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Abstract

In this paper, we propose a new stochastic gradient method for numer-
ical minimization of finite sums. We also propose a modified version of
this method applicable on more general problems referred to as infinite
sum problems, where the objective function is in the form of mathe-
matical expectation. The method is based on a strategy to exploit the
effectiveness of the well-known Barzilai-Borwein (BB) rules or variants
of these (BB-like) rules for updating the step length in the standard gra-
dient method. The proposed method adapts the aforementioned strategy
into the stochastic framework by exploiting the same Sample Average
Aproximations (SAA) estimator of the objective function for several
iterations. Furthermore, the sample size is controlled by an additional
sampling which also plays a role in accepting the proposed iterate
point. Moreover, the number of “inner” iterations with the same sam-
ple is also controlled by an adaptive rule which prevents the method
from getting stuck with the same estimator for too long. Convergence
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results are discussed for the finite and infinite sum version, for gen-
eral and strongly convex objective functions. For the strongly convex
case, we provide convergence rate and worst-case complexity analysis.
Numerical experiments on well-known datasets for binary classifications
show very promising performance of the method, without the need to
provide special values for hyperparameters on which the method depends.

Keywords: Stochastic gradient method, Barzilai-Borwein rules, additional
sub-sampling, finite sum minimization, infinite sum minimization

MSC Classification: 65K05 , 90C15 , 62L20

1 Introduction

In this paper we consider the following unconstrained optimization problem

min
x∈Rd

f(x) := E[F (x, ξ)], (1)

where ξ ∈ Ω is a multi-valued random variable, F (x, ξ) is a cost function and
the mathematical expectation E is defined with respect to ξ on the probability
space (Ω,F ,P). As f(x) is rarely available analytically, one of the common
approaches is to approximate the problem with the finite sum function

min
x∈Rd

fN (x) =
1

N

N∑
i=1

F (x, ξi). (2)

We assume that F (x, ξi) ≡ Fi(x) is a differentiable function with Li-Lipschitz-
continuous gradient. Here fN (x) is a sample average approximation of f(x),
based on a fixed sampleN = {ξ1, . . . , ξN } of sizeN , generated at the beginning
of the optimization process. In machine learning applications, N represents
the training set. The aim of this paper is to develop a stochastic first order
method, where we use a non-monotone line-search and the well-known Barzilai-
Borwein (BB) rules [14] or variants of these (BB-like rules) for updating the
step length along the negative stochastic gradient, which is a descent direction
in expectation.
We recall that, in the full gradient iteration xk+1 = xk − αk∇f(xk), the stan-
dard BB rules are well-performing updating rules for the choice of αk. They
are defined as

αBB1
k =

sTk−1sk−1

sTk−1yk−1
, αBB2

k =
sTk−1yk−1

yTk−1yk−1
,

where sk−1 = xk − xk−1 and yk−1 = ∇f(xk)−∇f(xk−1).
Very effective improvements with respect to the standard BB rules have been
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obtained using the Adaptive Barzilai-Borwein (ABB) strategy [9] and its
modification ABBmin [6]. In this last version the step length is defined as

αABBmin

k =

{
min{αBB2

j | j = max (1, k −Mα), . . . , k} if
αBB2

k

αBB1
k

< τ,

αBB1
k otherwise,

where Mα > 0 is a prefixed integer constant and τ ∈ (0.5, 1). For non-
quadratic minimization problems, the BB or BB-like step length of a standard
gradient method has to be projected on a prefixed, positive, arbitrary large
interval [γmin, γmax] and possibly adjusted by a line-search procedure. In
many applications (see for example [17–19]), the standard gradient method
(and its variants) equipped with the BB or BB-like selection rules and a
monotone or non-monotone line-search strategy showed good performance.
Starting from these observations and following the approaches developed in
Algorithms LSOS [10] and SLiSeS [11], in this paper we propose a stochastic
gradient method where the approximated gradient is computed on a randomly
chosen subset Nk of the available dataset, i.e., a mini-batch of this dataset,
with a non decreasing cardinality |Nk| = Nk. In the case of the finite sum
minimization (2), we have Nk ⊆ N and Nk ≤ N , whereas in the infinite case
Nk is a random sample associated with the current estimator of the objective
function in (1).
The basic idea of the proposed method is to exploit the effectiveness of the
standard gradient method equipped with a BB-like rule until the mini-batch
Nk is changed. When an appropriate number of iterations (cycle) involving the
same mini-batch were performed or a suitable Stochastic Descent (SD) condi-
tion is not met for the additional random estimator fDk

= 1
|Dk|

∑
i∈Dk

F (·, ξi)
of the objective function in (2) or (1), another mini-batch Nk is randomly
drawn from the available dataset, by adapting the non decreasing cardinality
Nk to the current scenario of the algorithm. In particular, when the cycle is
successfully finished, the size of the new mini-batch is unchanged; when the
SD condition is not satisfied and the cycle is unsuccessfully stopped, the size
of the new mini-batch is increased. The method is described and analyzed
first for the minimization of the finite sum case (2), giving rise to the scheme
named LSNM-BB; then, it is generalized to the more general case stated in
(1), leading to the version named LSNM-BB-G.
Recently, two methods have been proposed, LSOS and SLiSeS, for the finite
sum case (2), that are similar to LSNM-BB. We observe that, although it is
inspired by them, the LSNM-BB method differs in many aspects. Indeed, in
LSNM-BB scheme, the mini-batch Nk does not change for a certain number
of iterations, i.e., until it is possible to exploit the BB-like rules in a way that
is advantageous for the original problem, giving rise to a cycle of iterations
related to the same mini-batch. The effectiveness of the BB-like rules is
evaluated by using the additional SD condition based on the evaluation of
an additional estimator fDk

of the objective function, where Dk is randomly
chosen from the available dataset. In SLiSeS, the line-search procedure is very
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different and no additional estimator is used. Furthermore, the mini-batch
Nk is changed after a prefixed number of iterations. On the other hand, the
LSOS method is a stochastic version of the BFGS iteration; consequently, it
is a second order method which involves the control of an SD condition at
each iteration based on an additional estimator, as LSNM-BB, but when
this condition is not satisfied for a prefixed maximum number of times, the
method switches to predefined square summable step lengths. Unlike LSOS,
LSNM-BB doesn’t prefix a maximum number of times the SD condition is
not satisfied; indeed the failure of the SD condition causes an increase of the
mini-batch size. In general, in the finite sums case, Nk < N holds. In some
cases, it could happen that the SD condition is not met for a large number of
times and, consequently, the increment rule of the mini-batch size determines
a value of Nk equal to N , i.e., the mini-batch is the whole dataset N and
the stochastic iteration reduces to that of the standard gradient. This does
not happen in practice, unless a significant increase in the cardinality of the
mini-batch is forced and/or very long processing times are allowed.
Furthermore, the method proposed for the case of a finite sum of terms can
be generalized to LSNM-BB-G for the resolution of problem (1). One of
the possible applications can be to address online learning problems. In this
version, the concept of mini-batch is replaced by that of estimator of f and,
at any iteration, two estimators fNk

and fDk
are used, the first to adjust the

step length, the second to verify the SD condition.
Finally, we should mention that the method proposed in [5] also uses addi-
tional sampling as a control for accepting the step and increasing the sample
size if necessary. However, it differs from our approach significantly since it
belongs to the Trust-Region framework, uses Hessian approximations and
considers only finite sum case.
The paper is organized as follows. In Section 2, we describe the LSNM-BB
method, giving the details of the related algorithm and stating its well-
definiteness. In Section 3 we report the convergence results of the proposed
method for the finite sum minimization (2), whereas in Section 4 we describe
the LSNM-BB-G method for the problem (1) and we state the convergence
results. In Section 5 we evaluate the proposed method by a set of numerical
experiments. Some conclusions are drawn in the final section which also con-
tains some future work directions.

Notation.
In the following, R+ is the set of non negative real numbers; R++ is the set
of positive real numbers. ∥ · ∥ denotes the standard ℓ2 norm. E(·) and E(·| F)
denote mathematical expectation and conditional expectation with respect to
σ-algebra F , respectively. We use “a.s.” to abbreviate “almost sure/surely”
and “i.i.d.” to abbreviate “independent and identically distributed”, while
“SAA” stands for “sample average approximation”. We denote by |N | the
cardinality of set N . Finally, B(x, ρ) denotes the ball of center x and radius ρ.
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2 The LSNM-BB method for the finite sum case

The LSNM-BB method is a first-order scheme, consisting of cycles of iter-
ations. Each j-th cycle can have a maximum number of iterations, denoted
by m(Nj), characterized by the use of the same mini-batch Nj of the dataset
N , where Nj ≡ Nk for any iteration k in the cycle. The search directions are
obtained by combining a suitable version of BB rules with the approximations
of the gradient based on Nk. In other words, within any cycle, the method
boils down to the gradient descent iteration for fNk

(x) combined with a non-
monotone line-search to adjust the step length, fixed by a BB-like rule. The
cycle can be stopped prematurely if it does not produce iterations deemed
acceptable. Indeed, after the computation of the update xk of a standard
gradient iteration for fNk

, the following SD condition is checked:

fDk
(xk) ≤ fDk

(xk)− cmin∥∇fDk
(xk)∥2 + Cmaxζk, (3)

where Dk is randomly chosen from N , cmin, Cmax are positive real scalars and
{ζk} is a summable sequence of non-negative real numbers, so that the strict
decrease of fDk

is relaxed. If the above condition is not met, the current cycle
is stopped; the vector xk is rejected and xk+1 = xk; a new cycle is started
using a new mini-batch Nk+1 of larger size (Nk < Nk+1 ≤ N). The step
length is set as the tentative value γk+1 = 1

∥∇fNk+1
(xk+1)∥ , suitably projected

on [γmin, γmax]. The choice to adopt at the first step of a new cycle the scaled
stochastic gradient is convenient in the practice, but it is not relevant for the
theoretical analysis; other setting for γk+1 can be performed, as γk+1 = 1 for
instance.
Conversely, when the SD condition (3) is met at xk, then xk+1 = xk, the initial
step length is updated by a new BB-like rule and a new iteration of the cycle
is performed.
If the j-th cycle ends by completing the foreseen m(Nj) iterations, a new mini-
batch is randomly extracted from N , leaving its cardinality equal to that of
the previous mini-batch, that is Nj+1 = Nj ; then, a new cycle is started, aimed
to perform a set of iterations which lead to decrease of a new approximation
fNj+1

of fN .

The details of the proposed LSNM-BB method are described in Algorithm
1. In particular, as already specified, within any cycle, the search directions dk
is computed as dk = −γkgk where gk is the gradient of the current estimate of
the objective function at xk and γk is initialized with a BB-like rule, suitably
projected on [γmin, γmax]. An adjustment of the step length, given by tk = βℓ,
β ∈ (0, 1), ℓ ∈ N, is determined by a line-search technique, aimed at ensuring
that the non-monotone Armijo condition (4) is satisfied. A key assumption
that makes the algorithm well-defined is the following.
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Algorithm 1 LSNM-BB

1: Given x0 ∈ Rd, η, β ∈ (0, 1), {ζk} ⊂ R+ subject to
∑∞

k=0 ζk ≤ ζ < ∞, cmin,
Cmax ∈ R++, 0 < γmin < γmax, γ0 ∈ [γmin, γmax], N0 > 0, θ > 1.

2: Set k ← 0, j ← 0.
3: Choose N0 ⊆ N randomly with size N0

4: Compute g0 ← ∇fN0
(x0)

5: while the stopping criterion is not satisfied do
6: Compute m(Nj)
7: i = 1
8: repeat
9: Compute dk ← −γkgk

10: Find the smallest integer ℓ ≥ 0 such that tk = βℓ satisfies

fNk
(xk + tkdk) ≤ fNk

(xk) + ηtkg
T
k dk + ζk (4)

11: xk ← xk + tkdk
12: if Nk < N then
13: Choose Dk randomly and uniformly from N with replacement
14: if fDk

(xk) ≤ fDk
(xk)− cmin∥∇fDk

(xk)∥2 + Cmaxζk then
15: xk+1 ← xk
16: Nk+1 ← Nk

17: Nk+1 ← Nk

18: Compute gk+1 ← ∇fNk+1
(xk+1)

19: Compute γk+1 by a BB-like rule with threshold in [γmin, γmax]
20: else
21: xk+1 ← xk
22: Choose Nk+1 ∈ (Nk, N ]
23: k ← k + 1
24: Exit and go to step 34
25: end if
26: else (Nk = N )
27: xk+1 ← xk
28: Compute gk+1 ← ∇fN (xk+1)
29: Compute γk+1 by a BB-like rule with threshold in [γmin, γmax]
30: end if
31: k ← k + 1
32: i = i+ 1
33: until i > m(Nj) OR the stopping criterion is satisfied
34: if Nk < N then
35: Randomly choose Nk ⊆ N with size Nk

36: Compute gk ← ∇fNk
(xk)

37: Compute γk as 1
∥gk∥ with threshold in [γmin, γmax]

38: end if
39: j ← k
40: end while
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Assumption 1 For any i ∈ {1, ..., N}, the function Fi is bounded from below and
continuously-differentiable with Li-Lipschitz continuous gradient.

Consequently, LNk
= 1

Nk

∑
i∈Nk

Li is the Lipschitz parameter of ∇fNk
and

LNk
∈ [LN , Lmax], with LN equal to the Lipschitz parameter of ∇fN and

Lmax = maxi Li; obviously, LNk
≤ Lmax.

Remark 1 In view of the above assumption, it is well known that the standard

monotone line-search technique is well-defined, that is there exists a value t = βℓ with

t ≥ min(1,
2β(1−η)
LNk

) such that, for γk ∈ [γmin, γmax], the following condition is met

fNk
(xk − tγkgk) ≤ fNk

(xk)− ηtγk∥gk∥2. (5)

Thus, the value t is bounded from below by tmin = min(1,
2β(1−η)
Lmax

). The term ζk ≥ 0
in the condition (4) can be positive, allowing for nondescent directions and relaxing
the condition (5); for tk small enough, the condition (4) is satisfied and hence the
finite termination of the backtracking loop is assured.

The further following assumption is required.

Assumption 2 The non-negative real sequence {ζk} in (3) and in (4) is such that∑∞
k=0 ζk ≤ ζ.

Remark 2 When dk satisfies the SD condition (3), we notice that the reduction
of fDk

, although relaxed by the presence of Cmaxζk ≥ 0, can be considered as an
indication that the decrease of fNk

is acceptable in order to minimize the original
objective function; in other words, the satisfaction of the SD condition (3) would
suggest that the point xk provides a similar behaviour, regardless of the chosen mini-
batch Nk or Dk. In view of

∑∞
k=0 ζk <∞, we have ζk → 0, so that the condition (3)

becomes stricter as k increases. Furthermore, we highlight that there are no conditions
on the size of Dk, i.e., Dk can consist of only one element.
We note that both decrease conditions (4) and (3) are non-monotone.

A crucial point of the behaviour of the proposed method is that the SD
condition (3) cannot fail to be satisfied infinitely many times. In fact, if for
many iterations this arises, as the size of the mini-batch is increased, there
exists an iteration k such that, for k ≥ k, Nk = N and the method is switched
to a standard gradient method combined with a BB-like rule and the non-
monotone line-search, for which there are well-known convergence results (see
for example [12, 13, 16] and references therein). In this case, the algorithm is
very expensive. Nevertheless, the experiments in Section 5 indicate that the
SD condition (3) is satisfied in a vaste majority of cases and the number of
discarded candidate points is very low and the size N for the mini-batch is
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never reached within the time equivalent to require the computation of 30 full
gradients and to obtain a satisfactory accuracy.

3 Convergence analysis of LSNM-BB method
for the finite sum case

Before we prove the main convergence result for the finite sum problem (2), we
need to state the following two important lemmas. The proofs of these lemmas
are fundamentally the same as the ones for Lemmas 1-2 in [5]. However, they
are adapted to the LSNM-BB method and stated here for completeness.

Let us denote by D+
k the subset of all possible outcomes of Dk at iteration

k for which the condition (3) is satisfied, i.e.,

D+
k = {Dk ⊂ N | fDk

(xk) ≤ fDk
(xk)− cmin∥∇fDk

(xk)∥2 + Cmaxζk}. (6)

We denote the complementary subset of outcomes at iteration k by

D−
k = {Dk ⊂ N | fDk

(xk) > fDk
(xk)− cmin∥∇fDk

(xk)∥2 + Cmaxζk}. (7)

The first lemma guarantees that if the mini-batches are always proper subsets
ofN , then from a certain iteration forward the SD condition is always satisfied.

Lemma 1 Suppose that Assumptions 1 and 2 hold. If Nk < N for all k ∈ N, then
a. s. there exists k1 ∈ N such that D−

k = ∅ for all k ≥ k1.

Proof Assume that Nk < N for all k ∈ N. Since the sample size sequence {Nk} in
LSNM-BB Algorithm is non-decreasing, this means that there exists some N < N
and k2 ∈ N such that Nk = N for all k ≥ k2. Now, let us assume that there is no
k1 ∈ N such that D−

k = ∅ for all k ≥ k1. This means that there exists an infinite

sub-sequence of iterations K ⊆ N such that D−
k ̸= ∅ for all k ∈ K. Since Dk is

chosen randomly and uniformly, with finitely many possible outcomes for each k,
there exists some q > 0 such that P(Dk ∈ D−

k ) ≥ q for all k ∈ K. So, we have

P(Dk ∈ D+
k , k ∈ K) ≤ Πk∈K(1− q) = 0;

this means that we will almost surely encounter an iteration at which the sample
size will be increased due to violation of SD condition (3). This is a contradiction
with the sample size being kept to N during the whole optimization process. Thus,
we conclude that the statement holds. □

Next, we show that Lemma 1 implies that the Armijo-like inequality holds
for the overall objective function for all k sufficiently large in the mini-batch
scenario. The proof is essentially the same as the proof of Lemma 2 in [5], but
we state it here for completeness.
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Lemma 2 Suppose that Assumptions 1 and 2 hold and that Dk is chosen with
replacement. If Nk < N for all k ∈ N, then a. s.

fN (xk) ≤ fN (xk)− cmin∥∇fN (xk)∥2 + Cmaxζk

holds for all k ≥ k1 where k1 is as in Lemma 1.

Proof First, notice that Lemma 1 implies that a. s.

fDk
(xk) ≤ fDk

(xk)− cmin∥∇fDk
(xk)∥2 + Cmaxζk (8)

holds for all possible realizations of Dk and for all k ≥ k1. Thus, we conclude that
a. s. for every i = 1, 2, ..., N and every k ≥ k1 we have

Fi(xk) ≤ Fi(xk)− cmin∥∇Fi(xk)∥2 + Cmaxζk. (9)

Indeed, if there exists i ∈ N that violates the previous inequality, then there would
exist at least one realization of Dk (namely, Dk = {i, i, ..., i}) that violates (8). Thus,
a. s. for all k ≥ k1 we have

fN (xk) =
1

N

N∑
i=1

Fi(xk) ≤
1

N

N∑
i=1

(Fi(xk)− cmin∥∇Fi(xk)∥2 + Cmaxζk) (10)

= fN (xk)− cmin
1

N

N∑
i=1

∥∇Fi(xk)∥2 + Cmaxζk

≤ fN (xk)− cmin∥∇fN (xk)∥2 + Cmaxζk,

where the last inequality comes from the fact that ∥ · ∥2 is convex and therefore

∥∇fN (xk)∥2 = ∥ 1
N

N∑
i=1

∇Fi(xk)∥2 ≤
1

N

N∑
i=1

∥∇Fi(xk)∥2.

□

Next, we prove that the iterates of the proposed algorithm remain within a
random level set.

Lemma 3 Suppose that Assumptions 1 and 2 hold and that Dk is chosen with
replacement. Then a. s. there exists a finite, random iteration k̃ such that

fN (xk̃+k) ≤ fN (xk̃) + max{1, Cmax}ζ̄
holds for all k ∈ N.

Proof If the full sample is reached, then there exists some k0 ∈ N such that Nk = N
for all k ≥ k0 and (4) holds for a suitable tk, i.e., for all k ≥ k0

fN (xk+1) ≤ fN (xk) + ηtkg
T
k dk + ζk ≤ fN (xk) + ζk.

Using the summability of ζk we obtain the result with k̃ = k0.
On the other hand, if Nk < N for all k, then Lemma 1 implies the existence of

k1 such that xk+1 = x̄k for all k ≥ k1 and Lemma 2 implies that

fN (xk+1) ≤ fN (xk)− cmin∥∇fN (xk)∥2 + Cmaxζk ≤ fN (xk) + Cmaxζk

holds for all k ≥ k1 a. s. Again, using the summability of ζk we obtain the result
with k̃ = k1. □
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In order to prove the main convergence results for LSNM-BB Algorithm, we
state the following assumption.

Assumption 3 There exists a constant C such that E(|fN (xk̃)|) ≤ C, where k̃ is
as in Lemma 3.

The expectation in the previous assumption is taken over all possible sam-
ple paths. Assumption 3, together with the result of Lemma 3, implies that
the sequence {fN (xk)}k≥k̃ is uniformly bounded in expectation. Moreover, we
obtain (see [5] for more details)

E(|fN (xk̃)| | A) ≤ C1 and E(|fN (xk̃)| | Ā) ≤ C2, (11)

where A represents a subset of all possible outcomes (sample paths) such that
the full sample is reached eventually, Ā represents a subset of all possible
outcomes which belong to the mini-batch scenario, and C1, C2 are some posi-
tive constants depending on C and the probability of the mini-batch scenario.
Notice that Assumption 3 holds if we have bounded iterates and continuous
objective function. Let us abbreviate EA(·) := E(·|A) and EĀ(·) := E(·|Ā). We
denote the corresponding conditional probabilities with PA and PĀ.

Now, we are ready to prove the main convergence result. The second part
of the proof (the mini-batch scenario) is similar to the proof of Theorem 3.9
in [10], although in a different context.

Theorem 1 Suppose that the Assumptions 1, 2 and 3 hold and let {xk} be a
sequence generated by LSNM-BB Algorithm. Then

lim
k→∞

∥∇fN (xk)∥ = 0 a.s. (12)

and each limit point of {xk} is stationary for problem (2) a.s.

Proof Let us observe the first (mini-batch) scenario, where Nk < N for all k ∈ N.
Then, Lemma 1 and 2 imply that a. s. there exists k1 ∈ N such that the following
holds for all k ≥ k1

fN (xk+1) ≤ fN (xk)− cmin∥∇fN (xk)∥2 + Cmaxζk.

Equivalently, a. s. for all s ∈ N we have

fN (xk1+s) ≤ fN (xk1
)− cmin

s−1∑
ℓ=0

∥∇fN (xk1+ℓ)∥2 + Cmax

s−1∑
ℓ=0

ζk1+ℓ.

Furthermore, applying the expectation EĀ and using the fact that k̃ coincides with
k1 in the mini-batch scenario, by (11) we obtain

EĀ(fN (xk̃+s)) ≤ C2 − cmin

s−1∑
ℓ=0

EĀ(∥∇fN (xk̃+ℓ)∥
2) + Cmax

s−1∑
ℓ=0

ζk̃+ℓ.



Springer Nature 2021 LATEX template

Spectral Stochastic Gradient Method with Additional Sampling 11

Moreover, using Assumptions 1 and 2 and letting s→∞ we obtain

∞∑
k=0

EĀ(∥∇fN (xk)∥2) <∞.

Now, by the extended version of Markov’s inequality we have that for any ϵ > 0

PĀ(∥∇fN (xk)∥ ≥ ϵ) ≤
EĀ(∥∇fN (xk)∥2)

ϵ2
<∞

and therefore
∞∑
k=0

PĀ(∥∇fN (xk)∥ ≥ ϵ) <∞.

Finally, Borel-Cantelli Lemma [15] implies that limk→∞ ∥∇fN (xk)∥ = 0 a.s. in the
mini-batch scenario, in other words

P ( lim
k→∞

∥∇fN (xk)∥ = 0 | Ā) = 1. (13)

Now, let us consider the scenario where the full sample size is reached, i.e., the
outcomes that belong to A. In this scenario, the method eventually becomes a stan-
dard gradient method equipped with BB step size and non-monotone backtracking
line-search, but with a random “starting” point k̃ = k0. Notice that under the
Assumption 1, both γk and tk are uniformly bounded away from zero. Therefore,
according to (4), we obtain the following inequality for all k ≥ k̃

fN (xk+1) ≤ fN (xk)− ηt̄γmin∥∇fN (xk)∥2 + ζk. (14)

Applying the conditional expectation EA and following similar steps as in the
previous part of the proof, we obtain

P ( lim
k→∞

∥∇fN (xk)∥ = 0 | A) = 1, (15)

which together with (13) implies (12).
Finally, since we have proved that the gradient of the objective function tends to
zero a.s. in all possible scenarios, by the continuity of ∇fN we conclude that every
limit point of {xk} is stationary for fN a.s. □

If fN is µN -strongly convex we have a stronger convergence result. In this
case, problem (2) has a unique solution x∗ and for any x ∈ Rd the following
inequality holds

µN

2
∥x− x∗∥2 ≤ fN (x)− fN (x∗) ≤

1

2µN
∥∇fN (x)∥2. (16)

Taking xk instead of x and letting k →∞, according to Theorem 1 we obtain
the following result.

Corollary 1 Let Assumptions 1, 2 and 3 hold and let {xk} be a sequence generated
by LSNM-BB Algorithm. If fN is µN−strongly convex, then the sequence {xk}
converges a.s. to the unique solution x∗ of problem (2).
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Next, we analyse the convergence rate and the worst-case complexity of the
proposed algorithm under the strong convexity assumption. We show that R-
linear convergence rate can be achieved. Moreover, if the local cost functions
are heterogeneous enough, we provide an expected number of iterations to
reach the ε-vicinity of the solution.

Theorem 2 Suppose that the assumptions of Corollary 1 hold. Assume that cmin <
1/(2µN ) and η < 1/(2µN γmintmin). Then the LSNM-BB Algorithm converges to
the unique solution x∗ of the problem (2) R-linearly in a mean squared sense, i.e.,
there exist constants ρ ∈ (0, 1) and M > 0 such that

E(∥xk̃+j − x∗∥2) ≤Mρj , j = 1, 2, ... (17)

where where k̃ is as in Lemma 3.

Proof Following the steps of Theorem 1, in the mini-batch scenario we obtain that
the following holds a. s. for all k ≥ k1

fN (xk+1) ≤ fN (xk)− cmin∥∇fN (xk)∥2 + Cmaxζk.

Recall that in this scenario, k1 coincides with k̃ from Lemma 3.
Now, by subtracting fN (x∗) from both sides of the previous inequality and using

the second inequality of (16) we obtain

fN (xk+1)− fN (x∗) ≤ ρ1(fN (xk)− fN (x∗)) + Cmaxζk,

where ρ1 = 1− 2cminµN ∈ (0, 1). Therefore, a. s. for each j ∈ N there holds

fN (xk1+j)− fN (x∗) ≤ ρj1(fN (xk1
)− fN (x∗)) + sk1+j ,

where sk1+j = Cmax
∑j

i=1 ρ
i−1
1 ζk1+j−i. Since the sequence of ζk is assumed to

be nonnegative and summable, we conclude that it converges to zero R-linearly.
Furthermore, without loss of generality, we can assume that the sequence of ζk is
monotone decreasing, so

sk1+j ≤ Cmax

j∑
i=1

ρi−1
1 ζj−i = sj .

Moreover, the sequence of sj also converges to zero R-linearly (see Lemma 4.2 in [23]
for instance), so there exist constants Mζ > 0 and ρζ ∈ (0, 1) such that for each j ∈ N

fN (xk1+j)− fN (x∗) ≤ ρj1(fN (xk1
)− fN (x∗)) +Mζρ

j
ζ .

Applying the conditional expectation EĀ we obtain

EĀ(fN (xk1+j)− fN (x∗)) ≤ ρj1(C2 − fN (x∗)) +Mζρ
j
ζ

and conclude the existence of constants MĀ > 0 and ρĀ ∈ (0, 1) such that for each
j ∈ N

EĀ(fN (xk1+j)− fN (x∗)) ≤MĀρj
Ā
. (18)

Analogously, for the full sample scenario we obtain the existence of constants
MA > 0 and ρA ∈ (0, 1) such that for each j ∈ N

EA(fN (xk0+j)− fN (x∗)) ≤MAρjA, (19)
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where k0 coincides with k̃ and the analysis is based on (14) and the assumption
η < 1/(2µN γmintmin).
Finally, combining both scenarios we obtain

E(fN (xk̃+j) − fN (x∗)) = P (Ā)EĀ(fN (xk̃) − fN (x∗)) + P (A)EA(fN (xk̃) − fN (x∗)) (20)

= P (Ā)EĀ(fN (xk1
) − fN (x∗)) + P (A)EA(fN (xk0

) − fN (x∗))

≤ ρ
j
M̄,

where ρ = max{ρA, ρĀ} and M̄ = max{MA,MĀ}. Applying the strong convexity

assumption we conclude the proof of the statement with M = 2M̄
µN

. □

Corollary 2 Let Assumptions of Theorem 2 hold. Then E(∥xk − x∗∥2) ≤ ε holds
for all k ≥ k̂, where

k̂ = k̃ +

⌈
| log(ε/M)|
| log(ρ)|

⌉
.

and k̃ is like in Lemma 3.

Notice that the worst-case complexity in the previous corollary is of order
O(log(ε)), but it also depends on random iteration k̃. In general, k̃ is very
hard to determine since it is problem-dependent. In the sequel, we provide an
estimate for k̃ under assumption of heterogeneous local cost functions. More
precisely, we assume that for each k there exists at least one Fi function that
violates the inequality (9). We formalize this assumption as follows.

Assumption 4 For each k there exists at least one Fi function such that

Fi(xk) > Fi(xk)− cmin∥∇Fi(xk)∥2 + Cmaxζk.

Assumption 4 implies that D−
k is nonempty for each k and there exists

p ∈ (0, 1] such that
P (Dk ∈ D−

k ) ≥ p > 0. (21)

For instance, if |Dk| = 1, then p ≥ 1/N . Furthermore, let Sk be a random
variable that counts how many times the sample size is increased within the
first k iterations. We can represent Sk as a sum of indicator variables, i.e.,
Sk = I1 + ... + Ik, where Ik = 1 if Nk > Nk−1 and Ik = 0 otherwise. Notice
that E(Ik) = P (Ik = 1) = P (Dk ∈ D−

k ) ≥ p and thus

E(Sk) ≥ kp. (22)

Furthermore, notice that the full sample size is reached a.s. under the Assump-
tion 4. Let us denote by Ñ the number of increments of sample size needed
to reach the full sample. For instance, if in line 22 of LSNM-BB algorithm we
set Nk+1 = Nk + 1, then Ñ = N − N0. If we use Nk+1 = ⌈θNk⌉, then Ñ is
at most ⌈log(N/N0)/ log(θ)⌉. Therefore, by setting E(Sk̃) = Ñ and using (22)
we conclude that the expected number of iterations to reach the full sample is
bounded from above by ⌈Ñ/p⌉. We summarize this analysis in the following
statement.
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Corollary 3 Let Assumptions of Theorem 2 hold together with Assumption 4. Then
the expected number of iterations to reach E(∥xk − x∗∥2) ≤ ε is

k̂E = ⌈Ñ/p⌉+
⌈
| log(ε/M)|
| log(ρ)|

⌉
.

4 The LSNM-BB-G method for the general
case and its convergence analysis

Now, let us consider more general problem (1). We assume that the approxi-
mation fNk

(x) of the objective function at iteration k is formed by the SAA
estimator

fNk
(x) =

1

Nk

Nk∑
i=1

F (x, ξki ), (23)

where ξk1 , ξ
k
2 , ..., ξ

k
Nk

are i.i.d. random vectors for each k and Nk = |Nk|. We
assume the same structure for the additional sampling, i.e.,

fDk
(x) =

1

Dk

Dk∑
i=1

F (x, ξ̃ki ), (24)

where ξ̃k1 , ..., ξ̃
k
Dk

are i.i.d. random vectors independent of ξk1 , ξ
k
2 , ..., ξ

k
Nk

, and
Dk = |Dk|. We also assume that, given a point x, both fNk

(x) and fDk
(x) are

unbiased estimators of f(x). The SAA estimator with unbounded sample size
is a key point in the generalization of the method LSNM-BB. The modified
version, named LSNM-BB-G and shown in Algorithm 2, implements the
details of the proposed method for solving the problem (1). A further difference
between the two algorithms is that the sample size Dk used for the estimator
fDk

increases at the same time as the sample size Nk used for the estimator
fNk

, but not necessary at the same rate and there holds Dk ≤ Nk.
Notice that the proposed algorithm can yield two possible scenarios regard-

ing the sample size: 1) the mini-batch scenario where the sample size Nk is
bounded from above as well as Dk; 2) the scenario where both Nk and Dk tend
to infinity. The second scenario corresponds to the case where the trial point
is rejected infinitely many times. We assume that the sequence of iterates is
bounded. Moreover, we also make an assumption that, given a point x, the
gradient ∇F (x, ξ) is a.s. bounded with D(x). This ensures that the stochastic
gradient is a.s. well defined at any given point x. Moreover, it is satisfied in
logistic regression problems if the attributes belong to some finite range.

Assumption 5 The function F (·, ξ) is bounded from below and continuously-
differentiable with L-Lipschitz continuous gradient for any given ξ. Moreover, for
every x there exists a constant D(x) such that ∥∇F (x, ξ)∥ ≤ D(x) for almost every ξ.



Springer Nature 2021 LATEX template

Spectral Stochastic Gradient Method with Additional Sampling 15

Algorithm 2 LSNM-BB-G

1: Given x0 ∈ Rd, η, β ∈ (0, 1), {ζk} ⊂ R+ subject to
∑∞

k=0 ζk ≤ ζ < ∞, cmin,

Cmax ∈ R++, 0 < γmin < γmax, γ0 ∈ [γmin, γmax], N0 > 0, θ ≥ θ̃ > 1.
2: Set k ← 0, j ← 0
3: Choose i.i.d. random sample ξk1 , ξ

k
2 , ..., ξ

k
N0

to form fN0
by (23)

4: Compute g0 ← ∇fN0
(x0)

5: while the stopping criterion is not satisfied do
6: Compute m(Nj)
7: i = 1
8: repeat
9: Compute dk ← −γkgk

10: Find the smallest integer ℓ ≥ 0 such that tk = βℓ satisfies

fNk
(xk + tkdk) ≤ fNk

(xk) + ηtkg
T
k dk + ζk (25)

11: xk ← xk + tkdk
12: if Nk < N then
13: Choose i.i.d. random sample ξ̃k1 , ξ̃

k
2 , ..., ξ̃

k
Dk

to form fDk
by (24)

14: if fDk
(xk) ≤ fDk

(xk)− cmin∥∇fDk
(xk)∥2 + Cmaxζk then

15: xk+1 ← xk
16: Nk+1 ← Nk

17: Nk+1 ← Nk

18: Compute gk+1 ← ∇fNk+1
(xk+1)

19: Compute γk+1 by a BB-like rule with threshold in [γmin, γmax]
20: else
21: xk+1 ← xk
22: Choose Nk+1 > Nk

23: Choose Dk+1 ∈ (Dk, Nk+1]
24: k ← k + 1
25: Exit and go to step 35
26: end if
27: else (Nk = N )
28: xk+1 ← xk
29: Compute gk+1 ← ∇fN (xk+1)
30: Compute γk+1 by a BB-like rule with threshold in [γmin, γmax]
31: end if
32: k ← k + 1
33: i = i+ 1
34: until i > m(Nj) OR the stopping criterion is satisfied
35: if Nk < N then
36: Choose i.i.d. random sample ξk1 , ξ

k
2 , ..., ξ

k
Nk

to form fNk
by (23)

37: Compute gk ← ∇fNk
(xk)

38: Compute γk as 1
∥gk∥ with threshold in [γmin, γmax]

39: end if
40: j ← k
41: end while
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Consequently, all the SAA functions (fNk
and fDk

) are bounded from below
and continuously-differentiable with L-Lipschitz continuous gradients as well.

Assumption 6 The sequence of iterates {xk}k∈N generated by Algorithm LSNM-
BB-G is bounded.

In order to continue with the convergence analysis, let us denote by e(x,N )
the error of the SAA estimate based on sample N at point x, i.e.,

e(x,N ) := |fN (x)− f(x)|. (26)

We also define the corresponding error for the gradient as

eg(x,N ) := |∥∇fN (x)∥2 − ∥∇f(x)∥2|. (27)

In order to claim a.s. convergence of these errors, we make the following
assumption.

Assumption 7 The function F and its gradient ∇F are dominated by integrable
functions on any compact subset of Rd.

Since we assume i.i.d. samples, the Uniform Law of Large Numbers (ULLN)
implies that, under Assumption 7, there holds

lim
|N |→∞

sup
x∈S

e(x,N ) = 0 a.s. and lim
|N |→∞

sup
x∈S

eg(x,N ) = 0 a.s., (28)

for any given compact set S (see Theorems 7.48 and 7.52 from [4]).

Now, we state the conditions under which we have infinite number of iter-
ations at which the trial point is accepted unless we have encountered a
stationary point of the objective function f .

Lemma 4 Suppose that the Assumptions 2, 5, 6 and 7 hold. Then, a.s., there exists
an infinite subset of iterations K ⊆ N such that xk+1 = xk for each k ∈ K provided
that ∥∇f(xk)∥ > 0 for each k and cmin < ηγmin min{2β(1− η)/L, 1}.

Proof First, notice that tk ≥ min{2β(1− η)/L, 1} due to the Assumption 5 and the
backtracking line-search. Therefore, from (25) we obtain that

fNk
(xk) ≤ fNk

(xk)−ηtkγk∥∇fNk
(xk)∥2+ζk ≤ fNk

(xk)−c∥∇fNk
(xk)∥2+ζk, (29)

where c := ηγmin min{2β(1− η)/L, 1}. Furthermore, using (26) and (27) we obtain

f(xk) ≤ f(xk)− c∥∇f(xk)∥2 + e(xk,Nk) + e(xk,Nk) + ceg(xk,Nk) + ζk. (30)
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Now, let us assume that K ⊆ N such that xk+1 = xk for each k ∈ K does not exist.
This means that there exists k such that the point xk is rejected for all k ≥ k, i.e.,
the sequence of iterates becomes stationary at xk. According to the algorithm, this

is possible only if the following happens for all k ≥ k

fDk
(xk) > fDk

(xk)− cmin∥∇fDk
(xk)∥2 + Cmaxζk.

Thus, for all k ≥ k we have

f(xk) >f(xk)− cmin∥∇f(xk)∥2 − e(xk,Dk)− e(xk,Dk)+

− cmineg(xk,Dk) + Cmaxζk.
(31)

We observe that Cmaxζk ≥ 0 in the previous inequality; then, combining (30) and
(31) and using the fact that xk = xk for all k ≥ k we obtain

(c− cmin)∥∇f(xk)∥
2 < e(xk,Dk) + e(xk,Dk) + cmineg(xk,Dk)

+ e(xk,Nk) + e(xk,Nk) + c eg(xk,Nk) + ζk.

Notice that each rejection of a trial point increases both Nk and Dk, so in this
scenario we have that Nk →∞ and Dk →∞ and thus

lim
k→∞

e(xk,Dk) + cmineg(xk,Dk) + e(xk,Nk) + c eg(xk,Nk) = 0 a.s..

Moreover, Assumption 5 implies the existence of a constant D(xk) such that
∥∇fNk

(xk)∥ ≤ D(xk) a.s. which further implies that

∥xk∥ ≤ ∥xk∥+ tkγk∥∇fNk
(xk)∥ ≤ ∥xk∥+ γmaxD(xk) a.s. for all k ≥ k.

Thus, we conclude that for all k ≥ k, xk remains bounded, i.e., {xk}k≥k ∈
B(xk, γmaxD(xk)) a.s. and applying the ULLN we obtain

lim
k→∞

e(xk,Nk) + e(xk,Dk) = 0 a.s.

Since ζk is summable, we have limk→∞ ζk = 0 and thus, by using the assumption
that cmin < c and ∥∇f(xk)∥ > 0, we obtain the following contradiction

0 < (c− cmin)∥∇f(xk)∥
2 ≤ 0 a.s.

This completes the proof. □

The following lemma is the analogue of Lemma 1, stated in the previous section
for the finite sum case.

Lemma 5 Suppose that the Assumptions 2 and 5 hold. If Nk ≤ N < ∞ for all
k ∈ N then there exists k1 ∈ N such that the SD condition (3) of LSNM-BB-G
Algorithm holds a.s. for all k ≥ k1.

Proof Assume that there exists some k2 ∈ N such that Nk = N for all k ≥ k2. Now,
let us assume that there is no k1 ∈ N such that the SD condition (3) holds a.s. for
all k ≥ k1. This means that there exists an infinite sub-sequence of iterations K ⊆ N
such that the measure of D−

k is non-zero for all k ∈ K and thus the probability of

Dk ∈ D−
k is strictly positive for all k ∈ K. This further implies that P(Dk ∈ D+

k ) < 1
for all k ∈ K and

P(Dk ∈ D+
k , k ∈ K) =

∏
k∈K

P(Dk ∈ D+
k ) = 0.
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This means that we will almost surely encounter an iteration at which the sample size
will be increased due to violation of SD condition (3). This is a contradiction with
the sample size being kept to N during the optimization process. Thus, we conclude
that the statement holds. □

Now, we prove the main convergence result for LSNM-BB-G Algorithm.

Theorem 3 Suppose that the assumptions of Lemma 4 hold and let {xk} be a
sequence generated by LSNM-BB-G Algorithm. Then, we have

lim inf
k→∞

∥∇f(xk)∥ = 0 a.s. (32)

and there exists a limit point of {xk} which is stationary for problem (1) a.s.

Proof Recall that there are two possible scenarios for the proposed algorithm: mini-
batch scenario (Ā) and the one where the sample size tends to infinity (A).

Let us observe the first scenario. In this case, Lemma 5 implies that the following
holds a.s. for all k ≥ k1

fDk
(xk) ≤ fDk

(xk)− cmin∥∇fDk
(xk)∥2 + Cmaxζk. (33)

This further implies that x̄k = xk+1 a.s. for all k ≥ k1. Now, let us denote by
Fk+1/2 the σ-algebra generated by N0, D0, ..., Nk−1, Dk−1, Nk. Since Dk is chosen
randomly and uniformly after both xk and xk are determined, we have

f(x̄k) = E(fDk
(xk) | Fk+1/2) and f(xk) = E(fDk

(xk) | Fk+1/2).

Thus, applying conditional expectation with respect to Fk+1/2 on (33) leads to

f(x̄k) ≤ f(xk)− cminE(∥∇fDk
(xk)∥2 | Fk+1/2) + Cmaxζk. (34)

Moreover, there holds

E(∇fDk
(xk)| Fk+1/2) = ∇f(xk), (35)

so we obtain

∥∇f(xk)∥2 = ∥E(∇fDk
(xk)| Fk+1/2)∥

2 ≤ E2(∥∇fDk
(xk)∥| Fk+1/2)

≤ E(∥∇fDk
(xk)∥2| Fk+1/2).

and conclude that for all k ≥ k1 there holds

f(x̄k) ≤ f(xk)− cmin∥∇f(xk)∥2 + Cmaxζk. (36)

Furthermore, since we also have x̄k = xk+1 a.s. for all k ≥ k1 and f is a deterministic
function, we know that for all k ≥ k1 there holds

EĀ(f(xk+1)) = EĀ(f(x̄k)) ≤ EĀ(f(xk))− cminEĀ(∥∇f(xk)∥2) + Cmaxζk. (37)

Now, using the Assumptions 2 and 6, we conclude that
∑∞

k=k1
EĀ(∥∇f(xk)∥2) <∞

and continuing as in the proof of Theorem 1, we conclude

P ( lim
k→∞

∥∇f(xk)∥ = 0 | Ā) = 1. (38)

Now, let us observe the second scenario, where Nk tends to infinity. Recall that
in this scenario Dk tends to infinity as well. Lemma 4 implies the existence of an



Springer Nature 2021 LATEX template

Spectral Stochastic Gradient Method with Additional Sampling 19

infinite sub-sequence of iterations K := {kj}j∈N ⊆ N such that the trial point is
accepted. In other words, for each k ∈ K we have

fDk
(xk+1) ≤ fDk

(xk)− cmin∥∇fDk
(xk)∥2 + Cmaxζk

and by using (26) and (27) we get

f(xk+1) ≤ f(xk)− cmin∥∇f(xk)∥2 + ak,

where
ak := e(xk+1,Dk) + e(xk,Dk) + cmineg(xk,Dk) + Cmaxζk. (39)

In other words, for all j ∈ N we have

f(xkj+1) ≤ f(xkj
)− cmin∥∇f(xkj

)∥2 + akj
.

Moreover, in all the intermediate iterations between kj and kj+1, the trial point is
rejected and we conclude that xkj+1 = ... = xkj+1−1 = xkj+1

for each j and thus

f(xkj+1
) = ... = f(xkj+1) ≤ f(xkj

)− cmin∥∇f(xkj
)∥2 + akj

. (40)

Now, assume that (32) does not hold. This means that there exists ε > 0 such that
∥∇f(xk)∥2 ≥ ε for each k ∈ N. Thus, for each j we obtain

f(xkj+1
) ≤ f(xkj

)− cminε+ akj
.

Due to Assumption 6, summability of ζk and the fact that Dk → ∞, we conclude
that limj→∞ akj

= 0 a.s.; thus, there exists j such that akj
≤ cminε/2 for all j ≥ j

a.s. which implies that the following holds

f(xkj+1
) ≤ f(xkj

)− cminε/2.

This further implies that, for any s ∈ N, a.s. there holds

f(xkj+s
) ≤ f(xkj

)− scminε/2,

and by employing Assumption 6 and letting s → ∞, we obtain lims→∞ f(xkj+s
) =

−∞, which is a contradiction with f being bounded from below. Thus, we conclude
that (32) must hold, i.e.,

P (lim inf
k→∞

∥∇f(xk)∥ = 0 | A) = 1. (41)

Thus, combining (38) and (41) we conclude that (32) holds.
Finally, since we assume that the sequence of iterates is bounded, due to the fact
that f is continuously differentiable function, we conclude that a.s. there exists an
accumulation point of the sequence {xk} which is stationary for function f . □

Remark 3 Notice that we can prove a stronger results ( limk→∞ ∥∇f(xk)∥ = 0
a.s.) if the sequence of ak defined in (39) is summable. This can be achieved for some
classes of problems if we impose fast enough increase of Dk in the scenario where
Dk →∞ (see the discussion after the proof of Theorem 3.1 in [2] and the references
therein.)

If the function f is µ-strongly convex, then we can prove that the whole
sequence converges to the unique solution x∗ of problem (1).

Theorem 4 Suppose that the Assumptions of Lemma 4 hold. Further, assume that
the function f is µ-strongly convex and cmin < 1/(2µ). Then the sequence {xk}
generated by LSNM-BB-G Algorithm converges to x∗ a.s.
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Proof Notice all the assumptions of Theorem 3 hold. Moreover, we have proved that
in the mini-batch scenario we obtain limk→∞ ∥∇f(xk)∥ = 0 a.s. and the statement
is a direct consequence of the following inequality

µ

2
∥xk − x∗∥2 ≤ f(xk)− f(x∗) ≤

1

2µ
∥∇f(xk)∥2. (42)

In the second scenario, when Dk →∞, there holds (40), i.e.,

f(xkj+1
) ≤ f(xkj

)− cmin∥∇f(xkj
)∥2 + akj

, j ∈ N

where K := {kj}j∈N ⊆ N is the sequence as in the proof of Theorem 3 - an infinite
sub-sequence of iterations at which the trial point is accepted, and akj

→ 0, j →∞
a.s.. Now, by using the second inequality in (42) and subtracting f(x∗) from both
sides of the previous inequality, we obtain

f(xkj+1
)− f(x∗) ≤ f(xkj

)− f(x∗)− cmin2µ(f(xkj
)− f(x∗)) + akj

,

i.e., for each j there holds

f(xkj+1
)− f(x∗) ≤ θ(f(xkj

)− f(x∗)) + akj
,

where θ := 1− cmin2µ ∈ (0, 1) by the assumption on cmin. Applying the induction
argument we obtain

f(xkj
)− f(x∗) ≤ θj(f(xk0

)− f(x∗)) +
j∑

t=1

θj−takt−1
.

Since f(xk0
) − f(x∗) is bounded, we have limj→∞ θj(f(xk0

) − f(x∗)) = 0. More-
over, since akj

tends to zero a.s. as j tends to infinity, it can be shown that

limj→∞
∑j

t=1 θ
j−takt−1

= 0 a.s. (see Lemma 3.1. in [3] for instance). Therefore,
we conclude that limj→∞ f(xkj

) = f(x∗) a.s., and according to (42) we have that
limj→∞ ∥xkj

− x∗∥ = 0 a.s. Having in mind the definition of the sub-sequence
{xkj
}j∈N, we conclude that the whole sequence of iterates {xk}k∈N tends to x∗ a.s.

□

Under the assumptions of the previous theorem, we analyze the convergence
rate of the proposed method. We prove R-linear convergence in a mean squared
sense if the sample size is increased fast enough in the scenario A (Nk →∞),
i.e., if the following holds for all j and some constants Ma > 0 and ρa ∈ (0, 1)

EA(akj ) ≤Maρ
j
a, (43)

where akj
is as in the proof of Theorem 4. We refer to iterations where xk+1 =

x̄k as successful iterations.

Theorem 5 Let assumptions of Theorem 4 hold. Then the sequence of successful
iterations generated by LSNM-BB-G Algorithm tends to x∗ R-linearly in the mean
squared sense, provided that (43) holds.
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Proof In the mini-batch scenario (Ā) there holds (37). Following the analysis of the
proof of Theorem 2, we conclude that for all j ∈ N

EĀ(∥xk1+j − x∗∥2) ≤
2MĀ

µ
ρj
Ā
.

Notice that all the iterations after k1 are a.s. successful. Considering the remaining
scenario (A), we conclude that (40) holds. By applying the conditional expectation
EA, subtracting f(x∗) from both sides, using (43) and strong convexity assumption,
we obtain that the following holds for all successful iterations, i.e., for all j ∈ N

EA(f(xkj+1
)− f(x∗)) ≤ ρ1EA(f(xkj

)− f(x∗)) +Maρ
j
a,

where ρ1 = (1− cmin2µ) ∈ (0, 1). Furthermore, using the same arguments as in the
proof of Theorem 2, we conclude that

EA(∥xkj
− x∗∥2) ≤ ρ̃jAM̃A,

for some ρ̃A ∈ (0, 1) and M̃A > 0. This completes the proof. □

We conclude the analysis by stating the worst-case complexity result that
takes into account dissimilarity of approximate functions given by (21).

Corollary 4 Let assumptions of Theorem 5 hold together with (21). Then the
expected number of iterations to reach E(∥xk − x∗∥2) ≤ ε is

k̃E =

⌈
| log(ε/M̃A)|
|(1− p) log(ρ̃A)|

⌉
.

Proof Notice that under Assumption 3 and its consequence (21), the number of
unsuccessful iterations is infinite a.s. Indeed, the probability of having finitely many
unsuccessful iterations is 0 since

P (Dk ∈ D+
k , k ≥ k2) =

∏
k≥k2

(1− P (Dk ∈ D−
k )) ≤

∏
k≥k2

(1− p) = 0.

Thus, the sample size tends to infinity, i.e., the scenario A happens a.s. Thus, accord-
ing to the proof of the previous theorem, we have EA(∥xkj

− x∗∥2) ≤ ρ̃jAM̃A, for all

j and E(∥xkj
− x∗∥2) ≤ ε is satisfied for all j ≥ j̃ where

j̃ =

⌈
| log(ε/M̃A)|
| log(ρ̃A)|

⌉
.

Recall that kj represent successful iterations and therefore this means that the ε-
vicinity of the solution in the mean squares sense is attained after at most j̃ successful
iterations. Notice also that we can set xk0

= x0 since the first successful iteration
must be in the initial point (but not necessarily at initial iteration k = 0). Further-
more, by using (22), we conclude that the expected number of successful iterations
within total k iterations is

E(k − Sk) ≤ k − kp.

Finally, setting the expected number of successful iterations to reach j̃, i.e., E(k −
Sk) ≥ j̃, we obtain the result. □



Springer Nature 2021 LATEX template

22 Spectral Stochastic Gradient Method with Additional Sampling

5 Numerical experiments

In this section we evaluate the numerical effectiveness of the proposed approach
when we have to solve a binary classification problem, i.e., a minimization prob-
lem as (2). Only in the last Section 5.4 we consider a problem that simulates
the formulation of the problem (1). We remark that, in order to prevent possi-
ble overfitting problems, an ℓ2 regularization term is included in the objective
function in both cases.
In the numerical experiments addressing problem (2), we consider four
datasets: w8a, IJCNN and RCV1 (downloadable from https://www.csie.
ntu.edu.tw/∼cjlin/libsvmtools/) and MNIST (available at https://yann.lecun.
com/exdb/mnist/). This last dataset is adapted to the binary classification
problem, by separating the items in even and the odd digits. The details of the
considered datasets are reported in Table 1. Here, d is the size of any element
ξi (feature vector and corresponding label) of the dataset N (training set) and
of the testing set.

dataset d− 1 #training set (N) #testing set
MNIST 784 60000 10000
w8a 300 44774 4975
IJCNN 22 49990 91701
RCV1 47236 20242 10000

Table 1: Dataset features.

We consider two different binary classifiers, corresponding to two loss func-
tions, one convex and one non-convex. In particular, by denoting as ai ∈ Rd−1

and bi ∈ {1,−1} the feature vector and the class label of the i-th example
respectively, in the first case the objective function in (2) is the sum of N
convex logistic regression (LR) loss terms penalized by an ℓ2 regularization
term:

F (x, ξi) = log
[
1 + e−bia

T
i x

]
+ λ∥x∥2,

whereas, in the second case, the objective function is the sum of N non-convex
loss in 2-layer neural networks (NN) penalized by an ℓ2 regularization term:

F (x, ξi) =

(
1− 1

1 + e−biaT
i x

)2

+ λ∥x∥2.

Here, λ is the regularization parameter. For all test problems, we set λ = 10−4.
All numerical results described in the following (unless otherwise specified)
were obtained by running each numerical test 10 times with the same setting,
but leaving the possibility to the random number generator to vary; conse-
quently, each reported performance measurement is the average of 10 values.
Furthermore, for any considered test problem, a ground truth value f∗ for the

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/
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minimum of the objective function was computed by a huge number of itera-
tions of the standard stochastic gradient method (SGD).
In order to evaluate the results carried out from the numerical experiments,
the following averaged quantities are tracked:

• averaged optimality gap value at each epoch, where the optimality gap
value is defined as |fN (x) − f∗| and it is computed by using the training
set; the epoch is a measure of computational complexity, equivalent to the
computation of a full gradient;

• averaged mini-batch size at each iteration;
• averaged accuracy evaluated on the testing set at each epoch.

As a further performance measure, we can use also the decreasing rate of the
objective function at the iteration k, defined as

Rk =
fN (xk)− f∗

fN (x0)− f∗ ,

where fN (xk) is the averaged value of the objective function computed at the
current k-th iterate over 10 runs.
Finally, in all the numerical experiments, the methods are stopped when the
total number of the objective function gradient evaluations exceeds N ·maxit
where maxit is the number of considered epochs. This stopping criterion is
motivated by the choice to fix the computational complexity (i.e., the available
budget of the computational resources), although in view of the stochasticity
of the methods, the number of the iterations at any run may be different.
In all numerical experiments described below (unless otherwise indicated), 30
epochs were considered for the running of LSNM-BB Algorithm (or other
methods), that is, we fixed a budget of computational resources equivalent to
computing 30 full gradients of the objective function. In addition, we remark
that, for both the considered objective functions, the evaluation of each term
at the current iterate xk provides also the value of the related gradient at xk

with negligible additional computational costs.

5.1 Performance evaluation of LSNM-BB with respect
to the rule for m(Nj)

In order to evaluate the performance of LSNM-BB Algorithm we consider
the ABBmin rule for the updating of γk within each j-th cycle. This choice
is motivated by a numerical comparison between different BB rules, confirm-
ing that ABBmin rule enables to obtain the best performance, as it is well
known in the literature [6]. The other hyperparameters involved in LSNM-
BB Algorithm do not influence significantly the effectiveness of the method,
as the numerical experimentation reported in the Section 5.2 will highlight;
thus, in all numerical tests performed, we use the same setting, i.e., Cmax = 1,
cmin = 10−4, η = 10−4, β = 10−2, ζk = 0.99k, k = 0, 1, . . . , the size of the ini-
tial mini-batch N0 = 5, γmin = 10−8, γmax = 108; furthermore, the increasing
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rule for the mini-batch size Nk at step 22 (when the trial update xk is refused)
is set as Nk+1 ← min(Nk + 1, N).
The first experiment is aimed to evaluate the behaviour of LSNM-BB Algo-
rithm with respect to the maximum number m(Nj) of the steps of the inner
cycle (steps 8-33 ). We observe that the strategy of using cycles of iterations,
where a cycle is related to the same mini-batch Nk, is not required by the
theoretical convergence analysis of the method. Indeed this is a feature of the
practical implementation of the method, aimed at exploiting the well-known
effectiveness of the BB-like rules. Motivated by this approach, we evaluate the
behaviour of different rules in the definition of m(Nj):

Case 1) m(Nj) = 10;
Case 2) m(Nj) = ⌊

√
Nj⌋;

Case 3) m(Nj) = ⌊0.2Nj⌋;
Case 4) m(Nj) = max(⌊log(Nj)⌋, 1).

Case 1) Case 2) Case 3) Case 4)
LR NN LR NN LR NN LR NN

RK 1.49·10−3 7.35·10−3 1.33·10−3 8.85·10−3 1.53·10−3 1.06·10−2 1.19·10−3 1.05·10−2

MNIST NK ± STD 889 ± 32.77 828± 60.44 899± 18.31 828± 28.85 893± 14.79 760± 50.95 887± 21.62 822± 35.19
EK ± STD 39 %± 1.11 % 29 %± 1.39 % 39 %± 0.58 % 28 %± 0.66 % 39 %± 0.59 % 28 %± 1.18 % 40 %± 0.87 % 28 %± 0.82 %

RK 8.00·10−4 1.60·10−3 1.08·10−3 1.69·10−3 8.69·10−4 1.45·10−3 1.19·10−3 1.33·10−3

w8a NK ± STD 940± 26.70 934± 30.88 955± 21.35 923± 54.11 942± 23.99 923± 49.72 932± 31.29 925± 30.25
EK ± STD 39 %± 0.92 % 38 %± 0.81 % 38 %± 0.61 % 37 %± 1.46 % 38 %± 0.72 % 35 %± 1.44 % 40 %± 0.89 % 38 %± 0.85 %

RK 4.46·10−3 3.32·10−3 4.83·10−3 3.19·10−3 3.51·10−3 3.94·10−3 5.86·10−3 3.59·10−3

IJCNN NK ± STD 976± 33.57 962± 43.94 967± 39.42 959± 20.53 972± 27.12 975± 35.87 955± 30.24 971± 28.67
EK ± STD 40 %± 1.08 % 36 %± 1.17 % 40 %± 1.21 % 37 %± 0.49 % 40 %± 0.94 % 36 %± 0.93 % 40 %± 1.17 % 37 %± 0.93 %

RK 5.86·10−3 4.04·10−3 6.23·10−3 2.99·10−3 4.88·10−3 3.36·10−3 4.08·10−3 1.98·10−3

RCV1 NK ± STD 590± 21.32 572± 31.82 597± 15.92 607± 19.29 583± 26.82 609± 19.18 597± 20.48 611± 13.98
EK ± STD 33 %± 0.93 % 32 %± 1.14 % 32 %± 0.68 % 32 %± 0.84 % 31 %± 0.96 % 31 %± 0.72 % 32 %± 0.93 % 32 %± 0.54 %

Table 2: LSNM-BB Algorithm: comparison of different rules for the definitions of
m(Nj); LR and NN denote the cases of convex and non-convex loss terms
in the objective function respectively.

Table 2 summarizes the results obtained by applying LSNM-BB Algorithm
to both the two objective functions for all the datasets; in particular, for any
combination of dataset-objective function-choice of m(Nj), we report:

• the value RK of the objective function decreasing rate at the final iteration
K;

• the averaged mini-batch size at the final iteration K with the related
standard deviation;

• the averaged percentage EK of the early exits in the inner cycles, i.e., the
ratio between the number of times when the m(Nj) iterations of the inner
cycle fail to complete (and an early exit occurs) and the total number of
iterations K; the standard deviation is reported.

Table 2 highlights that the values of RK are very similar in all cases (around
10−3). Also the percentage of the early exits is contained within 40%. The
final mini-batch size is limited with almost the same values for all rules. Con-
sequently, the method appears very robust with respect to the choice of the
rule for m(Nj).
This analysis can be further explored by examining the results obtained for



Springer Nature 2021 LATEX template

Spectral Stochastic Gradient Method with Additional Sampling 25

the MNIST database in more detail. Figures 1 and 2 concern the numerical

Fig. 1: Results obtained by LSNM-BB Algorithm for the dataset MNIST and
objective function with LR loss terms - On the left, behaviour of the averaged
optimality gap with respect to the epochs in the case of the four rules for
m(Nj); on the right, corresponding behaviour of the averaged mini-batch
size with respect to the iterations.

Fig. 2: Results obtained by LSNM-BB Algorithm for the dataset MNIST and
objective function with LR loss terms - Depictions of the running of the inner
cycle for the four rules ofm(Nj) over the first 2 epochs: top-left plotm(Nj) =
10, top-right plot m(Nj) =

√
Nj ; bottom-left plot m(Nj) = 0.2 Nj , bottom-

right m(Nj) = max(log (Nj), 1). The red dot in a position different from
(j,m(Nj)) means that the SD condition is not satisfied by the trial iterate
and the inner cycle early exits.

behaviour of LSNM-BB when the objective function includes LR loss terms
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for the four different choices of m(Nj). In particular, Figure 1 shows the aver-
aged optimality gap with respect to the epochs (on the left) and the averaged
increase of the mini-batch size with respect to the iterations (on the right);
Figure 2 depicts the running of the inner cycle for the four rules of m(Nj) over
the first 2 epochs: in each plot, for any j-th inner cycle (depicted on the hori-
zontal axis), the corresponding expected number of iterations m(Nj) is drawn
on the vertical axis, together with the information (marked with the red dot)
about the iteration at which the cycle stops. If the red dot is at the point
(j,m(Nj)), the whole cycle is executed, while, on the contrary, an early exit
occurs, highlighting that the SD condition (3) is not satisfied by the current
trial iterate.
From Figures 1 and 2 no significant difference depending on m(Nj) can be
observed in the effectiveness of LSNM-BB Algorithm, both regarding the
optimality gap and the increase in the mini-batch size. In Figure 2, we can
detect that, in the first two epochs, the rules that determine a rapid increase
of m(Nj), as

√
Nj or 0.2 Nj , determine the early exit of the inner cycle

almost always from a certain iteration; this does not happen for m(Nj) = 10
or max(log(Nj), 1). So we deduce that the rule for the inner cycle shouldn’t
increase too much.
A similar analysis was repeated for the binary classification of the dataset

Fig. 3: Results obtained by LSNM-BB Algorithm for the dataset MNIST and
objective function with NN loss terms - On the left, behaviour of the averaged
optimality gap with respect to the epochs in the case of the four rules for
m(Nj); on the right, corresponding behaviour of the averaged mini-batch
size with respect to the iterations.

MNIST by minimizing the non-convex objective function with NN loss terms
by LSNM-BB Algorithm. Figures 3-4 show the obtained results, very sim-
ilar to those of the previous test problem. In conclusion, the effectiveness of
LSNM-BB Algorithm appears not too dependent on the prefixed number of
iterations of the inner cycle, since this number remains small. In the following
numerical experiments, we decided to use the rule m(Nj) = max(log(Nj), 1),
since with this choice the increase in the number of internal iterations is slow.
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Fig. 4: Results obtained by LSNM-BB Algorithm for the dataset MNIST and
objective function with NN loss terms - Depictions of the running of the inner
cycle for the four rules ofm(Nj) over the first 2 epochs: top-left plotm(Nj) =
10, top-right plot m(Nj) =

√
Nj ; bottom-left plot m(Nj) = 0.2 Nj , bottom-

right m(Nj) = max(log (Nj), 1). The red dot in a position different from
(j,m(Nj)) means that the SD condition is not satisfied by the trial iterate
and the inner cycle early exits.

5.2 About the stability of LSNM-BB Algorithm with
respect to the initial setting

In this subsection, we describe the behaviour of the LSNM-BB Algorithm
with respect to the initial setting of the hyperparameters involved in the SD
condition (3), i.e. cmin, Cmax and ζk. The behaviour of the values of η and
β related to the standard line-search (4) has been deeply investigated in the
deterministic framework; so that we choose standard values, as η = 10−4 and
β = 10−2. Furthermore, the starting mini-batch size is set as a small value
N0 = 5, to prevent considering the entire dataset too prematurely; the bounds
for the learning rate γmin and γmax are chosen within a very wide range of
variability to evaluate the effectiveness of the BB-like rules.
In the following experiment, we consider six different configurations for the
hyperparameters cmin, Cmax and ζk, k ∈ N :

1. cmin = 10−4, Cmax = 1, ζk = 0.99k;
2. cmin = 10−4, Cmax = 10, ζk = 0.99k;
3. cmin = 10−4, Cmax = 0.1, ζk = 0.99k;
4. cmin = 10−4, Cmax = 1, ζk = 0.1k;
5. cmin = 10−2, Cmax = 1, ζk = 0.99k;
6. cmin = 10−1, Cmax = 10, ζk = 0.99k.
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In Table 3 we report the results obtained by running LSNM-BB Algo-
rithm equipped with the six initial settings in the case of the objective functions
with convex and non-convex terms for the four datasets. In particular, for any
combination of dataset-objective function-initial setting, we report at the end
of 30 epochs the following performance measures:

• the decreasing rate RK of the considered objective function and the averaged
mini-batch size at the final iteration K with the related standard deviation;

• the averaged percentage EK of the early exits with the related standard
deviation.

MNIST w8a IJCNN RCV1
LR NN LR NN LR NN LR NN

RK 1.20·10−3 1.04·10−2 8.47·10−4 1.33·10−3 5.86·10−3 3.59·10−3 4.09·10−3 1.98·10−3

Setting 1 NK ± STD 887 ± 21.63 822± 35.19 932± 31.29 932± 30.25 955± 30.24 968± 28.67 597± 20.48 612± 13.98
EK ± STD 40 %± 0.87 % 28 %± 0.82 % 38 %± 0.89 % 38 %± 0.84 % 40 %± 1.17 % 37 %± 0.93 % 32 %± 0.93 % 32 %± 0.54 %

RK 1.34·10−3 1.16·10−2 8.41·10−4 1.34·10−3 4.73·10−3 3.30·10−3 3.96·10−3 2.19·10−3

Setting 2 NK ± STD 902± 14.71 789± 43.81 931± 26.66 958± 24.10 973± 22.83 975± 32.98 593± 12.58 610± 13.89
EK ± STD 36 %± 0.47 % 26 %± 0.94 % 34 %± 0.66 % 35 %± 0.69 % 36 %± 0.63 % 34 %± 0.84 % 29 %± 0.45 % 29 %± 0.55 %

RK 1.49·10−3 9.84·10−3 8.27·10−4 1.80·10−3 4.52·10−3 3.51·10−3 5.61·10−3 2.81·10−3

Setting 3 NK± STD 878± 28.48 784± 38.72 907± 35.54 971± 16.67 943± 30.54 955± 35.08 583± 25.42 590± 16.00
EK± STD 43 %± 1.23 % 31 %± 1.06 % 41 %± 1.33 % 42 %± 0.52 % 44 %± 1.18 % 42 %± 1.36 % 36 %± 1.32 % 36 %± 0.79 %

RK 1.64·10−3 1.30·10−2 9.90·10−4 1.70·10−3 4.88·10−3 2.94·10−3 6.45·10−3 3.87·10−3

Setting 4 NK ± STD 900± 23.13 862± 26.65 960± 20.67 994± 22.28 966± 35.82 990± 19.43 587± 25.79 596± 16.70
EK ± STD 48 %± 1.09 % 45 %± 1.39 % 56 %± 1.27 % 63 %± 1.29 % 51 %± 1.69 % 53 %± 1.02 % 42 %± 1.37 % 40 %± 0.95 %

RK 1.93·10−3 1.34·10−2 8.04·10−4 1.52·10−3 4.33·10−3 3.46·10−3 3.82·10−3 1.85·10−3

Setting 5 NK ± STD 985± 20.71 844± 47.43 928± 23.41 961± 28.19 975± 21.37 970± 31.30 615± 26.40 619± 19.80
EK ± STD 54 %± 0.95 % 33 %± 1.12 % 38 %± 0.75 % 39 %± 0.77 % 40 %± 0.74 % 38 %± 0.98 % 35 %± 1.22 % 34 %± 0.80 %

RK 2.84·10−3 1.11·10−2 7.41·10−4 1.47·10−3 5.36·10−3 2.65·10−3 1.21·10−3 1.04·10−3

Setting 6 NK ± STD 1026± 23.93 905± 35.27 958± 25.04 978± 22.34 990± 25.54 989± 20.27 690± 10.99 689± 10.38
EK ± STD 59 %± 0.99 % 36 %± 0.86 % 37 %± 0.67 % 38 %± 0.57 % 40 %± 0.76 % 37 %± 0.54 % 41 %± 0.37 % 38 %± 0.39 %

Table 3: LSNM-BB Algorithm: numerical results of the comparison with respect
to six different settings of the hyperparameters Cmin, Cmax and ζk; LR
and NN denote the cases of convex and non-convex terms in the objective
function, respectively.

From the Table 3 we can observe that different starting settings do not
qualitatively influence the results; indeed, in every configurations, RK takes
a value with the same order of magnitude for each test problem; the same
consideration can be repeated also for the final mini-batch size and EK , whose
values are in very narrow ranges for each column of the table.

To highlight the results of Table 3, Figures 5 and 6 show the behaviour of
the averaged optimality gap (on the left) and the increase of the mini-batch
size (on the right), obtained by running LSNM-BB Algorithm with the six
different starting settings for the dataset IJCNN with objective function with
LR and NN terms, respectively. We can observe that the behaviour of the
averaged optimality gap appears to be unaffected by the values chosen for
cmin, Cmax and ζk. Similarly, the values of the final mini-batch size are really
similar, although the number of iterations varies independently of a more or
less severe SD condition.
However, for a fixed computational budget, the results obtained by LSNM-
BB Algorithm appear not to depend significantly on the values chosen for
cmin, Cmax and ζk. For the next subsections we use LSNM-BB Algorithm
with the first configuration.
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Fig. 5: Results obtained by LSNM-BB Algorithm for the dataset IJCNN and the
objective function with LR loss terms - On the left, behaviour of the averaged
optimality gap computed at the training set with respect to the epochs for
the six starting settings of cmin, Cmax and ζk. On the right, increase of
the averaged mini-batch size with respect to the iterations for LSNM-BB
Algorithm equipped with the six starting settings of cmin, Cmax and ζk.

Fig. 6: Results obtained by LSNM-BB Algorithm for the dataset IJCNN and the
objective function with NN loss terms - On the left, behaviour of the averaged
optimality gap computed at the training set with respect to the epochs for
the six starting settings of cmin, Cmax and ζk. On the right, increase of
the averaged mini-batch size with respect to the iterations for LSNM-BB
Algorithm equipped with the six starting settings of cmin, Cmax and ζk.

5.3 Comparison of LSNM-BB Algorithm with several
state of the art methods

The next experiment is aimed to compare LSNM-BB Algorithm with an
effective version of the standard deterministic descent method and several state
of the art methods in the stochastic framework. The methods taken into con-
sideration to carry out a comparison are listed below with the implementation
details:

• standard full gradient descent method GD-BB equipped with the ABBmin

rule and the Armijo non-monotone line-search [6, 7]; using the notation in
[6, 7], we set τ = 0.9, the memory size for the BB2 definition is 2; the



Springer Nature 2021 LATEX template

30 Spectral Stochastic Gradient Method with Additional Sampling

step length obtained by the ABBmin rule is thresholded within the range
[10−8, 108];

• SGD method with the best tuned value of α0 as starting learning rate and
constant mini-batch size equal to 50; the value of α0 is determined by a very
expensive trial and error procedure; in order to guarantee the convergence,
the value of the learning rate is decreased by a rule with behaviour as O(1/k)
[8], i.e., αk = α0

max(k/1200,nepoch) ; where nepoch is the counter for the epochs;

• SARAH method with the setting of the hyperparameters as specified in [24];
• SGD method with momentum (SGD-MOM), where the stochastic gradient
is computed at the iteration k as

gk = (1− β)∇fNk
(xk) + βgk−1,

with g0 = ∇fN0
(x0) and Nk a random sub-sample of fixed size; we set

β = 0.7, 50 as mini-batch size and the best tuned value as fixed learning
rate [1];

• Adaptive Sampling Method (ASM) [25], based on the increase in the mini-
batch size depending on a test (Augmented Inner Test) which checks whether
the current stochastic gradient is a descent direction in expectation; at any
iteration, the learning rate is computed by means a line-search procedure;
the initial mini-batch size is set as N0 = 3 whereas the initial learning
rate is α0 = 1; using the same notation in [25], the setting of the other
hyperparameters is θ = 0.9, ν = 5.84, r = 5, γ = 0.38, η = 2 and ζk = ζ = 2.

Dataset MNIST w8a IJCNN RCV1
Method RK Acc OG± RK Acc OG± RK Acc OG± RK Acc OG±

STD STD STD STD
LSNM-BB 6.65·10−4 0.8924 0.0153± 1.17·10−3 0.9007 0.0064 ± 4.72·10−3 0.9138 0.0041 ± 1.06·10−2 0.9433 0.0340±

0.0079 0.0027 0.0013 0.0074
GD-BB 6.81·10−3 0.8502 0.1565 3.37·10−1 0.8926 1.8536 2.55·10−1 0.9050 0.2204 2.92·10−12 0.9541 0.93 ·10−11

SGD 2.33·10−3 0.8806 0.0536± 5.99·10−3 0.8890 0.0330 ± 7.92·10−2 0.9050 0.0684 ± 8.58·10−1 0.5013 2.7464±
0.0003 0.0002 0.0002 0.0012

SARAH 9.58·10−4 0.8928 0.0220± 2.62·10−3 0.8935 0.0144 ± 2.42·10−2 0.9053 0.0209 ± 6.43·10−1 0.5227 2.0597±
0.0010 0.0005 0.0001 0.0000

SGD-MOM 3.38·10−4 0.8975 0.0078± 9.00·10−4 0.8990 0.0050 ± 3.68·10−3 0.9124 0.0032 ± 4.46·10−1 0.7227 1.4278 ±
0.0003 0.0001 0.0000 0.0003

ASM 1.65·10−3 0.8820 0.0382± 6.18·10−4 0.8984 0.0035± 2.77·10−2 0.9202 0.0232 ± 2.69·10−2 0.9464 0.0878±
0.0016 0.0015 0.0006 0.0051

Table 4: Comparison between different methods for objective function with LR loss
terms; at the final iteration K, the following performance measures are
reported: RK computed at the training set, the averaged accuracy Acc
computed at the testing set and the averaged optimality gap at the training
set ± the relative standard deviation (OG± STD).

In Figures 7 and 8 we can observe the behaviour in 30 epochs for all consid-
ered methods for the dataset IJCNN and the objective functions with LR and
NN loss terms respectively. In particular, we observe that, in Figure 7, the
smallest value of the averaged optimality gap (computed at the training set)
after 30 epochs is obtained by SGD-MOM method. This value is very simi-
lar to the one provided by LSNM-BB; the meaningful difference is that, for
SGD and SDG-MOM methods, a best tuned set of hyperparameters was
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Fig. 7: Dataset IJCNN and objective function with LR loss terms - First row: on the
left, behaviour of the averaged optimality gap (combined with the relative
standard deviation) computed at the training set with respect to the epochs;
on the right, averaged accuracy evaluated at the testing set with respect to
the epochs. Second row: increase of the averaged mini-batch size with respect
to the iterations for LSNM-BB method (on the left) and for ASM method
(on the right).

Dataset MNIST w8a IJCNN RCV1
Method RK Acc OG± RK Acc OG± RK Acc OG± RK Acc OG±

STD STD STD STD

LSNM-BB 8.83·10−3 0.8949 0.0040± 1.31·10−3 0.8992 0.0010 ± 2.96·10−3 0.9117 0.0011 ± 4.75·10−3 0.9458 0.0090±
0.0025 0.0000 0.0005 0.0033

GD-BB 8.88·10−1 0.0086 0.1565 3.37·10−3 0.8926 0.0009 8.47·10−2 0.9050 0.0030 7.84·10−15 0.9519 1.49 ·10−14

SGD 9.95·10−1 0.4926 0.4521± 5.99·10−3 0.8890 0.0330 ± 5.89·10−2 0.9050 0.0210 ± 9.72·10−1 0.5013 1.8514±
0.0000 0.0002 0.0000 0.0000

SARAH 9.85·10−1 0.4926 0.4478± 2.62·10−3 0.8935 0.0144 ± 3.82·10−2 0.9050 0.0136 ± 9.17·10−1 0.5013 1.7468±
0.0000 0.0000 0.0000 0.0000

SGD-MOM 9.70·10−1 0.4926 0.4409± 5.42·10−3 0.8969 0.8942 ± 1.02·10−2 0.9059 0.0037 ± 8.03·10−1 0.5013 1.5293 ±
0.0000 0.0000 0.0000 0.0000

ASM 6.20·10−3 0.8906 0.0028± 1.21·10−3 0.8962 0.0009± 1.46·10−2 0.9179 0.0050 ± 1.82·10−2 0.9411 0.0349±
0.0003 0.0005 0.0001 0.0016

Table 5: Comparison between different methods for objective function with NN loss
terms; at the final iteration K, the following performance measures are
reported: RK computed at the training set, the averaged accuracy Acc
computed at the testing set and the averaged optimality gap at the training
set ± the relative standard deviation (OG± STD).

used, obtained with expensive trial and error procedures, while the behaviour
of LSNM-BB Algorithm is not significantly dependent on its hyperparam-
eters. We point out that 2-3 epochs are enough for the optimality gap to
reach a value fairly close to the final value. With regard to the final value of
the mini-batch size, we highlight that the LSNM-BB Algorithm provides an
increase of the mini-batch size which is not very relevant and lower than that
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Fig. 8: Dataset IJCNN and objective function with NN loss terms - First row: on the
left, behaviour of the averaged optimality gap (combined with the relative
standard deviation) computed at the training set with respect to the epochs;
on the right, averaged accuracy evaluated at the testing set with respect to
the epochs. Second row: increase of the averaged mini-batch size with respect
to the iterations for LSNM-BB method (on the left) and for ASM method
(on the right).

required in ASM. About the accuracy (computed at the testing set), all the
method are around the 90%. Figure 8, related to the objective function with
non-convex loss terms, highlights that the more efficient method in term of
optimality gap at the end of 30 epochs is LSNM-BB Algorithm. Also in this
case the increase of the mini-batch size is limited and lower than that required
by ASM. The accuracy is very similar for all the considered methods. Both
Figures 7-8 shown that the optimality gap provided by LSNM-BB Algorithm,
however, has a standard deviation that increases as the iterations increase; the
method appears very efficient in the first 2-3 epochs. Tables 4-5 summarize
the results obtained at the end of 30 epochs for all the test problems. These
results confirm the previous remarks, highlighting that LSNM-BB Algorithm
can be very competitive, despite the increase of the mini-batch size. The only
exception is the case of the GD-BB method for the RCV1 dataset; in the
30 iterations carried out, the backtracking procedure is never triggered and
the ABBmin rule determines long steps which in the first approximately 20
iterations maintain the optimality gap comparable with the one of the other
methods, while, in the last 10 iterations, this rule allows to reach a very low
value of the optimality gap.
Now, in order to deepen the comparison of LSNM-BB Algorithm with the
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state of the art methods, we consider a similar method, as SLiSeS method
in [11]; this method exhibits a particularly efficient numerical behavior in the
early iterations. In the numerical experiment where the behaviour of SLiSeS
method is compared with the one of LSNM-BB Algorithm over the first
epoch, we used the Matlab code provided by the authors where SLiSeS
method is equipped with the same setting specified in [11]; in particular, the
stochastic gradient is related to a single term of the objective function, ran-
domly drawn from the training set, and any inner cycle consists of 3 iterations.
As in the numerical experiments in [11], we execute a single representative run
of SLiSeS method and LSNM-BB Algorithm; to monitor the behaviour of
both methods, the optimality gap evaluation at the end of any outer iteration
is carried out.

LSNM-BB SLiSeS
LR NN LR NN

RK 2.11·10−3 4.00·10−2 * 6.67·10−1

MNIST Acc 0.8791 0.8763 * 0.4927
OG 0.0484 0.0182 * 0.3030

RK 3.56·10−3 4.01·10−3 4.39·10−2 1.46·10−1

w8a Acc 0.8935 0.8975 0.7741 0.7262
OG 0.0196 0.0031 0.2419 0.1124

RK 1.40·10−2 9.57·10−3 2.59·10−1 1.96·10−1

IJCNN Acc 0.9099 0.9053 0.9037 0.9050
OG 0.0121 0.0034 0.2242 0.0697

RK 2.03·10−2 1.56·10−2 7.13·10−1 4.80·10−1

RCV1 Acc 0.9329 0.9284 0.5070 0.5013
OG 0.0651 0.0297 2.2815 0.9142

Table 6: Comparison between LSNM-BB Algorithm and SLiSeS method for the
two considered objective functions (with LR and NN loss terms); at the
final iteration K of the first epoch, the following performance measures are
reported: RK computed at the training set, the accuracy Acc computed at
the testing set and the optimality gap at the training set. The symbol *
denotes a failure of the method.

Table 6 shows the metrics for the two methods at the end of the first epoch;
we observe that LSNM-BB Algorithm appears very efficient in term of opti-
mality gap and accuracy for all test problems. Figures 9 and 10 show the
comparison between the results obtained by the two methods for the w8a
dataset and the objective function with convex and non-convex terms, respec-
tively. We observe that, in the case of SLiSeS method, the optimality gap
exhibits an almost linear decrease until the end of the epoch, while, in the
case of LSNM-BB, a very rapid decrease occurs only at the end of the first
epoch. The same results can be observed for the RCV1 dataset and the objec-
tive function with convex and non-convex terms in Figures 12 -11 respectively.
In summary, in the initial epochs the behavior of LSNM-BB Algorithm and



Springer Nature 2021 LATEX template

34 Spectral Stochastic Gradient Method with Additional Sampling

Fig. 9: Dataset w8a and objective function with LR loss terms - Behaviour of the
optimality gap computed at the training set with respect to the function
evaluations in the first epoch for LSNM-BB on the left and for SLiSeS on
the right. A logarithmic scale is used for both axes.

Fig. 10: Dataset w8a and objective function with NN loss terms - Behaviour of the
optimality gap computed at the training set with respect to the function
evaluations in the first epoch for LSNM-BB on the left and for SLiSeS
on the right. A logarithmic scale is used for both axes.

Fig. 11: Dataset RCV1 and objective function with LR loss terms - Behaviour of
the optimality gap computed at the training set with respect to the function
evaluations in the first epoch for LSNM-BB on the left and for SLiSeS
on the right. A logarithmic scale is used for both axes.

SLiSeS method appears very similar: LSNM-BB Algorithm seems to deter-
mine a stepwise descent of the objective function while in the case of SLiSeS
method the decrease seems more regular. However, at the end of the first epoch
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Fig. 12: Dataset RCV1 and objective function with NN loss terms - Behaviour of
the optimality gap computed at the training set with respect to the function
evaluations in the first epoch for LSNM-BB on the left and for SLiSeS
on the right. A logarithmic scale is used for both axes.

LSNM-BB Algorithm appears to perform better than SLiSeS method for
all test problems considered.
Finally, the last experiment is aimed to compare LSNM-BB Algorithm and
GD-BB along 500 epochs. We remark that LSNM-BB can fall back to GD-
BB method when the mini-batch is the whole dataset. In order to speed up
this process, at the step 22 of LSNM-BB Algorithm we set the rule of the
increase of mini-batch size as Nk+1 = min(Nk + 250, N).

Fig. 13: Dataset w8a and objective function with LR loss terms - On the left,
behaviour of the objective function for LSNM-BB and GD-BB methods
along 500 epochs; on the right a zoom along 400− 500 epochs is shown; at
the epoch 426, LSNM-BB uses the whole dataset and the two methods
exhibit the same behaviour.

Figures 13-14 show the behaviour of the objective function with LR and
NN loss terms respectively for LSNM-BB and GD-BB methods along 500
epochs: we observe that after 426 epochs for the convex objective function
and 312 epochs for the non-convex one, LSNM-BB Algorithm falls into the
method GD-BB, by using the whole training set in both the cases.
These results allow us to give a double interpretation of the performance of
the proposed LSNM-BB Algorithm:
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Fig. 14: Dataset w8a and objective function with NN loss terms - On the left,
behaviour of the objective function for LSNM-BB and GD-BB methods
along 500 epochs; on the right a zoom along 300− 400 epochs is shown; at
the epoch 312, LSNM-BB uses the whole dataset and the two methods
exhibit the same behaviour.

• for small-medium datasets with moderate memory demanding, the method
can be used as a low-cost technique for finding a suitable starting point of
any deterministic method;

• for very big datasets, the LSNM-BB Algorithm appears competitive with
state of the art stochastic methods in terms of limited memory requirements
and low computational costs; in addition, it does not require any hyperpa-
rameter tuning phase and appears robust with respect to the pre-defined
rules that enable to control the maximum memory request in connection
with the available computing resources.

5.4 A further numerical test simulating the infinite sum
problem

In order to evaluate the behaviour of LSNM-BB-G Algorithm, we simulate
the infinite sum problem (2). We consider the dataset CIFAR10, dowloadable
from https://www.cs.toronto.edu/∼kriz/cifar.html, where d − 1 = 3072, the
size of the training set is 50000 and the one of the testing set is 10000. We
adapt CIFAR10 for the binary case, where the two classes are the even and
odd class positions. To mimic the behaviour of an incremental database, we
follow the approach used in [20–22]. We subdivide the training and the testing
sets in 30 blocks of 1666 and 333 elements respectively. Then, at the start of
the code run, at 0 seconds, LSNM-BB-G Algorithm is executed by consider-
ing the first blocks of training and testing sets; every two seconds new blocks
of the training and the testing sets are added to the previous ones, enlarging
the two sets. So, at 0 seconds we have 1666 elements for the training and 333
elements for the testing, at 2 second we have 3332 elements for the training
and 666 elements for the testing and so on. As error measure [22], we consider
the quantity named error rate, given by 1−Acc, where the accuracy is com-
puted for the training and the testing sets before adding the new blocks at the
end of two seconds. Every two seconds, the time count is stopped to evaluate
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the metrics (error rate and objective function) and to increase the training and
testing sets; then, it is restarted for the next two seconds. In LSNM-BB-G
Algorithm, the rule for the increase of Nk andDk is respectively Nk+1 = Nk+1
and Dk+1 = Dk + 1 where N0 = 5 and D0 = 1.
In the following we describe the numerical results obtained by running LSNM-
BB-G Algorithm on the described incremental training set. As in the previous
experiments, we execute 10 runs of the code, changing the seed of the ran-
dom number generator, and we report the averaged values of the measured
quantities. In particular, the plots of the following averaged quantities are
shown:

• objective function computed at the training set every two seconds before
adding the new blocks;

• mini-batch size Nk with respect to the iterations;
• mini-batch size Dk with respect to the iterations;
• error rate for the training and the testing sets every two seconds before
adding the new blocks.

Fig. 15: Behavior of LSNM-BB-G Algorithm. First row: on the left panel, objec-
tive function evaluated for the training set every two seconds; on the right
panel, the increase of the mini-batch sizes Nk and Dk. Second row: on the
left panels, error rate computed at the training set every two seconds; on
the right panel, error rate computed at the testing set every two seconds.

In Figure (15) we observe that the objective function measured every 2 sec-
onds on an increasing training set shows a decreasing trend. About the error
rates measured on the testing and the training sets, we remark that they have
a decreasing behaviour, very similar, achieving around the 40%. The increase
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of the mini-batch sizes Nk and Dk are very similar and limited under the value
1000. A difference with respect to LSNM-BB Algorithm is the increase of
the size Dk; indeed, in LSNM-BB Algorithm, Dk is fixed to 1.
We remark that in the case of an incremental database the proposed algorithm
appears stable; after the first learning phase based on the initial dataset, the
procedure maintains or improves the accuracy, even after the successive incre-
ments of the database. These results are confirmed even if the increase of the
training and the testing sets occurs with time intervals other than 2 seconds.

6 Conclusions

We developed a new method tailored for the numerical minimization of both
finite sum (2) and objective functions in the form of mathematical expectation
(1). This stochastic first-order method is based on a strategy to exploit the
effectiveness of the well-known BB-like rules for the updating of the step length
in the framework of the standard gradient descent methods; the idea is to
group into cycles the iterations that consider the same mini-batch or SAA
estimator of the objective function and to include in the current iteration an
additional SD condition evaluated on a different mini-batch or SAA estimator;
when this condition is not met, the trial iterate is rejected and the size of the
new mini-batch or SAA estimator is increased; on the other hand, when all the
iterations foreseen in a cycle are executed, a new mini-batch or SAA estimator
with the same cardinality of the previous is chosen.
The details of the method are described in LSNM-BB and LSNM-BB-G
Algorithms. Convergence results are discussed for the finite and infinite version
for general and strongly convex objective function. Numerical experimentation
for the binary classification of datasets well-known in the literature show very
promising performance of the method, without the need to provide special
values for the hyperparameters on which the method depends. Further future
investigations can be planned to evaluate how to adapt the method to training
neural networks and to handle incremental databases. Future experiments will
allow evaluating the behaviour of the algorithm even when the oldest blocks
are eliminated to limit memory requests.
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