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Abstract

The problem considered is a multi-objective optimization problem,
in which the goal is to find an optimal value of a vector function rep-
resenting various criteria. The aim of this work is to develop an al-
gorithm which utilizes the trust region framework with probabilistic
model functions, able to cope with noisy problems, using inaccurate
functions and gradients. We prove the almost sure convergence of the
proposed algorithm to a Pareto critical point if the model functions are
good approximations in probabilistic sense. Numerical results demon-
strate effectiveness of the probabilistic trust region by comparing it to
competitive stochastic multi-objective solvers. The application in su-
pervised machine learning is showcased by training non discriminatory
Logistic Regression models on different size data groups. Additionally,
we use several test examples with irregularly shaped fronts to exhibit
the efficiency of the algorithm.

Key words: Multi-objective optimization, Pareto-optimal points, Proba-
bilistically fully linear models, Trust-region method, Almost sure conver-
gence.

1 Introduction

Multi-objective optimization problems arise in many real-world applications,
such as finance, scientific computing, social sciences, engineering, and be-
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yond. These problems are characterized by the need to simultaneously op-
timize multiple, often conflicting objectives, which significantly complicates
the decision making process. Whether you are maximizing efficiency while
minimizing computational cost or minimizing risk while maximizing income,
identifying the optimal trade-offs is far from straightforward. The complex-
ity comes from the competing nature of the objectives, where improving one
criterion comes at the expense of other. The problem we are solving can
formally be stated as

min
x
f(x) = min

x
(f1(x), ..., fq(x))

where f : Rn → Rq. The main goal of multi-objective optimization, unlike
in the scalar optimization, is to identify a Pareto critical point. A Pareto
critical point is a solution that cannot be strictly improved (or dominated) in
terms of all objective function values within a local neighborhood, see [16],
[23]. When extending this concept to global solutions, we can construct
a Pareto front, a set of globally optimal points where no point in the set
dominates (strictly improves) another. By finding Pareto critical points, it
is possible to find the entire Pareto front, through standard procedures, see
[14]. The insight into the structure of the entire set of solutions can be
crucial in the decision making process, hence it is important for the model
to be able to find the entire front.

Trust region methods for solving this kind of problems work within the
standard trust region framework, building a model for each function fi,
generating a direction by solving a multi-model optimization problem and
performing the acceptance check as in the classical one dimensional case, see
[30]. Therein it is shown that the method converges to a Pareto critical point
under standard assumptions. The convergence towards a stationary point
is a common main result of papers dealing with multi-objective problems.
The complexity of the problem greatly increases if the functions involved
are costly. Computing efficiency and high cost of obtaining exact infor-
mation play an important role and motivation in opting for the stochastic
and derivative free approaches. When creating models within a trust re-
gion framework, it is possible to use inexact gradient information. Such
derivative free trust region approach can be seen in [27]. In the mentioned
paper, one criterion is assumed to be a black box function with a difficulty
to calculate derivative, while other functions and their derivatives can be
easily computed. The convergence towards a Pareto critical point is proved.
Another version of a derivative free multi-objective trust region approach is
discussed in [4], where radial basis surrogate models are used.

It is also possible to approach this problem within a line search frame-
work. Deterministic approach using Armijo-like conditions with the steepest
descent and Newton direction is discussed in [17]. In [17] authors also ana-
lyze the projected gradient method for constrained cases. Stochastic multi-
gradient multi-criteria approach can be found in [21]. The authors of [21]
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successfully extend the classical stochastic gradient (SG, see [22]) method for
single-objective optimization to a multi criteria method, and prove sublinear
convergence for convex and strongly convex functions.

Random models are also frequently used within the trust region frame-
work in the case of a single objective function, i.e., for the case q = 1. A
number of approaches are available in literature. Probabilistic trust region
method which uses approximate models can be seen in [1]. It is shown
there that with probability one the method converges towards a stationary
point, if the models are accurate enough with high probability. Trust region
method for scalar optimization problems utilizing both approximate func-
tions and gradients can be found in [12]. The analysis therein requires that
the model and function estimates are sufficiently accurate with fixed, suffi-
ciently high probability. These probabilities are predetermined and constant
throughout the optimization process and almost sure convergence towards
a stationary point is proved. Additionally, an adaptive subsampling tech-
nique for problems involving functions expressed as finite sums, which are
common in applications such as machine learning, is proposed therein. Un-
like the traditional subsampling techniques with monotonically increasing
size, that method adjusts the size based on the progress. The literature also
covers methods specifically designed for optimization of finite sums, which
exploit the form through the use of different subsampling strategies, and
other various techniques. Some papers in the literature on this topic are
[3],[5],[8]-[11],[20], [25],[26].

The method we propose here is based on probabilistically fully linear
(quadratic) models, introduced in [1] and used later on in [12, 6]. The
concept of full (probabilistic) linearity is extended to vector function in a
natural way as explained further on.

Having a fully linear (quadratic) model, one has to deal with the fact that
at each step of the trust region method we compute the ratio function using
approximations of the function values at subsequent steps. Therefore we can
not rely on the true model reduction and the decreasing monotonicity. Thus
some additional conditions are needed to control the errors. One possibility
is to assume that we work with sufficiently small εF accurate values as done
in [12]. We propose a different assumption here, see ahead Assumption 3,
motivated by the applications from machine learning problems. Roughly
speaking we are assuming that the approximate gradient gi is close enough
to the true gradient of the approximate objective f̃i, which is common in
the case of finite sums where one subsamples functional values and takes the
approximate gradient as the true gradient of the subsampled function, see
[25]. The assumption also holds if one approximates the gradient by finite
differences for example.

The quality of approximate models is controlled by a probability se-
quence αk which is approaching 1 sufficiently fast. This way one can take
advantage of relatively poor model at the beginning of iterative process,
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hoping to save some computational costs and yet achieve good approximate
solution at the end using high quality models.

Pareto optimal points can be characterized as zeros of the so called
marginal functions, see [16]. This characterization reduces to the usual first
order optimality conditions (gradient equal to zero) in the case of q = 1.
The concept of marginal function is used in [30] to define the trust region
method. However, as we work with the approximate functions and gradients,
an approximate marginal function is used together with the corresponding
scalar representation, see [27].

To summarize, the main contribution of this paper are the following. We
propose the trust region algorithm which uses approximate function and
gradient values to solve multi-criteria optimization problem. The almost
sure convergence towards a Pareto stationary point is proved under certain
conditions. Numerical experiments are presented, which demonstrate the
benefits of the stochastic approach. Using the adaptive subsampling strat-
egy, we manage to solve machine learning problems efficiently with a first
order algorithm and we also discuss the use of second order information. At
the end of this paper, the standard procedure of finding the Pareto front
using the proposed algorithm is implemented and presented.

2 Preliminaries

As mentioned, we are solving the following unconstrained multiobjective
minimization problem:

min
x
f(x) = min

x
(f1(x), ..., fq(x)) (1) {mop}{mop}

where f : Rn → Rq. It is assumed that the functions fj , j = 1, ..., q are
smooth with Lipschitz continuous gradients. Assuming that the explicit
evaluation of these functions and its derivatives is unavailable, we will rely
on approximating them with f̃i(x) and gi(x), respectively.

For problem (1) one can define efficient and weakly efficient solution as
follows.

Definition 1. A point x∗ ∈ Rn is called (an) efficient (solution) for (1) (or
Pareto optimal) if there exists no point x ∈ Rn satisfying fi(x) ≤ fi(x

∗) for
all i ∈ {1, 2, ..., q} and f(x) ̸= f(x∗). A point x∗ ∈ Rn is called (a) weakly
efficient (solution) for (1) (or weakly Pareto optimal) if there exists no point
x ∈ Rn satisfying fi(x) < fi(x

∗) for all i ∈ {1, 2, ..., q}.

In other words, Pareto point is such that for every direction d ∈ Rn,
there exists a component function fi with nonnegative directional derivative
in that direction d, i.e.,

⟨∇fi(x∗), d⟩ ≥ 0.
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In order to mimic the scalar problem’s stationarity condition, the marginal
function related to (1) is defined

ω(x) = − min
∥d∥≤1

(
max

i∈{1,...,q}
⟨∇fi(x), d⟩

)
. (2) {marginal}{marginal}

The marginal function plays the role of the norm of the gradient, and it
gives us the information about the Pareto optimality. Indeed, if q = 1, the
optimal direction is dopt(x) = ∇f(x)/∥∇f(x)∥, and ω(x) = ∥∇f(x)∥. The
following lemma is proved in [16].

Lemma 1. [16] Let D(x) be the set of solutions of (2). Then {lmarginal}

a) w(x) ≥ 0, for every x ∈ Rn;

b) If x is Pareto critical for (1) then 0 ∈ D(x) and w(x) = 0;

c) If x is not Pareto critical of (1) then w(x) > 0 and any d ∈ D(x) is a
descent direction for (1);

d) The mapping x→ w(x) is continuous.

The scalar representation of the multiobjective problem (1) (MOP) is

min
x
ϕ(x), ϕ(x) = max

i∈{1,...,q}
fi(x).

We assume that −∞ < inf{ϕ(x) : x ∈ Rn}. This problem is not equivalent
to problem (1), but every solution of this scalar problem is a Pareto optimal
point.

Given that we work with approximate functions f̃i and approximate
gradients gi, i = 1, . . . , q, we will follow [27], and consider the approximate
marginal function

ωm(x) = − min
∥d∥≤1

(
max

i∈{1,...,q}
⟨gi(x), d⟩

)
. (3) {amarginal}{amarginal}

where gi are approximations of ∇fi. Then the corresponding scalar problem
is given by

min
x
ϕ̃(x), ϕ̃(x) = max

i∈{1,...,q}
f̃i(x). (4) {ascalar}{ascalar}

The quadratic model with which ϕ is approximated by locally in deter-
ministic trust region method is

mtrue
k (d) = max

i∈{1,...,q}
{fi(xk) + ⟨∇fi(xk), d⟩}+

1

2
⟨d,Hkd⟩,

where Hk is a Hessian approximation. Since we will not operate with true
gradients nor functions, we define the approximate quadratic models of ϕ as

m̃k(d) = max
i∈{1,...,q}

m̃k,i(d),
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m̃k,i(d) = max
i

{f̃i(xk) + ⟨gi(xk), d⟩}+
1

2
⟨d,Hkd⟩.

Notice that for each i = 1, ..., q, ∇m̃k,i(0) = gi(xk), and m̃k,i(0) = f̃i(xk).
Our main motivation comes from observing machine learning problems where
the functions fj are in the form of finite sums. In that case, the functions are
usually approximated by random subsampling which induces randomness in
the optimization process, yielding random sequence of iterates.
Notation. Let B(x, δ) denote a ball centered at x with the radius δ. An
arbitrary vector norm and its induced matrix norm will be denoted by ∥ · ∥.

3 Algorithm

Let us define the measure of proximity for the models used to define the trust
region algorithm. We will rely on the standard definition of full linearity.

Definition 2. Function m̃k,i is (cf , cg) fully linear (FL) model of fi on
B(xk, δk), if for every d ∈ B(0, δk) the following two inequalities hold

|fi(xk + d)− m̃k,i(d)| ≤ cfδ
2
k (5) {def1a}{def1a}

∥∇fi(xk + d)−∇m̃k,i(d)∥ ≤ cgδk (6) {def1b}{def1b}

Model m̃k is (cf , cg) fully linear if for every i = 1, ..., q, m̃k,i is (cf , cg) fully
linear model of fi.

The algorithm is constructed in such a way that, at each iteration k, the
FL conditions (5)-(6) are satisfied with some high enough probability αk for
each i = 1, ..., q. Let us denote by Fk the σ-algebra generated by x0, ..., xk.
Also, let us define the following events

Ik,i = {m̃k,i is (cf , cg) fully linear model of fi on Bk(xk, δk)}.

The definition of probabilistically fully linear models [1] is stated as follows.

Definition 3. The random sequence {m̃k,i} is αk probabilistically (cf , cg)
fully linear (PFL) if P (Ik,i|Fk) ≥ αk for all k. The model sequence {m̃k}
is αk probabilistically (cf , cg) fully linear if {m̃k,i} is αk probabilistically
(cf , cg) fully linear for all i = 1, ..., q.

Let us denote by Ik the event that {m̃k} is αk probabilistically (cf , cg)
fully linear, i.e., we have

Ik =

q⋂
j=1

Ik,j . (7) {Ik}{Ik}

We will assume that Ik,i, i = 1, ..., q are independent for all k and thus

P (Ik|Fk) =

q∏
i=1

P (Ik,i|Fk) ≥ αq
k.
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This is true if, for instance, the functions fi, i = 1, ..., q are in the form of
mathematical expectation and approximated by independent sampling.

The stochastic trust region method for multiobjective problems (SMOP)
we proposed is as follows. Let us denote βk := 1 + ∥Hk∥.
Algorithm 1. (SMOP)

Step 0. Input parameters: x0 ∈ Rn,Θ > 0, δmax > 0, δ0 ∈ (0, δmax),
γ1, η1 ∈ (0, 1), γ2 = 1/γ1, {αk}k.

Step 1. Form an αk probabilistically (cf , cg) fully linear model

m̃k(d) = max
i∈{1,...,p}

{f̃i(xk) + ⟨gi(xk), d⟩}+
1

2
⟨d,Hkd⟩.

Step 2. Find a step dk ∈ B(0, δk) such that:

m̃k(0)− m̃k(dk) ≥
1

2
ωm(xk)min{δk,

ωm(xk)

βk
}. (8) {Cauchy}{Cauchy}

Step 3. Compute

ρk =
ϕ̃(xk)− ϕ̃(xk + dk)

m̃k(0)− m̃k(dk)

If ρk ≥ η1 and ωm(xk) > Θδk, set xk+1 = xk + dk and δk+1 =
min{δmax, γ2δk}.
Else, set xk+1 = xk and δk+1 = γ1δk.

Step 4. Set k = k + 1 and go to Step 1.

The following lemma shows that the algorithm is well defined.
{sufred}

Lemma 2. For all k, there exists dk such that (8) holds.

Proof. We will prove that the condition (8) holds for the Cauchy direction,
dck = αkd

∗
k, where d

∗
k is a solution of the problem stated in (3), i.e.,

ωm(xk) = − min
∥d∥≤1

(
max

i
⟨gi(xk), d⟩

)
= −max

i
⟨gi(xk), d∗k⟩

and αk = argmin0≤α≤δk{m̃k(αd
∗
k)}. Since ∥d∗k∥ ≤ 1, we have αkd

∗
k ∈

Bk(0, δk). Notice that

αk = argmin0≤α≤δk{m̃k(αd
∗
k)} = argmax0≤α≤δk{m̃k(0)− m̃k(αd

∗
k)}.

Next, we lower bound m̃k(0)− m̃k(αd
∗
k) by a quadratic function of α.

m̃k(0)− m̃k(αd
∗
k) = max

i
f̃i(xk)−max

i
{f̃i(xk) + ⟨gi(xk), αd∗k⟩} −

1

2
α2⟨d∗k, Hkd

∗
k⟩

≥ −αmax
i

⟨gi(xk), d∗k⟩ −
1

2
α2⟨d∗k, Hkd

∗
k⟩

≥ αωm(xk)−
1

2
α2∥d∗k∥2 · ∥Hk∥ ≥ αωm(xk)−

1

2
α2βk.
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Thus, we conclude that

m̃k(0)− m̃k(d
c
k) = max

0≤α≤δk
{m̃k(0)− m̃k(αd

∗
k)} ≥ max

0≤α≤δk
{αωm(xk)−

1

2
α2βk}.

(9) {novon1}{novon1}
Notice that the solution of the problem at the right-hand side of (9) is given

by α∗ = min{ωm(xk)
βk

, δk}. If ωm(xk)
βk

≤ δk, then we have

max
0≤α≤δk

{αωm(xk)−
1

2
α2βk} =

ωm(xk)
2

βk
− 1

2

ωm(xk)
2

β2k
βk =

ωm(xk)
2

2βk
.

Else, if ωm(xk)
βk

> δk, we obtain

max
0≤α≤δk

{αωm(xk)−
1

2
α2βk} = δkωm(xk)−

1

2
δ2kβk

≥ δkωm(xk)−
1

2
δkωm(xk)

=
1

2
δkωm(xk).

Thus, having in mind both cases and using (9) we obtain

m̃k(0)− m̃k(d
c
k) ≥

1

2
ωm(xk)min{ωm(xk)

βk
, δk},

which completes the proof.
■

We state here the following two theorem needed for the convergence
analysis of the proposed method.

{RSthm}
Theorem 1. [24] Let Uk, βk, ξk, ρk ≥ 0 be Fk measurable random variables
such that

E(Uk+1|Fk) ≤ (1 + βk)Uk + ξk − ρk

If
∑
βk <∞ and

∑
ξk <∞ then Uk → U a.s. and

∑
ρk <∞ a.s.

{mart}
Theorem 2. [15] Let Gk be a sequence of integrable random variables
such that E(Gk|Vk−1) ≥ Gk−1, where Vk−1 is a σ-algebra generated by
G0, ..., Gk−1. Assume further that |Gk − Gk−1| ≤ M < ∞ for every k.
Consider the random events C = {limk→∞Gk exists and is finite} and D =
{lim supk→∞Gk = ∞}. Then P (C ∪D) = 1

4 Convergence analysis

We start this section by stating some of the assumptions needed for the
analysis.
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{A1}
Assumption 1. Functions fi, i = 1, ..., q are twice continuously differen-
tiable and bounded from bellow.

{A2}
Assumption 2. There exists a positive constant ch such that for all x ∈ Rn

and i = 1, ..., q there holds ∥∇2fi(x)∥ ≤ ch. Furthermore there exists a
positive constant cb such that βk = 1 + ∥Hk∥ ≤ cb for every k.

{A1new}
Assumption 3. Approximate functions f̃i, i = 1, ..., q are continuously-
differentiable with L-Lipschitz continuous gradients satisfying the following
inequality ∥∇f̃i(xk)− gi(xk)∥ ≤ caδk with some ca > 0.

Assumption 3 is satisfied in many applications. For instance, subsam-
pling strategies for finite sums usually yield ∇f̃i(xk) = gi(xk). Alternatively,
one can apply finite differences to approximate the relevant gradients with a
controllable accuracy. The following lemma quantifies the distance between
the true and approximate functions on B(xk, δk).

{implikacija}
Lemma 3. Assume that A1-A3 hold. Suppose that m̃k is (cf , cg)-fully
linear model of f . Then there exists ce > 0 such that for all dk ∈ B(0, δk)
and i = 1, .., q there holds

|f̃i(xk)− fi(xk)| ≤ ceδ
2
k and |f̃i(xk + dk)− fi(xk + dk)| ≤ ceδ

2
k. (10) {def2}{def2}

Proof. Let us observe an arbitrary i ∈ {1, 2, ..., q}. Putting d = 0 in (5) and
using the fact that m̃k,i(0) = f̃i(xk) we obtain

|f̃i(xk)− fi(xk)| ≤ cfδ
2
k (11) {imp1}{imp1}

Now, let us take any dk ∈ B(0, δk), i.e., any dk satisfying ∥dk∥ ≤ δk. Then
there exists τ ik, v

i
k ∈ In(xk, xk + dk) such that

|f̃i(xk + dk)− fi(xk + dk)| = |f̃i(xk) +∇f̃i(τ ik)dk − fi(xk + dk)|

= |f̃i(xk) +∇T f̃i(τ
i
k)dk − fi(xk)−∇T fi(xk)dk −

1

2
dTk∇2fi(v

i
k)dk|

≤ |f̃i(xk)− fi(xk)|+ ∥∇f̃i(τ ik)−∇fi(xk)∥∥dk∥+
1

2
∥dk∥2∥∇2fi(v

i
k)∥

≤ cfδ
2
k + ∥∇f̃i(τ ik)−∇fi(xk)∥δk +

1

2
δ2kch.

Moreover, by using (6) and the fact that gi(xk) = ∇m̃k,i(0), we can upper
bound ∥∇f̃i(τ ik)−∇fi(xk)∥ as follows.

∥∇f̃i(τ ik)−∇fi(xk)∥ = ∥∇f̃i(τ ik)−∇fi(xk) + gi(xk)− gi(xk) +∇f̃i(xk)−∇f̃i(xk)∥
≤ ∥∇f̃i(τ ik)−∇f̃i(xk)∥+ ∥∇fi(xk)− gi(xk)∥+ ∥∇f̃i(xk)− gi(xk)∥
≤ L∥τ ik − xk∥+ cgδk + caδk ≤ Lδk + cgδk + caδk = (L+ cg + ca)δk.
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Thus we conclude that

|f̃i(xk + dk)− fi(xk + dk)| ≤ δ2kce,

where ce = cf + L+ cg + ca + ch/2, which completes the proof. ■

For the purpose of the convergence analysis, let us denote by Jk,i the
event (10) and define

Jk =

q⋂
j=1

Jk,j . (12) {Jk}{Jk}

Then, under assumptions A1-A3, according to Lemma 3 there holds P (Jk|Ik,Fk) =
1. Moreover,

P (Ik, Jk|Fk) = P (Ik|Fk)P (Jk|Ik,Fk) ≥ αq
k1 = αq

k (13) {palfaq}{palfaq}

and we can also conclude that P (Ik, J̄k|Fk) = 0, P (Īk, Jk|Fk) ≤ 1−αq
k and

P (Īk, J̄k|Fk) ≤ 1− αq
k.

Now we state the conditions under which the difference between the true
and the approximate marginal function is of the order δk.

{margfun}
Lemma 4. Suppose that A1-A3 hold and that the model m̃k is fully linear.
Then

|ω(xk)− ωm(xk)| ≤ δkcg (14) {omega}{omega}

Proof. Let us define h̃k(d) = maxi⟨gi(xk), d⟩ and hk(d) = maxi⟨∇fi(xk), d⟩.
Furthermore, let d∗k be the solution of the problem stated in (3), i.e., we
have ∥d∗k∥ ≤ 1 and

ωm(xk) = − min
∥d∥≤1

max
i

⟨gi(xk), d⟩ = − min
∥d∥≤1

h̃k(d) = −h̃k(d∗k).

Similarly, let d∗,truek be the solution of the problem stated in (2). Then we

have ∥d∗,truek ∥ ≤ 1 and

ω(xk) = − min
∥d∥≤1

max
i

⟨∇fi(xk), d⟩ = − min
∥d∥≤1

hk(d) = −hk(d∗,truek ).

Notice that there holds

max
i

⟨∇fi(xk), d∗,truek ⟩ = hk(d
∗,true
k ) ≤ hk(d

∗
k) = max

i
⟨∇fi(xk), d∗k⟩

and

max
i

⟨gi(xk), d∗k⟩ = h̃k(d
∗
k) ≤ h̃k(d

∗,true
k ) = max

i
⟨gi(xk), d∗,truek ⟩.

Next, depending on the sign of ω(xk) − ωm(xk) we analyze separately two
cases.
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First, suppose that ω(xk) > ωm(xk), then

|ω(xk)− ωm(xk)| = max
i

⟨gi(xk), d∗k⟩ −max
i

⟨∇fi(xk), d∗,truek ⟩

= h̃k(d
∗
k)− hk(d

∗,true
k )

≤ h̃k(d
∗,true
k )− hk(d

∗,true
k )

= max
i

⟨gi(xk), d∗,truek ⟩ −max
i

⟨∇fi(xk), d∗,truek ⟩.

Let us denote rk = argmaxi⟨gi(xk), d∗,truek ⟩. By noticing that maxi⟨∇fi(xk), d∗,truek ⟩ ≥
⟨∇frk(xk), d

∗,true
k ⟩ we obtain

|ω(xk)− ωm(xk)| ≤ ⟨grk(xk), d
∗,true
k ⟩ − ⟨∇frk(xk), d

∗,true
k ⟩ (15)

≤ ∥gr(xk)−∇fr(xk)∥ · ∥d∗,truek ∥ ≤ cgδk,

where the last inequality follows from the FL condition (6).
Consider now the case ω(xk) ≤ ωm(xk) We have

|ωm(xk)− ω(xk)| = max
i

⟨∇fi(xk), d∗,truek ⟩ −max
i

⟨gi(xk), d∗k⟩

= hk(d
∗,true
k )− h̃k(d

∗
k)

≤ hk(d
∗
k)− h̃k(d

∗
k)

= max
i

⟨∇fi(xk), d∗k⟩ −max
i

⟨gi(xk), d∗k⟩

Denoting lk = argmaxi⟨∇fi(xk), d∗k⟩ and noticing that maxi⟨gi(xk), d∗k⟩ ≥
⟨glk(xk), d∗k⟩, by employing the FL condition (6) once again we obtain

|ωm(xk)− ω(xk)| = ⟨∇flk(xk), d
∗
k⟩ − ⟨glk(xk), d

∗
k⟩

≤ ∥∇flk(xk)− glk(xk)∥ · ∥d
∗
k∥ ≤ cgδk.

Putting both cases together we get the statement.
■

The following lemma shows that the distance of the model from the
approximate scalar representation of f is small enough under the stated
assumptions.

{ll3}
Lemma 5. Suppose that A1-A3 hold, the model m̃k is fully linear and
dk ∈ B(0, δk). Then

|ϕ(xk + dk)− m̃k(dk)| ≤ cfδ
2
k (16) {fimtil1}{fimtil1}

and
|ϕ(xk)− m̃k(0)| ≤ cfδ

2
k. (17) {fimtil2}{fimtil2}

Additionally, if A3 holds, then

|ϕ̃(xk + dk)− ϕ(xk + dk)| ≤ ceδ
2
k (18) {fifitil}{fifitil}

and
|ϕ̃(xk + dk)− m̃k(dk)| ≤ cΦ̃δ

2
k (19) {fitilmtil}{fitilmtil}
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Proof. The full linearity condition (5) implies that for any d ∈ B(0, δk) there
holds

−cfδ2k ≤ fi(xk + d)− m̃k,i(d) ≤ cfδ
2
k

and therefore

−cfδ2k +max
i
m̃k,i(d) ≤ max

i
fi(xk + d) ≤ max

i
m̃k,i(d) + cfδ

2
k.

Hence, putting d = dk and d = 0 we obtain (16) and (17), respectively.
If additionally A3 holds, then (10) is true. Thus for every i,

−ceδ2k + fi(xk + dk) ≤ f̃i(xk + dk) ≤ fi(xk + dk) + ceδ
2
k

So, taking the maximum, we get

|ϕ̃(xk + dk)− ϕ(xk + dk)| ≤ ceδ
2
k (20) {fiaprox}{fiaprox}

Using (16) and (20), we get that

|ϕ̃(xk + dk)− m̃k(dk)| ≤ |ϕ̃(xk + dk)−ϕ(xk + dk)|+ |ϕ(xk + dk)− m̃k(dk)| ≤

≤ ceδ
2
k + cfδ

2
k =: cΦ̃δ

2
k.

■
{thm}

Lemma 6. Suppose that A1-A3 hold, the model m̃k is fully linear and dk
satisfies (8). Then ρk ≥ η1 provided that

δk ≤ min{ωm(xk)

cb
,
ωm(xk)(1− η1)

2cΦ̃
} (21) {deltabound}{deltabound}

Proof. From (8) it follows

m̃k(0)− m̃k(dk) ≥
1

2
ωm(xk)min{ωm(xk)

βk
, δk}

≥ 1

2
ωm(xk)min{ωm(xk)

cb
, δk}

=
1

2
ωm(xk)δk

Furthermore, using ϕ̃(xk) = m̃k(0) and (19), we obtain

|ρk − 1| = | ϕ̃(xk + dk)− ϕ̃(xk)− m̃k(dk) + m̃k(0)

m̃k(dk)− m̃k(0)
| =

≤ | ϕ̃(xk + dk)− m̃k(dk)

m̃k(dk)− m̃k(0)
| ≤

2cΦ̃δ
2
k

ωm(xk)δk
=≤ 1− η1,

and thus we conclude that ρk ≥ η1. ■
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To continue with the convergence analysis, let us define an auxiliary
Lapynov function as usual in this type of analysis, [12]

ψk := νϕ(xk) + (1− ν)δ2k, ν ∈ (0, 1).

We are going to show that we can choose the algorithm parameters such
that the following inequality holds

E[ψk+1 − ψk|Fk] ≤ −σδ2k + (1− αq
k)σ̃, k = 0, 1, ... (22) {psi}{psi}

for some σ, σ̃ > 0. Let us denote by Sk the event of successful iteration and
the complementary event (unsuccessful iteration) by S̄k. Notice that if the
iteration is not successful we have xk+1 = xk and

ψk+1 − ψk = (1− ν)(γ21 − 1)δ2k =: −c1δ2k, (23) {uns}{uns}

for some c1 > 0. Thus, (22) holds in the case of S̄k and we focus on the case
of successful iterations Sk in the following lemmas. In that case we have

ψk+1 − ψk = ν(ϕ(xk+1)− ϕ(xk)) + (1− ν)(γ22 − 1)δ2k

The proof of the following lemma resembles the analysis of [12]. However,
having the multi-objective problem requires nontrivial modifications.

{prvapomocna}
Lemma 7. Suppose that A1-A3 hold, the sequence {xk} is bounded and
there exists ᾱ > 0 such that αk ≥ ᾱ for all k. Then there exist positive
constants c6, c7 such that the following holds for all k

E(ψk+1 − ψk|Fk, Sk) ≤ −c6δ2k + c7(1− αq
k), (24) {a}{a}

provided that

θ ≥ max{cb, 5cf ,
4ce
η1

}. (25) {thtbnd}{thtbnd}

Proof. The analysis will be performed with respect to the events Ik and
Jk defined in (7) and (12), conditioned on Sk, i.e., under assumption of
successful iterations. First of all notice that if Ik happened, the assumptions
A1-A3 imply that Lemma 3 holds and hence Jk is true as well. Thus we
have to consider 3 cases overall, U1

k := Ik, U
2
k := Ik

⋂
Jk and U3

k := Ik
⋂
Jk.

a)U1
k happened. Note that in this case the model is fully linear. More-

over, the iteration is successful hence ωm(xk) ≥ θδk which together with
(19), and Lemma 2 implies

ϕ(xk+1)− ϕ(xk) = ϕ(xk+1)− m̃k(dk) + m̃k(0)− ϕ(xk) + m̃k(dk)− m̃k(0)

≤ 2cfδ
2
k −

1

2
wm(xk)min{δk,

wm(xk)

cb
}

≤ 2cfδ
2
k −

1

2
wm(xk)δk ≤ 2cfδ

2
k −

1

2
Θδ2k (26) {final}

< −1

2
cfδk = −c1δ2k, (27)

13



for Θ ≥ max{cb, 5cf} and c1 =
1
2cf > 0. This further implies

ψk+1−ψk = ν(ϕ(xk+1)−ϕ(xk))+(1−ν)(γ22−1)δ2k ≤ [−νc1+(1−ν)(γ22−1)]δ2k,

and thus by choosing ν such that

ν

1− ν
≥ 2γ22 − 1

c1

we can obtain
ψk+1 − ψk ≤ −γ22δ2k = −c2δ2k, (28) {b2dk2}{b2dk2}

with c2 = γ22 > 0.
b)U2

k := Ik
⋂
Jk happened. Using (18) and (8), and the fact the step is

accepted (ρk ≥ η1) we get

ϕ(xk+1)− ϕ(xk) = ϕ(xk+1)− ϕ̃(xk+1) + ϕ̃(xk)− ϕ(xk) + ϕ̃(xk+1)− ϕ̃(xk)

≤ 2ceδ
2
k + ϕ̃(xk+1)− ϕ̃(xk) = 2ceδ

2
k − ρk(m̃k(dk)− m̃k(0))

≤ 2ceδ
2
k − η1(m̃k(dk)− m̃k(0)) ≤ 2ceδ

2
k −

η1ωm(xk)

2
min{ωm(xk)

cb
, δk}

≤ [2ce −
η1Θ

2
min{Θ

cb
, 1}]δ2k = [2ce −

η1Θ

2
]δ2k ≤ −1

2
ceδ

2
k = −c3δ2k.

for Θ ≥ 5ce
η1

, and c3 =
1
2ce > 0. Again, for ν such that

ν

1− ν
≥ 2γ22 − 1

c3

we get that

ψk+1 − ψk ≤ [−νc3 + (1− ν)(γ22 − 1)]δ2k ≤ −γ22δ2k = −c4δ2k. (29) {c1c}{c1c}

for c4 = γ22 > 0
c)U3

k := Ik
⋂
Jk happened. Since the iteration is successful, we have

ωm(xk) ≥ Θδk, but an increase of the function Ψ can happen. However,
using Taylor expansion, A2, and the Cauchy Schwartz inequality, we can
bound the increase as follows.

ϕ(xk+1)− ϕ(xk) = max
i
fi(xk+1)−max

i
fi(xk)

= max
i

{fi(xk) +∇T fi(xk)dk +
1

2
dTk∇2fi(τk)dk} −max

i
fi(xk)

≤ max
i

∇T fi(xk)dk +
1

2
δ2kch.

Since the iterates are assumed to be bounded, the continuity of the gradients
implies the existence of G > 0 such that maxi ∥∇fi(xk)∥ ≤ G. Since δk ≤
δmax there exists a constant c5 such that

ϕ(xk+1)− ϕ(xk) ≤ Gδmax +
1

2
δ2maxch = c5 (30) {bezBk}{bezBk}
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and thus
Ψk+1 −Ψk ≤ c5 + (1− ν)(γ22 − 1)δ2k. (31) {bezBkpsi}{bezBkpsi}

Now, we combine inequalities (28),(29) and (31) to estimate E(Ψk+1 −
Ψk|Fk, Sk). Using the total probability formula we obtain

E(Ψk+1 −Ψk|Fk, Sk) (32)

=
3∑

i=1

P (U i
k|Fk, Sk)E(Ψk+1 −Ψk|Fk, Sk, U

i
k)

≤ P (U1
k |Fk, Sk)E(Ψk+1 −Ψk|Fk, Sk, U

1
k )

+ P (U3
k |Fk, Sk)E(Ψk+1 −Ψk|Fk, Sk, U

4
k ),

where the last inequality follows from the fact that E(Ψk+1−Ψk|Fk, Sk, U
2
k ) ≤

−c3δ2k < 0. Moreover, notice that (28) implies E(Ψk+1 − Ψk|Fk, Sk, U
1
k ) ≤

−c2δ2k < 0 and that the conditional expectation E(Ψk+1 − Ψk|Fk, Sk, U
3
k )

is upper bounded by the positive quantity given in (31). Thus, by (13) we
obtain

E(Ψk+1 −Ψk|Fk, Sk) ≤ −αq
kc2δ

2
k + (1− αq

k)(c5 + (1− ν)(γ22 − 1)δ2k)

and the result follows with c6 = ᾱqc2 and c7 = c5 + (1− ν)(γ22 − 1)δmax due
to αk ≥ ᾱ and δk ≤ δmax.

■

Remark 1. The choice of ν for Lyapunov function can be formulated as

ν

1− ν
≥ 4γ22 − 2

min{ce, cf}
,

which means that we can always find ν ∈ (0, 1) large enough, i.e., close
enough to 1, so that the proof holds.

Now we show that the sequence of trust region radii is square sumable
under the folllowing assumption.

{A5}
Assumption 4. The sequence {αk}k satisfies

∑∞
k=0(1− αq

k) ≤ cα <∞.
{prop1}

Theorem 3. Suppose that A1-A4, (25) hold and that the sequence {xk} is
bounded. Then the sequence {Ψk}k converges a.s. and there holds

∞∑
k=0

δ2k <∞ a.s. (33) {deltaksum}{deltaksum}
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Proof. Assumption 4 implies that limk→∞ αk = 1, so without loss of gener-
ality we can assume that αk ≥ ᾱ > 0 for all k. Then, according to (23) and
Lemma 7 we obtain

E(Ψk+1 −Ψk|Fk)

= E(Ψk+1 −Ψk|Fk, Sk)P (Sk|Fk) + E(Ψk+1 −Ψk|Fk, S̄k)P (S̄k|Fk)

≤ (−c6δ2k + c7(1− αq
k))P (Sk|Fk)− c1δ

2
kP (S̄k|Fk) ≤

≤ −min{c1, c6}(P (Sk|Fk) + P (S̄k|Fk))δ
2
k + c7(1− αq

k)

=: −c8δ2k + c7(1− αq
k) (34) {newEN}

Since Ψk is bounded from bellow by Ψ∗, by adding and subtracting Ψ∗ in the
conditional expectation above and using the fact that Ψk is Fk-measurable
we obtain

E(Ψk+1 −Ψ∗|Fk) ≤ Ψk −Ψ∗ − c8δ
2
k + c7(1− αq

k)

and the result follows from Theorem 1. ■

Now we show that under the states conditions a.s. there exists an infinite
sequence of iterations with fully linear models.

{infFL}
Theorem 4. Suppose that the assumptions of Theorem 3 hold. Then a.s.
there exists an infinite K ⊆ N such that the model m̃k is fully linear for all
k ∈ K.

Proof. Notice that assumption A4 implies the existence of k̄ such that αq
k >

0.5 for all k ≥ k̄. Let us define a random variable

Wk =
k∑

s=k̄

Vs, (35) {randomwalk}{randomwalk}

where Vk = 1 if Ik happens and Vk = −1 otherwise. Moreover,

E(Vk+1|Fk) = P (Ik|Fk)− P (Īk|Fk) = P (Ik|Fk)− (1− P (Ik|Fk))

= 2P (Ik|Fk)− 1 ≥ 2αq
k − 1 > 0. (36)

This implies E(Wk+1|Fk) =Wk+E(Vk+1|Fk) > Wk. We also have |Wk+1−
Wk| = |Vk+1| = 1 and thus the conditions of Theorem 2 are satisfied with
Gk = Wk and M = 1. Moreover, |Wk+1 −Wk| = 1 also indicates that the
sequence of Wk cannot be convergent and thus Theorem 2 implies that a.s.

lim sup
k→∞

Wk = ∞. (37) {wkinf}{wkinf}

The statement to be proved is that Ik happens infinitely many times a.s.
Assume that this is not true. Then, there exists k̃ such that for each k ≥
k̃ the event Īk happens so Vk = −1. As Wk = Wk̃ + (k − k̃)Vk we get
limk→∞Wk = −∞, which is in contradiction with (37).

■
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{liminf}
Theorem 5. Suppose that the assumptions of Theorem 3 hold. Then a.s.

lim inf
k→∞

ω(Xk) = 0

Proof. Let us denote by Ω all the sample paths of SMOP algorithm. Sup-
pose the contrary, that with positive probability none of the subsequences
converges to 0. In other words there exists Ω̂ ⊂ Ω such that P (Ω̂) > 0
and ω(xk(v)) is bounded away from zero for all v ∈ Ω̂. Let us observe an
arbitrary v ∈ Ω̂ and the corresponding ω(xk) = ω(xk(v)). We know that
there exists ϵ > 0 and k1 = k1(v), such that ω(xk) ≥ ϵ > 0, k ≥ k1. More-
over,Theorem 4 implies that there exists K = K(v) ⊆ N such that for all
k ∈ K model mk = mk(v) is fully linear. We denote by Ω the subset of Ω̂
for which there exists such K. Notice that P (Ω) > 0. Further, let us observe
an arbitrary v ∈ Ω. We will omit writing v further on for the sake of sim-
plicity. Since δk tends to 0 a.s., without loss of generality we can assume
that limk→∞ δk = 0 hence there exists k2 such that for k ≥ k2,

δk < b := min{ ϵ

2cg
,
ϵ

2Θ
,
ϵ

2cb
,
ϵ(1− η1)

4cΦ̃
} (38) {deltastar}{deltastar}

Let us denote by K̂ the set of all indices from K such that k ≥ k3 =
max{k1, k2}. Thus, for all k ∈ K̂ there holds that mk is fully linear, ω(xk) ≥
ϵ and δk is small enough. From Lemma 4 and (38),

|ω(xk)− ωm(xk)| ≤ cgδk ≤ ϵ

2

hence ωm(xk) ≥ ϵ
2 ≥ δkΘ (once again from (38)). For these k ∈ K̂, the

condition from Lemma 6 is satisfied

δk < min{ ϵ

2cg
,
ϵ

2Θ
,
ϵ

2cb
,
ϵ(1− η1)

4cΦ̃
} ≤ min{ωm(xk)

cb
,
ωm(xk)(1− η1)

2cΦ̃
}

thus we have that ρk ≥ η1 which together with ωm(xk) ≥ δkΘ implies
that such iterations are successful. Therefore for all k ∈ K̂ there holds
δk+1 = δkγ2 > δk. Let us define

rk := logγ2(b
−1δk)

where b is defined in (38). Notice that for k ≥ k3, δk < b, hence γrk2 < 1 and
rk < 0. Moreover,

rk+1 = logγ2(b
−1δk+1) =

{
rk + 1 if δk+1 = γ2δk
rk − 1 if δk+1 =

δk
γ2

Since all iterations k ∈ K̂ are successful, we have δk+1 = γ2δk and thus
rk+1 = rk + 1 for all k ∈ K̂. The increase of rk can also happen even if k is
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not in K̂, i.e. if k is large enough and mk is not fully linear. However, for
Wk as in (35), we know that it only increases if mk is fully linear. Thus for
all k > k3, rk has increased at least as many times as Wk, hence we get

rk − rk3 ≥Wk −Wk3 .

According to (37) we conclude that lim supk→∞ rk = ∞ which contradicts
the fact that rk < 0 for all k ≥ k3. ■

{sumdeltak}
Proposition 1. Suppose that the assumptions of Theorem 5 hold. If there
exists an infinite subsequence K ⊆ N such that ω(xk) ≥ ε > 0 for all k ∈ K
then there holds

E(
∑
k∈K

δk) <∞.

Moreover,
∑

k∈K δk <∞ a. s.

Proof. Let us observe iterations k ∈ K. We distinguish two scenarios: Ik
and Īk.

If Ik happens, then the model is fully linear. Moreover, we know that
limk→∞ δk = 0 a.s. according to (33) which together with Lemma 4 implies
the existence of ε̃ > 0 such that ωm(xk) ≥ ε̃ for each k ∈ K sufficiently
large. The above further implies that ωm(xk) ≥ Θδk > cbδk for each k ∈ K
sufficiently large, and thus, due to Lemma 6, ρk ≥ η1 for each k ∈ K
sufficiently large. Without loss of generality, let us assume that K contains
only those sufficiently large iterations such that all the above holds. Then,
for each k ∈ K we conclude that the iteration is successful if Ik happens.
Thus, due to (26), for each k ∈ K there holds

ϕ(xk+1)− ϕ(xk) ≤ 2cfδ
2
k −

1

2
wm(xk)min{δk,

wm(xk)

cb
}

≤ 2cfδ
2
k −

1

2
ε̃δk = −δk(

ε̃

2
− 2cfδk). (39) {finalnew}

Once again, assuming that k ∈ K are all sufficiently large, we obtain
ϕ(xk+1) − ϕ(xk) ≤ −c9δk, where c9 = ε̃

2 − 2cfδk > 0, and thus we con-
clude

ψk+1 − ψk = ν(ϕ(xk+1)− ϕ(xk)) + (1− ν)(γ22 − 1)δ2k ≤ −c10δk + c11δ
2
k,

where c10 = νc9 > 0, and c11 = (1− ν)(γ22 − 1) > 0, i.e. for all k ∈ K there
holds

E(Ψk+1 −Ψk|Ik,Fk) ≤ −c10δk + c11δ
2
k. (40) {newIk}{newIk}

In the case of Īk, considering (29) and (31) we conclude that

ϕ(xk+1)− ϕ(xk) ≤ c5 (41) {newIkbar}{newIkbar}
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and thus

E(Ψk+1 −Ψk|Īk,Fk) ≤ c5 + (1− ν)(γ22 − 1)δ2k = c5 + c11δ
2
k. (42) {bezBkpsinew}{bezBkpsinew}

Now, combining both cases regarding Ik we conclude that for all k ∈ K
there holds

E(Ψk+1 −Ψk|Fk) = P (Ik|Fk)E(Ψk+1 −Ψk|Ik,Fk) (43) {newK}
+ P (Īk|Fk)E(Ψk+1 −Ψk|Īk,Fk)

≤ P (Ik|Fk)(−c10δk + c11δ
2
k)

+ P (Īk|Fk)(c5 + c11δ
2
k)

≤ −ᾱqc10δk + c11δ
2
k + c5(1− αq

k)

=: −c12δk + c11δ
2
k + c5(1− αq

k).

where c12 = ᾱqc10 > 0. Applying the expectation we conclude that for all
k ∈ K there holds

E(Ψk+1 −Ψk) ≤ −c12E(δk) + c11E(δ2k) + c5(1− αq
k). (44) {newE1}{newE1}

On the other hand, (34) holds in all the iterations k ∈ N and applying the
expectation we obtain

E(Ψk+1 −Ψk) ≤ −c8E(δ2k) + c7(1− αq
k) ≤ c7(1− αq

k). (45) {newE2}{newE2}

Let us denote {k}k∈K = {k(j)}j∈N. Then, for each j ∈ N there holds

E(Ψk(j+1)
−Ψk(j)) = E(Ψk(j)+1 −Ψk(j)) +

k(j+1)−1∑
i=k(j)+1

E(Ψi+1 −Ψi) (46) {newKj}

≤ −c12E(δk(j)) + c11E(δ2k(j)) + c5(1− αq
k(j)

)

+ c7

k(j+1)−1∑
i=k(j)+1

(1− αq
i )

≤ −c12E(δk(j)) + c11E(δ2k(j))

+ c13

k(j+1)−1∑
i=k(j)

(1− αq
i ),

where c13 = max{c5, c7}. Therefore, for every m ∈ N there holds

E(Ψk(m)
−Ψk(0)) ≤ −c12E(

m−1∑
j=0

δk(j)) + c11E(
∞∑
k=0

δ2k) + c13cα. (47) {newEm}
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Letting m tend to infinity and using (33) together with the assumption of
Ψ being bounded from below, we conclude that

E(
∑
k∈K

δk) = E(
∞∑
j=0

δk(j)) <∞.

Finally, assuming that
∑

k∈K δk = ∞ with some positive probability yields
the contradiction with the previous inequality and we conclude that

∑
k∈K δk <

∞ a.s, which completes the proof. ■

Theorem 6. Suppose that the assumptions of Theorem 5 hold. Then a.s.

lim
k→∞

ω(xk) = 0.

Proof. Suppose the contrary, that with positive probability there exists a
subsequence ω(xk) which does not converge to zero. More precisely, there
exists a subset of all possible outcomes of the algorithm Ω̂ ⊂ Ω such that
P (Ω̂) > 0 and for all v ∈ Ω̂ there exist ϵ > 0 and K ⊆ N, both dependent
on sample path v, such that for all k ∈ K there holds

ω(xk) ≥ 2ϵ.

On the other hand, Theorem 5 implies the existence of Kl ⊂ N such that
limk∈Kl

ω(xk) = 0 for almost every v ∈ Ω. Therefore, without loss of gen-
erality, we assume that ω(xk) < ϵ for all k ∈ Kl. Since both K and Kl are
infinite, there exists Ks ⊆ Kl such that for each k ∈ Ks we have both

ω(xk) < ϵ and ω(xk+1) ≥ ϵ.

In other words, we observe the subsequence Ks of Kl such that k ∈ Kl and
the subsequent iteration does not belong toKl, i.e., k+1 /∈ Kl. Furthermore,
let us observe the pairs (kj,1, kj,2), j = 1, 2, ..., where kj,1 ∈ Ks and kj,2 is
the first k > kj,1 that belongs to K, i.e.,

ω(xkj,1) < ϵ and ω(xkj,2) ≥ 2ϵ, j = 1, 2, ...

This also implies that for each j ∈ N there holds

|ω(xkj,1)− ω(xkj,2)| ≥ ϵ. (48) {newwdist}{newwdist}

Notice that, by the construction of the relevant subsequences, kj,1 represents
the last iteration prior to kj,2 such that ω(xkj,1) < ϵ. Therefore, if kj,2 ̸=
kj,1 + 1, for all the intermediate iterations k ∈ {kj,1 + 1, ..., kj,2 − 1} and all
j ∈ N there holds

ω(xk) ≥ ϵ.
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Moreover, Proposition 1 implies that a.s.

∞∑
j=1

kj,2−1∑
i=kj,1+1

δi <∞. (49) {newpropsum}{newpropsum}

Notice that kj,1 must be a successful iteration for all j ∈ N, since the
marginal function changes only when the step is accepted, and thus δkj,1+1 =
γ2δkj,1 > δkj,1 . Therefore, for all j ∈ N, we have

∥xkj,1 − xkj,2∥ = ∥xkj,1 − xkj,1+1 + xkj,1+1 − ...− xkj,2∥ ≤
kj,2−1∑
i=kj,1

∥xi − xi+1∥ (50) {newk1k2}

≤
kj,2−1∑
i=kj,1

δi = δkj,1 +

kj,2−1∑
i=kj,1+1

δi ≤ δkj,1+1 +

kj,2−1∑
i=kj,1+1

δi ≤ 2

kj,2−1∑
i=kj,1+1

δi.

Thus, summing over j we conclude that a.s.
∑∞

j=1 ∥xkj,1 − xkj,2∥ < ∞ due
to (49). This further implies that limj→∞ ∥xkj,1 − xkj,2∥ = 0 a.s However,
this further implies that a.s. limj→∞ |ω(xkj,1)−ω(xkj,2)| = 0 due to Lemma
1, d), which is a contradiction with (48). ■

5 Numerical results

5.1 Experiment overview

Several experiments are reported in this paper in order to demonstrate the
efficiency of the SMOP algorithm. The first experiment utilizes benchmark
test problems from [28]. We employ SMOP by adding noise to both function
and gradient values, thus simulating noisy conditions. Two multi-objective
problems with different properties are considered. Simulations are made for
different variance of the noise, which showcases the behavior of SMOP under
varying inaccuracy.

The second set of experiments focuses on the machine learning applica-
tion, and the concept of model fairness, as discussed in [21]. The notion is
to create a fair model which makes unbiased decisions, an important feature
when the prediction outcome affects individuals or groups of people. The
goal is to prevent discrimination based on particularly sensitive attributes.
In our tests, the problem of minimizing the logistic regression loss function
is reformulated into a multi-objective optimization problem by splitting the
dataset based on such sensitive features. This setup allows the analysis of
fairness of model predictions by treating each subgroup as a separate objec-
tive. We compare the performance of several algorithms using appropriate
metrics. The experiments emphasize the benefits of the stochastic mod-
els approach, and the algorithm’s ability to navigate to the solution with
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less information and lower costs. Additionally, we show the effectiveness of
utilizing second order information within the algorithm.

The third and final set of experiments focuses on the visualization and
characterization of the Pareto front for the first two experiments. The SMOP
algorithm is integrated into a standard procedure, which approximates the
Pareto front and closely identifies it through iterations. We provide a com-
prehensive representation of the Pareto front for both convex and nonconvex
case.

5.2 Test problems with added noise

Test 1. Firstly, we go over a function with a convex Pareto front, [28]. Let
the problem be defined as follows:

min
x∈R2

f(x) = min
x∈R2

(f1(x), f2(x)) (51) {tp1}{tp1}

where,

f1(x) = x21 + x22

f2(x) = (x1 − 5)2 + (x2 − 5)2.

To achieve randomness and emulate our assumptions, we add the noise to
function and gradient values in the following way:

f̃i(xk) = fi(xk) + εiδ
2
k

gi(xk) = ∇fi(xk) + εδk

where ε = [ε1, ε2]
T , εi : N(0, σ2), i = 1, 2. Noises are scaled respectively with

the trust region radius δk, which emulates the probabilistic full linearity in
a way. We posed 3 different scenarios, in which we changed the variance of
the noise. Each of the runs had 10 independent simulations, with fixed 500
iterations.

The following figures show how modifying the variance of the noise ’in-
creases’ randomness, and changes the location of the last iteration, however
it doesn’t change the fact that the algorithm finds a Pareto critical point.
By increasing the variance of the noise, we can notice that last iterations of
simulations disperse throughout the set of Pareto criticality, which for this
problem is on the Pareto front.

22



Figure 1: Pareto front for problem (51) for different levels of noise σ ∈
{0.01, 0.1, 1}. ”Start” indicates function values for starting point f(x0).
”Last” indicates all values f(x∗) obtained in the last iterations x∗ for 10
simulations. ”Mean” indicates f(x∗mean), where x

∗
mean is the mean of last it-

erations of simulations. Model parameters are: x0 = (9, 9), kmax = 500, θ =
10−4, γ1 = 0.5, γ2 = 2, η1 = 10−4.

Test 2. The second example involves two functions, which together generate
a non convex front, [28]. We are solving:

min
x∈R2

f(x) = min
x∈R2

(f1(x), f2(x)) (52) {tp2}{tp2}

where,

f1(x) = sinx2

f2(x) = 1− e(−(x1− 1
2
)2−(x2− 1

2
)2).

As in the first example the noise is generated in the following way:

f̃i(xk) = fi(xk) + εδ2k

gi(xk) = ∇fi(xk) + εδk

where ε = [ε1, ε2]
T , εi : N(0, σ2), i = 1, 2. Three separate experiments have

been conducted, with 10 simulations each and 500 iterations. It can be seen
that even though the standard deviation increases the SMOP algorithm
successfully identifies a Pareto critical point for problems with both convex
and non convex front.
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Figure 2: Pareto front for problem (52) for different levels of noise σ ∈
{0.01, 0.1, 1}. ”Start” indicates function values for starting point f(x0).
”Last” indicates all values f(x∗) obtained in the last iterations x∗ for 10
simulations. ”Mean” indicates f(x∗mean), where x

∗
mean is the mean of last it-

erations of simulations. Model parameters: x0 = (−0.5, 1), kmax = 500, θ =
0.4, γ1 = 0.5, γ2 = 2, η1 = 0.4.

5.3 Machine learning (logistic regression)

When handling sensitive data in machine learning, there is a significant
risk of developing models that exhibit discriminatory behavior. Unfairness
emerges when the performance of a model measured in terms of accuracy or
another metric, varies across subgroups of data that are categorized based
on sensitive attributes, such as race, gender or age [21]. For more on this
topic, see [2],[18], [31],[32],[33]. Such differences can have real-world conse-
quences, particularly in applications where the subgroups represent actual
individuals, such as in hiring systems, healthcare diagnostics, or judicial
decision-making. These biases can create systemic inequalities and harm
marginalized communities.

Achieving fairness in machine learning involves ensuring that the predic-
tive performance of a model is consistent across different subgroups. Hence,
fairness can be defined as the condition where no subgroup experiences sig-
nificantly worse outcomes. To address this issue, one effective approach is
to formulate the scalar optimization problem as a multi-objective one. By
splitting the data based on the sensitive attributes and treating the per-
formance on each subgroup as a separate objective, it is possible to train
models that find more balanced optimum values.

The problem we consider is optimization of a regularized logistic regres-
sion loss function, as in [21]:

min
x
f(x) :=

1

N

∑
j∈N

log(1 + e(−yj(x
T aj))) +

λ

2
∥x̂∥2, i = 1, 2. (53) {logreg}{logreg}

where x represents model coefficients we are trying to find, x̂ coefficient
vector without the intercept, aj the feature vector of j − th sample, yj its
respective label and N the training set size.
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In order to create a multi-objective problem, we choose a feature, split
the data with respect to it, and create a function for each subgroup. For
the sake of simplicity, for each dataset, two subgroups were made. The loss
functions for such problem are:

fi(x) =
1

|Ni|
∑
j∈Ni

log(1 + e(−yj(x
T aj))) +

λi
2
∥x̂∥2, i = 1, 2.

where |Ni| is the size of the i− th sample subgroup, and hence the problem
becomes:

min
x

(f1(x), f2(x)) (54) {moplogreg}{moplogreg}

The approximation of function and gradient values is done by an adaptive
subsampling strategy N k

i ⊆ Ni, i = 1, 2 motivated by the result from [25]
(Lemma 4). Namely, for each subgroup we get P (|fi(xk)−f̃i(xk)| ≤ δ2k) ≥ αk

provided that

|N k
i | ≥

Fi(xk)
2

δ4k

(
1 +

√
8 log(

1

1− αk
)

)2

(55) {subsamp}{subsamp}

where Fi(xk) is the upper bound of |fi(xk)|. Although this kind of bound is
not easy to obtain in general, for logistic regression problems it is possible
to use e.g.

Fi(xk) = e∥xk∥max
j

∥aj∥+ log(2) +
λi
2
∥xk∥2.

Similar bound can be derived for the gradients where we get P (∥∇fi(xk)−
∇f̃i(xk)∥| ≤ δk) ≥ αk provided that

|N k
i | ≥

Gi(xk)
2

δ2k

(
1 +

√
8 log(

1

1− αk
)

)2

(56) {subsamp2}{subsamp2}

with
Gi(xk) = max

j
∥aj∥+ λi∥xk∥.

In our tests, we use only estimated bounds where the upper-bounds Fi, Gi

are replaced by some constants and the sample size behaves like

1

δ4k

(
1 +

√
8 log(

1

1− αk
)

)2

.

Approximate functions are created in the following way:

f̃i(xk) =
1

|N k
i |

∑
j∈N k

i

log(1 + e(−yj(x
T aj))) +

λi
2
∥x̂∥2, i = 1, 2.

Gradients of the approximate functions can then be used to approximate
gradients of the true functions, i.e. gi(xk) = ∇f̃i(xk), hence Assumption 3
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is satisfied. The probabilities αk should theoretically converge to 1, however
choosing αk =

√
0.5 in our implementations demonstrated strong perfor-

mance. This way, the probability that both function approximations f̃1(x)
and f̃2(x) are δ

2
k-close to f1(x) and f2(x) respectively is greater than 0.5. Us-

ing these functions we create probabilistically FL models with high enough
probability. This has theoretical implications, as seen in the proof of Theo-
rem (4).

We compared the SMOP algorithm with the deterministic trust region
[30] (DMOP), and the stochastic multi-gradient [21] (SMG). The evalua-
tion focuses on the algorithms’ performance by measuring the value of true
marginal function ω(xk), and scalar representation ϕ(xk) in terms of num-
ber of scalar products at each iteration. It is important to notice that for
each function evaluation of f(xk) = (f1(xk), f2(xk)), we have |N k

1 | + |N k
2 |

scalar products. In this manner, we demonstrate how the SMOP algo-
rithm achieves significant improvements in performance while utilizing only
a fraction of the available data. This highlights the algorithms effectiveness
in leveraging limited resources, making it particularly valuable in scenarios
where data collection is expensive.

The comparison for covtype [7] dataset is shown, which has 450000
training size, and attribute dimension 54. The data is split in a way that
|N1| = 200000 and |N2| = 250000. Due to the stochasticity of the algo-
rithms and the nature of the multiobjective problem, the resulting Pareto
critical points can be different. This implies that the values of ϕ(x∗) will
not necessarily be the same for different algorithms, or even for subsequent
simulations of the same algorithm. However, the fact that ω(xk) converges
to zero shows that the algorithms finds a critical value. The efficiency of the
algorithm is emphasized when considering the number of scalar products
necessary to reach the near-optimality threshold, as seen in Figure3. Notice
how the resulting ϕ values are different for each algorithm.

Figure 3: Comparison of SMOP with DMOP [30] and SMG [21], in terms
of ω(xk), ϕ(xk) and number of scalar products. Model parameters: x0 =
(0, ..., 0), kmax = 150, θ = 0.01, γ1 = 0.5, γ2 = 2, η1 = 0.25 {test4}
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5.4 First vs second order algorithm

Although the modelsmk are designed to have Hessian values, in the previous
applications we used only the first order information, i.e. Hk = 0. The
algorithm uses models to calculate the trust region ratio, hence the quadratic
model should more precisely determine whether the step is accepted, and
whether the radius should be increased or decreased. Using the second
order information, we expect our algorithm to be more precise and stable
in the long run. We compare the first and the second order versions of
SMOP, using the heart dataset [19]. The heart dataset has 242 samples,
and the attribute dimension is 14. In a similar way, by splitting the data
into two sets |N1| = 121, |N2| = 121, we convert the optimization problem
(53) into a multi-objective one (54). We approximate the Hessian with
the subsampled Hessians using the same subsample as for the functions
approximations (55). The following Figure 4 shows the convergence to a
critical point of both versions, and ilustrates the comparative advantage of
the second order method.

Figure 4: Algorithm comparison. Model parameters: x0 = (0, .., 0), kmax =
150, θ = 0.01, γ1 = 0.5, γ2 = 2, η1 = 0.25 {test3}

5.5 Finding Pareto front

As previously mentioned, the goal of the SMOP algorithm is to identify a
Pareto critical point. However, in some cases, we may wish to better under-
stand the structure of the entire Pareto front, or even find a specific optimal
point within it. Hence, approximating the Pareto front is an important fea-
ture to implement. Using the standard front finding technique, from [14],
we successfully find the Pareto front for different problems. The notion of
this Pareto finding method is to approximate the Pareto front using a set
of random points. At each iteration this approximation set is expanded by
generating perturbed points around the existing elements in the set. Prede-
termined number of SMOP iterations is then applied to the existing points,
after which the results are also added to the approximation set. To refine the

27



approximation, all dominated points are removed from the set, leaving only
the non dominated points to serve as the updated Pareto approximation for
the next iteration. Point x ∈ L is said to be dominated if there exists y ∈ L,
such that f(y) < f(x), i.e. fi(y) < fi(x) for i = 1, ..., q. The procedure is
described in the following way:
Algorithm 2.(Pareto front SMOP)

Step 0. Generate intial Pareto front L0. Select parameters np, nq, nr ∈
N.

Step 1. Set Lk+1 = Lk. For each point x in Lk+1, add nr points to
Lk+1 from the neighborhood of x.

Step 2. For each point x in Lk+1, repeat np times: Apply nq iterations
of SMOP with x as a starting point. Add the final iteration to Lk+1

Step 3. Remove all dominated points from Lk+1. Go to Step 1.

The procedure was implemented for convex and nonconvex case. The fol-
lowing figures show the Pareto front for Logistic regression example (54)
on heart dataset [19] and for Test problem 2 (52). By choosing different
np, nq, nr it is possible to get a sparser front with less details, hence de-
pending on the problem, the cost of finding the front can be reduced at the
expense of Pareto front information.

Figure 5: Pareto front for logistic regression (left), and test example 2 (right)

5.6 Conclusion

We have proposed a multi-objective trust region method which utilizes ap-
proximate functions, gradients and Hessians. The method is designed to op-
erate under the key assumptions that the approximation accuracy of models
is achieved with high enough probability and that the approximate gradi-
ents are close enough to the gradients of the approximate functions. The
theoretical contribution of this work is the proof of almost sure convergence
to a Pareto critical point. We presented several numerical experiments that
showcase the algorithm’s efficient practical performance. We highlighted its
capability to effectively solve multi-objective optimization problems while
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maintaining low computational cost. Additionally, we implemented a Pareto
finding routine in order to find the Pareto front. Future work could include
the generalization of fully quadratic models or techniques such as additional
sampling.
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