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February 25, 2015

Abstract
A smoothing method for solving stochastic linear complementarity

problems (SLCP) is proposed. The expected residual minimization re-
formulation of the problem is considered and it is approximated by the
Sample Average Approximation (SAA). The proposed method is based on
sequential solving of a sequence of smoothing problems where each of the
smoothing problems is defined with its own sample average approxima-
tion. A nonmonotone line search with a variant of the Barzilai-Borwein
(BB) gradient direction is used for solving each of the smoothing problems.
The BB search direction is efficient and low cost, particularly suitable for
nonmonotone line search procedure. The variable sample size scheme al-
lows the sample size to vary across the iterations and the method tends
to use smaller sample size far away from the solution. The key point of
this strategy is a good balance between the variable sample size strategy,
the smoothing sequence and nonmonotonicity. Eventually, the maximal
sample size is used and the SAA problem is solved. Presented numerical
results indicate that the proposed strategy reduces the overall computa-
tional cost.
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1 Introduction

The stochastic linear complementarity problem (SLCP) consists of finding a
vector x ∈ Rn such that

x ≥ 0, M(ω)x+ q(ω) ≥ 0, x>(M(ω)x+ q(ω)) = 0, ω ∈ Ω,
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where Ω is underlying sample space and M(ω) ∈ Rn,n and q(ω) ∈ Rn for each
ω.

One way of dealing with SLCP, presented in Chen, Fukushima [3], is consid-
ering its Expected Residual Minimization (ERM) reformulation of the form

f(x) = E(‖Φω(x)‖2)→ min, x ≥ 0, (1)

where

Φ(x, ω) = (φ1, . . . , φn)T , φi = φ(xi, [M(ω)x]i + qi(ω)), i = 1, ..., n, (2)

Φ(x, ω) : Rn × Ω→ Rn and φ : R2 → R is an NCP function. In this paper, we
focus on the ERM reformulation based on the min function φ(a, b) = min{a, b},
where

Φω(x) := Φ(x, ω) = min{x,M(ω)x+ q(ω)}.

This is nonconvex, nonsmooth constrained optimization problem. It is shown
in Lemma 2.2 Chen et al. [5] that this problem always has a solution if Ω is a
finite set.

The function f(x) in ERM reformulation is in the form of mathematical ex-
pectation and in general it is rather difficult to compute it accurately. Sample
Average Approximation (SAA) is usually employed for estimating f(x). As-
sume that {ω1, ω2, ..., ωNmax} from Ω is a sample of random vectors that are
independent and identically distributed. Then function f(x) from (1) can be
approximated by Monte Carlo sampling with

f̂Nmax
(x) =

1

Nmax

Nmax∑
j=1

‖Φωj (x)‖2. (3)

Thus we consider the following nonsmooth problem

f̂Nmax
(x)→ min, x ≥ 0. (4)

One of the common ways for solving nonsmooth problems like (4) is to apply
the smoothing technique which consists of considering a sequence of smoothing
functions

f̂Nmax
(x, µk), µk > 0,

instead of the objective function f̂Nmax
(x). More precisely, at each iteration, the

objective function f̂Nmax(x) is approximated by a smooth function f̂Nmax(x, µk)
with a fixed smoothing parameter µk > 0. The sequence of smoothing functions
f̂Nmax

(x, µk) tends to the nonsmooth objective function f̂Nmax
(x) when µk → 0.

If Nmax is a large integer the SAA approximation (3) is expensive and con-

sidering the smoothing function f̂Nmax(x, µk) in each iteration might be too
expensive. One possible remedy is to use a variable sample size strategy i.e. to
consider an approximate objective function f̂Nk(x, µk) at the k-th iteration with
Nk ≤ Nmax. Balancing the progress in function decrease with the precision of
the objective function approximation i.e. using smaller sample when we are far
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away from the solution and larger sample when close to the solution, one can
reduce the computational cost of solving (4). The key point of variable sample
size strategies is to ensure that Nmax sample size is used at the final stage of the
optimization procedure so that (4) is eventually solved but with smaller cost.

The objective function f̂Nk depends on the smoothing parameter µk as well,
so one needs to define a proper update for the smoothing parameters as well.
Clearly, the smoothing sequence should not converge to zero too fast as there is
no need to work with high precision if we are far away form the solution and if
Nk is significantly smaller than Nmax. On the other hand, when the final sam-
ple size is reached, iterations become costly and one should be able to reduce
the smoothing parameters according to the progress made in approaching the
stationary point. Therefore keeping these two values, the sample size and the
smoothing parameter in a good balance is the key moment in reducing the cost
of solving (4).

In this paper we design a variable sample size strategy for the above ex-
plained sequence of smoothing problems. The sample size change is based on
ideas from Krejić, Krklec [11], [12]. This strategy allows us to increase and
decrease the sample size during the optimization process but the presence of
smoothing parameters is an additional challenge that is resolved in this paper.
The sample size strategy is embedded with an update of the smoothing parame-
ters in such a way that the smoothing parameters allow an increase of precision
in the objective function approximation if needed, and follow the progress in
approaching the stationary point if the maximal sample size is reached. So,
the proposed method at each iteration has its smoothing parameter µk and
the sample size Nk while the objective function f̂Nmax

(x) is approximated by

f̂Nk(x, µk).
Besides the smoothing parameter and the sample size, at each iteration one

needs to specify a search direction. We consider here a modfication of the
Barzilai-Borwein (BB) gradient direction [1], which is a low cost and efficient in
nonmonotone line search procedures [8], [14].

It is proved that after a finite number of iterations the maximal sample size
Nmax is reached and kept until the end so the SAA function f̂Nmax(x, µk) is min-
imized. After that we show that the sequence of smoothing parameters tends to
zero, which implies that the sequence of smoothing functions tends to the non-
smooth objective function f̂Nmax

(x). Finally, we prove that any accumulation
point of the sequence generated by the method is a Clarke stationary point of
f̂Nmax(x). Thus, the classical results of smoothing methods for SAA problems
are obtained but with significantly smaller cost.

This paper is organized as follows. Some basic definitions and smoothing
properties are given in Section 2. The algorithm is proposed in Section 3 and
convergence results are presented in Section 4. Numerical experiments are given
in the last section, comparing the method proposed in this paper with the
method from Li et al. [9].
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2 Preliminaries

Throughout the paper ‖ · ‖ represents the Euclidian norm, Rn+ = {x ∈ Rn, x ≥
0}, Rn++ = {x ∈ Rn, x > 0} and it is assumed that M(ω) and q(ω) are measur-
able functions of ω such that

E(‖M(ω)‖2 + ‖q(ω)‖2) <∞.

For continuously differentiable mapping H : Rn → Rn the Jacobian of H at x is
denoted by H ′(x), whereas for smooth mapping g : Rn → R we denote by ∇g(x)
the gradient of g at x and the i-th component of gradient vector∇g(x) is denoted
by [∇g(x)]i. For a given matrix A ∈ Rn,n and a nonempty set of matrices
A ∈ Rn,n, the distance between A and A is dist(A,A) = infB∈A ‖A − B‖, the
i-th row of matrix A is denoted by [A]i and ei, i = 1, ..., n is the canonical base
of Rn .

For locally Lipschitzian mapping H : Rn → Rn, the generalized Jacobian
of H at x, defined by Clarke [6], is denoted by ∂H(x). Let ∂CH(x) be the
C-generalized Jacobian of H at x defined by

∂CH(x) = ∂[H (x)]1 × ∂[H (x)]2 × . . .× ∂[H (x)]n.

For locally Lipschitzian mapping g : Rn → R, according to Theorem 2.5.1
of Clarke [6], the generalized gradient of g at x is defined by

∂g(x) = conv{ lim
xk→x

∇g(xk), xk ∈ Dg},

where conv represents convex hull and Dg is the subset of Rn where g is differ-
entiable.

Definition 1. [15] Function g̃ : Rn × R+ → R is a smoothing function of
locally Lipschitzian function g if g̃(·, µ) is continuously differentiable in Rn for
any µ ∈ R++ and for any x ∈ Rn,

lim
z→x,µ→0

g̃(z, µ) = g(x)

and {limz→x,µ→0∇g̃(z, µ)} is nonempty and bounded.

The corresponding smoothing problem for the ERM reformulation has been
introduced in Li et al. [9] and Zhang, Chen [15] and is defined for a smoothing
parameter µ > 0.

A smoothing approximation for the min function defined in Chen, Mangasar-
ian [2] is

φ(a, b, µ) =


b, if a− b ≥ µ

2
a− 1

2µ (a− b+ µ
2 )2, if − µ

2 < a− b < µ
2

a, if a− b ≤ −µ2 .
(5)

A smoothing function for Φω(x) defined by (2) is Φ̃ω(x, µ), whose components

φ (xi, [M(ω)x]i + qi(ω), µ) , i = 1, ..., n (6)
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are defined with (5). It is proved in Zhang, Chen [15] that

f̃(x, µ) = E(‖Φ̃ω(x, µ)‖2) (7)

is a smoothing function for the objective function f(x) in (1).
Using the SAA method, the objective function f(x) from (1) is estimated

with f̂Nmax
(x) from (3) so f̃(x, µ) can be approximated by

f̂Nmax
(x, µ) =

1

Nmax

Nmax∑
j=1

‖Φ̃ωj (x, µ)‖2, (8)

which is a smoothing function for f̂Nmax
(x).

The algorithm proposed in this paper uses line search with variable sample
size, so at the k-th iteration it considers the differentiable function

f̂Nk(x, µk) =
1

Nk

Nk∑
j=1

‖Φ̃ωj (x, µk)‖2, (9)

where Nk ≤ Nmax is the sample size and µk is the smoothing parameter.
Since ‖Φ̃ωj (x, µ)‖2 ∈ C1(Rn) and ‖Φ̃ωj (x, µ)‖2 ≥ 0, for every ωj ∈ Ω, µ ∈

R++, x ∈ Rn, it is easy to see that f̂N (x, µ) ∈ C1(Rn) and

f̂N (x, µ) ≥ 0, (10)

for every x ∈ Rn, N ∈ {1, 2, ..., Nmax}.
Let f(x), Φω(x), f̂Nmax

(x) be the functions defined by (1), (2), (3) and

Φ̃ω(x, µ), f̃(x, µ), f̂Nmax
(x, µ) be defined by (5)-(7) and (8) respectively. First

we will give some properties of these functions which are necessary for the
convergence analysis presented later on.

Lemma 1. [15] Let ∂Φω(x) be the generalized Jacobian of Φω(x) and ∂f(x)
be the generalized gradient of f(x). Denote κ̃ = 1

4

√
n. For any ω ∈ Ω and

µ ∈ R++ there hold

a) ‖Φ̃ω(x, µ)− Φω(x)‖ ≤ κ̃µ, x ∈ Rn,

b) limµ→0 Φ̃′ω(x, µ) ∈ ∂Φω(x), x ∈ Rn,

c) limµ→0∇f̃(x, µ) ∈ ∂f(x), x ∈ Rn+,

d) ‖Φ̃′ω(x, µ)‖ ≤ 2 + ‖M(ω)‖, x ∈ Rn.

Since ∂Φω(x) ⊆ ∂CΦω(x), Lemma 1 b) implies that Φ̃ω(x, µ) has the Jaco-
bian consistency property defined in Chen et al. [4] which means

lim
µ→0

Φ̃′ω(x, µ) ∈ ∂CΦω(x). (11)

The following lemma is an immediate consequence of (11) and the definitions

of f̂Nmax
(x) and f̂Nmax

(x, µ) so the proof is omitted.
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Lemma 2. Let x ∈ Rn. Then limµ→0∇f̂Nmax(x, µ) ∈ ∂f̂Nmax(x).

The above lemma implies that for every fixed δ1 > 0, there exists a threshold
value ¯̄µ(x, δ1) > 0 such that

dist(∇f̂Nmax
(x, µ), ∂f̂Nmax

(x)) ≤ δ1, (12)

for all 0 < µ ≤ ¯̄µ(x, δ1). The exact value of this threshold is necessary for the
smoothing parameter update in the algorithm we are proposing and it can be
determined as follows.

Since (11) holds by Lemma 1, there follows that for every fixed δ > 0 there
exists a threshold value µ̄(x, δ) > 0 such that

dist(Φ̃′ω(x, µ), ∂CΦω(x)) ≤ δ, (13)

for every 0 < µ ≤ µ̄(x, δ). The precise definition of µ̄(x, δ) is given in the
following lemma.

Lemma 3. Let x ∈ Rn and ω ∈ Ω be arbitrary but fixed and assume that x is
not a solution of the SLCP. Define γ := maxi ‖[M(ω)]i − ei‖ and

ξ(x) := min
i/∈β(x)

|xi − [M(ω)x]i − qi(ω)|,

where β(x) := {i, xi = [M(ω)x]i + qi(ω)}. Let δ > 0 be given and define the
threshold value

µ̄(x, δ) :=

{
2
√
nγξ(x)√
nγ−2δ

, γ 6= 0 and ( 1
2 −

δ√
nγ

) > 0

1, otherwise.

Then for all µ ∈ (0, µ̄(x, δ)] the following holds

inf
V ∈∂CΦω(x)

n∑
i=1

‖[Φ̃′ω(x, µ)]i − [V ]i‖2 ≤ δ2. (14)

Proof. It is sufficient to show that for every i ∈ {1, ..., n} there holds

‖[Φ̃′ω(x, µ)]i − [V ]i‖ ≤
δ√
n
, (15)

where V ∈ ∂CΦω(x), i.e. [V ]i ∈ ∂[Φω(x)]i. For ri = [M(ω)x]i + qi(ω) and
yi = 1

µ (xi − ri + µ/2) we obtain

[V ]i =

 [M(ω)]i, if xi > ri
λ[M(ω)]i + (1− λ)ei, if xi = ri, λ ∈ [0, 1]
ei, if xi < ri,

[Φ̃′ω(x, µ)]i =

 [M(ω)]i, if xi − ri ≥ µ/2
yi[M(ω)]i + (1− yi)ei, if |xi − ri| < µ/2
ei if xi − ri ≤ −µ/2.
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Notice that |xi − ri| ≥ µ/2 implies [Φ̃′ω(x, µ)]i = [V ]i and therefore (15) holds
trivially. On the other hand, suppose that |xi − ri| < µ/2. If xi = ri then
yi = 1/2 and therefore ‖[Φ̃′ω(x, µ)]i − [V ]i‖ = |λ − 1/2|‖[M(ω)]i − ei‖ = 0 for
λ = 1/2. This leaves us with the following two remaining cases.

Case 1. If |xi − ri| < µ/2 and xi < ri we have

‖[Φ̃′ω(x, µ)]i − [V ]i‖ = |yi|‖[M(ω)]i − ei‖ ≤
1

µ
(xi − [M(ω)x]i − qi(ω) + µ/2)γ.

Therefore, we want to show that for all 0 < µ ≤ µ̄(x, δ)

1

µ
(xi − [M(ω)x]i − qi(ω) + µ/2)γ ≤ δ√

n
. (16)

Case 2. If |xi − ri| < µ/2 and xi > ri we obtain

‖[Φ̃′ω(x, µ)]i−[V ]i‖ = |yi−1|‖[M(ω)]i−ei‖ ≤ (1− 1

µ
(xi−[M(ω)x]i−qi(ω)+µ/2))γ

and we want to show that for all 0 < µ ≤ µ̄(x, δ)

(1− 1

µ
(xi − [M(ω)x]i − qi(ω) + µ/2))γ ≤ δ√

n
. (17)

If γ = 0 then (16) and (17) hold trivially for every µ > 0. Hence, suppose
that γ 6= 0. If 1

2 ≤
δ√
nγ

then (16) and (17) hold for µ ≤ µ̄(x, δ) = 1. Finally, if

1
2 >

δ√
nγ

then the inequalities (16) and (17) hold for every 0 < µ ≤ ξ(x)2
√
nγ√

nγ−2δ
:=

µ̄(x, δ), which completes the proof. 2

Since ‖A‖2 ≤
∑n
i=1 ‖[A]i‖2 for an arbitrary matrix A ∈ Rn,n, from the

previous lemma there follows that (13) holds for 0 < µ ≤ µ̄(x, δ).
Let δ1 > 0. For δ(ωj) < δ1

2‖Φωj (x)‖ , j = 1, ..., Nmax, by Lemma 3 we can

obtain values µ̄(x, δ(ωj)), j = 1, ..., Nmax and the threshold value

¯̄µ(x, δ1) = min
j=1,...,Nmax

¯̄µj(x, δ1),

where

¯̄µj(x, δ1) = min{µ̄(x, δ(ωj)),
4( δ12 − ‖Φωj (x)‖δ(ωj))
√
n(2 + ‖M(ωj)‖)

}.

Obviously, for a given δ1 > 0 and the threshold value ¯̄µ(x, δ1) we have that (12)
holds for all 0 < µ ≤ ¯̄µ(x, δ1).

3 The algorithm

In this section we present a variable sample size smoothing algorithm for solving
problem (4). The algorithm is based on Barzilai-Borwein gradient method and
uses a nonmonotone line search which allows that the sample size varies across
the iterations and thus makes the process significantly cheaper.
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The sample size scheduling is based on two measures, the lack of precision
εkδ (x) and the decrease in function value, dmk. These two measures are calculated
at each iteration. The lack of precision is due to the difference between the
objective function f̂Nmax

(x) and f̂Nk(x) used in the k-th iteration, while the

decrease in function value dmk approximates f̂Nk(xk+1)− f̂Nk(xk).
So, at the k-th iteration we are dealing with the sample size Nk, the smooth-

ing parameter µk and the smooth function f̂Nk(x, µk). Since f̂Nk(x, µk) is con-
tinuously differentiable, xk is its local minimizer if and only if
‖min{xk,∇f̂Nk(xk, µk)}‖ = 0, [15].

The smoothing procedure is governed by a sequence of smoothing parame-
ters, which is updated following the principle used for solving nonlinear comple-
mentarity problems, [4], [10], [13] but in the framework of the variable sample
scheme. Thus the smoothing parameters update changes depending on Nk and
Nmax.

The search direction which is used is a kind of the Barzilai-Borwein (BB)
direction used in Li et al. [9] as well. It is defined in the following way

dki =


− 1
αk

[∇f̂Nk(xk, µk)]i, if i ∈ I1(xk)

− [∇f̂Nk (xk,µk)]i

αk+
[∇f̂Nk

(xk,µk)]i

xk
i

, if i ∈ I2(xk)

−xki , if i ∈ I3(xk)

, (18)

where xk ≥ 0, τ > 0, I1, I2 and I3 are sets of indexes

I1(xk) = {i, i ∈ {1, ..., n}, [∇f̂Nk(xk, µk)]i ≤ 0},
I2(xk) = {i, i ∈ {1, ..., n}, [∇f̂Nk(xk, µk)]i > 0 and xki > τ},
I3(xk) = {i, i ∈ {1, ..., n}, [∇f̂Nk(xk, µk)]i > 0 and 0 ≤ xki ≤ τ}

and

αk =


max{αmin,

(sk−1)T yk−1

‖sk−1‖2 }, if ‖sk−1‖ > 0 ∧mod(k, 4) = 0, 1

max{αmin,
‖yk−1‖2

(sk−1)T yk−1 }, if (sk−1)T yk−1 6= 0 ∧mod(k, 4) = 2, 3

αmin, else

(19)

αmin > 0, sk−1 = xk − xk−1 and

yk−1 = ∇f̂Nk(xk, µk)−∇f̂Nk−1
(xk−1, µk−1). (20)

It is easy to see that dk is feasible and descent for f̂Nk(xk, µk), because

xk+dk ≥ 0 and ∇f̂Nk(xk, µk)T dk ≤ 0. Therefore, the monotone line search can
also be applied, but we use a nonmonotone search because it allows larger step
sizes and combines well with the BB direction.

We can now state the main algorithm as follows. Let ω1, . . . , ωNmax be given.
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ALGORITHM 1.

S0 Input parameters: Nmax, N
min
0 ∈ N, x0 ∈ Rn+, κ̄ > 0, 0 < αmin ≤ α0 < 1,

η, β ∈ (0, 1). Let {εk}k∈N be a sequence such that εk > 0,
∑
k∈N εk ≤ ε <

∞.

S1 Set k = 0, Nk = Nmin
0 , β̃ = f̂Nmax

(x0), µ0 = αβ̃
2κ̄ , µk = µ0 and xk = x0.

S2 Compute f̂Nk(xk, µk), ∇f̂Nk(xk, µk) and εNkδ (xk, µk) by (21).

S3 If ‖min{xk,∇f̂Nk(xk, µk)}‖ < µk

1) if Nk = Nmax or (Nk < Nmax and εNkδ (xk, µk) > 0) set Nk+1 = Nmax

and Nmin
k+1 = Nmax.

2) if Nk < Nmax and εNkδ (xk, µk) = 0 set Nk+1 = Nk + 1 and Nmin
k+1 =

Nmin
k + 1.

Set xk+1 = xk, µk+1 = µk
2 , αk+1 = αmin and go to step S11.

If ‖min{xk,∇f̂Nk(xk, µk)}‖ ≥ µk, go to step S4.

S4 Determine the BB direction dk by (18).

S5 Find the smallest nonnegative integer j such that νk = βj satisfies

f̂Nk(xk + νkd
k, µk) ≤ f̂Nk(xk, µk) + ηνk(dk)T∇f̂Nk(xk, µk) + εk.

S6 Set xk+1 = xk + νkd
k and dmk = −νk(dk)T∇f̂Nk(xk, µk).

S7 Determine N+
k using Algorithm 2 and then determine Nk+1.

S8 Determine µk+1 using Algorithm 3.

S9 Determine Nmin
k+1.

S10 Compute αk+1 by (19).

S11 Set k = k + 1 and go to step S2.

Updating the sample size relays conceptually on algorithms stated in [11] and
[12], but the smoothing procedure makes it more complicated as we have here
two sources of imprecision - an incomplete sample and a smoothing parameter.
Thus the main difference in the algorithms presented here is the need to include
the influence of the smoothing parameters. The candidate sample size N+

k is
determined by comparing the measure of decrease in the objective function dmk

and the so called lack of precision defined by

εNkδ (xk, µk) = σ̂Nk(xk, µk)
αδ√
Nk

, (21)
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where

σ̂2
Nk

(xk, µk) =
1

Nk − 1

Nk∑
i=1

(‖Φ̃ωi(xk, µk)‖2 − f̂Nk(xk, µk))2

and αδ is a quantile of the standard normal distribution. The lack of preci-
sion represents the approximate measure of the error bound for |f̂Nk(xk, µk)−
f(xk, µk)|. The main idea is to find the sample size N+

k such that

dmk ≈ d ε
N+
k

δ (xk, µk),

where d ∈ (0, 1] and Nmin
k ≤ N+

k ≤ Nmax. For example, if the decrease measure
is greater than some portion of the lack of precision we are probably far away
from the solution. In that case, we do not want to impose high precision and
therefore the sample size is decreased if possible. We state the algorithm for
choosing the candidate sample size N+

k .

ALGORITHM 2.

S0 Input parameters: ν̃1, d ∈ (0, 1), dmk, N
min
k , εNkδ (xk, µk).

S1 Determine N+
k

1) dmk = d εNkδ (xk, µk) → N+
k = Nk.

2) dmk > d εNkδ (xk, µk)
Starting with N = Nk, while dmk > d εNδ (xk, µk) and N > Nmin

k ,
decrease N by 1 and calculate εNδ (xk, µk) → N+

k .

3) dmk < d εNkδ (xk, µk)

i) dmk ≥ ν̃1d ε
Nk
δ (xk, µk)

Starting with N = Nk, while dmk < d εNδ (xk, µk) and N <
Nmax, increase N by 1 and calculate εNδ (xk, µk) → N+

k .

ii) dmk < ν̃1d ε
Nk
δ (xk, µk) → N+

k = Nmax.

After finding the candidate sample size, we perform the safeguard check in
order to prohibit the decrease of the sample size which seems to be unproductive.
More precisely, if N+

k < Nk we calculate

ρk =

∣∣∣∣∣ f̂N+
k

(xk)− f̂N+
k

(xk+1)

f̂Nk(xk)− f̂Nk(xk+1)
− 1

∣∣∣∣∣ .
We do not allow the decrease if the previously stated parameter is relatively

large. Namely, if ρk ≥
Nk−N+

k

Nk
we set Nk+1 = Nk. In all the other cases, the

decrease is accepted and Nk+1 = N+
k . Notice that Nk+1 ≥ N+

k either way.
Updating the lower sample size bound Nmin

k is also very important. This
bound is increased only if Nk+1 > Nk and we have not made big enough decrease
of the function f̂Nk+1

since the last time we started to use it, i.e. if

f̂Nk+1
(xh(k), µk+1)− f̂Nk+1

(xk+1, µk+1)

k + 1− h(k)
<
Nk+1

Nmax
ε
Nk+1

δ (xk+1, µk+1),

10



where h(k) is the iteration at which we started to use the sample size Nk+1 for
the last time. In that case, we set Nmin

k+1 = Nk+1 while in all the other cases the
lower bound remains unchanged.

The following algorithm presents the way for updating the smoothing pa-
rameter µk. The threshold value ¯̄µ(xk+1, γβ̃) for the smoothing parameter, in
Step S2 of Algorithm 3, is defined in the previous section and it controls the
distance between the smooth gradient and the generalized gradient.

ALGORITHM 3.

S0 Input parameters: κ̄, γ > 0, α, ξ̄ ∈ (0, 1), Nk, Nk+1, µk, β̃.

S1 1) If Nk+1 = Nk = Nmax go to step S2.

2) If Nk < Nk+1 put µk+1 = µk
2 and stop.

3) Else µk+1 = µk and stop.

S2 If

f̂Nmax
(xk+1) ≤ max{ξ̄β̃, |f̂Nmax

(xk+1)− f̂Nmax
(xk+1, µk)|

α
}

then β̃ = f̂Nmax(xk+1) and µk+1 ≤ min{µk2 ,
αβ̃
2κ̄ , ¯̄µ(xk+1, γβ̃)},

else µk+1 = µk.

Let us comment here on the mutual dependence of µk and Nk. First of all,
µk clearly influences N+

k and thus Nk+1, as εNδ (xk, µk) clearly depends on µk.
On the other hand the update rule for µk depends on Nk as one can see in
Algorithm 3. If Nk < Nk+1 we decrease µk as the precision of the approximate
objective function is increased so the smoothing parameter should be smaller.
Otherwise, if Nk+1 ≤ Nk, the smoothing parameter does not change as there
is no need for precision increase. Finally, when Nmax is reached, the update
procedure for µk is based on the threshold value and the progress made in the
objective function decrease. Furthermore, µk determines the tolerance at S3 of
Algorithm 1 and thus crucially influences the scheduling sequence.

Algorithm 1 is well defined. The line search in S5 terminates after a fi-
nite number of trials as the BB direction is feasible and descent. In fact the
non-negative term εk makes it well defined even for a direction dk which is
not descent. In the case of BB search direction this term provides additional
possibilities for the steplength. Also, notice that the smoothing parameter is
updated in step S3 by µk+1 = µk/2 or in step S8 according to Algorithm 3.

4 Convergence analysis

The convergence results are obtained in the three main stages. First, we show
that after a finite number of iterations the algorithm ends up at the full sam-
ple i.e. Nk = Nmax for k large enough. Then, we prove that the sequence of
smoothing parameters tends to zero and therefore the sequence of approximate
functions tends to the objective function f̂Nmax(x). Finally, we prove that every

11



accumulation point of the sequence generated by Algorithm 1 is a Clarke sta-
tionary point of f̂Nmax(x). Moreover, we state the conditions which imply the
convergence towards the global optimum. The following assumption is imposed
on the random variables.

A 1. Functions M(ω), q(ω) are measurable and E(‖M(ω)‖2 + ‖q(ω)‖2) <∞.

We begin the analysis by stating the following technical lemma.

Lemma 4. Let C ⊂ Rn be a compact set. Then for every x ∈ C, N ∈
{1, 2, ..., Nmax} and µ, µ1, µ2 ∈ R++ there exists κ̄ > 0 such that following
inequalities hold

a) |f̂N (x, µ)− f̂N (x)| ≤ κ̄µ,

b) |f̂N (x, µ2)− f̂N (x, µ1)| ≤ κ̄|µ1 − µ2|.

Proof. a) Since ‖Φωj (x)‖ is continuous and C is assumed to be compact there
follows that ‖Φωj (x)‖ is bounded on C. More precisely, there exists constant
M3(ωj) <∞ such that

‖Φωj (x)‖ ≤M3(ωj), (22)

for every x ∈ C, ωj ∈ Ω. Since N ∈ {1, 2, ..., Nmax} is fixed, let M =
maxNmax

j=1 M3(ωj) and choose κ̄ = κ̃(κ̃µ+ 2M). Then by Lemma 1 a) follows

‖Φ̃ωj (x, µ)‖ ≤ ‖Φ̃ωj (x, µ)− Φωj (x)‖+ ‖Φωj (x)‖ ≤ κ̃µ+M3(ωj) (23)

and (22) and (23) imply

|‖Φ̃ωj (x, µ)‖2 − ‖Φωj (x)‖2| ≤ ‖Φ̃ωj (x, µ)− Φωj (x)‖(‖Φ̃ωj (x, µ)‖+ ‖Φωj (x)‖)
≤ κ̃µ(κ̃µ+ 2M3(ωj)),

for every ωj ∈ Ω. Therefore

|f̂N (x, µ)− f̂N (x)| =
1

N

N∑
j=1

|‖Φ̃ωj (x, µ)‖2 − ‖Φωj (x)‖2|

≤ N
max
j=1
|‖Φ̃ωj (x, µ)‖2 − ‖Φωj (x)‖2|

≤ κ̃(κ̃µ+ 2M)µ = κ̄µ,

which completes the proof.
b) It can be proved in a similar way as a). 2

The following theorem states that after a finite number of iterations, the
sample size becomes stationary with Nk = Nmax. This result implies that a
solution obtained by the proposed algorithm is of the same quality as a solution
of the full SAA problem. The proof follows the ideas presented in Krejić, Krklec
[11], [12] but the presence of the smoothing parameters makes it technically more
demanding. It is included in this paper for the sake of completeness.

12



Theorem 1. Suppose that A1 holds and that the sequence {xk}k∈N generated by
Algorithm 1 is bounded. Furthermore, suppose that there are positive constants
κ and n0 ∈ N such that εNkδ (xk, µk) ≥ κ for every k ≥ n0. Then, there exists
q ∈ N such that Nk = Nmax for every k ≥ q.

Proof. First of all, suppose that ‖min{xk,∇f̂Nk(xk, µk)}‖ < µk happens
infinitely many times. Then, step S3 of Algorithm 1 will eventually yield
Nmin
k = Nmax, which furthermore implies existence of an iteration q ∈ N

such that Nk = Nmax for every k ≥ q. Therefore, let us consider the case
‖min{xk,∇f̂Nk(xk, µk)}‖ > µk for every k ≥ n1 where n1 is some finite integer.

Without loss of generality, we can assume that n1 > n0. Then ‖∇f̂Nk(xk, µk)‖ >
0 and dk is descent direction for every k ≥ n1. Now, let us prove that the sample
size can not be stacked at a size lower than Nmax.

Suppose that there exists ñ > n1 such that Nk = N1 < Nmax for every
k ≥ ñ. In that case, Algorithm 3 implies that µk+1 = µk = µ for every k ≥ ñ.
Denoting gk = ∇f̂N1(xk, µ), we obtain that for every k ≥ ñ

f̂N1(xk+1, µ) ≤ f̂N1(xk, µ) + εk + ηνk(dk)T gk.

Furthermore, by using the induction argument, the summability of the sequence
{εk} and the inequality (10), we obtain that

lim
k→∞

dmk = lim
j→∞

−νñ+j(∇f̂N1(xñ+j , µ))T dñ+j = 0.

On the other hand, we have that εN
1

δ (xk, µ) ≥ κ > 0 for every k ≥ n0, which

implies that ν̃1d ε
N1

δ (xk, µ) is bounded from below for all k sufficiently large.

Therefore, there exists at least one p such that dmp < ν̃1d ε
N1

δ (xp, µ). This
implies Np+1 ≥ N+

p = Nmax which is contrary to the current assumption that
the sample size stays at N1. Therefore, the remaining two possible situations
are as follows: there exists ñ such that Nk = Nmax for every k ≥ ñ or the
sequence of sample sizes oscillates.

Let us suppose that the sequence of sample sizes oscillates. Notice that
the existence of j̄ ∈ N such that Nmin

j̄
= Nmax would imply the first of the

considered two situations. Therefore, we have that Nmin
k < Nmax for every

k ∈ N. Furthermore, this implies that the signal for increasing Nmin
k could

come only finitely many times and we conclude that there exists an iteration
r ≥ n1 such that for every k ≥ r we have one of the following scenarios:

M1 Nk+1 ≤ Nk

M2 Nk+1 > Nk and we have enough decrease in f̂Nk+1

M3 Nk+1 > Nk and we did not use the sample size Nk+1 before.

Now, let N̄ be the maximal sample size that is used at infinitely many
iterations. Furthermore, define the set of iterations K̄0 at which sample size
increases on N̄ and set K̄ = K̄0

⋂
{r, r + 1, . . .}. Notice that Nk < Nk+1 = N̄

13



for every k ∈ K̄. This implies that every iteration in K̄ excludes the scenario
M1. Moreover, without loss of generality, we can say that scenario M3 is the one
that can also be excluded. This leads us to the conclusion that M2 is the only
possible scenario for iterations in K̄. Therefore, for every k ∈ K̄ the following
is true

f̂N̄ (xh(k), µk+1)−f̂N̄ (xk+1, µk+1) ≥ N̄

Nmax
(k+1−h(k))εN̄δ (xk+1, µk+1) ≥ κ

Nmax
.

Define S := κ/Nmax. We know that S is a positive constant. Define also
a subsequence of iterations {xsj}j∈N := {xk}k∈K̄ . Recall that h(k) defines the
iteration at which we started to use the sample size N̄ for the last time before
the iteration k + 1. Having all this in mind, we know that for every j

f̂N̄ (xsj+1 , µsj+1
) ≤ f̂N̄ (xsj , µsj+1

)− S.

Furthermore, we know that sequence {µk}k∈N is nonincreasing which together
with Lemma 4 implies that for every i, j and x

f̂N̄ (x, µi+j) ≤ f̂N̄ (x, µi) + κ̄(µi − µi+j).

Again, using the induction argument and the previous two inequalities we obtain
that for every j ∈ N

0 ≤ f̂N̄ (xsj , µsj ) ≤ f̂N̄ (xs0 , µs0) + κ̄(µs0 −µsj )− jS ≤ f̂N̄ (xs0 , µs0) + κ̄µs0 − jS.

Letting j →∞, we obtain the contradiction and therefore we conclude that the
only possible situation is that there exists an iteration ñ such that Nk = Nmax

for every k ≥ ñ. 2

Remark. The previous theorem is valid if the iterative sequence is bounded.
This assumption holds whenever the matrix M(ω) is a stochastic R0 matrix
(see [5]). In that case we have that the level sets of the original objective

function are bounded and thus the level sets of f̂Nk are also bounded for each
Nk ∈ {N0, . . . , Nmax}. Therefore the sequence {xk} belongs to the union of
finitely many bounded sets. For details on level sets one can see [13].

Next, we prove that the sequence of smoothing parameters converges to
zero. This results is essentially important since it provides that the sequence of
smoothing functions converges to the original objective function f̂Nmax(x). Let
us recall that q ∈ N is such that Nk = Nmax, k ≥ q.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. Then

lim
k→∞

µk = 0.

Proof. Define S and K in the following way

K = {k ∈ N : k > q, f̂Nmax
(xk) ≤ max{ξ̄β̃, |f̂Nmax

(xk, µk−1)− f̂Nmax
(xk)|

α
}}.
(24)
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S = {k ∈ N : k > q, ‖min{xk,∇f̂Nmax(xk, µk)}‖ < µk}. (25)

Notice that for every k > q the smoothing parameter µk is decreased only if
k ∈ S ∪ K. Suppose that there exists k̄ > q such that µk = µ > 0 for every
k ≥ k̄. This implies that S is finite as well as K and for every k ≥ k̄

‖min{xk,∇f̂Nmax(xk, µ)}‖ ≥ µ > 0. (26)

Moreover, the line search becomes

f̂Nmax
(xk+1, µ) ≤ f̂Nmax

(xk, µ) + ηνk(dk)T∇f̂Nmax
(xk, µ) + εk.

By the induction argument we obtain that for every j ∈ N

0 ≤ f̂Nmax
(xk̄+j , µ) ≤ f̂Nmax

(xk̄, µ)+η

j−1∑
i=0

νk̄+i(d
k̄+i)T∇f̂Nmax

(xk̄+i, µ)+

j−1∑
i=0

εk̄+i

and therefore

0 ≤ −
∞∑
i=0

νk̄+i(d
k̄+i)T∇f̂Nmax

(xk̄+i, µ) ≤ (f̂Nmax
(xk̄, µ) + ε)/η <∞.

Clearly,
lim
k→∞

νk(dk)T∇f̂Nmax(xk, µ) = 0. (27)

Let us now show that limk→∞(dk)T∇f̂Nmax(xk, µ) = 0. Suppose that there
exists S1 ⊆ N such that

|(dk)T∇f̂Nmax(xk, µ)| ≥ ε̃ > 0 (28)

for every k ∈ S1. In that case (27) implies that limk∈S1
νk = 0 and therefore

there exists S2 ⊆ S1 such that for every k ∈ S2

f̂Nmax
(xk + ν′kd

k, µ) > f̂Nmax
(xk, µ) + ην′k(dk)T∇f̂Nmax

(xk, µ),

where ν′k = νk/β. Now, by the Mean Value Theorem we obtain that for every
k ∈ S2 there exists tk ∈ (0, 1) such that

(dk)T∇f̂Nmax(xk + tkν
′
kd
k, µ) > η(dk)T∇f̂Nmax(xk, µ).

Since {xk}k∈N is bounded by the theorem assumptions, it follows that there is
a sequence S3 ⊆ S2 such that limk∈S3(xk, dk) = (x̃, d̃). Letting k → ∞, k ∈ S3

in the previous inequality we obtain (d̃)T∇f̂Nmax
(x̃, µ) ≥ η(d̃)T∇f̂Nmax

(x̃, µ).

Since (dk)T∇f̂Nk(xk, µk) ≤ 0 for every k and η ∈ (0, 1) the previous inequality
implies that

0 = (d̃)T∇f̂Nmax
(x̃, µ) = lim

k∈S3

(dk)T∇f̂Nmax
(xk, µ)
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which is in contradiction with (28). Therefore, we conclude that

lim
k→∞

(dk)T∇f̂Nmax(xk, µ) = 0. (29)

The definition of dk implies that for every k > q

(dk)T∇f̂Nmax
(xk, µ) = −

∑
j∈I1(xk)

1

αk
[∇f̂Nmax

(xk, µ)]2i −
∑

j∈I2(xk)

[∇f̂Nmax
(xk, µ)]2i

αk +
[∇f̂Nmax (xk,µ)]i

xki

−
∑

j∈I3(xk)

xki [∇f̂Nmax(xk, µ)]i.

Given that αk is bounded and that each of the three sums above is non-negative,
(29) implies

lim
k→∞

[∇f̂Nmax(xk, µ)]i = 0, i ∈ I1(xk) ∪ I2(xk)

and
lim
k→∞

xki [∇f̂Nmax
(xk, µ)]i = 0, i ∈ I3(xk).

Thus, limk→∞min{xki , [∇f̂Nmax
(xk, µ)]i} = 0 for every i ∈ {1, 2, . . . , n} and

lim
k→∞

‖min{xk,∇f̂Nmax
(xk, µ)}‖ = 0.

This is in contradiction with (26) and we conclude that limk→∞ µk = 0. 2

Before proving the main result, we state the following lemma. Recall that
x∗ ≥ 0 is a Clarke stationary point of locally Lipschitzian function f̂Nmax(x)

if there exists V ∈ ∂f̂Nmax
(x∗) such that V T (x − x∗) ≥ 0 for every x ≥ 0.

Moreover, we know that ∂f̂Nmax(x∗) contains the set

Gf̂Nmax
(x∗) = { lim

xk→x∗,µk→0
∇f̂Nmax(xk, µk)}

which is nonempty and bounded [15]. Therefore, in order to prove that x∗ ≥ 0

is a Clarke stationary point of function f̂Nmax(x), it is sufficient to prove the
existence of V ∈ Gf̂Nmax

(x∗) such that for every x ≥ 0 the following holds

V T (x− x∗) ≥ 0.

Lemma 5. If limk→∞ ‖min{xk,∇f̂Nmax
(xk, µk)}‖ = 0 and limk→∞ µk = 0 then

every accumulation point x∗ ≥ 0 of the sequence {xk} is a Clarke stationary

point of f̂Nmax(x).

Proof. Let x∗ ≥ 0 be an arbitrary accumulation point of the sequence
{xk}, i.e. let L ⊆ N be the sequence such that x∗ = limk∈L x

k. Then

limk→∞ ‖min{xk,∇f̂Nmax
(xk, µk)}‖ = 0 implies

0 = lim
k∈L
‖min{xk,∇f̂Nmax

(xk, µk)}‖ = ‖min{x∗, lim
k∈L
∇f̂Nmax

(xk, µk)}‖.
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Furthermore, since limk∈L µk = limk→∞ µk = 0, we obtain

‖min{x∗, V }‖ = 0, (30)

where
V = lim

xk→x∗, µk→0
∇f̂Nmax

(xk, µk)

and therefore V ∈ Gf̂Nmax
(x∗).

Since x∗ ≥ 0, (30) implies that V ≥ 0 and min{x∗i , Vi} = 0 for every i ∈
{1, 2, . . . , n}. Therefore we have that x∗i = 0 or Vi = 0. Define V + = {i ∈
{1, 2, . . . , n} : Vi > 0} and V 0 = {i ∈ {1, 2, . . . , n} : Vi = 0} and notice that
x∗i = 0 for every i ∈ V +. Let x be an arbitrary nonnegative vector. Then

V T (x−x∗) =

n∑
i=1

Vi(xi−x∗i ) =
∑
i∈V 0

Vi(xi−x∗i )+
∑
i∈V +

Vi(xi−x∗i ) =
∑
i∈V +

Vixi ≥ 0.

Thus, (30) implies that V T (x − x∗) ≥ 0 for every x ≥ 0 which completes the
proof. 2

The consequence of the previous lemma and Theorem 2 is that every ac-
cumulation point of the sequence {xk}k∈S with S defined by (25) is a Clarke

stationary point of function f̂Nmax(x). The stronger result is obtained in the
following theorem.

Theorem 3. Suppose that the assumptions of Theorem 1 are satisfied. Then
every accumulation point of the sequence {xk}k∈N is a Clarke stationary point

of f̂Nmax(x).

Proof. Theorem 1 implies that for every k ≥ q

f̂Nmax
(xk+1, µk) ≤ f̂Nmax

(xk, µk) + ηνk(dk)T∇f̂Nmax
(xk, µk) + εk.

By the induction argument and nonnegativity of the function f̂Nmax
we obtain

that for every j ∈ N

0 ≤ f̂Nmax
(xq, µq)+η

j−1∑
i=0

νq+i(d
q+i)T∇f̂Nmax

(xq+i, µq+i)+

j−1∑
i=0

εq+i+κ̄(µq−µq+j)

and therefore

0 ≤ −η
∞∑
i=0

νq+i(d
q+i)T∇f̂Nmax

(xq+i, µq+i) ≤ f̂Nmax
(xq, µq) + ε+ κ̄µq <∞

The above inequalities imply

lim
k→∞

νk(dk)T∇f̂Nmax
(xk, µk) = 0. (31)
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By the same reasoning as in the proof of Theorem 2, we conclude that (31)

implies limk→∞(dk)T∇f̂Nmax
(xk, µk) = 0 and

lim
k→∞

‖min{xk,∇f̂Nmax
(xk, µk)}‖ = 0. (32)

Algorithm 1 provides the sequence of feasible points and therefore every accu-
mulation point of the sequence {xk}k∈N is feasible. Moreover, Theorem 2 implies
that limk→∞ µk = 0. Finally, (32) and Lemma 5 imply that every accumulation

point of the sequence {xk}k∈N is a Clarke stationary point of f̂Nmax
(x). 2

We conclude the convergence analysis by stating the conditions under which
every accumulation point of the sequence generated by Algorithm 1 is a global
optimum.

Theorem 4. Suppose that the assumptions of Theorem 1 are satisfied and that
the set K defined by (24) is infinite. Then every accumulation point x∗ of the
sequence {xk}k∈N satisfies x∗ ≥ 0 and

f̂Nmax(x∗) = 0.

Proof. The definition of the search direction implies that xk ≥ 0 for every
k ∈ N and therefore every accumulation point of the sequence {xk}k∈N is also
nonnegative. Let us first prove that

lim
k∈K

f̂Nmax
(xk) = 0. (33)

Denote {xkj}j∈N = {xk}k∈K . Then Algorithm 3 implies that for every j

f̂Nmax(xkj ) ≤ max{ξ̄f̂Nmax(xkj−1),
|f̂Nmax

(xkj )− f̂Nmax
(xkj , µkj−1)|

α
}. (34)

Furthermore, Lemma 4 implies that |f̂Nmax
(xkj )− f̂Nmax

(xkj , µkj−1)| ≤ κ̂µkj−1.
Also, we know that {µk}k∈N is nonincreasing and Algorithm 3 implies

µkj−1 ≤ µkj−1 ≤
α

2κ̂
f̂Nmax

(xkj−1).

Therefore, from (34) we obtain that for every j ∈ N

f̂Nmax(xkj ) ≤ rf̂Nmax(xkj−1)

where r = max{ξ̄, 1/2} ∈ (0, 1). Since f̂Nmax is nonnegative, this obviously
implies (33).

Since dk is a descent search direction, the line search implies that for every
k ≥ q

f̂Nmax(xk+1, µk) ≤ f̂Nmax(xk, µk) + εk.

Furthermore, Lemma 4 implies that for every j

f̂Nmax(x, µk+j) ≤ f̂Nmax(x, µk) + κ̄(µk − µk+j).
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Using the previous two inequalities and the induction argument we obtain that
for every k, j ∈ N, k ≥ q

f̂Nmax(xk+j , µk+j) ≤ f̂Nmax(xk, µk) + κ̄(µk − µk+j) +

j−1∑
i=0

εk+i. (35)

Now, let x∗ be an arbitrary accumulation point of the sequence {xk}k∈N

lim
k∈L

xk = x∗.

Since both L and K are infinite, for every k ∈ L there exists a finite integer
j(k) ≥ 0 such that k− j(k) = s(k) ∈ K. Therefore, inequality (35) and Lemma
4 imply that for every k ∈ L

f̂Nmax(xk, µk) = f̂Nmax(xs(k)+j(k), µs(k)+j(k))

≤ f̂Nmax(xs(k), µs(k)) + κ̄(µs(k) − µs(k)+j(k)) +

j(k)−1∑
i=0

εs(k)+i

≤ f̂Nmax(xs(k)) + κ̄(2µs(k) − µs(k)+j(k)) +

j(k)−1∑
i=0

εs(k)+i.

Now, the summability of {εk}k∈N implies that limk→∞ εk = 0 and since j(k)

is finite, we obtain limk∈L
∑j(k)−1
i=0 εs(k)+i = 0. Moreover, Theorem 2 implies

limk→∞ µk = 0 and

0 ≤ f̂Nmax(x∗) = lim
k∈L

f̂Nmax(xk, µk) ≤ lim
k∈L

f̂Nmax(xs(k)) = lim
j∈K

f̂Nmax(xj) = 0

which completes the proof. 2

5 Numerical results

In this section we present some numerical results obtained by applying two
algorithms on the set of test problems which can be found in Chen et al. [5]
and Li et al. [9]. Our aim is to compare the performance of Algorithm 1, which
we refer to as VSS, with the results obtained by algorithm proposed in Li et al.
[9] which we call LLS. The key differences between these two methods lays in
the fact that VSS uses the variable sample size scheme. Also, the line search
in VSS is nonmonotone and the updating of the smoothing parameters is more
complex than in LLS.

In order to provide a better insight into the results, we state the relevant
notation considering the test problems. The point x̂ has exactly nx positive com-
ponents which are chosen randomly from (0, τ) where τ = 10−6. Interval (−σ, σ)
represents the range of elements of E(M(ω)) −M(ωj) for j = 1, 2, . . . , Nmax.
On the other hand, [0, βe) is the range of elements of (M(ωj)x̂+q(ωj))i for all i
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such that x̂i > 0. Parameter βe is especially important since βe = 0 implies that
the point x̂ is the unique solution of the considered problem and the optimal
value of the objective function is 0.

The initial points are set to x0 = bv + 10uc where v is the vector with all
components equal to 1 and u is a random vector from uniform distribution. The
stopping criterion for both algorithms is

‖min{xk,∇f̂Nmax(xk, µk)}‖ ≤ γε and µk ≤ ε,

with γ = 100 and ε = 10−6. The search direction dk is the BB direction obtained
with αmin = α0 = 0.1. The line search is performed with β = η = 0.5. The
initial smoothing parameter is µ0 = 1. In the LLS method, the smoothing
parameter is updated as µk = 0.5µk−1, while the parameters of the Algorithm
3 are α = ξ̄ = 0.5 and κ̂ = 1 and in step S2 we set

µk+1 = min{ε, µk
2
,
αβ̃

2κ̄
, ¯̄µ(xk+1, γβ̃)}.

The sequence that makes the line search in VSS nonmonotone is initialized
by ε0 = max{1, f̂N0(x0, µ0)} and it is updated only if the sample size does
not change. More precisely, if Nk−1 = Nk we set εk = ε0k

−1.1. Otherwise,
εk = εk−1. In VSS we set N0 = Nmin

0 = 3, while the rest of the parameters for
updating the sample size are d = 0.5, δ = 0.95 and ν̃1 = 1/

√
Nmax.

For each test problem we conducted 10 different runs of both algorithms. The
results in the following two tables represent the average values of successful runs
reported in column s. A run is considered successful if the number of function
evaluations (fev) needed to satisfy the stopping criterion does not exceed 107.
The number of function evaluations counts the evaluations of the function F
and the gradient ∇xF, and each component of the gradient is counted as one
function evaluation. The column stac refers to the measure of stationarity
‖min{xk,∇f̂Nmax(xk, µk)}‖.

As one of the referees pointed out the algorithm would reduce to the SAA
method if Nk = Nmax, k = 1, 2, . . . and the whole procedure would not yield
any gain in the terms of computational costs. We observed the following average
values for the sample size in the tested examples. The iteration number in which
Nmax was taken for the first time varies from k = 10 to k = 60 with the average
being k̄ = 24 among all runs. The iteration number after which the sample size
stays constant i.e. Nk = Nmax for k ≥ q varies between q = 31 and q = 170
with the average q̄ = 78 among all runs. The total number of iterations needed
to satisfy the exit criterion changes from kf = 59 to kf = 186 with the average
k̄f = 98. Speaking in relative terms over all runs the maximal sample size is
taken after 25.60% of iterations needed and the sample size becomes stationary
with Nk = Nmax in the last 23.76% iterations. Thus the behavior of the sample
size is as expected and yields a significant reduction in computational costs.

Another key moment in the efficiency of VSS method is a good balance of
Nk and µk. Instead of decreasing µk in each iteration, we apply the updating
procedure that is closely connected with the rule for Nk. Both Nk and µk clearly
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influence the precision of the approximate objective function and iteration cost.
The procedures stated in Algorithms 2 and 3 ensure that this fact is taken
into account. During the initial stage, while Nk < Nmax, the new sample size
Nk+1 depends on µk as εNδ = εNδ (xk, µk). If the approximate objective function
is taken with an increased precision i.e. if Nk+1 > Nk then the smoothing
parameter is also decreased but otherwise it is kept fixed. Finally, when Nmax

is reached, the update for µk given in S2 of Algorithm 3 takes into account the
objective function value, the precision of the previous smoothing approximation
f̂Nmax

(xk+1, µk) as well as the threshold value. Notice that the stationarity
criterion in S3 of Algorithm 1 is defined by µk and thus µk fundamentally
influences the scheduling sequence. The numerical test we performed indicate
that this condition in S3 is fundamental for the efficiency of Algorithm 1 as it
prevents unproductive steps with smaller sample sizes Nk < Nmax.

βe = 0 VSS LLS
(Nmax, n, nx, σ) stac fev s stac fev s
(100,20,10,20) 4.5672E-05 6.2264E+04 10 5.0399E-05 1.4733E+05 10
(100,20,10,10) 7.6566E-05 6.7011E+04 10 6.7901E-05 1.3712E+05 10
(100,20,10,0) 9.4806E-05 2.2688E+06 2 9.0334E-05 8.6548E+05 10
(100,40,20,20) 6.4237E-05 1.2939E+05 10 5.3148E-05 2.7244E+05 10
(100,40,20,10) 5.4754E-05 1.2830E+05 10 4.4507E-05 2.6979E+05 10
(100,40,20,0) - - 0 8.9627E-05 2.5557E+06 10
(200,60,30,20) 4.6531E-05 3.7331E+05 10 4.3733E-05 7.9708E+05 10
(200,60,30,10) 6.1972E-05 3.4602E+05 8 5.0888E-05 8.1134E+05 10
(200,60,30,0) - - 0 9.1281E-05 7.2546E+06 9
(200,80,40,20) 6.0005E-05 5.0364E+05 9 6.0231E-05 1.0715E+06 10
(200,80,40,10) 4.8242E-05 4.8897E+05 8 5.7896E-05 1.0585E+06 10
(200,80,40,0) - - 0 9.0104E-05 8.4345E+06 6

(200,100,50,20) 5.2790E-05 6.3805E+05 10 3.7452E-05 1.2967E+06 10
(200,100,50,10) 4.3754E-05 6.2113E+05 8 5.3203E-05 1.2577E+06 10
(200,100,50,0) - - 0 9.2829E-05 9.9740E+06 2
(300,120,60,20) 6.5184E-05 1.2418E+06 8 5.9607E-05 2.4488E+06 10
(300,120,60,10) 4.4089E-05 1.4401E+06 8 5.1507E-05 2.3362E+06 10
(300,120,60,0) - - 0 - - 0
(1000,50,25,10) 7.0037E-05 1.3376E+06 4 4.4642E-05 3.0532E+06 10
(1000,50,25,0) - - 0 - - 0

Table 1: VSS versus LLS, βe = 0
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βe > 0 VSS LLS
(Nmax, n, nx, σ, βe) stac fev s stac fev s
(100,20,10,20,10) 3.5346E-05 5.7558E+04 10 6.3513E-05 1.3971E+05 10
(100,20,10,20,5) 3.2922E-05 5.6040E+04 10 5.0903E-05 1.3866E+05 10
(100,40,20,20,10) 6.5369E-05 1.1719E+05 10 5.8538E-05 2.6977E+05 10
(100,40,20,20,5) 5.6539E-05 1.4118E+05 10 5.4201E-05 2.6914E+05 10
(100,40,20,10,20) 6.1957E-05 1.5586E+05 10 5.3656E-05 2.9287E+05 10
(200,60,30,20,10) 4.0542E-05 3.3951E+05 10 4.8921E-05 8.0256E+05 10
(200,60,30,20,5) 4.9567E-05 2.7194E+05 10 6.2701E-05 7.5920E+05 10
(200,80,40,20,10) 3.8306E-05 4.8032E+05 10 7.2183E-05 1.0549E+06 10
(200,80,40,20,5) 5.0707E-05 4.0370E+05 10 6.9662E-05 1.0168E+06 10

(200,100,50,20,10) 4.6138E-05 5.8055E+05 10 7.1681E-05 3.3134E+06 10
(200,100,50,20,5) 4.6833E-05 5.5841E+05 10 6.1738E-05 1.2628E+06 10
(200,100,50,10,20) 4.9498E-05 8.0825E+05 10 5.4844E-05 1.5759E+06 10
(300,120,60,20,10) 6.2990E-05 1.0970E+06 10 5.8830E-05 2.3564E+06 10
(300,120,60,20,5) 5.2634E-05 8.6039E+05 10 7.5739E-05 2.2575E+06 10
(300,120,60,10,20) 5.4974E-05 1.4747E+06 10 6.5885E-05 4.2844E+06 10
(1000,50,25,20,10) 3.6456E-05 1.3141E+06 10 4.2850E-05 3.2556E+06 10
(1000,50,25,10,5) 3.3576E-05 8.4020E+05 10 4.9866E-05 2.9910E+06 10
(1000,100,50,5,10) 4.1478E-05 2.0831E+06 10 5.3271E-05 5.8908E+06 10
(1000,100,50,10,5) 4.1682E-05 1.7271E+06 10 5.8140E-05 6.1028E+06 10

Table 2: VSS versus LLS, βe > 0

Table 1 contains the results obtained by considering the test problems with
βe = 0, while Table 2 states the results for βe > 0. Notice that in the latter
case all of the runs were successful, while βe = 0 caused failure in many tested
problems, especially regarding VSS algorithm. The examples with σ = 0 turn
out to be the most challenging for VSS, but these particular problem settings
also affected LLS performance. Although the algorithm LLS seems to be more
stable, VSS gains the advantage in the fev column and therefore the perfor-
mance of the tested algorithms is comparable. The results in Table 2 reveal
the clear advantage of VSS method if βe > 0. In all the tested problems the
average number of function evaluations for the VSS is lower than fev for LLS.
Therefore, our conclusion is that the overall results suggest that variable sample
scheme with smoothing proposed in this paper reduces the computational cost
of the SAA approach.
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[12] N. Krejić and N. Krklec Jerinkić, Nonmonotone line search methods with
variable sample size, Numerical Algorithms (2014) doi 10.1007/s11075-014-
9869-1.
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