implementations, could only occur with more nodes involved than

in our experiments (see Fig. 3 and 4, as well as Fig. 5 and 6 and the corresponding

descriptions in Sections 3.2 and 3.3 respectively, that show these results for our ex-

periments). In other words, increasing the network speed would be a crucial factor

that would increase the number of nodes on which the proposed implementations

can be executed efficiently. This could result in different values for the optimal

number of cores in different setups, compared to the results on Fig. 3, 4, 5 and 6.

The presented analysis also shows the expected scaling properties of the developed

methods, starting from the differences in the optimal number of nodes for partic-

ular data set in consideration. The performance profile is used for the comparison

between the proposed methods. It clearly identified that the first order methods

perform much better with larger volumes of data, where for smaller data sets the

second order methods are more suitable. For data sets with larger number of features

(103 or more in our tests), the portions of data that the processes work on demand

a significant amount of time to calculate the second order updates. If the number

of samples is also larger (larger than 103 for our tests), it additionally burdens the

execution. This is the reason why the first order methods perform better on larger

data sets. The first order methods converge within a larger number of iterations,

but those iterations are multiple times faster than for the second order methods.

When the data set is smaller obtaining the second order information is not costly

Fodor et al. Page 36 of 40

as the processes are working on small data portions. On these data sets the second

order methods perform better as they converge within smaller number of iterations

than the first order methods, while the second order iterations are negligibly slower

than for the first order methods.

The method with bidirectional communication and decreasing communication

probability (Method FBD) is identified as the best performing first order method.

This method also shows the best performance globally, when observing all the tests

on all 5 data sets. The fact that the bidirectional method performs better than the

unidirectional method in most of the cases is a consequence of enabling exchange

only between active nodes. Unidirectional methods require additional communica-

tion lines, in order to enable receiving data for idle nodes from their neighbors. The

gain from solution update for the idle nodes can be slightly smaller than the cost

of the communication to achieve that update. The decreasing probability enables

more communication in the beginning of the execution. Later, the communication

becomes sparse, but at the same time the solution becomes closer to the desired one,

so that it does not require much communication any more. This is the reason why

decreasing communication probability with a bidirectional method represents an

optimal choice. However, the other methods with communication sparsification also

showed satisfactory performance. The tests showed that, in general, communication

sparsification can significantly improve performance. This serves as motivation for

using communication sparsification in the described framework. It is also shown

that communication sparsification does not introduce performance improvement

with second order methods in general.

An important aspect of tests is the comparison between bidirectional and uni-

directional communication. One conclusion is that unidirectional communication

strategy works in the framework for Algorithm 1, and thus confirm the theoretical

results. Besides that, this strategy yields lower execution time than the bidirec-

tional communication strategy for some test cases. All these conclusions might be

influenced by the considered data sets but nevertheless provide significant empirical

evidence.

Further evaluation of unidirectional communication can be an interesting future

task. Another challenging direction might be further implementation for very large

data sets that cannot be held in memory.

Fodor et al. Page 37 of 40

Declarations

Abbrevations

MPI: Message Passing Interface; HPC: High Performance Computing; DQN method: Distributed Quasi Newton

method; I/O: Input/Output; ADMM: Alternating Direction Method of Multipliers

Availability of data and materials

The data sets used during the current study are available in:

• the UCI Machine Learning repository, [http://archive.ics.uci.edu/ml] [37] (Gisette [36, 38],

YearPredictionMSD [39, 40], CT [43, 44] and p53 [45, 46, 47, 48] data sets)

• the Language-Independent Named Entity Recognition II web site

[https://www.clips.uantwerpen.be/conll2003/ner/] [34, 35] (the Conll data set)

• the THE MNIST DATABASE of Handwritten Digits web site [http://yann.lecun.com/exdb/mnist/]

[41, 42] (the Mnist data set).

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Author’s contributions

LF developed the implementation of the algorithm and performed the empirical evaluations. DJ, NK and NKJ

contributed with the theoretical advances and design of methods. SS contributed to the experimentation and

methods design equally. All authors participated in the main research flow development and in writing and

revising the manuscript. All authors read and approved the final manuscript.

Authors’ information

All authors are with Department of Mathematics and Informatics, Faculty of Sciences, University of NoviSad,

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia. e-mail: (lidija.fodor@dmi.uns.ac.rs;

dusan.jakovetic@dmi.uns.ac.rs; natasa@dmi.uns.ac.rs; natasa.krklec@dmi.uns.ac.rs; srdjan.skrbic@dmi.uns.ac.rs).

Acknowledgements

This work is supported by the I-BiDaaS project, funded by the European Commission under Grant Agreement

No. 780787. This publication reflects the views only of the authors, and the Commission cannot be held

responsible for any use which may be made of the information contained therein. The authors gratefully

acknowledge the AXIOM HPC facility at Faculty of Sciences, University of Novi Sad, where all the numerical

simulations were run.

References

1. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Transactions

on Automatic Control 54(1), 48–61 (2009). doi:10.1109/tac.2008.2009515

2. Ram, S.S., Nedich, A., Veeravalli, V.V.: Distributed stochastic subgradient projection algorithms for

convex optimization. Journal of Optimization Theory and Applications 147(3), 516–545 (2010).

doi:10.1007/s10957-010-9737-7

3. Jakovetic, D., Xavier, J.M.F., Moura, J.M.F.: Fast distributed gradient methods. IEEE Transactions on

Automatic Control 59(5), 1131–1146 (2014). doi:10.1109/tac.2014.2298712

4. Mokhtari, A., Ling, Q., Ribeiro, A.: Network newton distributed optimization methods. IEEE Transactions

on Signal Processing 65(1), 146–161 (2017). doi:10.1109/tsp.2016.2617829

5. Bajović, D., Jakovetić, D., Krejić, N., Krklec Jerinkić, N.: Newton-like method with diagonal correction for

distributed optimization. SIAM Journal on Optimization 27(2), 1171–1203 (2017).

doi:110.1137/15m1038049

6. Mokhtari, A., Ling, Q., Ribeiro, A.: Network newton-part II: Convergence rate and implementation. arXiv:

Optimization and Control (2015)

Fodor et al. Page 38 of 40

7. Zhang, K., Yang, Z., Liu, H., Zhang, T., Basar, T.: Fully decentralized multi-agent reinforcement learning

with networked agents (2018). arXiv:1802.08757

8. Shamma, J.: Cooperative Control of Distributed Multi-Agent Systems. Wiley-Interscience, USA (2008).

doi:10.1002/9780470724200

9. Salkham, A., Cunningham, R., Garg, A., Cahill, V.: A collaborative reinforcement learning approach to

urban traffic control optimization. In: 2008 IEEE/WIC/ACM International Conference on Web Intelligence

and Intelligent Agent Technology, vol. 2, pp. 560–566. IEEE, Sydney, NSW, Australia (2008).

doi:10.1109/WIIAT.2008.88

10. Roche, R., Blunier, B., Miraoui, A., Hilaire, V., Koukam, A.: Multi-agent systems for grid energy

management: A short review. In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics

Society, pp. 3341–3346 (2010). doi:10.1109/IECON.2010.5675295

11. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via

the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1), 1–122

(2011). doi:10.1561/2200000016

12. Krklec Jerinkić, N., Jakovetić, D., Krejić, N., Bajović, D.: Distributed second-order methods with

increasing number of working nodes. IEEE Transactions on Automatic Control 65(2), 846–853 (2020).

doi:10.1109/tac.2019.2922191

13. Jakovetić, D., Bajović, D., Krejić, N., Krklec Jerinkić, N.: Distributed gradient methods with variable

number of working nodes. IEEE Transactions on Signal Processing 64(15), 4080–4095 (2016).

doi:10.1109/TSP.2016.2560133

14. Jakovetić, D., Bajović, D., Sahu, A.K., Kar, S.: Convergence rates for distributed stochastic optimization

over random networks. In: 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA,

pp. 4238–4245 (2018). doi:10.1109/CDC.2018.8619228

15. Sahu, A., Jakovetić, D., Bajović, D., Kar, S.: Distributed zeroth order optimization over random networks:

A kiefer-wolfowitz stochastic approximation approach. In: 2018 IEEE Conference on Decision and Control

(CDC), Miami Beach, FL, USA, pp. 4951–4958 (2018). doi:10.1109/cdc.2018.8619044

16. Sahu, A.K., Jakovetic, D., Bajovic, D., Kar, S.: Communication-efficient distributed strongly convex

stochastic optimization: Non-asymptotic rates (2018). arXiv:1809.02920

17. Sahu, A.K., Jakovetic, D., Bajovic, D., Kar, S.: Communication efficient distributed estimation over

directed random graphs. In: IEEE EUROCON 2019 -18th International Conference on Smart Technologies,

Novi Sad, Serbia, pp. 1–5 (2019). doi:10.1109/EUROCON.2019.8861544

18. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE/ACM Trans. Netw.

14(SI), 2508–2530 (2006). doi:10.1109/TIT.2006.874516

19. Message Passing Interface Forum: MPI: A Message-passing Interface Standard, Version 3.1.

High-Performance Computing Center Stuttgart, University of Stuttgart (2015)

20. Tsianos, K.I., Lawlor, S.F., Rabbat, M.G.: Communication/computation tradeoffs in consensus-based

distributed optimization. In: Proceedings of the 25th International Conference on Neural Information

Processing Systems - Volume 2. NIPS’12, pp. 1943–1951. Curran Associates Inc., Red Hook, NY, USA

(2012)

21. Byrd, R.H., Hansen, S.L., Nocedal, J., Singer, Y.: A stochastic quasi-newton method for large-scale

optimization. SIAM Journal on Optimization 26(2), 1008–1031 (2016). doi:10.1137/140954362

22. Chen, I.A., Ozdaglar, A.: A fast distributed proximal-gradient method. In: 2012 50th Annual Allerton

Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, pp. 601–608

(2012). doi:10.1109/Allerton.2012.6483273

23. Johansson, B., Rabi, M., Johansson, M.: A randomized incremental subgradient method for distributed

optimization in networked systems. SIAM Journal on Optimization 20(3), 1157–1170 (2009).

doi:10.1137/08073038x

24. Nedić, A., Olshevsky, A., Rabbat, M.G.: Network topology and communication-computation tradeoffs in

decentralized optimization. Proceedings of the IEEE 106(5), 953–976 (2018).

doi:10.1109/JPROC.2018.2817461

25. Assran, M., Rabbat, M.: Asynchronous subgradient-push. Computing Research Repository, CoRR

Fodor et al. Page 39 of 40

abs/1803.08950 (2018). arXiv:1803.08950

26. Assran, M., Rabbat, M.: An empirical comparison of multi-agent optimization algorithms. In: 2017 IEEE

Global Conference on Signal and Information Processing (GlobalSIP), pp. 573–577 (2017).

doi:10.1109/GlobalSIP.2017.8309024. IEEE

27. Zhang, J., You, K.: Asyspa: An exact asynchronous algorithm for convex optimization over digraphs. IEEE

Transactions on Automatic Control 65(6), 2494–2509 (2020). doi:10.1109/tac.2019.2930234

28. Tsianos, K.I., Lawlor, S., Rabbat, M.G.: Consensus-based distributed optimization: Practical issues and

applications in large-scale machine learning. In: 2012 50th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), pp. 1543–1550 (2012). doi:10.1109/Allerton.2012.6483403

29. Yuan, K., Ling, Q., Yin, W.: On the convergence of decentralized gradient descent. SIAM Journal on

Optimization 26(3), 1835–1854 (2016). doi:10.1137/130943170

30. Jakovetić, D., Moura, J.M.F., Xavier, J.: Distributed nesterov-like gradient algorithms. In: 2012 IEEE 51st

IEEE Conference on Decision and Control (CDC), pp. 5459–5464 (2012). doi:10.1109/CDC.2012.6425938

31. Sundhar Ram, S., Nedić, A., Veeravalli, V.V.: Distributed stochastic subgradient projection algorithms for

convex optimization. Journal of Optimization Theory and Applications 147(3), 516–545 (2010).

doi:10.1007/s10957-010-9737-7

32. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A.,

Hammarling, S., McKenney, A., Sorensen, D.: LAPACK UsersǴuide, 3rd edn. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, USA (1999). doi:10.1137/1.9780898719604

33. Blackford, L., et al.: An updated set of basic linear algebra subprograms (blas). ACM Trans. Math. Softw.

28(2), 135–151 (2002). doi:10.1145/567806.567807

34. Tjong Kim Sang, E.F., De Meulder, F.: Language-Independent Named Entity Recognition II (2005;

accessed on: May 30, 2019). https://www.clips.uantwerpen.be/conll2003/ner/

35. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: Language-independent

named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at

HLT-NAACL 2003 - Volume 4. CONLL ’03, pp. 142–147. Association for Computational Linguistics, USA

(2003). doi:10.3115/1119176.1119195

36. UCI Machine Learning Repository: Gisette Data Set (2008; accessed on: May 29, 2019).

http://archive.ics.uci.edu/ml/datasets/gisette

37. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, Irvine, School of Information

and Computer Sciences (2017). http://archive.ics.uci.edu/ml

38. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature selection challenge. In:

Proceedings of the 17th International Conference on Neural Information Processing Systems. NIPS’04, vol.

17, pp. 545–552. MIT Press, Cambridge, MA, USA (2004). https://eprints.soton.ac.uk/261923/

39. UCI Machine Learning Repository: YearPredictionMSD data set (2011; accessed on: September 01, 2019).

https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD

40. Bertin-Mahieux, T., Ellis, D.P.W., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of

the 12th International Conference on Music Information Retrieval (ISMIR 2011) (2011).

doi:10.7916/D8NZ8J07

41. LeCun, Y., Cortes, C.: THE MNIST DATABASE of handwritten digits (2005; accessed on: September 01,

2019). http://yann.lecun.com/exdb/mnist/

42. Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web].

IEEE Signal Processing Magazine 29, 141–142 (2012). doi:10.1109/MSP.2012.2211477

43. UCI Machine Learning Repository: Relative location of CT slices on axial axis Data Set (2011; accessed on:

September 08, 2019).

https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis

44. Graf, F., Kriegel, H.-P., Schubert, M., Pölsterl, S., Cavallaro, A.: 2d image registration in ct images using

radial image descriptors. In: International Conference on Medical Image Computing and Computer-Assisted

Intervention, vol. 6892, pp. 607–614. Springer, ??? (2011). doi:10.1007/978-3-642-23629-774.Springer

45. UCI Machine Learning Repository: p53 Mutants Data Set (2010; accessed on: September 03, 2019).

https://archive.ics.uci.edu/ml/datasets/p53+Mutants

Fodor et al. Page 40 of 40

46. Danziger, S., Baronio, R., Ho, L., Hall, L., Salmon, K., Hatfield, G., Kaiser, P., Lathrop, R.: Predicting

positive p53 cancer rescue regions using most informative positive (mip) active learning. PLoS

computational biology 5, 1000498 (2009). doi:10.1371/journal.pcbi.1000498

47. Danziger, S.A., Zeng, J., Wang, Y., Brachmann, R.K., Lathrop, R.H.: Choosing where to look next in a

mutation sequence space: Active Learning of informative p53 cancer rescue mutants. Bioinformatics

23(13), 104–114 (2007). doi:10.1093/bioinformatics/btm166

48. Danziger, S., Swamidass, S.J., Zeng, J., Dearth, L., Lu, Q., Chen, J., Cheng, J., Hoang, V., Saigo, H.,

Luo, R., Baldi, P., Brachmann, R., Lathrop, R.: Functional census of mutation sequence spaces: The

example of p53 cancer rescue mutants. IEEE/ACM transactions on computational biology and

bioinformatics / IEEE, ACM 3, 114–25 (2006). doi:10.1109/TCBB.2006.22

49. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Mathematical

Programming 91(2), 201–213 (2002). doi:10.1007/s101070100263

50. ADMM l1 and l2 logistic regression. GitHub (accessed on: May 15, 2020).

https://github.com/HaidYi/admm-l1-2-logistic-regression

