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ABSTRACT
We consider distributed optimization problems where nodes
in a connected network collaboratively minimize the sum of
their locally known convex costs subject to a common (vector-
valued) optimization variable. In this paper, we present a
mechanism to significantly improve the computational and
communication efficiency of some recently proposed first
and second order distributed methods for solving such prob-
lems. The presented mechanism relaxes the requirement that
all nodes are active (i.e., update their solution estimates and
communicate with neighbors) at all iterations k. Instead, each
node is active at iteration k with probability pk, where pk is
increasing to unity, while the activations are independent both
across nodes and across iterations. Assuming strongly convex
and twice continuously differentiable local costs and that pk
grows to one linearly, both first and second order methods
with the idling schedule exhibit very similar theoretical con-
vergence and convergence rate properties as if all nodes were
active at all iterations. Simulation examples demonstrate that
incorporating the idling schedule in first and second order dis-
tributed methods significantly improves their computational
and communication efficiencies.

Index Terms— Distributed optimization, distributed gra-
dient method, distributed quasi Newton method, increasing
number of working nodes, convergence rate, consensus.

1. INTRODUCTION

We consider unconstrained distributed optimization problems
where N nodes are situated in a generic, connected network,
each node has access to its local convex cost fi, and the nodes’
common goal is to minimize the aggregate sum of their local
costs subject to a common (vector-valued) optimization vari-
able. To solve this and related problems, a number of first
order distributed methods, e.g., [1, 2, 3], and second order
distributed methods, e.g., [4, 5, 6] has been proposed and an-
alyzed, and their applicability has been demonstrated on var-
ious distributed learning, estimation, and control use cases.
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In this paper, we present a mechanism, based on an idling
schedule of nodes, that significantly improves the efficiency
of such distributed methods, both in terms of communication
and computational costs. With this mechanism, each node i,
at each iteration k, is working–active with probability pk, and
is inactive with probability 1− pk, while different nodes’ ac-
tivations are independent both across nodes and across itera-
tions. Active nodes perform updates and exchange their so-
lution estimates with their neighboring (active) nodes, while
inactive nodes stay idle. Quantity pk is increasing over iter-
ations k to unity, so that, on average, as the algorithm pro-
gresses, an increasing number of nodes is working and be-
comes involved in the optimization process.

The motivation for the proposed approach comes from
centralized (hybrid) stochastic-deterministic gradient meth-
ods to minimize a sum of component functions fi’s, [7]; see
also [8, 9]. Reference [7] shows that, if the sample size (num-
ber of component functions fi’s involved) appropriately in-
creases as the iteration counter k grows, the algorithm can
achieve practically the same convergence rate as if the full
sample size is used across all iterations, thereby yielding sig-
nificant computational savings with respect to the standard
method that always utilizes the full sample.

Specifically, we apply here the idling mechanism to the
distributed first order method in [1] and the distributed second
order method in [6]. We assume that pk grows to one at a lin-
ear (geometric) rate, and that costs fi’s are twice continuously
differentiable with bounded Hessian. Under this setting, we
present results that show that, with both first and second or-
der distributed methods, the corresponding method with the
incorporated idling mechanism converges to the same solu-
tion – both in the mean square sense (MSS) and almost surely
– as if all nodes were active at all iterations; moreover, the
MSS convergence occurs at a globally linear (geometric) rate.
Furthermore, with the distributed first order method and an
appropriately tuned pk’s convergence factor, the method with
idling schedule achieves practically the same linear conver-
gence factor as if all nodes were active at all iterations. Sim-
ulation examples demonstrate that the presented idling mech-
anism indeed allows for significant computational and com-



munication savings.
This paper is a continuation of [10] where we proposed

the idling schedule and considered (projected) first order
distributed methods for constrained problems with compact,
convex constraints. Here, we consider unconstrained prob-
lems and both first and second order distributed methods.
Proofs of the results presented here are omitted due to lack of
space and will be included in an extended companion paper.

The remainder of the paper is organized as follows. The
next paragraph sets notation. Section 2 describes the network,
optimization, and generic idling schedule models. Sections 3
and 4 present, respectively, the first and second order dis-
tributed algorithms with idling schedules and results on con-
vergence and convergence rates for the methods. Section 5
gives simulation examples. Finally, we conclude in Section 6.

We use the following notation. We denote by: R the set
of real numbers; Rd the d-dimensional Euclidean real coor-
dinate space; Aij the entry in the i-th row and j-th column
of a matrix A; I , and 0, respectively, the identity matrix and
the zero matrix. A � 0 (A � 0) means that the symmet-
ric matrix A is positive definite (respectively, positive semi-
definite); ‖·‖ the Euclidean (respectively, spectral) norm of its
vector (respectively, matrix) argument; λi(·) the i-th largest
eigenvalue; ∇h(w) and ∇2h(w) the gradient and Hessian,
respectively, evaluated at w of a function h : Rd → R,
d ≥ 1; P(A) and E[u] the probability of an event A and ex-
pectation of a random variable u, respectively. Finally, for
two positive sequences ηn and χn, we have: ηn = O(χn) if
lim supn→∞

ηn
χn

<∞.

2. MODEL AND IDLING MECHANISM

Optimization model. We consider the following uncon-
strained optimization problem:

minimize
∑N
i=1 fi(x) =: f(x). (1)

Here, recall that N is the number of nodes, and fi : Rd 7→ R
is a function known only to node i. For all i, we assume that
fi : Rd 7→ R is twice continuously differentiable and has a
bounded Hessian, i.e., there exist positive constants µ and L,
µ ≤ L, such that, for all x ∈ Rd: µ I � ∇2fi(x) � LI.
Under this Assumption, problem (1) is solvable and has the
unique solution, which we denote by x?. The requirement on
the existence of (continuous) second derivative of the fi’s can
be relaxed with the first order method in Section 3; see [10]
for details.

Network model. Nodes are connected in a generic undi-
rected network G = (V, E), where V is the set of N nodes
and E is the set of edges, i.e., (unordered) node pairs {i, j}
that can exchange messages.The network G = (V, E) is as-
sumed connected, undirected, and simple (no self-loops nor
multiple links). Denote by Ωi the neighborhood set of node
i (excluding i). We associate with G a N × N symmetric
weight matrix W , which is also stochastic (rows sum to one

and all the entries are non-negative). We let Wij be strictly
positive for each {i, j} ∈ E, i 6= j; Wij = 0 for {i, j} /∈ E,
i 6= j; and Wii = 1 −

∑
j 6=iWij . We assume that there

exist two constants 0 < wmin ≤ wmax < 1, such that
Wii ∈ [wmin, wmax], for all i. Further, we let W be positive
definite, i.e., λN (W ) > 0. This are mild assumptions; see,
e.g., [10], on how a matrix W that fulfills these assumptions
can be set in a distributed way. It can be shown that, under
the above assumptions on W , λ1(W ) = 1, and λ2(W ) < 1.

Time model and idling mechanism. With both the first
order and the second order distributed methods considered in
Sections 3 and 4, we assume that all nodes are synchronized
according to a global clock and simultaneously (in parallel)
perform algorithm iterations k = 0, 1, ... Each node has an
internal Bernoulli state variable z(k)

i . If z(k)
i = 1, node i is

active (or working) at iteration k, i.e., it performs computa-
tions and communicates with neighbors. If z(k)

i = 0, node i
does not perform an update nor it communicates; we say that,
in this case, node i is idle. At each k, each node i generates
z

(k)
i independently from the previous iterations, and indepen-

dently from other nodes. We denote by pk := P (zi(k) = 1).
The quantity pk is, for simplicity, assumed common for all
nodes. Also, for all k, pk ≥ pmin, for a positive constant
pmin. For future reference, we denote by Ω

(k)
i the set of active

neighbors of node i at k, i.e., all nodes j ∈ Ωi with z(k)
j = 1.

3. DISTRIBUTED FIRST ORDER METHOD

We now describe the distributed first order algorithm with
the idling schedule. At each iteration k, each node i up-
dates its solution estimate x(k)

i ∈ Rd, with arbitrary initial-
ization x(0)

i ∈ Rd. The update of node i is as follows. If
z

(k)
i = 0, node i is idle and sets x(k+1)

i = x
(k)
i . Otherwise, if

z
(k)
i = 1, node i broadcasts its state to all its working neigh-

bors j ∈ Ω
(k)
i . The idle neighbors do not receive x(k)

i ; e.g.,,
with wireless sensor networks, this corresponds to switching-
off the receiving antenna. Likewise, node i receives x(k)

j from

all j ∈ Ω
(k)
i . Upon reception, node i updates x(k)

i as follows:

x
(k+1)
i =

1−
∑
j∈Ω

(k)
i

Wij

x
(k)
i (2)

+
∑
j∈Ω

(k)
i

Wij x
(k)
j −

α

pk
∇fi(x(k)

i ).

In (2), α > 0 is a constant; we let α ≤ λN (W )/L. The
step size in (2) is multiplied by 1/pk, to compensate for
non-working (idle) nodes over iterations. Also, note that
the standard distributed (sub)gradient method in [11] is re-
covered with pk = 1, ∀k. With the method in [11], it is
known that node i’s solution estimate converges to a solution



neighborhood, i.e., to a point x•i , where ‖x•i − x?‖ = O(α),
i = 1, ..., N , e.g., [12]. We have the following result.

Theorem 1 Consider algorithm (2) with α ≤ λN (C)/L. Fur-
ther, let pk = 1 − δk+1, ∀k, for some δ ∈ (0, 1). Then,
x

(k)
i converges, both in MSS and almost surely, to the conver-

gence point x•i of the method in [1], i = 1, ..., N . Further-
more, let η := max{1−αµ, δ1/2}, and

√
δ ≤ 1−αµ. Then:

E
[
‖x(k) − x•‖

]
= O

(
k(1− αµ)k

)
= O

(
(1− αµ+ ε)k

)
,

for arbitrarily small ε > 0.

Theorem 1 states that, under appropriately set δ, (2) con-
verges at a practically same rate as [1]. (It can be shown
that the bound O

(
(1− αµ)k

)
is tight for [1].) This still does

not explicitly quantify savings with (2), due to the involved
constants, but significant savings indeed occur in practice;
see [10].

4. DISTRIBUTED SECOND ORDER METHOD

We now incorporate the idling mechanism in the distributed
second order method in [6]. We refer to [6] for the rationale
behind the method and derivations, while here we present the
method variant with the idling schedule.1 Like with the dis-
tributed first order method in Section 3, each node i can be in
two possible states (active or idle) depending on the realiza-
tion of the Bernoulli state z(k)

i . Also, each node i still main-
tains its solution estimate x(k)

i ∈ Rd over iterations. How-
ever, now local Hessians ∇2fi(x

(k)
i ) are also evaluated and

incorporated in the update rule. The distributed second order
method with idling is presented in Algorithm 1 below.
Algorithm 1
At each node i, require α, ρ, β > 0, and pk, k = 0, 1, ...

(1) Initialization: Each node i sets k = 0 and x(0)
i ∈ Rd.

(2) Each node i generates z(k)
i ; if z(k)

i = 0, node i stays
idle, sets x(k+1)

i = x
(k)
i , and goes to step (9); oth-

erwise, node i is active and performs steps (2)-(9) (in
parallel with other active nodes).

(3) Each active node i transmits x(k)
i to all its active neigh-

bors j ∈ Ω
(k)
i and receives x(k)

j from all j ∈ Ω
(k)
i .

(4) Each active node i calculates

gi
(k) =

(
A

(k)
i

)−1

[
α

pk
∇fi(x(k)

i ) (3)

+
∑
j∈Ω

(k)
i

Wij

(
x

(k)
i − x

(k)
j

)
],

whereA
(k)
i = α∇2fi(x

(k)
i ) + (1−Wii) I. (4)

1The method in [6] is presented here for simplicity with the parameter θ
therein set to zero.

(5) Each active node i transmits gi(k) to all its active neigh-
bors j ∈ Ω

(k)
i and receives g(k)

j from all j ∈ Ω
(k)
i .

(6) Each active node i chooses a diagonal d×dmatrix Λ
(k)
i ,

such that ‖Λ(k)
i ‖ ≤ ρ.

(7) Each active node i calculates: s
(k)
i = −gi(k) +

Λ
(k)
i

∑
j∈Ω

(k)
i
Wij g

(k)
j .

(8) Each active node i updates its solution estimate as:
x

(k+1)
i = x

(k)
i + β s

(k)
i .

(9) Set k = k + 1 and go to step (2).

We now briefly comment on the algorithm and the pa-
rameters and quantities involved. First, it is easy to see that,
setting β = 1, Λ

(k)
i = 0, and replacing matrix A

(k)
i with

the identity, we recover the first order method in Section 3.
However, intuitively, matrix A(k)

i allows each node to “scale”
its search direction with its locally available second order
information. Furthermore, taking non-zero matrices Λ

(k)
i ’s

allows one to capture second-order information beyond the
“node-decoupled block-diagonal approximation” – attainable
through the A(k)

i ’s only (see [6] for details). Note that Al-
gorithm 1 with Λ

(k)
i = 0 involves a single communication

round per k, just like the method in Section 3; taking a non-
zero Λ

(k)
i induces an additional communication round – two

rounds per k in total. Parameter β is the algorithm step size,
and, theoretically, it should be taken small enough to ensure a
global linear convergence, similarly to standard (centralized)
Newton methods. Quantity ρ > 0 is a safeguarding parameter
that should be appropriately set (below a threshold value) to
ensure that Algorithm 1 is a descent method (in the MSS);
see also [6]. For details on specific choices of Λ

(k)
i (without

idling), we refer to [6]. Here, although the theoretical results
presented here allow for generic Λ

(k)
i , in Section 5 we con-

sider easy-to-set choices Λ
(k)
i = 0 and Λ

(k)
i = −I. We have

the following result.

Theorem 2 Consider Algorithm 1 with pk = 1 − δk+1, k =
0, 1, ..., for some δ ∈ (0, 1). Then, there exist constants ρ > 0
and β > 0, dependent on δ, α, µ, L,wmin, and wmax, such
that, for any ρ ∈ (0, ρ), and for any β ∈ (0, β), x(k)

i converges
to x•i almost surely and in the MSS, for all i. Moreover, the
MSS convergence is (globally) linear, i.e., E

[
‖xki − x•i ‖2

]
converges to zero at a linear rate.

Theorem 2 says that, despite the idling, the distributed second
order method achieves a globally linear convergence rate (in
MSS), which matches the order of convergence of the method
when all nodes are active across all iterations [6]. This The-
orem does not explicitly establish savings in communications
and computations with the idling schedule introduced; how-
ever, savings actually occur in practice, as demonstrated on
examples in the next section.



5. SIMULATION EXAMPLE

We now present a simulation example that demonstrates the
effectiveness of incorporating the idling schedule in the dis-
tributed second order method in [6]. We refer to [10] for sev-
eral simulation examples on the distributed first order method
(more precisely, its variant for constrained problems) that also
show significant gains achieved through the idling mecha-
nism.

The simulation setup is as follows. We consider a con-
nected network with N = 30 nodes, generated as a ran-
dom geometric graph: nodes are randomly (uniformly) placed
on a unit square, and the node pairs whose distance is less
than a radius are connected by an edge. Each node’s lo-
cal cost is quadratic, i.e., fi(x) = 1

2 (x − ai)
>Bi(x − ai),

i = 1, ..., N , where d = 4, Bi ∈ Rd×d is a positive def-
inite (symmetric matrix), and ai ∈ Rd is a vector. Matri-
ces Bi and vectors ai are generated randomly, as described
in [6]. We compare the second order distributed method [6]
without the idling mechanism (pk = 1, for all k), and the
method with the idling mechanism, where pk = 1 − δk+1,
k = 0, 1, ..., with δ = 0.995. With both variants, we initial-
ize all nodes’ solution estimates to zero. We use the weights
Wij = 1

1+2 max{di,dj} , for {i, j} ∈ E (where di is node i’s
degree); Wij = 0, for {i, j} /∈ E, i 6= j; and Wii =
1 −

∑
j 6=iWij , i = 1, ..., N . We let α = 1/(200L), where

the Lipschitz constant L = maxi=1,...,N ‖Bi‖. Further, we
set β = 1, and ρ = +∞ (no safeguarding).2

Figure 1 (top) compares the method with idling (increas-
ing number of working nodes) and without idling (all nodes
working at all iterations) for Λ

(k)
i = 0, for all i, k. The x-

axis shows the total cost–total number of activations per node
up to iteration k (which corresponds to the communication
and computational cost up to k), while y-axis shows the rel-

ative error 1
N

∑N
i=1

‖x(k)
i −x

?‖
‖x?‖ , where we recall that x? is the

solution to (1), x? 6= 0. We can see that the idling mecha-
nism significantly improves the algorithm efficiency: to reach
the “steady state” relative error (≈ 0.0075), the method with
idling has a total cost around 750, while the method without
idling has the total cost around 950; this represents savings
of more than 20%. Figure 1 (bottom) repeats the plots for
Λ

(k)
i = −I , for all i, k. First, we can see that the methods

with Λ
(k)
i = −I converge faster in terms of the number of

activations than the corresponding methods with Λ
(k)
i = 0.

This is expected, as the choice Λ
(k)
i = 0 captures only “block-

diagonal” Hessian information; also, it utilizes one communi-
cation per node, per activation, while the other choice utilizes
two. The relative savings of incorporating the idling mecha-
nism are similar (≈ 20%.)

2Note that the latter choice for β and ρ is not covered theoretically by The-
orem 2, but extensive simulations on strongly convex quadratic costs demon-
strate convergence in this case as well.

6. CONCLUSION

We presented an idling mechanism to improve efficiency of
first and second order distributed methods. With this mech-
anism, each node i, at each iteration k, is active with proba-
bility pk (performing communications and solution estimate
updates) and stays idle with probability 1− pk, while the ac-
tivations are independent across nodes and across iterations.
Specifically, we incorporated the idling mechanism in the
distributed first order method in [1] and in the distributed sec-
ond order method in [6]. We demonstrated theoretically that,
when pk increases to one at a geometric rate, both first and
second order methods exhibit similar convergence and con-
vergence rate properties as the corresponding methods where
all nodes are constantly active. Finally, we demonstrated by
simulation that the incorporation of the idling mechanism
yields significant computational and communication savings.
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Fig. 1. Comparison of the second order distributed method
in [6] with increasing number of working nodes (with the
idling mechanism), and with all nodes working all the time
(no idling mechanism); Top: Λ

(k)
i in Algorithm 1 is set to

zero, for all i, k; Bottom: Λ
(k)
i = −I , for all i, k.
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