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Nataša Krklec Jerinkić1, Federica Porta2, Valeria Ruggiero3

and Ilaria Trombini3,4*

1Faculty of Sciences, Department of Mathematics and
Informatics, University of Novi Sad, Trg Dositeja Obradovića 4,
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Abstract

Regularized empirical risk minimization problems arise in a variety of
applications, including machine learning, signal processing, and image
processing. Proximal stochastic gradient algorithms are a standard
approach to solve these problems due to their low computational cost
per iteration and a relatively simple implementation. This paper intro-
duces a class of proximal stochastic gradient methods built on three
key elements: a variable metric underlying the iterations, a stochastic
line search governing the decrease properties and an incremental mini-
batch size technique based on additional sampling. Convergence results
for the proposed algorithms are proved under different hypotheses on
the function to minimize. No assumption is required regarding the Lips-
chitz continuity of the gradient of the differentiable part of the objective
function. Possible strategies to automatically select the parameters of
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the suggested scheme are discussed. Numerical experiments on binary
classification problems show the effectiveness of the suggested approach
compared to other state-of-the-art proximal stochastic gradient methods.

Keywords: Proximal stochastic gradient methods, Variable Metrics,
Additional sampling, Machine Learning
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1 Introduction

In this paper we are interested in solving the following composite optimization
problem

minx∈Rd

{
HN (x) := fN (x) +R(x)

}
(1)

where fN (x) is the average of many smooth component functions fi(x), i.e.,

fN (x) =
1

N

N∑
i=1

fi(x),

and R is a proper, lower semi-continuous and convex function, which may be
non-differentiable. Problem (1) is often referred to as regularized empirical
risk minimization [1] and it covers a broad range of applications in machine
learning (see, e.g. [2–5]) as well as in signal and image processing [6, 7].

1.1 Proximal gradient methods

Proximal gradient methods are a standard approach to solve problem (1).
Indeed this algorithm consists of a forward step, which leverages the differen-
tiability of fN , and a backward step, which exploits the convexity of R. Given
an initial point x(0) ∈ Rd, the simplest proximal gradient method (Prox-GD)
is based on the following update rule

x(k+1) = argminx∈Rd

{
∇fN (x(k))Tx+

1

2αk
∥x− x(k)∥2 +R(x)

}
, (2)

where αk is a positive learning rate. By defining the proximal mapping of a
convex function R(·) at y ∈ Rd as

proxR(y) = argminx∈Rd

{
1

2
∥x− y∥2 +R(x)

}
,

the proximal gradient iteration (2) can be more compactly written as

x(k+1) = proxαkR
(x(k) − αk∇fN (x(k))). (3)
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Proximal gradient methods have been extensively studied, leading to various
versions that incorporate features such as inertial steps, approximate com-
putation of the proximal operator, variable metric strategies, and adaptive
step-length selection rules (see, for example, [8–10], the survey [11] and refer-
ences therein). Below, we outline the class of variable metric proximal gradient
algorithm, suggested by several authors [12–16], which serves as a starting
point for the method proposed in this paper. Given proper positive parameters
αk and tk, a general variable metric proximal gradient method can be defined
through the following update{

d(k) = proxSk

αkR
(x(k) − αkS

−1
k ∇fN (x(k)))− x(k)

x(k+1) = x(k) + tkd
(k)

. (4)

Here, {Sk} ⊂ Rd×d is a sequence of symmetric and positive definite scaling
matrices, designed to capture some local features of the minimization problem
without introducing significant additional computational costs. In this context,
the proximity operator of a convex function αR for α > 0, with respect to a
symmetric and positive definite matrix S, is generalized as

proxSαR(y) = argminx∈Rd

{
1

2
∥x− y∥2S + αR(x)

}
,

where ∥ · ∥S denotes the norm induced by S.

1.2 Proximal stochastic gradient methods

When the number of components N is very large, computing fN and its gra-
dient may become unfeasible from the practical point of view. For this reason,
a proper estimator of fN is typically considered leading to the class of proxi-
mal stochastic gradient descent (Prox-SGD) methods. The update formula for
Prox-SGD algorithms reads as

x(k+1) = proxαkR
(x(k) − αk∇fNk

(x(k))),

where Nk is a subset of N of size Nk, randomly and uniformly chosen at
iteration k, and

fNk
(x) =

1

Nk

∑
i∈Nk

fi(x). (5)

Hereafter Nk will be also referred to as mini-batch.
Prox-SGD offers an advantage over the Prox-GD scheme in (3) because it

computes the gradient of only a relatively small number of randomly selected
functions fi at each iteration. However, for Prox-SGD to converge, its step-size
must decrease to zero at an appropriate rate, resulting in a convergence rate
of O(1/

√
k) for E[HN (x(k))−HN (x∗)] [17]. Additionally, even when HN (x) is
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strongly convex, the convergence rate for Prox-SGD improves only to O(1/k)
[18], which is significantly slower than the linear convergence rate achieved by
Prox-GD.

To address the issue of diminishing step-size and slow convergence typical
of standard stochastic gradient methods, either incremental techniques [19–25]
or variance reduced strategies [26–32] have been proposed in the literature.
Incremental stochastic gradient schemes are based on the idea of progressively
increasing the mini-batch size over iterations, thereby employing increasingly
accurate gradient estimates as the optimization process proceeds. The main
limitations of such approaches are either the excessively rapid growth of the
mini-batch size, as for the methods suggested in [20, 24], or the computa-
tionally expensive and memory demanding increasing conditions needed to be
checked by the schemes proposed in [19, 21–23, 25]. On the other hand, vari-
ance reduced stochastic gradient algorithms require periodic computation of
a full gradient (or an estimate based on a large mini-batch). For this rea-
son, these approaches are generally not employed in applications involving
large-scale datasets or deep neural networks.

Both incremental and variance reduced strategies allow to avoid vanish-
ing sequences of learning rates, which are typically defined by a fixed value.
Selecting this value is challenging, as it significantly impacts the numerical
performance of the algorithms. Manual tuning of the learning rate through
trial-and-error is common in this context, resulting in a high workload.

1.3 Contributions

The main aim of this paper is to develop a stochastic version of the variable
metric proximal gradient method, as defined in (4), where the gradient of the
approximation (5) is used in place of the gradient of fN . The main ingredients
of the suggested approach are the following.

(i) Flexibility in selecting αk and Sk. The convergence results provided for the
suggested scheme hold under very general assumptions on the parameters αk

and Sk. This flexibility allows users to adopt the most appropriate strategy
for defining both the learning rate and the sequence of scaling matrices in
order to accelerate convergence. Different definitions of αk and Sk result in
different methods. Possible automatic and adaptive techniques to select αk

and Sk are discussed with the aim of avoiding manual parameter tuning. We
stress that there is no requirement for the learning rate sequence to vanish.

(ii) A stochastic Armijo-like line search to define tk. The additional parameter
tk is employed to ensure a sufficient reduction of the current stochastic
approximation of the objective function (5) at each iteration. Examples of
stochastic gradient schemes combined with line search procedures can also
be found in [19, 22, 33–35]. However, in all of these works, the aim of the
line search is to adjust the learning rate αk and this approach can limit
the flexibility of its selection. Moreover, since the starting value for tk must
be always set to 1 and then it is automatically and dynamically adjusted
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via the line search, tk does not introduce any additional parameters that
need tuning. On the other hand, the numerical performance of the schemes
proposed in [19, 22, 33–35] depends on a proper strategy for selecting the
initial guess for the line search.

(iii) A proper incremental strategy to select the mini-batch size based on an addi-
tional sampling. The algorithm developed in this paper falls within the class
of incremental stochastic gradient methods. In particular, the mini-batch
size increases (or stays the same) with each iteration based on the so-called
additional sampling, employed for example in [36, 37]. With the additional
sampling, alongside the mini-batchNk used for the line search on tk, a second
(randomly chosen) mini-batch is introduced to evaluate whether a reduc-
tion, or at least a controlled increase, in the stochastic approximation of the
objective function, related to this second mini-batch, is also achieved. If this
situation does not occur, the mini-batch size is appropriately increased, as
the current size probably does not ensure a reduction in the true objective
function. In the approach suggested in this paper, the additional sampling
is used to determine whether or not to keep the same mini-batch fixed, not
only its size. In this way different successive iteration of the optimization
process are employed to efficiently minimize the same stochastic approxima-
tion of the objective function, while not excluding the possibility to reduce
the true objective function due to the presence of additional sampling. The
idea of keeping the same mini-batch fixed for a predetermined number of
iterations has also been considered in [37, 38]. Nevertheless, our method
differs from those in [36–38] for two main reasons: first, the algorithms in
[36–38] are thought for objective functions which do not incorporate a reg-
ularization term; second, they do not use a variable metric to enhance the
convergence of the schemes. Lastly, it is worth noting that the method pro-
posed in [39] also employs additional sampling to control step acceptance
and adjust the sample size when needed. However, it differs significantly
from our approach, as it is based on the trust-region framework and utilizes
Hessian approximations

For general objective functions, we prove that the limit points of the sequence
generated by the proposed algorithm are almost surely stationary. Further-
more, we establish the almost sure convergence of both the sequence of the
objective function values and the sequence of the iterates, given the addi-
tional assumptions of convexity and strong convexity for the objective function,
respectively. All the convergence results hold without requiring the gradient
of fN to be Lipschitz continuous.

The suggested method has been applied to binary classification problems,
demonstrating promising results compared to state-of-the-art algorithms, as
well as robustness in parameter tuning.
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1.4 Outline of the paper

The paper is organized as follows. In Section 2 we detail the structure of the
general variable metric proximal stochastic gradient algorithm we are propos-
ing. Moreover, a possibility to select both the learning rate and the scaling
matrix is described. Finally the convergence results of the scheme are stated
under different assumptions on the objective function. In Section 3 we report
the results of the numerical experiments we carried out on two different regu-
larized empirical risk minimization problems. Conclusions are presented in the
final section, which also outlines directions for future work.

1.5 Notations

The following notations will be used throughout the paper.

• R+ is the set of non negative real numbers; R++ is the set of positive real
numbers.

• ∥ · ∥ denotes the standard ℓ2 norm. Given a symmetric and positive definite
matrix S of order k, the S-norm of a vector x ∈ Rd is defined as ∥x∥S ≡√
xTSx.

• Given µ ≥ 1, we denote by Mµ the set of all symmetric positive definite
matrices with all eigenvalues contained in the interval [ 1µ , µ].

• Let D1, D2 ∈ Rd×d be symmetric and positive definite matrices. The nota-
tionD1 ⪰ D2 indicates thatD1−D2 is a symmetric and positive semidefinite
matrix or, equivalently, xTD1x ≥ xTD2x for any x ∈ Rd.

• E[·] and E[·| F ] denote mathematical expectation and conditional expecta-
tion with respect to σ-algebra F , respectively.

• We use “a.s.” to abbreviate “almost sure/surely” and “i.i.d.” to abbreviate
“independent and identically distributed”, while “SAA” stands for “sample
average approximation”.

• We denote by |N | the cardinality of set N .
• Given a matrix A ∈ Rd×d, we denote by diag(A) the diagonal matrix whose
diagonal elements are the diagonal elements of A.

2 The algorithm and its convergence analysis

In this section we present a variable metric proximal stochastic gradient
method based on both the line search and the additional sampling. Moreover
the convergence analysis of the scheme will be provided.

2.1 The algorithm

The method we suggest is based on the following iteration{
d
(Nk)
k = v

(Nk)
k − xk = proxSk

αkR
(xk − αkS

−1
k ∇fNk

(xk))− xk

xk+1 = xk + tkd
(Nk)
k ,
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where

Nk is a randomly chosen subset of N of size Nk;
αk ∈ R is a positive learning rate such that 0 < αmin ≤ αk ≤ αmax;
Sk is a symmetric and positive definite scaling matrix of size d;
tk ∈ (0, 1] is a line search parameter employed to ensure a sufficient decrease of
the current approximation HNk

(x) = fNk
(x)+R(x) of the objective function.

Indeed, starting from tk = 1, it is reduced by a factor β ∈ (0, 1) until the
following condition is met

HNk
(xk + tkdk) ≤ HNk

(xk) + ηtkqNk
(v

(Nk)
k ), (6)

where

qαk,Sk

Nk
(y) = (y − xk)

T∇fNk
(xk) +

1

2αk
∥y − xk∥2Sk

+R(y)−R(xk) (7)

and η ∈ (0, 1). It is immediate to prove that (6) ensures a reduction of HNk
(·)

moving from xk to xk + tkdk since qαk,Sk

Nk
(v

(Nk)
k ) is non-positive. Indeed seeing

that

v
(Nk)
k = proxSk

αkR
(xk − αkS

−1
k ∇fNk

(xk))

= argminy∈RdR(y) +
1

2αk
∥y − (xk − αkS

−1
k ∇fNk

(xk))∥2Sk

= argminy∈Rd qαk,Sk

Nk
(y) +R(xk) +

αk

2
∥∇fNk

(xk)∥2Sk

= argminy∈Rd qαk,Sk

Nk
(y)

the following inequality holds:

qαk,Sk

Nk
(v

(Nk)
k ) ≤ qαk,Sk

Nk
(xk) = 0.

It is well known that the function qαk,Sk

Nk
(·) enjoys several properties that are

recalled in Appendix A.

However, the update xk+1 is accepted only if it is able to ensure a sufficient
decrease (or, at most, a controlled increase) of another approximation of the
objective function computed on a different subsample. In more detail, given
a different subsample Dk randomly chosen from N , the following checking
condition is controlled:

HDk
(xk + tkd

(Nk)
k ) ≤ HDk

(xk) + cminq
ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk, (8)

where, similarly to (7),

qᾱDk
(y) = (y − xk)

T∇fDk
(xk) +

1

2ᾱ
∥y − xk∥2 +R(y)−R(xk) (9)
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and v
(Dk)
k = proxᾱR(xk − ᾱ∇fDk

(xk)) with ᾱ ∈ [αmin, αmax]. The parameters
cmin and Cmax are positive real scalars and {ζk} is a summable sequence of
non-negative real numbers. We remark that for the checking condition (9) we
use a non-scaled gradient direction.

If condition (8) is not met the vector xk + tkd
(Nk)
k is rejected, xk+1 =

xk and a new mini-batch Nk+1 of larger size Nk+1 ∈ (Nk, N ] is considered.
Conversely, when the additional condition (8) is satisfied, then xk+1 = xk +

tkd
(Nk)
k is accepted, and the optimization algorithm continues using the same

approximation of the objective function, meaning that the mini-batch remains
unchanged. Actually if the mini-batch remains unchanged for a predetermined
number of iterations, a new mini-batch is randomly selected from N , keeping
the same cardinality as for the previous mini-batch. The main steps of the
proposed approach are detailed in Algorithm 1 and described below.

Step 1 is devoted to the selection of a positive step-length, belonging
to a bounded and closed interval, and a symmetric and positive definite
scaling matrix with bounded eigenvalues. Possible strategies to define these
parameters are discussed in Section 2.3.
Step 2 aims at computing the proximal stochastic gradient direction given
the mini-batch Nk, the scaling matrix Sk and the learning rate αk. If

qαk,Sk

Nk
(v

(Nk)
k ) is equal to zero, namely xk is a stationary point for HNk

(see
item d. of Lemma A.1), then the mini-batch is changed.
Step 3 consists in the line search procedure on the parameter tk. Until the
sufficient decrease of the current approximation HNk

of the objective function
is not ensured in terms of (6), tk is reduced by a factor β < 1. Lemma 2.1
guarantees that the line search is well defined.
Step 4 checks if the algorithm reaches the deterministic setting (namely
Nk = N) or not. Particularly, if Nk = N then Step 5, Step 6 and Step 7 are
avoided since they only refer to the stochastic scenario. We highlight that the
first four steps of Algorithm 1 with Nk = N reduce to a deterministic variable
metric proximal gradient method with line search (see for example [12]).
Step 5 implements the additional sampling. A different sub-sample Dk is

considered in order to verify if the attempt vector xk+tkd
(Nk)
k also guarantees a

sufficient decrease of the different approximationHDk
of the objective function.

If condition (8) is verified, the algorithm trusts xk + tkd
(Nk)
k and the mini-

batch is kept fixed for the next iteration provided that the prefixed number
m(Nk) of iterations with the same mini-batch has not been reached (see also
Step 6). Indeed, the support variable flag counts the number of iterations
performed with the same mini-batch. If flag > m(Nk) then a new mini-batch
of the same size is considered. Otherwise, if the additional sampling condition
(8) does not hold, the attempt vector computed in Step 1, Step 2 and Step 3
is rejected and the cardinality for the successive mini-batch is increased. When

d
(Nk)
k satisfies (8), the reduction of HDk

, although relaxed by the presence of
Cmaxζk ≥ 0, can be considered as an indication that the decrease of HNk

is acceptable in order to minimize the original objective function. In view of
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Algorithm 1 Proximal Stochastic gradient method with Additional sampling
and variable Metric (Prox-SAM)

Fix x0 ∈ Rd, η, β ∈ (0, 1), {ζk} ⊂ R+ subject to
∑∞

k=0 ζk ≤ ζ < ∞, cmin,
Cmax ∈ R++, 0 < αmin < αmax, ᾱ ∈ [αmin, αmax], µ ≥ 1, N0 > 0, N0 ⊆ N of
size N0, m(N0) > 0, flag = 0.

for k = 0, 1, . . . do
Step 1. Parameters selection

Set αk ∈ [αmin, αmax].
Set Sk ∈ Mµ.

Step 2. Computation of a scaled stochastic direction

v
(Nk)
k = proxSk

αkR
(xk − αkS

−1
k ∇fNk

(xk))

d
(Nk)
k = v

(Nk)
k − xk

If qαk,Sk

Nk
(v

(Nk)
k ) == 0

Then Nk+1 = Nk, flag = 0 and go to Step 7.
Else Set tk = 1 and go to Step 3.

Step 3. Line search procedure

If HNk
(xk + tkd

(Nk)
k ) ≤ HNk

(xk) + ηtkq
αk,Sk

Nk
(v

(Nk)
k )

Then xk = xk + tkd
(Nk)
k and go to Step 4.

Else tk = tk · β and repeat Step 3.
Step 4. Check for deterministic or stochastic setting

If Nk < N
Then go to Step 5.
Else xk+1 = xk and go to Step 1.

Step 5. Additional sampling
Choose Dk randomly and uniformly from N with replacement.

v
(Dk)
k = proxᾱR(xk − ᾱ∇fDk

(xk))

d
(Dk)
k = v

(Dk)
k − xk

If HDk
(xk) ≤ HDk

(xk) + cminq
ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk

Then xk+1 = xk, Nk+1 = Nk, flag = flag + 1 and go to Step 6.
Else xk+1 = xk, Nk+1 ∈ (Nk, N ], flag = 0 and go to Step 7.

Step 6. Check for keeping the same mini-batch
If flag < m(Nk)
Then go to Step 1.
Else flag = 0 and go to Step 7.

Step 7. Sample selection
Randomly choose Nk+1 ⊆ N of size Nk+1.
Compute the possible maximum number m(Nk+1) of iterations with

the same mini-batch.
end for

∑∞
k=0 ζk < ∞, we have ζk → 0, so that the condition (8) becomes stricter

as k increases. Furthermore, we highlight that there are no conditions on the
size of Dk, i.e., Dk can consist of only one element. Finally, we stress that if
condition (8) fails to be satisfied for many iterations, as the size of the mini-
batch is increased, there exists an iteration k such that, for k ≥ k, Nk = N and
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the method is switched to a deterministic proximal gradient method combined
with a line search.
Step 6 verifies if the same mini-batch has been already employed for m(Nk)
iterations.
Step 7 performs a new mini-batch selection. This step is reached only if either
the additional sampling failed (namely x̄k ensures a decrease only for HNk

) or
the same mini-batch has been considered for m(Nk) successive iterations. We
remark that m(Nk) can change along the iterative process.

We remark that it is possible to add a stopping criterion. Specifically, a
stopping criterion should be checked before the procedure returns to Step 1.

2.2 The convergence analysis

Assumption 1. The non-negative real sequence {ζk} in (8) is such that∑∞
k=0 ζk ≤ ζ.

Assumption 2. There exists H̄N ∈ R such that HN (x) ≥ H̄N , ∀x ∈ Rd.
The first lemma regards some properties of the line search in Step 4 of

Algorithm 1.

Lemma 2.1. If the function fN (·) in (1) is continuously differentiable and
the function R(·) in (1) is convex, then the line search procedure in Step 3 of
Algorithm 1 is well defined.

Proof The proof of this lemma is identical to the one of [12, Proposition 3.1]. However
we report in Appendix A the main arguments for the sake of completeness. □

Let us denote by D+
k the subset of all possible outcomes of Dk at iteration

k for which the condition (8) is satisfied, i.e.,

D+
k = {Dk ⊂ N | HDk

(xk) ≤ HDk
(xk) + cminq

ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk}. (10)

We denote the complementary subset of outcomes at iteration k by

D−
k = {Dk ⊂ N | HDk

(xk) > HDk
(xk) + cminq

ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk}. (11)

The first lemma guarantees that if the mini-batches are always proper subsets
ofN , then from a certain iteration forward the SD condition is always satisfied.
The proof can be found in Appendix A.3 since its arguments are the same of
the proofs of [37, Lemma 1] and [39, Lemma 1].

Lemma 2.2. Suppose that Assumption 1 holds. If Nk < N for all k ∈ N, then
a.s. there exists k1 ∈ N such that D−

k = ∅ for all k ≥ k1.
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Next, we show that Lemma 2.2 implies that the Armijo-like inequality (8) holds
for the overall objective function for all k sufficiently large in the mini-batch
scenario. The proof is similar to the one of Lemma 2 in [39].

Lemma 2.3. Suppose that Assumption 1 holds. If Nk < N for all k ∈ N,
then, given ᾱ > 0 and v

(i)
k = proxᾱR(xk − ᾱ∇Fi(xk)),

HN (x̄k) ≤ HN (xk)−
cmin

2ᾱ

1

N

N∑
i=1

∥xk − v
(i)
k ∥2 + Cmaxζk,

holds a.s. for all k ≥ k1 where k1 is as in Lemma 2.2.

Proof We first prove that the following inequality

qᾱDk
(v

(Dk)
k )≤− 1

2ᾱ
∥v(Dk)

k − xk∥2 (12)

holds true. In view of the definition of v
(Dk)
k = proxᾱR(xk − ᾱ∇fDk

(xk)), it follows
that

1

ᾱ
(xk − ᾱ∇fDk

(xk)− v
(Dk)
k ) ∈ ∂R(v

(Dk)
k ). (13)

Now we state an inequality for the elements of ∂R(v
(Dk)
k ). Indeed, for any w ∈

∂R(v
(Dk)
k ) we have

qᾱDk
(v

(Dk)
k ) = ∇fDk

(xk)
T (v

(Dk)
k − xk) +

1

2ᾱ
∥v(Dk)

k − xk∥2+

+R(v
(Dk)
k )−R(xk)

≤ ∇fDk
(xk)

T (v
(Dk)
k − xk) +

1

2ᾱ
∥v(Dk)

k − xk∥2 + wT (v
(Dk)
k − xk)

Hence the previous inequality holds true for 1
ᾱ (xk − ᾱ∇fDk

(xk)− v
(Dk)
k ) (see (13)).

This results in

qᾱDk
(v

(Dk)
k )≤∇fDk

(xk)
T (v

(Dk)
k − xk) +

1

2ᾱ
∥v(Dk)

k − xk∥2+

+
1

ᾱ
(xk − ᾱ∇fDk

(xk)− v
(Dk)
k )T (v

(Dk)
k − xk)

= − 1

2ᾱ
∥v(Dk)

k − xk∥2

Lemma 2.2, together with (12), implies that a.s.

HDk
(xk) ≤ HDk

(xk) + cminq
ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk

≤ HDk
(xk)−

cmin

2ᾱ
∥v(Dk)

k − xk∥2 + Cmaxζk
(14)

holds for all possible realizations of Dk and for all k ≥ k1. Thus, we conclude that
for every i = 1, 2, ..., N and every k ≥ k1 a.s. we have

Hi(xk) ≤ Hi(xk)−
cmin

2ᾱ
∥v(i)k − xk∥2 + Cmaxζk,

where Hi(x) = Fi(x) + R(x) and v
(i)
k = proxᾱR(xk − ᾱ∇Fi(xk)). Indeed, if there

exists i ∈ N that violates the previous inequality, then there would exist at least
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one realization of Dk (namely, Dk = {i, i, ..., i}) that violates (14). Thus, a.s., for all
k ≥ k1 we have

HN (xk) =
1

N

N∑
i=1

Hi(xk) ≤
1

N

N∑
i=1

(Hi(xk)−
cmin

2ᾱ
∥v(i)k − xk∥2 + Cmaxζk)

= HN (xk)−
cmin

2ᾱ

1

N

N∑
i=1

∥v(i)k − xk∥2 + Cmaxζk.

□

Theorem 2.1. Suppose that the Assumptions 1 and 2 hold and Nk < N , for
all k ∈ N. Let {xk} be a sequence generated by Algorithm 1. Then, a.s., any
limit point of the sequence {xk} is a stationary point for problem (1).

Proof Lemma 2.3 and ᾱ ∈ [αmin, αmax] imply that there exists k1 ∈ N such that
a.s. the following inequality holds for all k ≥ k1

HN (xk+1) = HN (x̄k) ≤ HN (xk)−
cmin

2αmax

1

N

N∑
i=1

∥xk − v
(i)
k ∥2 + Cmaxζk, (15)

where the equality comes from the fact that D−
k = ∅ and thus the candidate point

is accepted. By subtracting H̄N to both members of the previous inequality and
applying the conditional expected value with respect to the σ-algebra generated by
k1, . . . , k we get

E
[
HN (xk+1)− H̄N | Fk

k1

]
≤ HN (xk)− H̄N+

− cmin

2αmax

1

N

N∑
i=1

∥xk − v
(i)
k ∥2 + Cmaxζk.

where Fk
k1

denotes the the σ-algebra generated by k1, . . . , k. We note that both

x(k) and v
(i)
k do not depend on Nk and hence are Fk

k1
-measurable. In view of the

Robbins-Siegmund lemma [40, Lemma 11], we can conclude that

+∞∑
k=k1

N∑
i=1

∥xk − v
(i)
k ∥2 < +∞, a.s.

and, hence,

lim
k→+∞

N∑
i=1

∥xk − v
(i)
k ∥2 = 0, a.s.

As a consequence, we claim that ∀i = 1, . . . , N ,

lim
k→+∞

∥xk − v
(i)
k ∥2 = 0, a.s. (16)

Let us suppose that there exists a subsequence of {xk} that converges a.s. to x̄,
namely there exists K ⊆ N such that

lim
k→∞, k∈K

xk = x̄ a.s.
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Moreover, the continuity of both the proximal operator and ∇fi(·) with respect to
all their arguments, implies that, in view of (16),

lim
k→∞, k∈K

v
(i)
k = proxᾱR(x̄− ᾱ∇fi(x̄)) = x̄, ∀i = 1, . . . , N.

As a consequence, −∇fi(x̄) ∈ ∂R(x̄), ∀i = 1, . . . , N , and due to convexity of the

subdifferential we conclude that −∇fN (x̄) = − 1
N

∑N
i=1 ∇fi(x̄) ∈ ∂R(x̄), namely

that x̄ is a stationary point for HN a.s.
□

By considering additional assumptions on the objective function, the con-
vergence of both the sequence of the objective function values and the sequence
of the iterates can be proved.

Theorem 2.2. Suppose that the Assumptions 1 and 2 hold, Nk < N for all
k ∈ N, and the objective function is convex. If the sequence {xk} generated
by Algorithm 1 is bounded, then, a.s., the sequence of the objective function
values {HN (xk)} converges to the minimum value H∗

N of HN .

Proof By subtracting H∗
N to both sides of (15), the Robbins-Siegmund lemma

implies that there exists a positive random variable Z such that {HN (xk) − H∗
N }

a.s. converges to Z. Since the sequence {xk} is bounded, it admits a subsequence
{xkj

} that converges to some x̄, which, according to the previous theorem, is a sta-
tionary point. Since the objective function is convex, x̄ is a minimum point and
HN (x̄) = H∗

N . By the continuity of HN , it follows that HN (xkj
) converges to

HN (x̄) = H∗
N . We can conclude that Z = 0 and that {HN (xk)} converges to H∗

N
a.s. □

Theorem 2.3. Suppose that the Assumptions 1 and 2 hold, Nk < N for all
k ∈ N, and the objective function is µN -strongly convex. If the sequence {xk}
generated by Algorithm 1 is bounded, then, a.s., {xk} converges to the unique
solution x∗ of problem (1).

Proof If HN is µN -strongly convex, problem (1) has a unique solution x∗. By
denoting with H∗

N the value of the objective function in the solution, namely
HN (x∗) = H∗

N , in view of the strong convexity assumption for HN , the following

inequality holds for any x ∈ Rd:

µN
2

∥x− x∗∥2 ≤ HN (x)−H∗
N . (17)

Since the sequence {xk} is bounded, Theorem 2.2 ensures that the sequence
{HN (xk)−H∗

N } converges to zero. As a consequence, taking xk instead of x in (17)
and letting k → ∞, we obtain the convergence of the sequence generated by the
algorithm to the unique solution x∗ of problem (1). □

Theorem 2.4. Suppose that the Assumption 2 holds and the full sample is
reached. Then, any limit point of the sequence {xk} generated by Algorithm 1
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is a stationary point. If moreover the function HN is convex and the sequence
{Sk} ⊂ Mµ satisfies the following additional assumption

Sk+1 ⪯ (1 + ϑk)Sk, {ϑk} ⊂ R+,

+∞∑
k=0

ϑk < +∞, (18)

then the sequence {xk} converges to a solution of (1).

Proof If there exists k̄ such that Nk ≥ N , ∀k ≥ k̄, then Algorithm 1 reduces to a
deterministic variable metric forward-backward method, whose convergence results
are well-known in the literature. The reader is referred for example to [12, Theorem
3.1] and [12, Theorem 3.3]. □

Condition (18) states that the sequence {Sk}k∈N asymptotically approaches
a constant matrix [14, Lemma 2.3]. A possibility to practically fulfill this
condition (see [12]) is to impose that

{Sk} ⊆ Mµk
, where µ2

k = 1 + ξk, {ξk} ⊂ R+,

+∞∑
k=0

ξk < +∞. (19)

2.3 Possible practical strategies to select αk and Sk

A possibility to select the learning rate αk consists in following the idea sug-
gested in [37]. In particular the Barzilai-Borwein (BB) rules can be adopted
in all those iterations where the mini-batch does not change. In this way
such rules are employed to efficiently minimize the approximation HNk

(·) of
the objective function. In more detail, let us consider the scenario where the
same mini-batch, Nk, is held constant for m ≤ m(Nk) iterations, specifi-
cally from iteration k to k + m − 1. In this case, the learning rate αj , for
j = k + 1, . . . , k +m − 2, can be chosen using one of the following BB selec-
tion rules, which account for the presence of a scaling matrix S−1

j multiplying
∇fNk

(xj):

αBB1
j =

zTj−1Sjzj−1

zTj−1yj−1
,

αBB2
j =

zTj−1yj−1

yTj−1S
−1
j yj−1

,

(20)

where zj−1 = xj − xj−1 and yj−1 = ∇fNk
(xj) − ∇fNk

(xj−1). It is evident
that, to compute the BB rules, two successive gradients related to the same
mini-batch Nk are required. For this reason, when j = k, the learning rate αj

must be set equal to a different predefined value, such as

αj =
1

∥∇fNk
(xj)∥

. (21)
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In the deterministic setting, many variants of the BB rules defined in (20)
have been developed to make optimization gradient algorithms more effective.
We recall here the so called ABBmin strategy [41] which is based on properly
alternating the standard BB rules in (20); particularly, for j = k + 1, . . . ,m,
we get

αABBmin
j =

{
min{αBB2

i | i = max(1, j −Mα), . . . , j} if
αBB2

j

αBB1
j

< τ

αBB1
j otherwise

(22)

where Mα > 0 is a prefixed integer constant and τ ∈ (0.5, 1). Every time the
mini-batch changes, the BB rules can not be applied and the learning rate
must be fixed differently. A possibility is to follow a strategy similar to (21).
Algorithm 2 summarizes the learning rate selection technique just described.
It is thought to be integrated in Step 1 of Algorithm 1.

Algorithm 2 BB-like learning rate selection rule

if flag > 0 then
Compute zk−1 = xk − xk−1 and yk−1 = ∇fNk

(xk)−∇fNk
(xk−1).

Compute αk by means of (20) or (22).
else

αk =
1

∥∇fNk
(xk)∥

end if
αk = min (max (αmin, αk) , αmax)

As for the selection of the variable metric, we borrow the ideas of adaptive
stochastic gradient methods such as AdaGrad [42], Adam [43] and AdaBelief
[44]. The general update iteration of these algorithms can be written as

xk+1 = xk − αkS
−1
k mk

mk = γmk−1 + (1− γ)∇fNk
(xk)

where αk is a positive learning rate, Sk is a preconditioning matrix and γ ∈
[0, 1) is a constant momentum parameter. Adaptive gradient methods typically
differ in how their preconditioners are constructed and whether or not they
include the momentum term. For the selection of an appropriate scaling matrix
in Algorithm 1, we can consider the preconditioning matrices used in Adam,
AdaBelief and AdaGrad, defined respectively as

AdaBelief


Mk = β1Mk−1 + (1− β1)∇fNk

(xk)

gk = ∇fNk
(xk)−Mk

Sk =

(
β2Sk−1+(1−β2)diag(gkgT

k )+εI

1−βk̃
2

)1/2
(23)
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Adam

{
Sk =

(
βSk−1+(1−β)diag(∇fNk

(xk)∇fNk
(xk)

T )+εI

1−βk̃

)1/2

(24)

AdaGrad
{
Sk =

(
Sk−1 + diag

(
∇fNk

(xk)∇fNk
(xk)

T
)
+ εI

)1/2
(25)

where S0 = 0, M0 = 0, β, β1, β2 ∈ [0, 1), k̃ = k, ε > 0 and I is the identity
matrix. We remark that all these matrices are diagonal with positive diagonal
elements, therefore satisfying the requirement to be symmetric and positive
definite as needed by Algorithm 1. However, the convergence of Algorithm 1

is guaranteed if the eigenvalues of Sk lie within a suitable interval
[
1
µ , µ

]
, with

µ > 0. As a consequence, the diagonal elements of the matrices Sk in (24),
(23) and (25) must be properly thresholded when employed in Algorithm 1.
Since condition (18) is needed for the convergence of Algorithm 1 when the
full sample is reached, we derive bounds for the scaling matrices based on (19).
In particular, given sk the diagonal of the matrix Sk defined according to one
of the definitions (24)-(25), and a summable sequence {ξk} of non-negative
elements, we could impose that

sk = min

(
µk,max

(
sk,

1

µk

))
(26)

where µ2
k = 1 + ξk. Actually, requirement (26) is too restrictive to be forced

at every iteration of Algorithm 1. Indeed when the mini-batch changes, the
bounds for the diagonal elements of Sk can be widened again. The variable
flag in Algorithm 1 accounts for the number of iterations with the same mini-
batch and, hence, can be employed to reset the bounds for the scaling matrices.
A similar strategy can also be adopted to set k̃ in (23) and (24) in order to
strengthen the effect of the scaling matrix when the mini-batch changes. In
Algorithm 3, we outline our resulting proposal to select the scaling matrix in
Step 1 of Algorithm 1.

Algorithm 3 Scaling matrix selection rule

Define Sk by means of (23) with k̃ = flag or (24) with k̃ = flag or (25).
µ2
k = 1 + ξflag

diag(Sk) = min

(
µk,max

(
diag(Sk),

1

µk

))

3 Numerical experiments

In this section we perform several numerical experiments to evaluate the
behaviour of the proposed method. We consider a binary classifications prob-
lem on four datasets: w8a, IJCNN and RCV1 (downloadable from https:
//www.csie.ntu.edu.tw/∼cjlin/libsvmtools/) and MNIST (available at https:

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/
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//yann.lecun.com/exdb/mnist/). For the MNIST dataset, we adapted it for
the binary classification dividing the class in odd and even digits.

dataset d #training set (N) #testing set
MNIST 784 60000 10000
w8a 300 44774 4975
IJCNN 22 49990 91701
RCV1 47236 20242 10000

Table 1: Dataset features.

In Table 1 the features of the considered datasets are summarized. Let assume
that (ai, bi), i = 1, ...N denotes the pair of the feature vector ai ∈ Rd and the
class label bi ∈ {1,−1} of the i−th example. We consider two cases for func-
tion fN (x); in the first case the terms of the finite sum are convex logistic
regression (LR) loss functions:

fi(x) = log
[
1 + e−bia

T
i x

]
,

whereas, in the second case, we take into account a finite sum of non-convex
loss functions in 2-layer neural networks (NN):

fi(x) =

(
1− 1

1 + e−biaT
i x

)2

.

The regularization term in the objective function HN (x) can be of two types:

• the L1 norm, R(x) = λ∥x∥1; the proximal operator of αR(x) in the S-norm
(with S diagonal and positive definite matrix) is given by

proxSαR(x) = sign(x) ·max((|x| − αλS1), 0)

where 1 is a column vector of d ones, and the product and the absolute value
function are intended component-wise;

• and the squared L2 norm, R(x) = λ
2 ∥x∥

2
2. The proximal operator of αR(x)

in the S-norm (with S diagonal and positive definite matrix) is given by

proxSαR(x) =
x

1+ αλS1

where the quotient is intended component-wise.

Consequently, the objective function HN (x) can take four forms, hereafter
denoted as LR-L1, NN-L1, LR-L2 and NN-L2. The regularization parameter
is fixed as λ = 10−4 in all the test problems. For any numerical test, we per-
form 10 runs, leaving the possibility to the random number generator to vary.

https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/
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Therefore, the performance measures used to evaluate the obtained results are
the averaged values of the following quantities:

• optimality gap HN (xk) − H∗
N , computed on the training set with respect

to the epochs; here, H∗
N is an estimate of the minimum value, obtained by

running a gradient iterative methods for a huge number of iterations;
• accuracy computed on the testing set with respect to the epochs;
• increase of the mini-batch size with respect to the iterations.

As a measure of computational complexity, we refer to an epoch. By an epoch,
we mean the number of operations equivalent to computing the full gradient
of the function fN (x).
In all the experiments, we set the following parameters: Cmax = 108, cmin =
10−4, η = 0.4, β = 0.5, ζ0 = 1; the initial mini-batch size N0 = 10, except
when Sk is fixed to the identity matrix, in which case N0 = 1; αmin = 10−8,
αmax = 102, ᾱ = 1 and m(Nk) = Nk. The mini-batch size Nk increases
according to the rule Nk+1 = Nk + 1.

3.1 L1-regularized test problems

In this subsection, we present the results obtained by the proposed algorithm
for the test-problems LR-L1 and NN-L1. The stopping criterion is that the
total number of loss term evaluations is greater than or equal to N · maxit,
where maxit is the maximum number of allowed epochs, set to 20. We also
report the execution times for each method to highlight the effectiveness of
the new proposed method.

3.1.1 Hyperparameters settings comparison for Algorithm 1

The first numerical experiment compares different versions of the Prox-SAM
method by varying the selection of either the learning rate αk or the scaling
matrix Sk. In particular we consider the following schemes:

• Prox-SAM-BB: Algorithm 1 with Sk equal to the identity matrix and αk

defined by Algorithm 2 equipped by (22);
• Prox-SAM-I: Algorithm 1 with Sk equal to the identity matrix and αk =
1,∀k;

• Prox-SAM-S
(1)
k : Algorithm 1 with Sk selected by Algorithm 3 equipped

by (23), β1 = 0.9, β2 = 0.999, ε = 10−16 and αk = 0.5, ∀k;
• Prox-SAM-S

(2)
k : Algorithm 1 with Sk selected by Algorithm 3 equipped

by (24), β = 0.999, ε = 10−16 and αk = 0.5,∀k;
• Prox-SAM-S

(3)
k : Algorithm 1 with Sk selected by Algorithm 3 equipped

by (25), ε = 10−16 and αk = 0.5,∀k.

For all the scaled versions of Prox-SAM the sequence {ξi} has been chosen

as
{

105

(i+1)2.1

}
.
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Method MNIST w8a IJCNN RCV1

Prox-SAM-BB
|HN (x̄)−H∗

N | 0.0436 0.0310 0.0097 0.0789
±STD ±0.0150 ±0.0018 ±0.0025 ±0.0008

A(x̄) 0.8863 0.9428 0.9197 0.9417
±STD ±0.0073 ±0.0020 ±0.0022 ±0.0013

Time (s) 15.3602 5.3616 1.9598 7.4594

Prox-SAM-I
|HN (x̄)−H∗

N | 0.1061 0.0373 0.0097 0.1469
±STD ±0.0080 ±0.0008 ±0.0006 ±0.0010

A(x̄) 0.8867 0.8996 0.9155 0.9408
±STD ±0.0016 ±0.0007 ±0.0007 ±0.0011

Time (s) 16.8520 5.3854 1.8808 8.1289

Prox-SAM-S
(1)
k

|HN (x̄)−H∗
N | 0.0211 0.0323 0.0065 0.0914

±STD ±0.0024 ±0.0010 ±0.0003 ±0.0009

A(x̄) 0.8958 0.9008 0.9187 0.9399
±STD ±0.0026 ±0.0010 ±0.0007 ±0.0013

Time (s) 17.4981 5.1854 1.8789 8.1504

Prox-SAM-S
(2)
k

|HN (x̄)−H∗
N | 0.0213 0.0323 0.0065 0.0914

±STD ±0.0030 ±0.0008 ±0.0002 ±0.0011

A(x̄) 0.8957 0.9017 0.9182 0.9393
±STD ±0.0017 ±0.0012 ±0.0009 ±0.0013

Time (s) 17.3483 5.5095 1.8977 8.1797

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0210 0.0337 0.0069 0.0885

±STD ±0.0017 ±0.0009 ±0.0003 ±0.0013

A(x̄) 0.8969 0.9011 0.9184 0.9395
±STD ±0.0011 ±0.0013 ±0.0015 ±0.0010

Time (s) 17.3684 5.4844 1.8960 8.5801

Table 2: Results obtained for the test problem LR-L1 with different versions
of Prox-SAM.

Tables 2-3 report the averaged optimality gap, averaged accuracy with
the related standard deviations (STD) and averaged execution time (in sec-
onds) over 10 runs for the LR-L1 and NN-L1 test problems, respectively. From
these results we can conclude that, in general, the Prox-SAM algorithm with
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Method MNIST w8a IJCNN RCV1

Prox-SAM-BB
|HN (x̄)−H∗

N | 0.0165 0.0126 0.0068 0.0323
±STD ±0.0024 ±0.0004 ±0.0010 ±0.0002

A(x̄) 0.8947 0.8973 0.9252 0.9282
±STD ±0.0041 ±0.0011 ±0.0023 ±0.0007

Time (s) 17.2520 5.9228 2.3742 7.2337

Prox-SAM-I
|HN (x̄)−H∗

N | 0.0161 0.0134 0.0103 0.0582
±STD ±0.0009 ±0.0003 ±0.0004 ±0.0003

A(x̄) 0.8961 0.8971 0.9134 0.9330
±STD ±0.0015 ±0.0011 ±0.0008 ±0.0019

Time (s) 19.1178 5.9097 2.2695 7.6604

Prox-SAM-S
(1)
k

|HN (x̄)−H∗
N | 0.0120 0.0137 0.0061 0.0366

±STD ±0.0011 ±0.0002 ±0.0002 ±0.0005

A(x̄) 0.8981 0.8952 0.9252 0.9290
±STD ±0.0025 ±0.0013 ±0.0012 ±0.0016

Time (s) 18.7752 6.1570 2.2971 7.9079

Prox-SAM-S
(2)
k

|HN (x̄)−H∗
N | 0.0123 0.0137 0.0061 0.0357

±STD ±0.0013 ±0.0004 ±0.0002 ±0.0003

A(x̄) 0.8983 0.8950 0.9239 0.9295
±STD ±0.0023 ±0.0010 ±0.0013 ±0.0009

Time (s) 18.5366 6.1225 2.2836 7.9886

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0112 0.0143 0.0062 0.0386

±STD ±0.0005 ±0.0004 ±0.0003 ±0.0005

A(x̄) 0.9001 0.8946 0.9239 0.9287
±STD ±0.0013 ±0.0016 ±0.0020 ±0.0018

Time (s) 19.0045 6.1412 2.2905 8.3103

Table 3: Results obtained for the test problem NN-L1 with different versions
of Prox-SAM.

non-trivial scaling matrices exhibits the best effectiveness. In terms of numer-
ical performance, the least effective version of Prox-SAM is Prox-SAM-I.
Indeed, between the two non-scaled versions of Prox-SAM, the one combined
with the BB-like rules is more efficient. The final accuracy reached by all the
variants of Prox-SAM is comparable.
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Fig. 1: Test problem LR-L1 for the MNIST dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel). Second row: averaged accuracy evalu-
ated on the test set (left panel) and a zoom of the accuracy in the interval
[0.8, 0.9] (right panel).

Figures 1-2 show the behaviour of the averaged optimality gap, the aver-
aged accuracy and the increase of the averaged mini-batch size over 20 epochs.
We can observe that, for the dataset MNIST and both the test problems, the

configuration Prox-SAM-S
(3)
k appears very efficient. The accuracy is quite

similar across all configurations, and the increase in mini-batch size is limited
for all settings, even in relation to the size of the training set. Figures 3-4 show
the comparison for the IJCNN dataset and the two test problems LR-L1 and
NN-L1, respectively. We observe that the use of the scaling techniques is effi-
cient also in this case. In the following comparison with other state-of-the-art

algorithms, the Prox-SAM-S
(3)
k version of the proposed method is adopted.

3.1.2 Comparison of Prox-SAM-S
(3)
k with other methods

As in the previous experiment, we perform 10 runs and report the averaged

results. We compare the Prox-SAM-S
(3)
k method with Prox-SARAH [28],

Prox-Spider-boost [45] and Prox-LISA [22] equipped with the hyperpa-
rameters setting specified in the cited papers. For the sake of completeness,
we report these values in Appendix B. We remark that Prox-SARAH and
Prox-Spider-boost are schemes based on outer-inner iterations. At each
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Fig. 2: Test problem NN-L1 for the MNIST dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
average of the mini-batch size (right panel). Second row: averaged accuracy
evaluated on the test set (left panel) and a zoom of the accuracy in the interval
[0.8, 0.9] (right panel).

outer iteration, the full gradient at the current iterate (or an estimate based
on a large mini-batch) is computed and used to evaluate the stochastic gra-
dients in the m successive inner steps, where m is on the order of N . Our
implementation of these methods is based on the codes available for download
at https://github.com/unc-optimization/StochasticProximalMethods. Here,
at each outer iteration the computation of the full gradient is performed.
On the other hand, the Prox-LISA algorithm is a stochastic gradient method
that uses a line search technique to select the learning rate and performs a
test to control the stochastic gradient variance by suitably increasing the
mini-batch size.

In Tables 4 and 5 we report the averaged optimality gap, the averaged
accuracy obtained by the considered methods for the two test problems LR-
L1 and NN-L1, respectively. We also include the averaged execution time in
seconds. We observe that the proposed method achieves comparable results
to those of Prox-SARAH and Prox-Spider-boost in a significantly lower
computational time. Indeed, Prox-SARAH and Prox-Spider-boost meth-
ods require the very expensive computation of a full gradient at each outer

https://github.com/unc-optimization/StochasticProximalMethods
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Fig. 3: Test problem LR-L1 for the IJCNN dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel). Second row: averaged accuracy evalu-
ated on the test set (left panel) and a zoom of the accuracy in the interval
[0.88, 0.92] (right panel).

iteration. Compared to the Prox-LISA method, the behaviour of Prox-

SAM-S
(3)
k appears very similar. We can conclude that, given the same time

budget, Prox-SARAH and Prox-Spider-boost are not as effective as

Prox-SAM-S
(3)
k and Prox-LISA.

In Figure 5 the optimality gap, the accuracy and the increase of the mini-
batch size related to the test problem LR-L1 combined with the RCV1 dataset
are shown. In the plot of the optimality gap, the STD is represented by the
shaded area around the curves. We observe that, in terms of the optimality
gap, the behavior of the considered methods is similar at the end. The final
accuracy values for the competitors are slightly higher than those obtained by

Prox-SAM-S
(3)
k . However, Figure 7, which reports the optimality gap with

respect to the execution time related to one trial, suggests that Prox-SAM-

S
(3)
k and Prox-LISA are more efficient in the initial stages of processing. For

this type of graph, the different methods are stopped after a time at least equal
to the bigger execution time of the pair method/dataset reported in the Tables

4 and 5. The increase in mini-batch size is greater for Prox-SAM-S
(3)
k than

for Prox-LISA, but it remains limited relative to the size of the training set.
In Figure 6 the optimality gap, the accuracy and the increase of the mini-batch
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Fig. 4: Test problem NN-L1 for the IJCNN dataset - First row: averaged
optimality gap computed on the training set (left panel) andincrease of the
average of the mini-batch size (right panel). Second row: averaged accuracy
evaluated on the test set (left panel) and a zoom of the accuracy in the interval
[0.88, 0.93] (right panel).

size are shown for the NN-L1 objective function combined with the IJCNN
dataset. We observe that the Prox-SARAH and Prox-Spider-boost meth-
ods have a larger STD compared to the other two methods. Furthermore,

Prox-SAM-S
(3)
k exhibits better accuracy than the other methods, even with

a lower execution time (see Figure 7).
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Method MNIST w8a IJCNN RCV1

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0210 0.0337 0.0069 0.0885

±STD ±0.0017 ±0.0009 ±0.0003 ±0.0013

A(x̄) 0.8969 0.9011 0.9184 0.9395
±STD ±0.0011 ±0.0013 ±0.0015 ±0.0010

Time (s) 17.3684 5.4844 1.8960 8.5801

Prox-SARAH
|HN (x̄)−H∗

N | 0.0205 0.0457 0.0085 0.0891
±STD ±0.0002 ±0.0029 ± 9.74e−5 ± 6.96e−5

A(x̄) 0.8960 0.8964 0.9156 0.9463
±STD ±0.0006 ±0.0010 ± 8.49e−5 ±0.0005
Time (s) 30.7269 12.4376 11.0571 91.3117

Prox-Spider-boost
|HN (x̄)−H∗

N | 0.0204 0.0853 0.0085 0.0880
±STD ±0.0002 ±0.0002 ± 9.76e−5 ± 7.39e−5

A(x̄) 0.8961 0.8942 0.9157 0.9465
±STD ±0.0007 ±0.0003 ± 7.15e−5 ±0.0005
Time (s) 28.5358 3.7857 11.4335 81.9897

Prox-LISA
|HN (x̄)−H∗

N | 0.0173 0.0267 0.0059 0.0950
±STD ±0.0034 ±0.0002 ± 1.83e−6 ±0.0003

A(x̄) 0.8964 0.9032 0.9188 0.9452
±STD ±0.0019 ±0.0005 ±0.0002 ±0.0009
Time (s) 13.1078 4.3027 2.6623 15.1850

Table 4: Results for LR-L1 test problem after 20 epochs.
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Method MNIST w8a IJCNN RCV1

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0112 0.0143 0.0062 0.0386

±STD ±0.0005 ±0.0004 ±0.0003 ±0.0005

A(x̄) 0.9001 0.8946 0.9239 0.9287
±STD ±0.0013 ±0.0016 ±0.0020 ±0.0018

Time (s) 19.0045 6.1412 2.2905 8.3103

Prox-SARAH
|HN (x̄)−H∗

N | 0.0137 0.0153 0.0340 0.0302
±STD ±0.0001 ±0.0005 ±0.0161 ± 2.78e−5

A(x̄) 0.8951 0.8953 0.9168 0.9324
±STD ±0.0005 ±0.0004 ±0.0086 ±0.0005
Time (s) 28.3576 12.8179 11.4600 89.2021

Prox-Spider-boost
|HN (x̄)−H∗

N | 0.0228 0.0303 0.0343 0.0302
±STD ± 4.58e−5 ± 5.19e−5 ±0.0162 ± 2.77e−5

A(x̄) 0.8777 0.8938 0.9168 0.9324
±STD ±0.0003 ±0.0001 ±0.0087 ±0.0004
Time (s) 14.3127 4.0102 11.4218 89.8600

Prox-LISA
|HN (x̄)−H∗

N | 0.0103 0.0119 0.0063 0.0387
±STD ±0.0002 ± 5.91e−5 ± 3.37e−5 ± 6.50e−5

A(x̄) 0.8996 0.9002 0.9199 0.9360
±STD ±0.0012 ±0.0007 ±0.0002 ±0.0005
Time (s) 14.7175 4.8300 3.1527 14.5289

Table 5: Results for NN-L1 test problem after 20 epochs.
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Fig. 5: Test problem LR-L1 for the RCV1 dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel). Second row: averaged accuracy eval-
uated on the test set (left panel) anda zoom of the accuracy in the interval
[0.92, 0.95] (right panel).
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Fig. 6: Test problem NN-L1 for the IJCNN dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel). Second row: averaged accuracy evalu-
ated on the test set (left panel) and a zoom of the accuracy in the interval
[0.88, 0.93] (right panel).

Fig. 7: Optimality gap with respect to the execution time related to one trial
for test problem LR-L1 with RCV1 dataset (left panel) and test problem NN-
L1 with IJCNN dataset (right panel).
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3.2 L2-regularized test problems

In this section we present the results obtained by the proposed method when
the regularization term is equal to λ

2 ∥x∥
2
2. In particular, the first experiment

compares the last four versions of Prox-SAM introduced in Section 3.1 with
the LSNM-BB algorithm [37]. We remark that Prox-SAM exploits the closed
form of the proximal operator related to the squared L2 norm, while LSNM-
BB computes its gradient directly. The methods are stopped when the total
number of the loss term evaluations is greater than or equal to N ·maxit where
maxit is the maximum number of allowed epochs, set equal to 20.

In Tables 6 and 7 we report the averaged optimality gap and the averaged
accuracy obtained by the LSNM-BB algorithm and the different versions of
Prox-SAM for the two test problems LR-L2 and NN-L2, respectively. We
observe that the scaled versions of the proposed method are very efficient in
terms of all metrics compared to LSNM-BB.

Fig. 8: LR-L2 test problem for the w8a dataset - First row: averaged optimality
gap computed on the training set (left panel) and increase of the averaged
mini-batch size (right panel). Second row: averaged accuracy evaluated on the
test set (left panel) and a zoom of the accuracy in the interval [0.89, 0.904]
(right panel).

In Figure 8 the optimality gap, the averaged accuracy and the increase of
the mini-batch size for the test problem LR-L2 with the w8a dataset are shown.
We can observe that the three scaled versions of Prox-SAM (Sk different to
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Method MNIST w8a IJCNN RCV1

LSNM-BB
|HN (x̄)−H∗

N | 0.0220 0.0131 0.0197 0.0944
±STD ±0.0151 ±0.0032 ±0.0029 ±0.0092

A(x̄) 0.8895 0.9001 0.9134 0.9459
±STD ±0.0075 ±0.0018 ±0.0025 ±0.0045

Time (s) 17.8832 5.3414 1.6005 5.0697

Prox-SAM-I
|HN (x̄)−H∗

N | 0.0641 0.0049 0.0014 0.0322
±STD ±0.0057 ±0.0009 ±0.0005 ±0.0005

A(x̄) 0.8879 0.8999 0.9153 0.9442
±STD ±0.0021 ±0.0013 ±0.0009 ±0.0013

Time (s) 16.2417 5.0677 1.8440 7.3271

Prox-SAM-S
(1)
k

|HN (x̄)−H∗
N | 0.0064 0.0003 0.0003 0.0063

±STD ±0.0036 ±0.0005 ±0.0001 ±0.0006

A(x̄) 0.8956 0.9018 0.9164 0.9557
±STD ±0.0020 ±0.0007 ±0.0005 ±0.0007

Time (s) 17.1458 5.0965 1.8483 7.5063

Prox-SAM-S
(2)
k

|HN (x̄)−H∗
N | 0.0069 0.0002 0.0003 0.0065

±STD ±0.0039 ±0.0003 ±0.0002 ±0.0006

A(x̄) 0.8958 0.9016 0.9164 0.9559
±STD ±0.0029 ±0.0015 ±0.0006 ±0.0006

Time (s) 16.4497 5.1223 1.8529 7.5341

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0046 0.0014 0.0004 0.0080

±STD ±0.0013 ±0.0015 ±0.0002 ±0.0012

A(x̄) 0.8974 0.9013 0.9167 0.9546
±STD ±0.0012 ±0.0009 ±0.0005 ±0.0014

Time (s) 16.4121 5.1905 1.8396 7.5470

Table 6: Results obtained for the test problem LR-L2 with different versions
of Prox-SAM.

the identity matrix) are very efficient. The increase of the mini-batch size is
very similar for all the considered versions of Prox-SAM. The final accuracy
is around 0.9 in all cases. In Figure 9 the optimality gap, the accuracy and
the increase of the mini-batch size for the NN-L2 objective function combined
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Method MNIST w8a IJCNN RCV1

LSNM-BB
|HN (x̄)−H∗

N | 0.0079 0.0044 0.0074 0.0356
±STD ±0.0046 ±0.0005 ±0.0006 ±0.0057

A(x̄) 0.8912 0.9012 0.9117 0.9428
±STD ±0.0101 ±0.0011 ±0.0015 ±0.0056

Time (s) 16.9037 5.5032 1.8646 5.3847

Prox-SAM-I
|HN (x̄)−H∗

N | 0.0060 0.0002 0.0013 0.0122
±STD ±0.0007 ±0.0005 ±0.0002 ±0.0003

A(x̄) 0.8963 0.8976 0.9117 0.9409
±STD ±0.0012 ±0.0011 ±0.0014 ±0.0016

Time (s) 17.5193 5.8471 2.1605 7.1475

Prox-SAM-S
(1)
k

|HN (x̄)−H∗
N | 0.0015 0.0013 6.96e−5 0.0013

±STD ±0.0005 ±0.0005 ± 5.54e−5 ±0.0004

A(x̄) 0.8998 0.8985 0.9164 0.9544
±STD ±0.0013 ±0.0014 ±0.0004 ±0.0008

Time (s) 17.6217 5.7809 2.1728 7.4940

Prox-SAM-S
(2)
k

|HN (x̄)−H∗
N | 0.0016 0.0013 5.17e−5 0.0011

±STD ±0.0005 ±0.0005 ± 4.68e−5 ±0.0003

A(x̄) 0.9000 0.8991 0.9164 0.9542
±STD ±0.0019 ±0.0007 ±0.0004 ±0.0009

Time (s) 18.1867 5.6715 2.1401 7.4712

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0017 0.0020 6.82e−5 0.0011

±STD ±0.0004 ±0.0004 ± 5.41e−5 ±0.0002

A(x̄) 0.9003 0.8983 0.9167 0.9537
±STD ±0.0011 ±0.0006 ±0.0004 ±0.0007

Time (s) 18.5474 5.7919 2.1568 7.5859

Table 7: Results obtained for the test problem NN-L2 with different versions
of Prox-SAM.

with the MNIST dataset are shown. Similar conclusions to those drawn from
Figure 8 can also be made in this case.
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Fig. 9: Test problem NN-L2 for the MNIST dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel). Second row: averaged accuracy eval-
uated on the test set (left panel) anda zoom of the accuracy in the interval
[0.85, 0.91] (right panel).

3.2.1 Comparison of Prox-SAM-S
(3)
k with other methods

As in the previous experiments with the L1 regularization term, we com-

pare Prox-SAM-S
(3)
k with Prox-SARAH, Prox-Spider-boost and Prox-

LISA.
In Tables 8 and 9 we report the averaged optimality gap and the aver-

aged accuracy obtained by the considered methods for the two test problems
LR-L2 and NN-L2, respectively. We notice that, also in the presence of the

L2 regularization term, Prox-SAM-S
(3)
k appears very efficient compared to

Prox-SARAH and Prox-Spider-boost. We also find that, with respect to

the Prox-LISA method, the behaviour of Prox-SAM-S
(3)
k appears equiv-

alent and, for some test problem/dataset combinations, more efficient. It

is worth stressing that Prox-SAM-S
(3)
k and Prox-LISA require shorter

execution times than Prox-SARAH and Prox-Spider-Boost.
In Figure 10 the optimality gap, the accuracy and the increase of the mini-

batch size for the test problem LR-L2 with the IJCNN dataset are shown. We
observe that after few epochs, the proposed method becomes more efficient
compared to the other methods. The final accuracy is very similar across all
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Method MNIST w8a IJCNN RCV1

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0046 0.0014 0.0004 0.0080

±STD ±0.0013 ±0.0014 ± 0.0002 ±0.0012

A(x̄) 0.8974 0.9013 0.9167 0.9546
±STD ±0.0012 ±0.0009 ±0.0005 ±0.0014
Time (s) 16.4121 5.1905 1.8396 7.5470

Prox-SARAH
|HN (x̄)−H∗

N | 0.0061 0.0126 0.0024 0.0158
±STD ±0.0003 ±0.0020 ± 4.36e−5 ± 5.79e−6

A(x̄) 0.8965 0.8966 0.9147 0.9539
±STD ±0.0006 ±0.0010 ± 8.10e−5 ±0.0002
Time (s) 28.4986 13.2941 11.0751 83.0225

Prox-Spider-boost
|HN (x̄)−H∗

N | 0.0060 0.0577 0.0024 0.0157
±STD ±0.0003 ±0.0002 ± 4.34e−5 ± 5.43e−6

A(x̄) 0.8965 0.8945 0.9147 0.9539
±STD ±0.0006 ±0.0005 ± 9.02e−5 ±0.0002
Time (s) 31.7880 3.9925 11.2167 77.1612

Prox-LISA
|HN (x̄)−H∗

N | 0.0002 0.0011 0.0015 0.0165
±STD ±0.0004 ± 7.79e−5 ± 6.60e−5 ± 7.89e−5

A(x̄) 0.8981 0.9016 0.9153 0.9533
±STD ±0.0017 ±0.0005 0.0002 ±0.0005
Time (s) 13.4784 4.5602 2.6196 18.4673

Table 8: Results for LR-L2 test problem after 20 epochs.

methods, and although the mini-batch size increase for Prox-SAM-S
(3)
k is

larger than for Prox-LISA, it remains smaller than the size of the training set.
Similar observations can be made for Figure 11, which shows the optimality
gap, accuracy, and mini-batch size increase for the RCV1 dataset with the NN-
L2 objective function. Also in this case, Figure 12, which reports the optimality
gap with respect to the execution time related to one trial, suggests that

Prox-SAM-S
(3)
k and Prox-LISA are more efficient in the initial stages of

processing.

4 Conclusions

In this paper we proposed a class of variable metric proximal stochastic
gradient methods aimed at solving regularized empirical risk minimization
problems. Besides the presence of a scaling matrix in the stochastic direction,
our proposal is based on a line search, monitoring the decrease of the stochas-
tic approximations of the objective function, and an increasing mini-batch
size strategy, combined with an additional sampling procedure. Specifically,
the mini-batch remains fixed until the additional sampling condition is no
longer satisfied or a predefined number of iterations has been reached. We
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Method MNIST w8a IJCNN RCV1

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0017 0.0020 6.82e−5 0.0011

±STD ±0.0004 ±0.0004 ± 5.41e−5 ±0.0002

A(x̄) 0.9003 0.8983 0.9167 0.9537
±STD ±0.0011 ±0.0006 ±0.0004 ±0.0007

Time (s) 18.5474 5.7919 2.1568 7.5859

Prox-SARAH
|HN (x̄)−H∗

N | 0.0047 0.0037 0.0010 0.0054
±STD ± 0.0002 ±0.0004 ± 9.54e−7 ± 3.65e−7

A(x̄) 0.8957 0.8964 0.9140 0.9519
±STD ± 0.0007 ±0.0007 ± 1.49e−5 ± 5.68e−5

Time (s) 29.1376 12.9377 11.6434 88.9644

Prox-Spider-boost
|HN (x̄)−H∗

N | 0.0161 0.0219 0.0010 0.0054
±STD ± 5.53e−5 ± 6.11e−5 ± 1.06e−6 ± 4.12e−7

A(x̄) 0.8780 0.8948 0.9140 0.9519
±STD ±0.0003 ±0.0004 ± 1.66e−5 ± 7.38e−5

Time (s) 14.6851 4.1203 11.7156 79.0045

Prox-LISA
|HN (x̄)−H∗

N | 0.0004 0.0004 0.0010 0.0058
±STD ± 0.0001 ± 3.12e−5 ± 2.10e−5 ± 2.32e−5

A(x̄) 0.9002 0.8995 0.9140 0.9508
±STD ±0.0009 ± 0.0004 ± 0.0002 ±0.0007
Time (s) 14.8462 4.4205 3.3125 19.4039

Table 9: Results for NN-L2 test problem after 20 epochs.

have studied the convergence properties of our proposed scheme for strongly
convex, convex, and non-convex functions, notably without requiring Lips-
chitz continuity of the gradient for the differentiable part of the objective
function. Numerical experiments on binary classification tasks validate the
effectiveness of our approach, showcasing its promising performance relative
to existing state-of-the-art proximal stochastic gradient methods. Future work
will focus on extending the approach to more complex tasks, such as multi-class
classification and deep learning models.
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Fig. 11: NN-L2 test problem for the RCV1 dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel)Second row: averaged accuracy evaluated
on the test set (left panel) and a zoom of the accuracy in the interval [0.93, 0.96]
(right panel).

Fig. 12: Optimality gap with respect to the execution time related to one
trial for test problem LR-L2 with RCV1 dataset (left panel) and test problem
NN-L2 with IJCNN dataset (left panel).
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[39] Krejić, N., Krklec Jerinkić, N., Mart́ınez, A., Yousefi, M.: A non-monotone
trust-region method with noisy oracles and additional sampling (2024).
https://doi.org/10.48550/arXiv.2307.10038

[40] Polyak, B.T.: Introduction to optimization. Optimization Software (1987)

[41] Frassoldati, G., Zanghirati, G., Zanni, L.: New adaptive stepsize selections
in gradient methods. J. Ind. Manag. Optim. 4(2), 299–312 (2008)

[42] Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for
online learning and stochastic optimization. The Journal of Machine
Learning Research 12, 2121–2159 (2011)

[43] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In:
3rd International Conference on Learning Representations, ICLR (2015)

[44] Zhuang, J., Tang, T., Ding, Y., Tatikonda, S.C., Dvornek, N.,
Papademetris, X., Duncan, J.: Adabelief optimizer: Adapting stepsizes by
the belief in observed gradients. Adv. Neural Inf. Process. Syst. 33 (2020)

[45] Wang, Z., Ji, K., Zhou, Y., Liang, Y., Tarokh, V.: SpiderBoost and
momentum: faster stochastic variance reduction algorithms. Curran Asso-
ciates Inc., Red Hook, NY, USA (2019)

A Auxiliary results

A.1 Properties of the proximal operator

Lemma A.1 recalls well known results on the proximal operator (for the proof,
see [9, 12] and references therein).
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Lemma A.1. Let α > 0, S be a symmetric positive definite matrix, x ∈
dom(HΣ) with Σ ⊆ N . Given the function

qα,SΣ (y) = (y − x)
T∇fΣ(x) +

1

2α
∥y − x∥2S +R(y)−R(x),

the following statements hold true.

a. ŷ = proxSαR(x− αS−1u) if and only if 1
αS(x− ŷ)− u = w, w ∈ ∂R(ŷ).

b. qα,SΣ (x) = 0.

c. Given v(Σ) = proxSαR(x− αS−1∇fΣ(x)), q
α,S
Σ (v(Σ)) ≤ 0 and qα,SΣ (v(Σ)) = 0

if and only if v(Σ) = x.
d. x is a stationary point for problem miny∈RdfΣ(y) +R(y) if and only if x =

v(Σ) if and only if qα,SΣ (v(Σ)) = 0.

A.2 Proof of Lemma 2.1

Assume by contradiction that there exists a k ∈ N such that Step 4 in Algo-
rithm 1 performs an infinite number of reductions. As a consequence, for any
j ∈ N we have

ηqαk,Sk

Nk
(v

(Nk)
k ) <

HNk
(xk + βjd

(Nk)
k )−HNk

(xk)

βj
=

=
fNk

(xk + βjd
(Nk)
k )− fNk

(xk)

βj
+

R(xk + βjd
(Nk)
k )−R(xk)

βj

≤
fNk

(xk + βjd
(Nk)
k )− fNk

(xk)

βj
+

+
βjR(xk + d

(Nk)
k ) + (1− βj)R(xk)−R(xk)

βj

=
fNk

(xk + βjd
(Nk)
k )− fNk

(xk)

βj
+R(v

(Nk)
k )−R(xk),

where the second inequality follows by applying the convexity of function R.
Taking the limit on the right-hand side for j → +∞, we obtain

ηqαk,Sk

Nk
(v

(Nk)
k ) ≤ ∇fNk

(xk)
T d

(Nk)
k +R(v

(Nk)
k )−R(xk)

≤ ∇fNk
(xk)

T d
(Nk)
k +R(v

(Nk)
k )−R(xk) +

1

2αk
∥v(Nk)

k − xk∥2Sk

= qαk,Sk

Nk
(v

(Nk)
k ).

Since 0 < η < 1 and the line search is performed only if qαk,Sk

Nk
(v

(Nk)
k ) is

non-zero, this is an absurdum.
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A.3 Proof of Lemma 2.2

Assume that Nk < N for all k ∈ N. Since the sample size sequence {Nk} in
Algorithm 1 is non-decreasing, this means that there exists some N < N and
k2 ∈ N such that Nk = N for all k ≥ k2. Now, let us assume that there is no
k1 ∈ N such that D−

k = ∅ for all k ≥ k1. This means that there exists an infinite
sub-sequence of iterations K ⊆ N such that D−

k ̸= ∅ for all k ∈ K. Since Dk is
chosen randomly and uniformly, with finitely many possible outcomes for each
k, there exists some q > 0 such that P(Dk ∈ D−

k ) ≥ q for all k ∈ K. So, we have

P(Dk ∈ D+
k , k ∈ K) ≤ Πk∈K(1− q) = 0;

this means that we will almost surely encounter an iteration at which the sam-
ple size will be increased due to violation of the additional sampling condition
in Step 6 of Algorithm 1. This is a contradiction with the sample size being
kept to N during the whole optimization process. Thus, we conclude that the
statement holds.

B Hyperparameter settings for hybrid methods.

For the Prox-SARAHmethod we use the hyperparameter setting specified in
[28] where, by borrowing the notation of the referred paper, q = 2+0.01+( 1

100 ),

C = q2

(q2+8)L̂2γ2
and the values for the other hyperparameters are shown in

Table 10.
For the Prox-Spider-boost method we use the hyperparameter setting spec-

Method Loss γ α N m
MNIST LR 0.99 αopt 1 2N
MNIST NN 0.99 0.1

L̂
1 2N

w8a LR 0.99 0.1
L̂

1 2N

w8a NN 0.99 0.1
L̂

1 2N

IJCNN LR 0.99 αopt 1 2N
IJCNN NN 0.99 αopt 1 2N
RCV1 LR 0.95 αopt 1 2N
RCV1 NN 0.95 αopt 1 2N

Table 10: Settings for Prox-SARAH [28].

ified in [45] and the values for the hyperparameters are shown in Table 11.
αopt is the best tuned value obtained after a time and resource consuming
procedure of repeated trials. This setting is the same for both the regulariza-
tion terms.
In the implementation of Prox-LISA method, the initial mini batch size is
N0 = 3 and the line search hyperparameter is β = 1

2 in all the experiments. The
attempt value for the steplength at Step 2 is, in general, α0 = 1 for the first
iteration, and αk = min(α0, αk−1

1
β ) for the following iterations. Furthermore

we have the rule εk = 100 · 0.999k for the control of the variance.
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Method Loss α N m
MNIST LR αopt 1 2N

MNIST NN 0.05 256 2N
256

w8a LR 0.05 256 2N
256

w8a NN 0.05 256 2N
256

IJCNN LR αopt 1 2N
IJCNN NN αopt 1 2N
RCV1 LR αopt 1 2N
RCV1 NN αopt 1 2N

Table 11: Settings for Prox-Spider-boost [45].
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