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Abstract

Regularized empirical risk minimization problems arise in a variety of
applications, including machine learning, signal processing, and image
processing. Proximal stochastic gradient algorithms are a standard
approach to solve these problems due to their low computational cost
per iteration and a relatively simple implementation. This paper intro-
duces a class of proximal stochastic gradient methods built on three
key elements: a variable metric underlying the iterations, a stochas-
tic line search governing the decrease properties and an incremen-
tal mini-batch size technique based on additional sampling. Conver-
gence results for the proposed algorithms are proved under different
hypotheses on the function to minimize. No assumption is required
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regarding the Lipschitz continuity of the gradient of the differen-
tiable part of the objective function. Possible strategies to automat-
ically select the parameters of the suggested scheme are discussed.
Numerical experiments on both binary classification and nonlinear
regression problems show the effectiveness of the suggested approach
compared to other state-of-the-art proximal stochastic gradient methods.

Keywords: Proximal stochastic gradient methods, Variable Metrics,
Additional sampling, Machine Learning

MSC Classification: 65K05 , 90C15 , 62L20

1 Introduction

In this paper we are interested in solving the following composite optimization
problem

minx∈Rd

{
HN (x) := fN (x) +R(x)

}
(1)

where fN (x) is the average of many smooth component functions fi(x), i.e.,

fN (x) =
1

N

N∑
i=1

fi(x),

and R is a proper, lower semi-continuous and convex function, which may be
non-differentiable. The problem (1) is often referred to as regularized empirical
risk minimization [1] and covers a broad range of applications in machine
learning (see, e.g. [2–5]) as well as in signal and image processing [6, 7].

1.1 Proximal gradient methods

Proximal gradient methods are a standard approach to solve problem (1).
Indeed this algorithm consists of a forward step, which leverages the differen-
tiability of fN , and a backward step, which exploits the convexity of R. Given
an initial point x(0) ∈ Rd, the simplest proximal gradient method (Prox-GD)
is based on the following update rule

xk+1 = argminx∈Rd

{
∇fN (xk)

Tx+
1

2αk
∥x− xk∥2 +R(x)

}
, (2)

where αk is a positive learning rate. By defining the proximal mapping of a
convex function R(·) at y ∈ Rd as

proxR(y) = argminx∈Rd

{
1

2
∥x− y∥2 +R(x)

}
,
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the proximal gradient iteration (2) can be more compactly written as

xk+1 = proxαkR
(xk − αk∇fN (xk)). (3)

Proximal gradient methods have been extensively studied, leading to various
versions that incorporate features such as inertial steps, approximate compu-
tation of the proximal operator, variable metric strategies, and adaptive step
length selection rules (see, for example, [8–10], the survey [11] and references
therein). Below, we outline the class of variable metric proximal gradient algo-
rithm, suggested by several authors [12–16], which serves as a starting point
for the method proposed in this paper. Given proper positive parameters αk

and tk, a general variable metric proximal gradient method can be defined
through the following update{

dk = proxSk

αkR
(xk − αkS

−1
k ∇fN (xk))− xk

xk+1 = xk + tkdk
. (4)

Here, {Sk} ⊂ Rd×d is a sequence of symmetric and positive definite scaling
matrices, designed to capture some local features of the minimization problem
without introducing significant additional computational costs. In this context,
definition of the proximity operator of a convex function αR for α > 0, with
respect to a symmetric and positive definite matrix S, is generalized as

proxSαR(y) = argminx∈Rd

{
1

2
∥x− y∥2S + αR(x)

}
,

where ∥ · ∥S denotes the norm induced by S.

1.2 Proximal stochastic gradient methods

When the number of components N is very large, computing fN and its gra-
dient may become unfeasible from the practical point of view. For this reason,
a proper estimator of fN is typically considered leading to the class of proxi-
mal stochastic gradient descent (Prox-SGD) methods. The update formula for
Prox-SGD algorithms reads as

xk+1 = proxαkR
(xk − αk∇fNk

(xk)),

where Nk is a subset of N of size Nk, randomly and uniformly chosen at
iteration k, and

fNk
(x) =

1

Nk

∑
i∈Nk

fi(x). (5)

Hereafter Nk will be also referred to as mini-batch.
Prox-SGD offers an advantage over the Prox-GD scheme in (3) because it

computes the gradient of only a relatively small number of randomly selected
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functions fi at each iteration. However, for Prox-SGD to converge, its step-size
must decrease to zero at an appropriate rate, resulting in a convergence rate
of O(1/

√
k) for E[HN (xk)−HN (x∗)] [17]. Additionally, even when HN (x) is

strongly convex, the convergence rate for Prox-SGD improves only to O(1/k)
[18], which is significantly slower than the linear convergence rate achieved by
Prox-GD.

To address the issue of diminishing step-size and slow convergence typical
of standard stochastic gradient methods, either incremental techniques [19–25]
or variance reduced strategies [26–32] have been proposed in the literature.
Incremental stochastic gradient schemes are based on the idea of progressively
increasing the mini-batch size over iterations, thereby employing increasingly
accurate gradient estimates as the optimization process proceeds. The main
limitations of such approaches are either the excessively rapid growth of the
mini-batch size, as for the methods suggested in [20, 24], or the computa-
tionally expensive and memory demanding increasing conditions needed to be
checked by the schemes proposed in [19, 21–23, 25]. On the other hand, vari-
ance reduced stochastic gradient algorithms require periodic computation of
a full gradient (or an estimate based on a large mini-batch). For this rea-
son, these approaches are generally not employed in applications involving
large-scale datasets or deep neural networks.

Both incremental and variance reduced strategies allow to avoid vanish-
ing sequences of learning rates, which are typically defined by a fixed value.
Selecting this value is challenging, as it significantly impacts the numerical
performance of the algorithms. Manual tuning of the learning rate through
trial-and-error is common in this context, resulting in a high workload.

To conclude this section we remark that improved proximal stochastic gra-
dient approaches can be also realized by combining incremental techniques
with trust region strategies. In particular, some of the existing stochastic trust
region methods [33–36] are based on adaptive rules for the selection of the
mini-batch size that seem too stringent to be applied to deep learning appli-
cations, as they require the mini-batch size to be bigger than 1/δ4k or 1/δ2k,
with δk converging to zero.

1.3 Contributions

The main aim of this paper is to develop a stochastic version of the variable
metric proximal gradient method, as defined in (4), where the gradient of the
approximation (5) is used in place of the gradient of fN . The main ingredients
of the suggested approach are the following.

(i) Flexibility in selecting αk and Sk. The convergence results provided for the
suggested scheme hold under very general assumptions on the parameters αk

and Sk. This flexibility allows users to adopt the most appropriate strategy
for defining both the learning rate and the sequence of scaling matrices in
order to accelerate convergence. Different definitions of αk and Sk result in
different methods. Possible automatic and adaptive techniques to select αk
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and Sk are discussed with the aim of avoiding manual parameter tuning. We
stress that there is no requirement for the learning rate sequence to vanish.

(ii) A stochastic Armijo-like line search to define tk. The additional parameter
tk is employed to ensure a sufficient reduction of the current stochastic
approximation of the objective function (5) at each iteration. Examples of
stochastic gradient schemes combined with line search procedures can also
be found in [19, 22, 37–39]. However, in all of these works, the aim of the
line search is to adjust the learning rate αk and this approach can limit
the flexibility of its selection. Moreover, since the starting value for tk must
be always set to 1 and then it is automatically and dynamically adjusted
via the line search, tk does not introduce any additional parameters that
need tuning. On the other hand, the numerical performance of the schemes
proposed in [19, 22, 37–39] depends on a proper strategy for selecting the
initial guess for the line search.

(iii) A proper incremental strategy to select the mini-batch size based on an addi-
tional sampling. The algorithm developed in this paper falls within the class
of incremental stochastic gradient methods. In particular, the mini-batch
size increases (or stays the same) with each iteration based on the so-called
additional sampling, employed for example in [40, 41]. With the additional
sampling, alongside the mini-batchNk used for the line search on tk, a second
(randomly chosen) mini-batch is introduced to evaluate whether a reduc-
tion, or at least a controlled increase, in the stochastic approximation of the
objective function, related to this second mini-batch, is also achieved. If this
situation does not occur, the mini-batch size is appropriately increased, as
the current size probably does not ensure a reduction in the true objective
function. In the approach suggested in this paper, the additional sampling
is used to determine whether or not to keep the same mini-batch fixed, not
only its size. In this way different successive iteration of the optimization
process are employed to efficiently minimize the same stochastic approxima-
tion of the objective function, while not excluding the possibility to reduce
the true objective function due to the presence of additional sampling. The
idea of keeping the same mini-batch fixed for a predetermined number of
iterations has also been considered in [41, 42]. Nevertheless, our method
differs from those in [40–42] for two main reasons: first, the algorithms in
[40–42] are thought for objective functions which do not incorporate a reg-
ularization term; second, they do not use a variable metric to enhance the
convergence of the schemes. Lastly, it is worth noting that the method pro-
posed in [43] also employs additional sampling to control step acceptance
and adjust the sample size when needed. However, it differs significantly
from our approach, as it is based on the trust-region framework and utilizes
Hessian approximations

For general objective functions, we prove that the limit points of the sequence
generated by the proposed algorithm are almost surely stationary. Further-
more, we establish the almost sure convergence of both the sequence of the
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objective function values and the sequence of the iterates, given the addi-
tional assumptions of convexity and strong convexity for the objective function,
respectively. All the convergence results hold without requiring the gradient
of fN to be Lipschitz continuous.

The suggested method has been applied to binary classification problems,
demonstrating promising results compared to state-of-the-art algorithms, as
well as robustness in parameter tuning.

1.4 Outline of the paper

The paper is organized as follows. In Section 2 we detail the structure of the
general variable metric proximal stochastic gradient algorithm we are propos-
ing. Moreover, a possibility to select both the learning rate and the scaling
matrix is described. Finally the convergence results of the scheme are stated
under different assumptions on the objective function. In Section 3 we report
the results of the numerical experiments we carried out on two different regu-
larized empirical risk minimization problems. Conclusions are presented in the
final section, which also outlines directions for future work.

1.5 Notations

The following notations will be used throughout the paper.

• R+ is the set of non negative real numbers; R++ is the set of positive real
numbers.

• ∥ · ∥ denotes the standard ℓ2 norm. Given a symmetric and positive definite
matrix S of order k, the S-norm of a vector x ∈ Rd is defined as ∥x∥S ≡√
xTSx.

• Given µ ≥ 1, we denote by Mµ the set of all symmetric positive definite
matrices with all eigenvalues contained in the interval [ 1µ , µ].

• Let D1, D2 ∈ Rd×d be symmetric and positive definite matrices. The nota-
tionD1 ⪰ D2 indicates thatD1−D2 is a symmetric and positive semidefinite
matrix or, equivalently, xTD1x ≥ xTD2x for any x ∈ Rd.

• E[·] and E[·| F ] denote mathematical expectation and conditional expecta-
tion with respect to σ-algebra F , respectively.

• We use “a.s.” to abbreviate “almost sure/surely” and “i.i.d.” to abbreviate
“independent and identically distributed”, while “SAA” stands for “sample
average approximation”.

• We denote by |N | the cardinality of set N .
• Given a matrix A ∈ Rd×d, we denote by diag(A) the diagonal matrix whose
diagonal elements are the diagonal metrics of A.

2 The algorithm and its convergence analysis

In this section we present a variable metric proximal stochastic gradient
method based on both the line search and the additional sampling. Moreover
the convergence analysis of the scheme will be provided.
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2.1 The algorithm

The method we suggest is based on the following iteration{
d
(Nk)
k = v

(Nk)
k − xk = proxSk

αkR
(xk − αkS

−1
k ∇fNk

(xk))− xk

xk+1 = xk + tkd
(Nk)
k ,

where

Nk is a randomly chosen subset of N of size Nk;
αk ∈ R is a positive learning rate such that 0 < αmin ≤ αk ≤ αmax;
Sk is a symmetric and positive definite scaling matrix of size d;
tk ∈ (0, 1] is a line search parameter employed to ensure a sufficient decrease of
the current approximation HNk

(x) = fNk
(x)+R(x) of the objective function.

Indeed, starting from tk = 1, it is reduced by a factor β ∈ (0, 1) until the
following condition is met

HNk
(xk + tkdk) ≤ HNk

(xk) + ηtkq
αk,Sk

Nk
(v

(Nk)
k ), (6)

where

qαk,Sk

Nk
(y) = (y − xk)

T∇fNk
(xk) +

1

2αk
∥y − xk∥2Sk

+R(y)−R(xk) (7)

and η ∈ (0, 1). It is immediate to prove that (6) ensures a reduction of HNk
(·)

moving from xk to xk + tkdk since qαk,Sk

Nk
(v

(Nk)
k ) is non-positive. Indeed seeing

that

v
(Nk)
k = proxSk

αkR
(xk − αkS

−1
k ∇fNk

(xk))

= argminy∈RdR(y) +
1

2αk
∥y − (xk − αkS

−1
k ∇fNk

(xk))∥2Sk

= argminy∈Rd qαk,Sk

Nk
(y) +R(xk) +

αk

2
∥∇fNk

(xk)∥2Sk

= argminy∈Rd qαk,Sk

Nk
(y)

the following inequality holds:

qαk,Sk

Nk
(v

(Nk)
k ) ≤ qαk,Sk

Nk
(xk) = 0.

It is well known that the function qαk,Sk

Nk
(·) enjoys several properties that are

recalled in Appendix A.

However, the update xk+1 is accepted only if it is able to ensure a sufficient
decrease (or, at most, a controlled increase) of another approximation of the
objective function computed on a different subsample. In more detail, given



Springer Nature 2021 LATEX template

8 Variable metric proximal stochastic gradient methods with additional sampling

a different subsample Dk randomly chosen from N , the following checking
Stochastic Descent (SD) condition is controlled:

HDk
(xk + tkd

(Nk)
k ) ≤ HDk

(xk) + cminq
ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk, (8)

where, similarly to (7),

qᾱDk
(y) = (y − xk)

T∇fDk
(xk) +

1

2ᾱ
∥y − xk∥2 +R(y)−R(xk) (9)

and v
(Dk)
k = proxᾱR(xk − ᾱ∇fDk

(xk)) with ᾱ ∈ [αmin, αmax]. The parameters
cmin and Cmax are positive real scalars and {ζk} is a summable sequence of
non-negative real numbers. We remark that for the checking condition (8) we
use a non-scaled gradient direction.

If condition (8) is not met the vector xk + tkd
(Nk)
k is rejected, xk+1 =

xk and a new mini-batch Nk+1 of larger size Nk+1 ∈ (Nk, N ] is considered.
Conversely, when the additional condition (8) is satisfied, then xk+1 = xk +

tkd
(Nk)
k is accepted, and the optimization algorithm continues using the same

approximation of the objective function, meaning that the mini-batch remains
unchanged. Actually if the mini-batch remains unchanged for a predetermined
number of iterations, a new mini-batch is randomly selected from N , keeping
the same cardinality as for the previous mini-batch. The main steps of the
proposed approach are detailed in Algorithm 1 and described below.

Step 1 is devoted to the selection of a positive step length, belonging
to a bounded and closed interval, and a symmetric and positive definite
scaling matrix with bounded eigenvalues. Possible strategies to define these
parameters are discussed in Section 2.3.
Step 2 aims at computing the proximal stochastic gradient direction given
the mini-batch Nk, the scaling matrix Sk and the learning rate αk. If

qαk,Sk

Nk
(v

(Nk)
k ) is equal to zero, namely xk is a stationary point for HNk

(see
item d. of Lemma A.1), then the mini-batch is changed.
Step 3 consists in the line search procedure on the parameter tk. Until the
sufficient decrease of the current approximation HNk

of the objective function
is not ensured in terms of (6), tk is reduced by a factor β < 1. Lemma 2.1
guarantees that the line search is well defined.
Step 4 checks if the algorithm reaches the deterministic setting (namely
Nk = N) or not. Particularly, if Nk = N then Step 5, Step 6 and Step 7 are
avoided since they only refer to the stochastic scenario. We highlight that the
first four steps of Algorithm 1 with Nk = N reduce to a deterministic variable
metric proximal gradient method with line search (see for example [12]).
Step 5 implements the additional sampling. A different sub-sample Dk is

considered in order to verify if the attempt vector xk+tkd
(Nk)
k also guarantees a

sufficient decrease of the different approximationHDk
of the objective function.

If condition (8) is verified, the algorithm trusts xk + tkd
(Nk)
k and the mini-

batch is kept fixed for the next iteration provided that the prefixed number



Springer Nature 2021 LATEX template

Variable metric proximal stochastic gradient methods with additional sampling 9

Algorithm 1 Proximal Stochastic gradient method with Additional sampling
and variable Metric (Prox-SAM)

Fix x0 ∈ Rd, η, β ∈ (0, 1), {ζk} ⊂ R+ subject to
∑∞

k=0 ζk ≤ ζ < ∞, cmin,
Cmax ∈ R++, 0 < αmin < αmax, ᾱ ∈ [αmin, αmax], µ ≥ 1, N0 > 0, N0 ⊆ N of
size N0, m(N0) > 0, flag = 0.

for k = 0, 1, . . . do
Step 1. Parameters selection

Set αk ∈ [αmin, αmax].
Set Sk ∈ Mµ.

Step 2. Computation of a scaled stochastic direction

v
(Nk)
k = proxSk

αkR
(xk − αkS

−1
k ∇fNk

(xk))

d
(Nk)
k = v

(Nk)
k − xk

If qαk,Sk

Nk
(v

(Nk)
k ) == 0

Then Nk+1 = Nk, flag = 0 and go to Step 7.
Else Set tk = 1 and go to Step 3.

Step 3. Line search procedure

If HNk
(xk + tkd

(Nk)
k ) ≤ HNk

(xk) + ηtkq
αk,Sk

Nk
(v

(Nk)
k )

Then xk = xk + tkd
(Nk)
k and go to Step 4.

Else tk = tk · β and repeat Step 3.
Step 4. Check for deterministic or stochastic setting

If Nk < N
Then go to Step 5.
Else xk+1 = xk and go to Step 1.

Step 5. Additional sampling
Choose Dk randomly and uniformly from N with replacement.

v
(Dk)
k = proxᾱR(xk − ᾱ∇fDk

(xk))

d
(Dk)
k = v

(Dk)
k − xk

If HDk
(xk) ≤ HDk

(xk) + cminq
ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk

Then xk+1 = xk, Nk+1 = Nk, flag = flag + 1 and go to Step 6.
Else xk+1 = xk, Nk+1 ∈ (Nk, N ], flag = 0 and go to Step 7.

Step 6. Check for keeping the same mini-batch
If flag < m(Nk)
Then go to Step 1.
Else flag = 0 and go to Step 7.

Step 7. Sample selection
Randomly choose Nk+1 ⊆ N of size Nk+1.
Compute the possible maximum number m(Nk+1) of iterations with

the same mini-batch.
end for

m(Nk) of iterations with the same mini-batch has not been reached (see also
Step 6). Indeed, the support variable flag counts the number of iterations
performed with the same mini-batch. If flag > m(Nk) then a new mini-batch
of the same size is considered. Otherwise, if the additional sampling condition
(8) does not hold, the attempt vector computed in Step 1, Step 2 and Step 3
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is rejected and the cardinality for the successive mini-batch is increased. When

d
(Nk)
k satisfies (8), the reduction of HDk

, although relaxed by the presence of
Cmaxζk ≥ 0, can be considered as an indication that the decrease of HNk

is acceptable in order to minimize the original objective function. In view of∑∞
k=0 ζk < ∞, we have ζk → 0, so that the condition (8) becomes stricter

as k increases. Furthermore, we highlight that there are no conditions on the
size of Dk, i.e., Dk can consist of only one element. Finally, we stress that if
condition (8) fails to be satisfied for many iterations, as the size of the mini-
batch is increased, there exists an iteration k such that, for k ≥ k, Nk = N and
the method is switched to a deterministic proximal gradient method combined
with a line search.
Step 6 verifies if the same mini-batch has been already employed for m(Nk)
iterations.
Step 7 performs a new mini-batch selection. This step is reached only if either
the additional sampling failed (namely x̄k ensures a decrease only for HNk

) or
the same mini-batch has been considered for m(Nk) successive iterations. We
remark that m(Nk) can change along the iterative process.

We remark that it is possible to add a stopping criterion. Specifically, a
stopping criterion should be checked before the procedure returns to Step 1.

2.2 The convergence analysis

Assumption 1. The non-negative real sequence {ζk} in (8) is such that∑∞
k=0 ζk ≤ ζ.

Assumption 2. There exists H̄N ∈ R such that HN (x) ≥ H̄N , ∀x ∈ Rd.
The first lemma regards some properties of the line search in Step 4 of

Algorithm 1.

Lemma 2.1. If the function fN (·) in (1) is continuously differentiable and
the function R(·) in (1) is convex, then the line search procedure in Step 3 of
Algorithm 1 is well defined.

Proof The proof of this lemma is identical to the one of [12, Proposition 3.1]. However
we report in Appendix A the main arguments for the sake of completeness. □

Let us denote by D+
k the subset of all possible outcomes of Dk at iteration

k for which the condition (8) is satisfied, i.e.,

D+
k = {Dk ⊂ N | HDk

(xk) ≤ HDk
(xk) + cminq

ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk}. (10)

We denote the complementary subset of outcomes at iteration k by

D−
k = {Dk ⊂ N | HDk

(xk) > HDk
(xk) + cminq

ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk}. (11)
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The first lemma guarantees that if the mini-batches are always proper subsets
ofN , then from a certain iteration forward the SD condition is always satisfied.
The proof can be found in Appendix A.3 since its arguments are the same of
the proofs of [41, Lemma 1] and [43, Lemma 1].

Lemma 2.2. Suppose that Assumption 1 holds. If Nk < N for all k ∈ N, then
a.s. there exists k1 ∈ N such that D−

k = ∅ for all k ≥ k1.

Next, we show that Lemma 2.2 implies that the Armijo-like inequality (8) holds
for the overall objective function for all k sufficiently large in the mini-batch
scenario. The proof is similar to the one of Lemma 2 in [43].

Lemma 2.3. Suppose that Assumption 1 holds. If Nk < N for all k ∈ N,
then, given ᾱ > 0 and v

(i)
k = proxᾱR(xk − ᾱ∇fi(xk)),

HN (x̄k) ≤ HN (xk)−
cmin

2ᾱ

1

N

N∑
i=1

∥xk − v
(i)
k ∥2 + Cmaxζk,

holds a.s. for all k ≥ k1 where k1 is as in Lemma 2.2.

Proof We first prove that the following inequality

qᾱDk
(v

(Dk)
k )≤− 1

2ᾱ
∥v(Dk)

k − xk∥2 (12)

holds true. In view of the definition of v
(Dk)
k = proxᾱR(xk − ᾱ∇fDk

(xk)), it follows
that

1

ᾱ
(xk − ᾱ∇fDk

(xk)− v
(Dk)
k ) ∈ ∂R(v

(Dk)
k ). (13)

Now we state an inequality for the elements of ∂R(v
(Dk)
k ). Indeed, for any w ∈

∂R(v
(Dk)
k ) we have

qᾱDk
(v

(Dk)
k ) = ∇fDk

(xk)
T (v

(Dk)
k − xk) +

1

2ᾱ
∥v(Dk)

k − xk∥2+

+R(v
(Dk)
k )−R(xk)

≤ ∇fDk
(xk)

T (v
(Dk)
k − xk) +

1

2ᾱ
∥v(Dk)

k − xk∥2 + wT (v
(Dk)
k − xk)

Hence the previous inequality holds true for 1
ᾱ (xk − ᾱ∇fDk

(xk)− v
(Dk)
k ) (see (13)).

This results in

qᾱDk
(v

(Dk)
k )≤∇fDk

(xk)
T (v

(Dk)
k − xk) +

1

2ᾱ
∥v(Dk)

k − xk∥2+

+
1

ᾱ
(xk − ᾱ∇fDk

(xk)− v
(Dk)
k )T (v

(Dk)
k − xk)

= − 1

2ᾱ
∥v(Dk)

k − xk∥2

Lemma 2.2, together with (12), implies that a.s.

HDk
(xk) ≤ HDk

(xk) + cminq
ᾱ
Dk

(v
(Dk)
k ) + Cmaxζk

≤ HDk
(xk)−

cmin

2ᾱ
∥v(Dk)

k − xk∥2 + Cmaxζk
(14)
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holds for all possible realizations of Dk and for all k ≥ k1. Thus, we conclude that
for every i = 1, 2, ..., N and every k ≥ k1 a.s. we have

Hi(xk) ≤ Hi(xk)−
cmin

2ᾱ
∥v(i)k − xk∥2 + Cmaxζk,

where Hi(x) = fi(x) + R(x) and v
(i)
k = proxᾱR(xk − ᾱ∇fi(xk)). Indeed, if there

exists i ∈ N that violates the previous inequality, then there would exist at least
one realization of Dk (namely, Dk = {i, i, ..., i}) that violates (14). Thus, a.s., for all
k ≥ k1 we have

HN (xk) =
1

N

N∑
i=1

Hi(xk) ≤
1

N

N∑
i=1

(Hi(xk)−
cmin

2ᾱ
∥v(i)k − xk∥2 + Cmaxζk)

= HN (xk)−
cmin

2ᾱ

1

N

N∑
i=1

∥v(i)k − xk∥2 + Cmaxζk.

□

Theorem 2.1. Suppose that the Assumptions 1 and 2 hold and Nk < N , for
all k ∈ N. Let {xk} be a sequence generated by Algorithm 1. Then, a.s., any
limit point of the sequence {xk} is a stationary point for problem (1).

Proof Lemma 2.3 and ᾱ ∈ [αmin, αmax] imply that there exists k1 ∈ N such that
a.s. the following inequality holds for all k ≥ k1

HN (xk+1) = HN (x̄k) ≤ HN (xk)−
cmin

2αmax

1

N

N∑
i=1

∥xk − v
(i)
k ∥2 + Cmaxζk, (15)

where the equality comes from the fact that D−
k = ∅ and thus the candidate point

is accepted. By subtracting H̄N to both members of the previous inequality and
applying the conditional expected value with respect to the σ-algebra generated by
k1, . . . , k we get

E
[
HN (xk+1)− H̄N | Fk

k1

]
≤ HN (xk)− H̄N+

− cmin

2αmax

1

N

N∑
i=1

∥xk − v
(i)
k ∥2 + Cmaxζk.

where Fk
k1

denotes the the σ-algebra generated by k1, . . . , k. We note that both

xk and v
(i)
k do not depend on Nk and hence are Fk

k1
-measurable. In view of the

Robbins-Siegmund lemma [44, Lemma 11], we can conclude that

+∞∑
k=k1

N∑
i=1

∥xk − v
(i)
k ∥2 < +∞, a.s.

and, hence,

lim
k→+∞

N∑
i=1

∥xk − v
(i)
k ∥2 = 0, a.s.

As a consequence, we claim that ∀i = 1, . . . , N ,

lim
k→+∞

∥xk − v
(i)
k ∥2 = 0, a.s. (16)
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Let us suppose that there exists a subsequence of {xk} that converges a.s. to x̄,
namely there exists K ⊆ N such that

lim
k→∞, k∈K

xk = x̄ a.s.

Moreover, the continuity of both the proximal operator and ∇fi(·) with respect to
all their arguments, implies that, in view of (16),

lim
k→∞, k∈K

v
(i)
k = proxᾱR(x̄− ᾱ∇fi(x̄)) = x̄, ∀i = 1, . . . , N.

As a consequence, −∇fi(x̄) ∈ ∂R(x̄), ∀i = 1, . . . , N , and due to convexity of the

subdifferential we conclude that −∇fN (x̄) = − 1
N

∑N
i=1 ∇fi(x̄) ∈ ∂R(x̄), namely

that x̄ is a stationary point for HN a.s.
□

By considering additional assumptions on the objective function, the con-
vergence of both the sequence of the objective function values and the sequence
of the iterates can be proved.

Theorem 2.2. Suppose that the Assumptions 1 and 2 hold, Nk < N for all
k ∈ N, and the objective function is convex. If the sequence {xk} generated
by Algorithm 1 is bounded, then, a.s., the sequence of the objective function
values {HN (xk)} converges to the minimum value H∗

N of HN .

Proof By subtracting H∗
N to both sides of (15), the Robbins-Siegmund lemma

implies that there exists a positive random variable Z such that {HN (xk) − H∗
N }

a.s. converges to Z. Since the sequence {xk} is bounded, it admits a subsequence
{xkj

} that converges to some x̄, which, according to the previous theorem, is a sta-
tionary point. Since the objective function is convex, x̄ is a minimum point and
HN (x̄) = H∗

N . By the continuity of HN , it follows that HN (xkj
) converges to

HN (x̄) = H∗
N . We can conclude that Z = 0 and that {HN (xk)} converges to H∗

N
a.s. □

Theorem 2.3. Suppose that the Assumptions 1 and 2 hold, Nk < N for all
k ∈ N, and the objective function is µN -strongly convex. If the sequence {xk}
generated by Algorithm 1 is bounded, then, a.s., {xk} converges to the unique
solution x∗ of problem (1).

Proof If HN is µN -strongly convex, problem (1) has a unique solution x∗. By
denoting with H∗

N the value of the objective function in the solution, namely
HN (x∗) = H∗

N , in view of the strong convexity assumption for HN , the following

inequality holds for any x ∈ Rd:

µN
2

∥x− x∗∥2 ≤ HN (x)−H∗
N . (17)

Since the sequence {xk} is bounded, Theorem 2.2 ensures that the sequence
{HN (xk)−H∗

N } converges to zero. As a consequence, taking xk instead of x in (17)
and letting k → ∞, we obtain the convergence of the sequence generated by the
algorithm to the unique solution x∗ of problem (1). □
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Theorem 2.4. Suppose that the Assumption 2 holds and the full sample is
reached. Then, any limit point of the sequence {xk} generated by Algorithm 1
is a stationary point. If moreover the function HN is convex and the sequence
{Sk} ⊂ Mµ satisfies the following additional assumption

Sk+1 ⪯ (1 + ϑk)Sk, {ϑk} ⊂ R+,

+∞∑
k=0

ϑk < +∞, (18)

then the sequence {xk} converges to a solution of (1).

Proof If there exists k̄ such that Nk ≥ N , ∀k ≥ k̄, then Algorithm 1 reduces to a
deterministic variable metric forward-backward method, whose convergence results
are well-known in the literature. The reader is referred for example to [12, Theorem
3.1] and [12, Theorem 3.3]. □

Condition (18) states that the sequence {Sk}k∈N asymptotically approaches
a constant matrix [14, Lemma 2.3]. A possibility to practically fulfill this
condition (see [12]) is to impose that

{Sk} ⊆ Mµk
, where µ2

k = 1 + ξk, {ξk} ⊂ R+,

+∞∑
k=0

ξk < +∞. (19)

Remark 2.1. We stress that the convergence analysis provided in this section
has been developed without assuming the Lipschitz continuity of the gradient
of the differentiable part of the objective function. Neither the definition of
Lipschitz continuity nor any properties that follow from it were employed in
the proofs.

2.3 Possible practical strategies to select αk and Sk

A possibility to select the learning rate αk consists in following the idea sug-
gested in [41]. In particular the Barzilai-Borwein (BB) rules can be adopted
in all those iterations where the mini-batch does not change. In this way,
such rules are employed to efficiently minimize the approximation HNk

(·) of
the objective function. In more detail, let us consider the scenario where the
same mini-batch, Nk, is held constant for m ≤ m(Nk) iterations, specifi-
cally from iteration k to k + m − 1. In this case, the learning rate αj , for
j = k + 1, . . . , k +m − 2, can be chosen using one of the following BB selec-
tion rules, which account for the presence of a scaling matrix S−1

j multiplying
∇fNk

(xj):

αBB1
j =

zTj−1Sjzj−1

zTj−1yj−1
,

αBB2
j =

zTj−1yj−1

yTj−1S
−1
j yj−1

,

(20)
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where zj−1 = xj − xj−1 and yj−1 = ∇fNk
(xj) − ∇fNk

(xj−1). It is evident
that, to compute the BB rules, two successive gradients related to the same
mini-batch Nk are required. For this reason, when j = k, the learning rate αj

must be set equal to a different predefined value, such as

αj =
1

∥∇fNk
(xj)∥

. (21)

In the deterministic setting, many variants of the BB rules defined in (20)
have been developed to make optimization gradient algorithms more effective.
We recall here the so called ABBmin strategy [45] which is based on properly
alternating the standard BB rules in (20); particularly, for j = k + 1, . . . ,m,
we get

αABBmin
j =

{
min{αBB2

i | i = max(1, j −Mα), . . . , j} if
αBB2

j

αBB1
j

< τ

αBB1
j otherwise

(22)

where Mα > 0 is a prefixed integer constant and τ ∈ (0.5, 1). Every time the
mini-batch changes, the BB rules can not be applied and the learning rate
must be fixed differently. A possibility is to follow a strategy similar to (21).
Algorithm 2 summarizes the learning rate selection technique just described.
It is thought to be integrated in Step 1 of Algorithm 1.

Algorithm 2 BB-like learning rate selection rule

if flag > 0 then
Compute zk−1 = xk − xk−1 and yk−1 = ∇fNk

(xk)−∇fNk
(xk−1).

Compute αk by means of (20) or (22).
else

αk =
1

∥∇fNk
(xk)∥

end if
αk = min (max (αmin, αk) , αmax)

As for the selection of the variable metric, we borrow the ideas of adaptive
stochastic gradient methods such as AdaGrad [46], Adam [47] and AdaBelief
[48]. The general update iteration of these algorithms can be written as

xk+1 = xk − αkS
−1
k mk

mk = γmk−1 + (1− γ)∇fNk
(xk)

where αk is a positive learning rate, Sk is a preconditioning matrix and γ ∈
[0, 1) is a constant momentum parameter. Adaptive gradient methods typically
differ in how their preconditioners are constructed and whether or not they
include the momentum term. For the selection of an appropriate scaling matrix
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in Algorithm 1, we can consider the preconditioning matrices used in Adam,
AdaBelief and AdaGrad, defined respectively as

AdaBelief


Mk = β1Mk−1 + (1− β1)∇fNk

(xk)

gk = ∇fNk
(xk)−Mk

Sk =

(
β2Sk−1+(1−β2)diag(gkgT

k )+εI

1−βk̃
2

)1/2
(23)

Adam

{
Sk =

(
βSk−1+(1−β)diag(∇fNk

(xk)∇fNk
(xk)

T )+εI

1−βk̃

)1/2

(24)

AdaGrad
{
Sk =

(
Sk−1 + diag

(
∇fNk

(xk)∇fNk
(xk)

T
)
+ εI

)1/2
(25)

where S0 = 0, M0 = 0, β, β1, β2 ∈ [0, 1), k̃ = k, ε > 0 and I is the identity
matrix. We remark that all these matrices are diagonal with positive diagonal
elements, therefore satisfying the requirement to be symmetric and positive
definite as needed by Algorithm 1. However, the convergence of Algorithm 1

is guaranteed if the eigenvalues of Sk lie within a suitable interval
[
1
µ , µ

]
, with

µ > 0. As a consequence, the diagonal elements of the matrices Sk in (24),
(23) and (25) must be properly thresholded when employed in Algorithm 1.
Since condition (18) is needed for the convergence of Algorithm 1 when the
full sample is reached, we derive bounds for the scaling matrices based on (19).
In particular, given sk the diagonal of the matrix Sk defined according to one
of the definitions (24)-(25), and a summable sequence {ξk} of non-negative
elements, we could impose that

sk = min

(
µk,max

(
sk,

1

µk

))
(26)

where µ2
k = 1 + ξk. Actually, requirement (26) is too restrictive to be forced

at every iteration of Algorithm 1. Indeed when the mini-batch changes, the
bounds for the diagonal elements of Sk can be widened again. The variable
flag in Algorithm 1 accounts for the number of iterations with the same mini-
batch and, hence, can be employed to reset the bounds for the scaling matrices.
A similar strategy can also be adopted to set k̃ in (23) and (24) in order to
strengthen the effect of the scaling matrix when the mini-batch changes. In
Algorithm 3, we outline our resulting proposal to select the scaling matrix in
Step 1 of Algorithm 1.

3 Numerical experiments on binary
classification

In this section, we perform several numerical experiments on binary classi-
fication problem to evaluate the behaviour of the different versions of the
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Algorithm 3 Scaling matrix selection rule

Define Sk by means of (23) with k̃ = flag or (24) with k̃ = flag or (25).
µ2
k = 1 + ξflag

diag(Sk) = min

(
µk,max

(
diag(Sk),

1

µk

))

Prox-SAM method. We consider four datasets: w8a, IJCNN , RCV1 (down-
loadable from https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/) and MNIST
(available at https://yann.lecun.com/exdb/mnist/). For the MNIST dataset,
we adapted this for binary classification by dividing it into the odd and even
digit classes.

dataset d #training set (N) #testing set
MNIST 784 60000 10000
w8a 300 44774 4975
IJCNN 22 49990 91701
RCV1 47236 20242 10000

Table 1: Dataset features.

In Table 1 the features of the considered datasets are summarized. Let us
assume that (ai, bi), for i = 1, ...N , denotes the pair consisting of the feature
vector ai ∈ Rd and the class label bi ∈ {1,−1} of the i−th example. We con-
sider two cases for the function fN (x); in the first case, the terms of the finite
sum are convex logistic regression (LR) loss functions:

fi(x) = log
[
1 + e−bia

T
i x

]
,

whereas, in the second case, we take into account a finite sum of non-convex
loss functions in 2-layer neural networks (NN):

fi(x) =

(
1− 1

1 + e−biaT
i x

)2

.

The regularization term in the objective function HN (x) has been chosen in
two different ways:

• the L1 norm, R(x) = λ∥x∥1; the proximal operator of αR(x) in the S-norm
(with S diagonal and positive definite matrix) is given by

proxSαR(x) = sign(x) ·max((|x| − αλS1), 0)

where 1 is a column vector of d ones, and the product and the absolute value
function are intended component-wise;

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
https://yann.lecun.com/exdb/mnist/
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• the squared L2 norm, R(x) = λ
2 ∥x∥

2
2; the proximal operator of αR(x) in the

S-norm (with S diagonal and positive definite matrix) is given by

proxSαR(x) =
x

1+ αλS1

where the quotient is intended component-wise.

Consequently, the objective function HN (x) can take four forms, hereafter
denoted as LR-L1, NN-L1, LR-L2 and NN-L2. The regularization parameter
is fixed as λ = 10−4 in all the test problems. For any numerical test, we
performed 10 runs, leaving the possibility to the random number generator
to vary. Therefore, the performance measures used to evaluate the obtained
results are the average values of the following quantities:

• the optimality gap HN (xk)−H∗
N , computed on the training set at the end

of any epoch. Here, H∗
N is an estimate of the minimum value, obtained by

running a gradient iterative method for a large number of iterations;
• the accuracy computed on the testing set at the end of any epoch;
• the increase of the mini-batch size with respect to the iterations.

As a measure of computational complexity, we refer to an epoch. By epoch
we mean the set of the computational resources and memory management
required to compute a full gradient of the function fN (x) or, equivalently, N
individual gradients ∇fi(x). For instance, the evaluation of fNk

(x) or ∇fNk
(x)

incurs a complexity of Nk/N epoch.
In all experiments, we set the following parameters: Cmax = 108, cmin = 10−4,
η = 0.4, β = 0.5, ζk = 0.99k for k ≥ 0, the initial mini-batch size N0 = 10,
except when Sk is fixed to the identity matrix, in which case N0 = 1; αmin =
10−8, αmax = 102, ᾱ = 1 and m(Nk) = Nk. The mini-batch size Nk increases
according to the rule Nk+1 = Nk + 1.

3.1 L1-regularized test problems

In this section, we present the results obtained by the Prox-SAM method
for the test-problems LR-L1 and NN-L1. The stopping criterion is met when
the total number of evaluations of the loss terms and their gradients reaches
at least N ·maxit , where maxit is the maximum number of allowed epochs.
Here, maxit is set to 20. We also report the execution times for each version
of the method to highlight its effectiveness each version of Prox-SAM and
its potential competitors.

3.1.1 Evaluating hyperparameter settings in Algorithm 1

The first numerical experiment compares different versions of Prox-SAM by
varying the selection of either the learning rate αk or the scaling matrix Sk.
Specifically, we consider the following schemes:
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• Prox-SAM-BB: Algorithm 1 with Sk equal to the identity matrix and αk

defined by Algorithm 2 equipped by (22);
• Prox-SAM-I: Algorithm 1 with Sk equal to the identity matrix and αk =
1,∀k;

• Prox-SAM-S
(1)
k : Algorithm 1 with Sk selected by Algorithm 3 equipped

by (23), β1 = 0.9, β2 = 0.999, ε = 10−16 and αk = 0.5, ∀k;
• Prox-SAM-S

(2)
k : Algorithm 1 with Sk selected by Algorithm 3 equipped

by (24), β = 0.999, ε = 10−16 and αk = 0.5,∀k;
• Prox-SAM-S

(3)
k : Algorithm 1 with Sk selected by Algorithm 3 equipped

by (25), ε = 10−16 and αk = 0.5,∀k.

For all the scaled versions of Prox-SAM the sequence {ξk} has been chosen

as
{

105

(k+1)2.1

}
.

Tables 2-3 report the averaged optimality gap, averaged accuracy along with
the related standard deviations (STD) and averaged execution time (in sec-
onds) over 10 runs for the LR-L1 and NN-L1 test problems, respectively. Based
on these results we can conclude that, generally, the Prox-SAM algorithm
with non-trivial scaling matrices exhibits the best effectiveness. In terms of
numerical performance, the least effective version of Prox-SAM is Prox-
SAM-I. Indeed, between the two non-scaled versions of Prox-SAM, the one
combined with the BB-like rules is more efficient. The final accuracy reached
by all the variants of Prox-SAM is comparable.

Figures 1-2 show the behaviour of the averaged optimality gap, the aver-
aged accuracy and the increase of the averaged mini-batch size over 20 epochs.
We can observe that, for the dataset MNIST and both the test problems, the

configuration Prox-SAM-S
(3)
k appears very efficient. The accuracy is quite

similar across all configurations, and the increase in mini-batch size is limited
for all settings, even in relation to the size of the training set. Figures 3-4 show
the comparison for the IJCNN dataset and the two test problems LR-L1 and
NN-L1, respectively. We observe that the use of the scaling techniques is effi-
cient also in this case. In the following comparison with other state-of-the-art

algorithms, the Prox-SAM-S
(3)
k version of the proposed method is adopted.

3.1.2 Comparison of Prox-SAM-S
(3)
k with other methods

The second numerical experiment concerns the comparison between Prox-

SAM-S
(3)
k and several methods that represent the state-of-the-art in both

deterministic and stochastic contexts. Specifically, among the deterministic
methods, we consider the well-known FISTA method [49, 50] to solve the
convex test problem LR-L1 and the standard forward-backward or proxi-
mal gradient iterative scheme (Prox-FB) [51] for the non-convex NN-L1

problem. For both methods, the version with backtracking is used; at each
iteration, the initial trial value of the step length for this procedure is set
equal to min(α0 ≡ 1/L, 2αk−1), k > 0, where L is the Lipschitz constant of
∇fN , which can be estimated for the considered datasets. The accelerated
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Method MNIST w8a IJCNN RCV1

Prox-SAM-BB
|HN (x̄)−H∗

N | 0.0320 0.0069 0.0074 0.0154
±STD ±0.0203 ±0.0015 ±0.0036 ±0.0009

A(x̄) 0.8854 0.9023 0.9192 0.9411
±STD ±0.0095 ±0.0016 ±0.0020 ±0.0009

Time (s) 4.3989 1.7123 0.6528 3.6745

Prox-SAM-I
|HN (x̄)−H∗

N | 0.1302 0.0142 0.0039 0.0865
±STD ±0.0118 ±0.0018 ±0.0004 ±0.0012

A(x̄) 0.8832 0.9001 0.9152 0.9396
±STD ±0.0030 ±0.0011 ±0.0010 ±0.0013

Time (s) 5.1700 1.4906 0.6037 3.9884

Prox-SAM-S
(1)
k

|HN (x̄)−H∗
N | 0.0112 0.0092 0.0012 0.0294

±STD ±0.0037 ±0.0013 ±0.0005 ±0.0009

A(x̄) 0.8956 0.9014 0.9190 0.9395
±STD ±0.0024 ±0.0013 ±0.0011 ±0.0012

Time (s) 5.7853 1.6218 0.7124 4.2884

Prox-SAM-S
(2)
k

|HN (x̄)−H∗
N | 0.0103 0.0098 0.0011 0.0315

±STD ±0.0024 ±0.0019 ±0.0004 ±0.0010

A(x̄) 0.8964 0.9007 0.9183 0.9392
±STD ±0.0015 ±0.0015 ±0.0011 ±0.0019

Time (s) 5.7489 1.6252 0.6741 4.3169

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0105 0.0115 0.0013 0.0339

±STD ±0.0017 ±0.0010 ±0.0004 ±0.0013

A(x̄) 0.8968 0.8997 0.9179 0.9383
±STD ±0.0007 ±0.0010 ±0.0014 ±0.0012

Time (s) 5.7707 1.5883 0.6746 4.2041

Table 2: Results obtained for the test problem LR-L1 with different versions
of Prox-SAM.

behaviour of the FISTA scheme is achieved as specified in [50] (with a = 2.1,
using the notation of the cited paper).

In the stochastic framework, we compare the Prox-SAM-S
(3)
k method with

the following methods: Prox-SARAH [28], Prox-Spider-boost [52] and
Prox-LISA [22]. These algorithms are equipped with the hyperparameter
settings specified in the cited papers. For the sake of completeness, we report
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Method MNIST w8a IJCNN RCV1

Prox-SAM-BB
|HN (x̄)−H∗

N | 0.0091 0.0018 0.0009 0.0031
±STD ±0.0035 ±0.0004 ±0.0005 ±0.0002

A(x̄) 0.8902 0.8961 0.9244 0.9290
±STD ±0.0061 ±0.0022 ±0.0023 ±0.0013

Time (s) 5.2144 1.8716 0.7267 3.7748

Prox-SAM-I
|HN (x̄)−H∗

N | 0.0082 0.0024 0.0051 0.0296
±STD ±0.0007 ±0.0005 ±0.0007 ±0.0002

A(x̄) 0.8945 0.8974 0.9120 0.9329
±STD ±0.0022 ±0.0014 ±0.0015 ±0.0013

Time (s) 6.0872 1.3674 0.6446 4.0937

Prox-SAM-S
(1)
k

|HN (x̄)−H∗
N | 0.0026 0.0026 0.0004 0.0082

±STD ±0.0011 ±0.0004 ±0.0001 ±0.0004

A(x̄) 0.8990 0.8948 0.9258 0.9287
±STD ±0.0016 ±0.0012 ±0.0021 ±0.0010

Time (s) 6.1572 1.7564 0.7865 4.3621

Prox-SAM-S
(2)
k

|HN (x̄)−H∗
N | 0.0024 0.0028 0.0004 0.0090

±STD ±0.0007 ±0.0006 ±0.0001 ±0.0004

A(x̄) 0.8980 0.8944 0.9242 0.9289
±STD ±0.0021 ±0.0013 ±0.0024 ±0.0015

Time (s) 5.9182 1.8103 0.7804 4.4766

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0024 0.0029 0.0004 0.0099

±STD ±0.0009 ±0.0006 ±0.0001 ±0.0005

A(x̄) 0.8993 0.8946 0.9243 0.9286
±STD ±0.0010 ±0.0012 ±0.0014 ±0.0012

Time (s) 6.0052 1.7864 0.7411 4.4195

Table 3: Results obtained for the test problem NN-L1 with different versions
of Prox-SAM.

these values in Appendix B. As in the previous experiment, for any numerical
test we performed 10 runs and reported averaged results. Due to significant
differences in the nature of the considered iterative schemes, we allocated a
time budget of 15 seconds per run and analyzed the behaviour of the averaged
metrics over this period. We remind that Prox-SARAH and Prox-Spider-
boost are hybrid schemes based on outer-inner iterations. In each outer
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Fig. 1: Test problem LR-L1 for the MNIST dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel). Second row: averaged accuracy evalu-
ated on the test set (left panel) and a zoom of the accuracy in the interval
[0.8, 0.9] (right panel).

iteration, the full gradient at the current iterate (or an estimate based on a
large mini-batch) is computed and used to evaluate the stochastic gradients
during the subsequent inner steps m, where m is of the order of N . Our
implementation of these methods is based on the codes available for download
at https://github.com/unc-optimization/StochasticProximalMethods. Here,
at each outer iteration, the computation of the full gradient is performed.
On the other hand, the Prox-LISA algorithm is a stochastic gradient method
that uses a line search technique to select the learning rate and includes a
test to manage the stochastic gradient variance by appropriately increasing
the mini-batch size.

In Tables 4 and 5 we report the averaged optimality gap and the averaged
accuracy achieved after 15 seconds of runtime by the considered methods for
the two test problems LR-L1 and NN-L1, respectively. Moreover, to evalu-
ate the complexity of the different methods, we also report the number of
epochs processed within the 15-second time budget. The results in the tables

highlight that, given the same time budget, the Prox-SAM-S
(3)
k method gen-

erally outperforms both the deterministic scheme (FISTA or Prox-FB), and
the hybrid methods (Prox-SARAH and Prox-Spider-boost) in terms of

https://github.com/unc-optimization/StochasticProximalMethods
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Fig. 2: Test problem NN-L1 for the MNIST dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
average of the mini-batch size (right panel). Second row: averaged accuracy
evaluated on the test set (left panel) and a zoom of the accuracy in the interval
[0.87, 0.90] (right panel).

optimality gap values. Specifically, Prox-SARAH and Prox-Spider-boost
process fewer epochs due to their periodic need for computationally expensive

full-gradient evaluations. In contrast, Prox-SAM-S
(3)
k performs comparably

to Prox-LISA, which, however, can process more epochs. Notably, within

the given time budget, Prox-SAM-S
(3)
k and FISTA/Prox-FB process a

similar number of epochs, but the stochastic behaviour of Prox-SAM-S
(3)
k

enables it to achieve greater efficiency. Finally, we remark that the perfor-
mance of Prox-LISA depends on multiple hyperparameters (for example, for
variance control tests) that, while robust, still require tuning. On the other

hand, Prox-SAM-S
(3)
k has fewer key hyperparameters to select initially (such

as N0).
In Figure 5 the averaged optimality gap, the averaged accuracy and the aver-
aged increase of the mini-batch size related to the test problem LR-L1 for the
RCV1 dataset are shown. In the optimality gap plot, the STD is represented
by the shaded area around the curves. We observe that, in terms of the opti-
mality gap, the behaviour of the considered methods is similar at the end. In

the initial seconds, as is typical for stochastic schemes, Prox-SAM-S
(3)
k and

Prox-LISA achieve a more rapid reduction in the optimality gap compared
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Fig. 3: Test problem LR-L1 for the IJCNN dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel). Second row: averaged accuracy evalu-
ated on the test set (left panel) and a zoom of the accuracy in the interval
[0.90, 0.93] (right panel).

to FISTA. The final accuracy values for FISTA and Prox-LISA are slightly

higher than those obtained by Prox-SAM-S
(3)
k .

Figure 6 shows the results obtained for the test problem NN-L1 with the

IJCNN dataset. We observe that Prox-SAM-S
(3)
k performs better than the

other methods from the very beginning of the process.
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Fig. 4: Test problem NN-L1 for the IJCNN dataset - First row: averaged
optimality gap computed on the training set (left panel) andincrease of the
average of the mini-batch size (right panel). Second row: averaged accuracy
evaluated on the test set (left panel) and a zoom of the accuracy in the interval
[0.90, 0.93] (right panel).
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Method MNIST w8a IJCNN RCV1

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0057 0.0035 5.40e−5 0.0142

±STD ±0.0015 ±0.0003 ±2.06e−5 ±0.0003

A(x̄) 0.8977 0.9029 0.9188 0.9432
±STD ±0.0013 ±0.0010 ±0.0002 ±0.0007

Epochs 48 186 900 228

Prox-SARAH
|HN (x̄)−H∗

N | 0.0055 0.0072 0.0017 0.0863
±STD ± 0.0001 ± 0.0003 ± 0.0001 ± 0.0011

A(x̄) 0.8975 0.9003 0.9162 0.9391
±STD ±0.0004 ±0.0006 ± 0.0001 ±0.0009

Epochs 32 65 27 5

Prox-Spider-boost
|HN (x̄)−H∗

N | 0.0050 0.0171 0.0011 0.0834
±STD ± 0.0001 ± 8.73e−6 ± 8.04e−5 ± 0.0011

A(x̄) 0.8978 0.8983 0.9168 0.9393
±STD ±0.0005 ±0.0000 ± 8.23e−5 ±0.0009

Epochs 34 295 30 5

Prox-LISA
|HN (x̄)−H∗

N | 0.0014 0.0018 7.66e−6 0.0295
±STD ±0.0004 ± 0.0001 ± 2.77e−6 ±0.0003

A(x̄) 0.8982 0.9037 0.9190 0.9449
±STD ±0.0007 ±0.0003 ±0.0001 ±0.0008

Epochs 70 221 455 23

FISTA
|HN (x̄)−H∗

N | 0.1120 0.0318 1.37e−6 0.0053
A(x̄) 0.8395 0.8953 0.9190 0.9474

Epochs 47 243 943 373

Table 4: Results for the LR-L1 test problem after 15 seconds of runtime.
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Method MNIST w8a IJCNN RCV1

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0009 0.0012 3.62e−5 0.0025

±STD ±0.0002 ±0.0003 ±1.40e−5 ±8.43e−5

A(x̄) 0.8999 0.8979 0.9252 0.9317
±STD ±0.0014 ±0.0012 ±0.0008 ±0.0005

Epochs 53 183 1016 292

Prox-SARAH
|HN (x̄)−H∗

N | 0.0024 0.0017 0.0202 0.0226
±STD ±0.0001 ±0.0003 ± 0.0152 ± 0.0023

A(x̄) 0.8976 0.8970 0.9223 0.9291
±STD ±0.0005 ±0.0008 ± 0.0093 ±0.0038

Epochs 37 70 33 5

Prox-Spider-boost
|HN (x̄)−H∗

N | 0.0051 0.0032 0.0214 0.0248
±STD ±7.62e−6 ±2.33e−6 ± 0.0153 ± 0.0026

A(x̄) 0.8939 0.8968 0.9215 0.9283
±STD ±0.0002 ±0.0001 ± 0.0092 ±0.0038

Epochs 100 330 32 5

Prox-LISA
|HN (x̄)−H∗

N | 0.0003 0.0004 0.0004 0.0090
±STD ±0.0001 ±3.84e−5 ± 2.99e−5 ±7.15e−5

A(x̄) 0.9004 0.9000 0.9209 0.9355
±STD ±0.0008 ±0.0004 ±0.0003 ±0.0006

Epochs 68 225 483 24

Prox-FB
|HN (x̄)−H∗

N | 0.1178 0.0599 0.0184 0.0532
A(x̄) 0.8111 0.8941 0.9049 0.9257

Epochs 52 240 915 321

Table 5: Results for NN-L1 test problem after 15 seconds of runtime.
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Fig. 5: Behaviour of the methods in a time budget of 15 seconds for the test
problem LR-L1 and the RCV1 dataset - First row: averaged optimality gap
computed on the training set (left panel) and increase of the averaged mini-
batch size (right panel). Second row: averaged accuracy evaluated on the test
set.
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Fig. 6: Behaviour of the methods in a time budget of 15 seconds for the test
problem NN-L1 and the IJCNN dataset - First row: averaged optimality gap
computed on the training set (left panel) and increase of the averaged mini-
batch size (right panel). Second row: averaged accuracy evaluated on the test
set.
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3.2 L2-regularized test problems

In this section we present the results obtained for test problems with regular-
ization term equal to λ

2 ∥x∥
2
2. Specifically, the first experiment compares the

last four versions of Prox-SAM introduced in Section 3.1 with the LSNM-
BB algorithm [41]. We remark that while Prox-SAM exploits the closed form
of the proximal operator related to the squared L2 norm, LSNM-BB does
not include a proximal step to handle the regularization term but relies on the
use of the gradient of the entire objective function.
As in Section 3.1, the methods are stopped when the total number of evalua-
tions of the loss terms and their gradients is greater than or equal to N ·maxit
and maxit is set equal to 20.
In Tables 6 and 7 we report the averaged optimality gap and the averaged
accuracy obtained by the LSNM-BB algorithm and the different versions
of Prox-SAM for the two test problems LR-L2 and NN-L2, respectively. In
general, the non-scaled version of Prox-SAM is the least efficient, while the
scaled versions perform efficiently across all metrics compared to LSNM-BB.

Fig. 7: LR-L2 test problem for the w8a dataset - First row: averaged optimality
gap computed on the training set (left panel) and increase of the averaged
mini-batch size (right panel). Second row: averaged accuracy evaluated on the
test set (left panel) and a zoom of the accuracy in the interval [0.88, 0.91] (right
panel).
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Method MNIST w8a IJCNN RCV1

LSNM-BB
|HN (x̄)−H∗

N | 0.0343 0.0061 0.0053 0.0321
±STD ±0.0217 ±0.0015 ±0.0014 ±0.0074

A(x̄) 0.8859 0.9011 0.9158 0.9493
±STD ±0.0094 ±0.0016 ±0.0018 ±0.0018

Time (s) 5.7553 1.6268 0.6155 2.9684

Prox-SAM-I
|HN (x̄)−H∗

N | 0.0994 0.0102 0.0017 0.0330
±STD ±0.0107 ±0.0014 ±0.0003 ±0.0009

A(x̄) 0.8851 0.8990 0.9146 0.9427
±STD ±0.0027 ±0.0017 ±0.0012 ±0.0019

Time (s) 5.7899 1.5858 0.6360 4.1773

Prox-SAM-S
(1)
k

|HN (x̄)−H∗
N | 0.0086 0.0052 0.0008 0.0080

±STD ±0.0009 ±0.0010 ±0.0004 ±0.0005

A(x̄) 0.8969 0.9013 0.9165 0.9548
±STD ±0.0020 ±0.0011 ±0.0007 ±0.0008

Time (s) 6.2626 1.7721 0.6997 4.5637

Prox-SAM-S
(2)
k

|HN (x̄)−H∗
N | 0.0098 0.0053 0.0009 0.0090

±STD ±0.0009 ±0.0012 ±0.0005 ±0.0013

A(x̄) 0.8964 0.9013 0.9162 0.9543
±STD ±0.0017 ±0.0007 ±0.0005 ±0.0010

Time (s) 6.0336 1.6865 0.6982 4.5370

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0109 0.0063 0.0009 0.0104

±STD ±0.0020 ±0.0011 ±0.0004 ±0.0019

A(x̄) 0.8957 0.9008 0.9160 0.9536
±STD ±0.0027 ±0.0009 ±0.0007 ±0.0016

Time (s) 5.9906 1.6770 0.7032 5.0806

Table 6: Results obtained for the test problem LR-L2 with different versions
of Prox-SAM and LSNM-BB.

In Figure 7 the averaged optimality gap, the averaged accuracy and the aver-
aged increase of the mini-batch size for the test problem LR-L2 with the w8a
dataset are shown. We can observe that the three scaled versions of Prox-
SAM (Sk different to the identity matrix) are very efficient. The increase of
the mini-batch size is very similar for all the versions of Prox-SAM. The final
accuracy is around 0.9 in all cases. Figure 8 shows the results obtained for the
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Method MNIST w8a IJCNN RCV1

LSNM-BB
|HN (x̄)−H∗

N | 0.0106 0.0014 0.0019 0.0097
±STD ±0.0052 ±0.0005 ±0.0013 ±0.0030

A(x̄) 0.8879 0.9011 0.9148 0.9487
±STD ±0.0056 ±0.0010 ±0.0023 ±0.0027

Time (s) 5.4880 1.7148 0.5530 2.8257

Prox-SAM-I
|HN (x̄)−H∗

N | 0.0096 0.0024 0.0015 0.0130
±STD ±0.0008 ±0.0004 ±0.0005 ±0.0003

A(x̄) 0.8943 0.8985 0.9113 0.9412
±STD ±0.0016 ±0.0013 ±0.0017 ±0.0018

Time (s) 5.4716 1.8529 0.6698 3.8381

Prox-SAM-S
(1)
k

|HN (x̄)−H∗
N | 0.0028 0.0022 0.0001 0.0019

±STD ±0.0006 ±0.0005 ± 4.64e−5 ±0.0002

A(x̄) 0.8990 0.8992 0.9166 0.9542
±STD ±0.0019 ±0.0015 ±0.0004 ±0.0014

Time (s) 5.8628 1.8786 0.7428 4.1673

Prox-SAM-S
(2)
k

|HN (x̄)−H∗
N | 0.0032 0.0026 0.0002 0.0025

±STD ±0.0010 ±0.0007 ± 6.89e−5 ±0.0006

A(x̄) 0.8987 0.8984 0.9165 0.9530
±STD ±0.0022 ±0.0016 ±0.0005 ±0.0016

Time (s) 5.6565 1.9515 0.7504 4.2096

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0029 0.0028 0.0001 0.0025

±STD ±0.0008 ±0.0004 ± 2.98e−5 ±0.0005

A(x̄) 0.9001 0.8978 0.9165 0.9537
±STD ±0.0025 ±0.0011 ±0.0004 ±0.0011

Time (s) 5.7120 1.9208 0.7739 4.0003

Table 7: Results obtained for the test problem NN-L2 with different versions
of Prox-SAM and LSNM-BB.

NN-L2 objective function with the MNIST dataset. Similar considerations to
those made for Figure 7 can be deduced.

3.2.1 Comparison of Prox-SAM-S
(3)
k with other methods

As in Section 3.1.2 for the L1 norm, we now discuss the results of a numerical

comparison between Prox-SAM-S
(3)
k and several state-of-the-art methods in
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Fig. 8: Test problem NN-L2 for the MNIST dataset - First row: averaged
optimality gap computed on the training set (left panel) and increase of the
averaged mini-batch size (right panel). Second row: averaged accuracy eval-
uated on the test set (left panel) anda zoom of the accuracy in the interval
[0.88, 0.91] (right panel).

both deterministic and stochastic settings. In particular, in the deterministic
context, FISTA was considered for the LR-L2 test problem and Prox-FB
for the NN-L2 test problem. In the stochastic framework, in addition to
Prox-SARAH, Prox-Spider-boost and Prox-LISA methods, the ADA-
GRAD algorithm [46] was also considered. As for the other methods, the
hyperparameter values are shown in the Appendix B. Indeed, since the entire
objective function for both LR-L2 and NN-L2 is differentiable, the conver-
gence of the method is guaranteed [53]. We recall that the key feature of the
ADAGRAD method is its rescaling of each coordinate based on the sum of
squared past stochastic gradients. However, the accumulation of these past
gradients significantly limits its ability to adapt to local variations in function
smoothness.
In Tables 8 and 9 we report the averaged optimality gap and the averaged
accuracy obtained after 15 seconds of runtime by the considered methods
for the two test problems LR-L2 and NN-L2, respectively. We report also
the number of epochs processed within 15-seconds time budget. In general,

Prox-SAM-S
(3)
k appears to be more efficient than deterministic schemes, par-

ticularly during the initial phase of execution, as confirmed by the scientific
literature on stochastic methods. Considering the number of epochs processed,
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Method MNIST w8a IJCNN RCV1

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0053 0.0012 4.75e−5 0.0009

±STD ±0.0004 ±0.0002 ±1.49e−5 ±7.18e−5

A(x̄) 0.8978 0.9034 0.9162 0.9573
±STD ±0.0018 ±0.0011 ±0.0001 ±0.0006

Epochs 47 175 914 236

Prox-SARAH
|HN (x̄)−H∗

N | 0.0061 0.0036 0.0001 0.0298
±STD ± 0.0001 ± 0.0001 ± 1.45e−5 ± 0.0006

A(x̄) 0.8980 0.9004 0.9157 0.9461
±STD ±0.0005 ±0.0005 ± 5.21e−5 ±0.0007

Epochs 33 58 29 5

Prox-Spider-boost
|HN (x̄)−H∗

N | 0.0051 0.0128 0.0002 0.0279
±STD ± 0.0001 ± 1.02e−5 ± 1.74e−5 ± 0.0006

A(x̄) 0.8985 0.8985 0.9157 0.9464
±STD ±0.0004 ±0.0000 ± 3.75e−5 ±0.0006

Epochs 38 284 28 5

Prox-LISA
|HN (x̄)−H∗

N | 0.0013 0.0001 2.14e−6 0.0020
±STD ±0.0004 ± 1.84e−5 ± 6.89e−7 ±3.97e−5

A(x̄) 0.8990 0.9038 0.9164 0.9561
±STD ±0.0008 ±0.0002 ±4.38e−5 ±0.0007

Epochs 76 218 430 24

ADAGRAD
|HN (x̄)−H∗

N | 0.0029 0.0032 0.0197 0.0217
±STD ± 3.94e−5 ± 1.18e−5 ± 7.83e−5 ±3.62e−5

A(x̄) 0.8988 0.8999 0.9076 0.9516
±STD ±0.0005 ±6.36e−5 ±6.49e−5 ±0.0004

Epochs 82 249 200 77

FISTA
|HN (x̄)−H∗

N | 0.1064 0.0324 9.06e−7 5.62e−5

A(x̄) 0.8431 0.8949 0.9164 0.9573

Epochs 53 221 970 373

Table 8: Results for LR-L2 test problem after 15 seconds of runtime.

Prox-SAM-S
(3)
k , Prox-LISA and ADAGRAD require shorter execution

compared to Prox-SARAH and Prox-Spider-boost. We also observe that,

even in the presence of the L2 regularization term, Prox-SAM-S
(3)
k provides

more accurate results than Prox-SARAH and Prox-Spider-boost. The

results of ADAGRAD are fairly aligned with those of Prox-SAM-S
(3)
k ; on

the other hand, ADAGRAD also performs a scaling of the stochastic gradi-
ent; however, the scheme requires the differentiability of the objective function
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Method MNIST w8a IJCNN RCV1

Prox-SAM-S
(3)
k

|HN (x̄)−H∗
N | 0.0012 0.0009 3.44e−5 0.0002

±STD ±0.0004 ±0.0003 ±9.13e−6 ±2.49e−5

A(x̄) 0.9014 0.9005 0.9167 0.9555
±STD ±0.0009 ±0.0006 ±0.0002 ±0.0003

Epochs 52 158 106 299

Prox-SARAH
|HN (x̄)−H∗

N | 0.0028 0.0014 8.96e−11 0.0470
±STD ± 7.19e−5 ± 0.0003 ± 1.86e−10 ± 0.0016

A(x̄) 0.8992 0.8987 0.9172 0.9432
±STD ±0.0006 ±0.0007 ± 1.17e−16 ±0.0009

Epochs 38 62 33 5

Prox-Spider-boost
|HN (x̄)−H∗

N | 0.0063 0.0038 8.20e−11 0.0525
±STD ± 1.23e−5 ± 3.72e−6 ± 1.51e−10 ± 0.0019

A(x̄) 0.8940 0.8973 0.9172 0.9423
±STD ±0.0001 ±0.0000 ± 1.17e−16 ±0.0009

Epochs 102 293 33 7

Prox-LISA
|HN (x̄)−H∗

N | 0.0003 8.57e−5 1.36e−6 0.0006
±STD ±3.46e−5 ± 1.80e−5 ± 4.72e−7 ±1.36e−5

A(x̄) 0.9022 0.9007 0.9171 0.9538
±STD ±0.0009 ±0.0002 ±6.82e−5 ±0.0006

Epochs 68 210 472 24

ADAGRAD
|HN (x̄)−H∗

N | 0.0009 0.0002 0.0024 0.0022
±STD ± 2.40e−5 ± 4.68e−6 ± 9.87e−6 ±7.44e−6

A(x̄) 0.9017 0.9003 0.9107 0.9531
±STD ±0.0004 ±6.36e−5 ±5.68e−5 ±0.0005

Epochs 84 248 216 82

Prox-FB
|HN (x̄)−H∗

N | 0.1243 0.0677 0.0119 0.0328
A(x̄) 0.8110 0.8947 0.9049 0.9351

Epochs 52 219 902 345

Table 9: Results for NN-L2 test problem after 15 seconds of runtime.

- an assumption that can be avoided by incorporating the proximal step in

Prox-SAM-S
(3)
k . Finally, compared to Prox-LISA, the behaviour of Prox-

SAM-S
(3)
k appears similar and, for certain test problem/dataset combinations,

even more efficient.
In Figure 9 the averaged optimality gap, the averaged accuracy and the aver-
aged increase of the mini-batch size for the test problem LR-L2 with the IJCNN

dataset are shown. We observe that, after few epochs, Prox-SAM-S
(3)
k pro-

vides a rapid decrease in the optimality gap compared to the other methods.
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Fig. 9: Behaviour of the methods in a time budget of 15 seconds for the test
problem LR-L2 and the RCV1 dataset - First row: averaged optimality gap
computed on the training set (left panel) and increase of the averaged mini-
batch size (right panel). Second row: averaged accuracy evaluated on the test
set.

The final accuracy is very similar across all methods, and although the mini-

batch size increase for Prox-SAM-S
(3)
k is larger than for Prox-LISA, it

remains smaller than the size of the training set. Similar observations can be
made for Figure 10, which shows the same metrics for the RCV1 dataset with
the NN-L2 objective function.

4 Numerical experiments on nonlinear
regression

As a further numerical application, we focus on a non-convex minimization
problem arising in the context of nonlinear regression. Consider a training set
{(ai, bi)}Ni=1, where ai ∈ Rd represents the feature vector and bi ∈ R is the
target variable for the i-th example. Our goal is to solve a problem of the form

minx∈RdHN (x) :=
1

N

N∑
i=1

(bi − h(ai; x))
2 +R(x)

where h(·; x) : Rd −→ R is a nonlinear prediction function.
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Fig. 10: Behaviour of the methods in a time budget of 15 seconds for the test
problem NN-L2 and the RCV1 dataset - First row: averaged optimality gap
computed on the training set (left panel) and increase of the averaged mini-
batch size (right panel). Second row: averaged accuracy evaluated on the test
set.

Here we use the AIR dataset [54], which includes 9358 instances of hourly aver-
aged pollutant concentrations along with temperature and air humidity (both
relative and absolute) recorded each hour between March 2004 and February
2005 at a device located in a polluted area of an Italian city. The task, as in [55],
is to predict the benzene concentration based on seven input features: carbon
monoxide, nitrogen oxides, ozone, non-methane hydrocarbons, nitrogen diox-
ide, air temperature, and relative air humidity. Following [56], the prediction
function h(·, x) has been modeled using a 7×5×1 feed-forward neural network,
where the two hidden layers use a linear activation function, and the output
layer uses a sigmoid activation function. Similarly to the numerical experi-
ments on binary classification, we report the results obtained by considering
either R(x) = λ∥x∥1 (L1) or R(x) = λ

2 ∥x∥
2
2 (L2). In both cases, λ = 10−4.

According to [56], instances with missing benzene concentration values were
removed from the dataset, reducing its size from 9358 to 8991 records. For the
training phase, we used N = 6294 samples, with the remaining 2697 used for
testing. Since the concentration values are recorded hourly, the training data
covers the first nine months, while the testing data corresponds to the last
three months. Lastly, all data values were normalized to the interval [0, 1].
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To evaluate the effectiveness of Prox-SAM-S
(3)
k , the nonlinear regression test

problem is solved by comparing the behaviour of the following methods:

• Prox-SAM-S
(3)
k with the same hyperparameters setting detailed in Section

3;
• Prox-LISA with the same hyperparameters setting detailed in Section 3;
• Prox-SARAH with γ = 0.99, α = 0.01, N = 1 and m = 2N ;
• Prox-Spider-boost with α = 0.01, N = 1 and m = 2N ;
• Prox-FB with α0 = 10.

For each numerical test, we performed 10 runs, each with a time budget of 15
seconds. In Table 10 we report the averaged value of the loss function over the
training set, the averaged value of the loss function over the testing set and
the averaged number of epochs processed by the methods on both the L1 and
L2 regularized problems. In terms of loss function reduction, the performance

Method L1 L2

training loss ± STD testing loss ± STD epoch training loss ± STD testing loss ± STD epoch

Prox-SAM-S
(3)
k 0.0032±5.89e−5 0.0045±0.0002 161 0.0028±1.32e−5 0.0036±0.0002 195

Prox-LISA 0.0031±1.95e−5 0.0046±0.0002 128 0.0028±3.03e−6 0.0039± 0.0002 129

Prox-SARAH 0.0044±5.59e−5 0.0061±5.30e−5 47 0.0030±2.17e−5 0.0043±5.97e−5 45

Prox-Spider-boost 0.0043±4.05e−5 0.0061±4.22e−5 45 0.0030±2.74e−6 0.0043±5.69e−5 48

Prox-FB 0.0053 0.0088 69 0.0035 0.0069 76

Table 10: Results after 15 seconds of runtime for the nonlinear regression
problem equipped with L1 or L2 regularization term.

of Prox-SAM-S
(3)
k is comparable to that of Prox-LISA and slightly outper-

forms both the hybrid methods and Prox-FB. Notably, Prox-SAM-S
(3)
k is

the algorithm that can process the highest number of epochs within the given
time budget. Figures 11 and 12 show the results of the nonlinear regression
problem with L1 and L2 regularization terms, respectively. Specifically, for all
the compared methods, we report the decrease in the averaged values of the
loss functions on both the training and testing sets, as well as the averaged
increase in the mini-batch size. For each plot, the standard deviation is also
displayed and appears limited in all cases. From these figures, we can conclude

that Prox-SAM-S
(3)
k performs efficiently in reducing the loss function, with

a limited increase in the mini-batch size.
Finally, Figure 13 shows the benzene concentration estimates provided by
the algorithms against the true concentration (black line). All the algorithms
achieve similar results.
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Fig. 11: Results for the nonlinear regression with L1 regularization term - First
row: averaged loss computed over the training set (left panel) and averaged
loss computed over the testing set (right panel). Second row: increase of the
averaged mini-batch size.

5 Conclusions

In this paper, we proposed a class of variable metric proximal stochastic
gradient methods aimed at solving regularized empirical risk minimization
problems. Besides the presence of a scaling matrix in the stochastic direction,
our proposal is based on a line search, monitoring the decrease of the stochas-
tic approximations of the objective function, and an increasing mini-batch size
strategy, combined with an additional sampling procedure. Specifically, the
mini-batch remains fixed until the additional sampling condition is no longer
satisfied or a predefined number of iterations has been reached. We have stud-
ied the convergence properties of our proposed scheme for strongly convex,
convex, and non-convex functions, notably without requiring Lipschitz conti-
nuity of the gradient for the differentiable part of the objective function.
Numerical experiments on binary classification and nonlinear regression tasks
validate the effectiveness of our approach, showcasing its promising per-
formance relative to existing state-of-the-art proximal stochastic gradient
methods, without requiring the expensive selection of hyperparameters needed
to achieve a efficient behaviour. Future work will focus on extending the
approach to more complex tasks, such as multi-class classification and deep
learning models.
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Fig. 12: Results for the nonlinear regression with L2 regularization term - First
row: averaged loss computed over the training set (left panel) and averaged
loss computed over the testing set (right panel). Second row: increase of the
averaged mini-batch size.

Fig. 13: Estimated benzene concentrations during 10 days (240 hours)
obtained by solving the nonlinear regression problem with L1 regularized
problem (left panel) and the L2 regularized problem (right panel) using the
compared methods; the black line represents the true concentration.
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A Auxiliary results

A.1 Properties of the proximal operator

Lemma A.1 recalls well known results on the proximal operator (for the proof,
see [9, 12] and references therein).

Lemma A.1. Let α > 0, S be a symmetric positive definite matrix, x ∈
dom(HΣ) with Σ ⊆ N . Given the function

qα,SΣ (y) = (y − x)
T∇fΣ(x) +

1

2α
∥y − x∥2S +R(y)−R(x),

the following statements hold true.

a. ŷ = proxSαR(x− αS−1u) if and only if 1
αS(x− ŷ)− u = w, w ∈ ∂R(ŷ).

b. qα,SΣ (x) = 0.

c. Given v(Σ) = proxSαR(x− αS−1∇fΣ(x)), q
α,S
Σ (v(Σ)) ≤ 0 and qα,SΣ (v(Σ)) = 0

if and only if v(Σ) = x.
d. x is a stationary point for problem miny∈RdfΣ(y) +R(y) if and only if x =

v(Σ) if and only if qα,SΣ (v(Σ)) = 0.

A.2 Proof of Lemma 2.1

Assume by contradiction that there exists a k ∈ N such that Step 4 in Algo-
rithm 1 performs an infinite number of reductions. As a consequence, for any

https:// archi ve. ics. uci. edu/ ml/ index. php
https:// archi ve. ics. uci. edu/ ml/ index. php
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j ∈ N we have

ηqαk,Sk

Nk
(v

(Nk)
k ) <

HNk
(xk + βjd

(Nk)
k )−HNk

(xk)

βj
=

=
fNk

(xk + βjd
(Nk)
k )− fNk

(xk)

βj
+

R(xk + βjd
(Nk)
k )−R(xk)

βj

≤
fNk

(xk + βjd
(Nk)
k )− fNk

(xk)

βj
+

+
βjR(xk + d

(Nk)
k ) + (1− βj)R(xk)−R(xk)

βj

=
fNk

(xk + βjd
(Nk)
k )− fNk

(xk)

βj
+R(v

(Nk)
k )−R(xk),

where the second inequality follows by applying the convexity of function R.
Taking the limit on the right-hand side for j → +∞, we obtain

ηqαk,Sk

Nk
(v

(Nk)
k ) ≤ ∇fNk

(xk)
T d

(Nk)
k +R(v

(Nk)
k )−R(xk)

≤ ∇fNk
(xk)

T d
(Nk)
k +R(v

(Nk)
k )−R(xk) +

1

2αk
∥v(Nk)

k − xk∥2Sk

= qαk,Sk

Nk
(v

(Nk)
k ).

Since 0 < η < 1 and the line search is performed only if qαk,Sk

Nk
(v

(Nk)
k ) is

non-zero, this is an absurd.

A.3 Proof of Lemma 2.2

Assume that Nk < N for all k ∈ N. Since the sample size sequence {Nk} in
Algorithm 1 is non-decreasing, this means that there exists some N < N and
k2 ∈ N such that Nk = N for all k ≥ k2. Now, let us assume that there is no
k1 ∈ N such that D−

k = ∅ for all k ≥ k1. This means that there exists an infinite
sub-sequence of iterations K ⊆ N such that D−

k ̸= ∅ for all k ∈ K. Since Dk is
chosen randomly and uniformly, with finitely many possible outcomes for each
k, there exists some q > 0 such that P(Dk ∈ D−

k ) ≥ q for all k ∈ K. So, we have

P(Dk ∈ D+
k , k ∈ K) ≤ Πk∈K(1− q) = 0;

this means that we will almost surely encounter an iteration at which the sam-
ple size will be increased due to violation of the additional sampling condition
in Step 6 of Algorithm 1. This is a contradiction with the sample size being
kept to N during the whole optimization process. Thus, we conclude that the
statement holds.
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B Hyperparameter settings for the compared
methods

For the Prox-SARAHmethod we use the hyperparameter setting specified in
[28] where, by borrowing the notation of the referred paper, q = 2+0.01+( 1

100 ),

C = q2

(q2+8)L̂2γ2
and the values for the other hyperparameters are shown in

Table 11.
For the Prox-Spider-boost method we use the hyperparameter setting spec-

Dataset Loss γ α N m
MNIST LR 0.99 αopt 1 2N
MNIST NN 0.99 0.1

L̂
1 2N

w8a LR 0.99 0.1
L̂

1 2N

w8a NN 0.99 0.1
L̂

1 2N

IJCNN LR 0.99 αopt 1 2N
IJCNN NN 0.99 αopt 1 2N
RCV1 LR 0.95 αopt 1 2N
RCV1 NN 0.95 αopt 1 2N

Table 11: Hyperparameter settings for Prox-SARAH [28].

ified in [52] and the values for hyperparameters are shown in Table 12.
αopt is the best tuned value obtained after a time and resource consuming

Dataset Loss α N m
MNIST LR αopt 1 2N

MNIST NN 0.05 256 2N
256

w8a LR 0.05 256 2N
256

w8a NN 0.05 256 2N
256

IJCNN LR αopt 1 2N
IJCNN NN αopt 1 2N
RCV1 LR αopt 1 2N
RCV1 NN αopt 1 2N

Table 12: Hyperparameter settings for Prox-Spider-boost [52].

procedure of repeated trials. This setting is the same for both the regulariza-
tion terms.
In the implementation of Prox-LISA method, the initial mini batch size is
N0 = 3 and the line search hyperparameter is β = 1

2 in all experiments. The
attempt value for the step length at Step 2 is, in general, α0 = 1 for the first
iteration and αk = min(α0, αk−1

1
β ) for the following iterations. Furthermore,

we have the rule εk = 100 · 0.999k for controlling the variance.
In the implementation of ADAGRAD method, the hyperparameters are set
with the most commonly used values [46]; specifically, the learning rate α is
0.01, the mini-batch size is fixed to 50, and ε = 10−8.
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