
Distributed Gradient Methods with Variable
Number of Working Nodes

Dušan Jakovetić, Dragana Bajović, Nataša Krejić, and Nataša Krklec-Jerinkić

Abstract—We consider distributed optimization where N nodes
in a connected network minimize the sum of their local costs
subject to a common constraint set. We propose a distributed
projected gradient method where each node, at each iteration k,
performs an update (is active) with probability pk, and stays idle
(is inactive) with probability 1− pk. Whenever active, each node
performs an update by weight-averaging its solution estimate
with the estimates of its active neighbors, taking a negative
gradient step with respect to its local cost, and performing a
projection onto the constraint set; inactive nodes perform no
updates. Assuming that nodes’ local costs are strongly convex,
with Lipschitz continuous gradients, we show that, as long
as activation probability pk grows to one asymptotically, our
algorithm converges in the mean square sense (MSS) to the same
solution as the standard distributed gradient method, i.e., as if all
the nodes were active at all iterations. Moreover, when pk grows
to one linearly, with an appropriately set convergence factor,
the algorithm has a linear MSS convergence, with practically
the same factor as the standard distributed gradient method.
Simulations demonstrate that, when compared with the standard
distributed gradient method, the proposed algorithm significantly
reduces the overall number of per-node communications and
per-node gradient evaluations (computational cost) for the same
required accuracy.

Index Terms—Distributed optimization, distributed gradient
method, variable number of working nodes, convergence rate,
consensus.

I. INTRODUCTION

We consider distributed optimization where N nodes con-
stitute a generic, connected network, each node i has a convex
cost function fi : Rd 7→ R known only by i, and the nodes
want to solve the following problem:

minimize
∑N
i=1 fi(x) =: f(x)

subject to x ∈ X , (1)

where x ∈ Rd is the optimization variable common to all
nodes, and X ⊂ Rd is a closed, convex constraint set,
known by all. The above and related problems arise frequently,
e.g., in big data analytics in cluster or cloud environments,
e.g., [1]-[3], distributed estimation in wireless sensor networks
(WSNs), e.g., [4]-[8], and distributed control applications,
e.g., [9], [10]. With all the above applications, data is split
across multiple networked nodes (sensors, cluster machines,

D. Jakovetić and D. Bajović are with University of Novi Sad,
BioSense Institute, Novi Sad, Serbia. N. Krejić and N. Krklec-Jerinkić
are with Department of Mathematics and Informatics, Faculty of Sci-
ence, University of Novi Sad, Novi Sad, Serbia. Research of N. Krejić
and N. Krklec-Jerinkić is supported by Ministry of Education, Sci-
ence and Technological Development, Republic of Serbia, grant no.
174030. Authors’ e-mails: [djakovet,dbajovic]@uns.ac.rs, natasak@uns.ac.rs,
natasa.krklec@dmi.uns.ac.rs.

etc.), and fi(x) = fi(x;Di) represents a loss with respect to
data Di stored locally at node i.

A popular approach to solve (1) is via distributed (pro-
jected) (sub)gradient methods, e.g., [11], [12], [13]. With
these methods, each node i, at each iteration k, updates its
solution estimate by weight-averaging it with the estimates of
its neighbors, taking a negative gradient step with respect to its
local cost, and projecting the result onto the constraint set X .
Distributed gradient methods are attractive as they do not
require centralized coordination, have inexpensive iterations
(provided that projections onto X are computationally light),
and exhibit resilience to inter-node communication failures and
delays; however, they have a drawback of slow convergence
rate.

Several techniques to improve convergence rates of dis-
tributed (projected) gradient methods have been proposed,
including Newton-like methods, e.g., [14], [15], [16], [17],
and Nesterov-like methods, e.g., [18], [19]. In this paper, we
make distributed (projected) gradient methods more efficient
by proposing a novel method with a variable number of
working nodes. Each node i, at each iteration k, performs
an update (is active) with probability pk, and stays idle (is
inactive) with probability 1−pk. Whenever active, each node i
performs the same update as with the standard distributed
gradient method, while inactive nodes perform no updates.

Our main results are as follows. Assuming that the costs
fi’s are strongly convex and their gradients are Lipschitz
continuous, we show that, whenever the activation probabil-
ity pk grows asymptotically to one, our method converges
in the mean square sense to the same point as the standard
distributed gradient method.1 Moreover, when pk grows to
one linearly, with the convergence factor δ ∈ (0, 1), our
algorithm has a linear convergence rate (in the sense of
the expected distance to the solution). When, in addition,
quantity δ is set in accordance with the fi’s condition number
and the underlying network’s spectral gap, we show that the
proposed algorithm converges practically with the same linear
convergence factor as the standard distributed gradient method
(albeit with a larger hidden constant). Hence, interestingly, our
algorithm achieves practically the same rate in iterations k as
the standard distributed gradient method, but with the reduced
cost per iteration k (overall communication and computational
cost), thus making distributed gradient methods more efficient.
Simulation examples on l2-regularized logistic losses confirm

1Under a constant step-size α, the standard (projected) distributed gradient
method converges to a point in a neighborhood of the solution of (1), where
the corresponding squared distance is O(α); see ahead Theorem 1 and, e.g.,
[20], [21].

2

that our method significantly reduces the communication and
computational cost with respect to the standard distributed
gradient method, for the same desired accuracy.

The communication and computational savings are highly
relevant with applications like WSNs and distributed learning
in cluster or cloud environments. With WSNs, the reduced
communication and computational cost to retrieve the result
translate into energy saving of the sensor motes’ batteries
and the increase of the network lifetime. With distributed
learning in cluster or cloud environments, less amount of
communication and computation for a specific application/task
means that the saved resources can be re-allocated to another
concurrent tasks. For example, at times when a node with our
method is idle, the resources allocated to it (e.g., a virtual cloud
machine) can be released and re-allocated to other tasks.

We explain intuitively the above results that we achieve.
Namely, standard distributed gradient method exhibits, in
a sense, two sources of redundancy–the first corresponds
to the inter-node communications aspect, while the second
corresponds to an optimization aspect (number of gradient
evaluations per iteration) of the algorithm. It turns out that,
as we show here, a careful simultaneous exploitation of these
two redundancies allows to match the rate of the standard
distributed gradient method with a reduced “work.” The two
sources of redundancy have been already noted in the litera-
ture, but have not been exploited simultaneously before. The
communication redundancy, e.g., [22] means that the inter-
node communications can be “sparsified,” e.g., through the
intermittent link failures, so that the algorithm still remains
convergent. In other words, it is not necessary to utilize
communications through all the available links at all iterations
for the algorithm to converge. The optimization redundancy
has been previously studied only in the context of centralized
optimization, e.g., [23]. The core idea is that, under certain
assumptions on the cost functions, a (centralized) stochastic-
type gradient method with an appropriately increasing sample
size matches the convergence rate of the standard gradient
method with the full sample size at all iterations, as shown
in [23].

A. Related work

We now briefly review existing work relevant to our con-
tributions to help us further contrast our work from the
literature. We divide the literature into two classes: 1) dis-
tributed gradient methods for multi-agent optimization; and
2) centralized stochastic approximation methods with variable
sample sizes. The former class relates to our work through
the communication redundancy, while the latter considers the
optimization redundancy.

Distributed gradient methods for multi-agent optimiza-
tion. Distributed methods of this type date back at least
to the 80s, e.g., [24], and have received renewed interest
in the past decade, e.g., [11]. Reference [11] proposes the
distributed (sub)gradient method with a constant step-size, and
analyzes its performance under time-varying communication
networks. Reference [22] considers distributed (sub)gradient
method under random communication networks with failing

links and establishes almost sure convergence under a dimin-
ishing step-size rule. A major difference of our paper from
the above works is that, in [24], [11], [22], only inter-node
communications over iterations are “sparsified,” while each
node performs gradient evaluations at each iteration k. In [13],
the authors propose a gossip-like scheme where, at each k,
only two neighboring nodes in the network wake up and
perform weight-averaging (communication among them) and
the negative gradient step with respect to their respective local
costs, while the remaining nodes stay idle. The key difference
with respect to our paper is that, with our method, the number
of active nodes over iterations k (on average) is increasing,
while in [13] it remains equal to two for all k. Consequently,
the established convergence properties of the two methods are
very different.

There have been many works where nodes or links in the
network are controlled by random variables. References [25],
[26], [27], [28] consider distributed algorithms for solving the
consensus problem – finding an average of nodes’ local scalars
ai’s, while we consider here a more general problem (1).
These consensus algorithms involve only local averaging steps,
and no local gradient steps (while we have here both local
averaging and local gradient steps). The models of averaging,
i.e., weight matrices, which [25], [26], [27], [28] assume
are very different from ours: they all assume random weight
matrices with time-invariant distributions, while ours are time-
varying. Reference [29] proposes a control mechanism for link
activations in diffusion algorithms to minimize the estimation
error under given resource constraints. The main differences
with respect to our paper are that [29] assumes that local
gradients are always incorporated (deterministic step-sizes),
and the link activation probabilities are time invariant.

References [30], [31], [32] provide a thorough and in-depth
analysis of diffusion algorithms under a very general model
of asynchrony, where both the combination (weight) matrices
and nodes’ step-sizes are random. Our work differs from these
references in several aspects, which include the following. A
major difference is that papers [30], [31], [32] assume that both
the step sizes’and the combination matrices’ random processes
have constant (time-invariant) first and second moments, and
the two processes are moreover mutually independent. In
contrast, both our weight matrices and step-sizes are random,
with time-varying distributions. Actually, the fact that, with our
method node activation probabilities converge to one (which
corresponds to time-varying first moment of the step-sizes) is
critical to establish our main results (Theorems 2 and 3). As
a consequence of the different assumed settings, the results
here and in [30], [31], [32] are also qualitatively different.
Namely, [30], [31], [32] show that asynchronous diffusion has
a similar convergence rate as synchronous diffusion, while
the steady state error (expected squared distance of a node’s
estimate from the solution) is degraded (although moderately
so). Namely, the steady state error of asynchronous diffusion
is O(µ) (µ is the step-size) larger than with the synchronous
diffusion. Hence, their difference is of the same order as the
steady state error itself – O(µ); see, e.g., [32], page 25. On the
other hand, we show here that, when node activation probabil-
ities increase along iterations sufficiently fast to unity, both the

3

convergence rate and the steady state error are not degraded.
Further differences are that papers [30], [31], [32] allow for
noisy gradients, their nodes’ local cost functions all have
the same minimizers, and therein the optimization problem
is unconstrained. In contrast, we assume noise-free gradients,
different local minimizers, and constrained problems.

Our paper is also related to reference [33], which considers
diffusion algorithms with two types of nodes – informed and
uninformed. The informed nodes both: 1) acquire measure-
ments and perform in-network processing (which translates
into computing gradients in our scenario); and 2) perform
consultation with neighbors (which translates into weight-
averaging the estimates across neighborhoods), while the
uninformed nodes only perform the latter task. The authors
study the effect of the proportion of informed nodes and their
distribution in space. A key difference with respect to our
work is that the uninformed nodes in [33] still perform weight-
averaging, while the idle nodes here perform no processing.
Finally, we comment on reference [34] which introduces
an adaptive policy for each node to decide whether it will
communicate with its neighbors or not and demonstrate sig-
nificant savings in communications with respect to the always-
communicating scenario. A major difference of [34] from our
paper is that, with [34], nodes always perform local gradients,
i.e., they do not stay idle (in the sense defined here).

Centralized stochastic approximation methods with vari-
able sample sizes have been studied for a long time. We
distinguish two types of methods: the ones that assume
unbounded sample sizes (where the cost function is in the
form of a mathematical expectation) and the methods with
bounded sample sizes (where the cost function is of the form
in (1).) Our work contrasts with both of these threads of
works by considering distributed optimization over an arbitrary
connected network, while they consider centralized methods.

Unbounded sample sizes have been studied, e.g., in [35],
[36], [37], [38], [39]. Reference [35] uses a Bayesian scheme
to determine the sample size at each iteration within the trust
region framework, and it shows almost sure convergence to a
problem solution. Reference [36] shows almost sure conver-
gence as long as the sample size grows sufficiently fast along
iterations. In [37], the variable sample size strategy is obtained
as the solution of an associated auxiliary optimization problem.
Further references on careful analyses of the increasing sample
sizes are, e.g., [38], [39].

References [40], [41] consider a trust region framework and
assume bounded sample sizes, but, differently from our paper
and [23], [35], [37], [38], [39], they allow the sample size
both to increase and to decrease at each iteration. The paper
chooses a sample size at each iteration such that a balance
is achieved between the decrease of the cost function and
the width of an associated confidence interval. Reference [42]
proposes a schedule sequence in the monotone line search
framework which also allows the sample size both increase
and decrease at each iteration; paper [43] extends the results
in [42] to a non-monotone line search.

Reference [23] is closest to our paper within this thread
of works, and our work mainly draws inspiration from it.
The authors consider a bounded sample size, as we do here.

They consider both deterministic and stochastic sampling and
determine the increase of the sample size along iterations
such that the algorithm attains (almost) the same rate as
if the full sample size was used at all iterations. A major
difference of [23] with respect to the current paper is that
they are not concerned with the networked scenario, i.e.,
therein a central entity works with the variable (increasing)
sample size. This setup is very different from ours as it has
no problem dimension of propagating information across the
networked nodes – the dimension present in distributed multi-
agent optimization.

Paper organization. The next paragraph introduces nota-
tion. Section II explains the model that we assume and presents
our proposed distributed algorithm. Section III states our main
results which we prove in Section IV. Section V provides
numerical examples. Finally, we conclude in Section VI.

Notation. We denote by: R the set of real numbers; Rd
the d-dimensional Euclidean real coordinate space; Aij the
entry in the i-th row and j-th column of a matrix A; A>

the transpose of a matrix A; � and ⊗ the Hadamard (entry-
wise) and Kronecker product of matrices, respectively; I , 0,
1, and ei, respectively, the identity matrix, the zero matrix, the
column vector with unit entries, and the i-th column of I; J the
N×N matrix J := (1/N)11>; A � 0 (A � 0) means that the
symmetric matrix A is positive definite (respectively, positive
semi-definite); ‖ · ‖l the vector (respectively, matrix) l-norm
of its vector (respectively, matrix) argument; ‖ · ‖ = ‖ · ‖2
the Euclidean (respectively, spectral) norm of its vector (re-
spectively, matrix) argument; λi(·) the i-th largest eigenvalue,
Diag (a) the diagonal matrix with the diagonal equal to the
vector a; | · | the cardinality of a set; ∇h(w) the gradient
evaluated at w of a function h : Rd → R, d ≥ 1; P(A)
and E[u] the probability of an event A and expectation of a
random variable u, respectively. For two positive sequences
ηn and χn, we have: ηn = O(χn) if lim supn→∞

ηn
χn

<∞.

II. MODEL AND ALGORITHM

Subsection II-A describes the optimization and network
models that we assume, while Subsection II-B presents our
proposed distributed algorithm with variable number of work-
ing nodes.

A. Problem model

Optimization model. We consider optimization prob-
lem (1), and we impose the following assumptions on (1).

Assumption 1 (Optimization model) (a) For all i, fi : Rd 7→
R is strongly convex with modulus µ > 0, i.e.:

fi(y) ≥ fi(x)+∇fi(x)>(y−x)+
µ

2
‖y−x‖2, ∀x, y ∈ Rd.

(b) For all i, fi : Rd 7→ R has Lipschitz continuous gradient
with constant L, 0 < µ ≤ L <∞, i.e.:

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

(c) The set X ⊂ Rd is nonempty, closed, convex, and
bounded.

4

We denote by D := max{‖x‖ : x ∈ X} the diameter of
X . Note that, as X is compact, the gradients ∇fi(x)’s are
bounded over x ∈ X , i.e., there exists G > 0, such that, for
all i, for all x ∈ X , ‖∇fi(x)‖ ≤ G. The constant G can be
taken as LD+maxi=1,...,N ‖∇fi(0)‖. Indeed, for any x ∈ X ,
we have:

‖∇fi(x)‖ ≤ ‖∇fi(x)−∇fi(0)‖+ ‖∇fi(0)‖
≤ L‖x‖+ ‖∇fi(0)‖
≤ LD + max

i=1,...,N
‖∇fi(0)‖.

Similarly, there exist constants −∞ < mf ≤ Mf < ∞, such
that mf ≤ fi(x) ≤ Mf , ∀i, ∀x ∈ X . Constants mf and Mf

can be taken as Mf = −mf = GD + maxi=1,...,N |fi(0)|.
Under Assumption 1, (1) is solvable and has a unique solution,
which we denote by x?.

Network model. Nodes are connected in a generic undi-
rected network G = (V, E), where V is the set of N nodes
and E is the set of edges – all node (unordered) pairs {i, j}
that can exchange messages through a communication link.
We impose the following assumption.

Assumption 2 (Network connectedness) The network G =
(V, E) is connected, undirected, and simple (no self-loops nor
multiple links).

Both Assumptions 1 and 2 hold throughout the paper. We
denote by Ωi the neighborhood set of node i (excluding i).
We associate with G a N × N symmetric weight matrix C,
which is also stochastic (rows sum to one and all the entries
are non-negative). We let Cij be strictly positive for each
{i, j} ∈ E, i 6= j; Cij = 0 for {i, j} /∈ E, i 6= j; and
Cii = 1 −

∑
j 6=i Cij . As we will see, the weights Cij’s will

play a role in our distributed algorithm. The quantities Cij ,
j ∈ Ωi, are assumed available to node i before execution
of the distributed algorithm. We assume that matrix C has
strictly positive diagonal entries (each node assigns a non-zero
weight to itself) and is positive definite, i.e., λN (C) > 0. For
a given arbitrary stochastic, symmetric weight matrix C ′ with
positive diagonal elements, positive definiteness may not hold.
However, such arbitrary C ′ can be easily adapted to generate
matrix C that obeys all the required properties (symmetric,
stochastic, positive diagonal elements), and, in addition, is
positive definite. Namely, letting, for some κ ∈ (0, 1), C :=
κ+1

2 I + 1−κ
2 C ′, we obtain that λN (C) > κ. It can be shown

that, under the above assumptions on C, λ1(C) = 1, and
λ2(C) < 1.

B. Proposed distributed algorithm

We now describe the distributed algorithm to solve (1)
that we propose. We assume that all nodes are synchronized
according to a global clock and simultaneously (in parallel)
perform iterations k = 0, 1, ... At each iteration k, each
node i updates its solution estimate x(k)

i ∈ X , with arbitrary
initialization x

(0)
i ∈ X . To avoid notational clutter, we will

assume that x(0)
i = x

(0)
j , ∀i, j. Further, each node has an

internal Bernoulli state variable z
(k)
i . If z(k)

i = 1, node i

updates xi(k) at iteration k; we say that, in this case, node i is
active at k. If z(k)

i = 0, node i keeps its current state xi(k) and
does not perform an update; we say that, in this case, node i is
idle. At each k, each node i generates z(k)

i independently from
the previous iterations, and independently from other nodes.
We denote by pk := P (zi(k) = 1). The quantity pk is our
algorithm’s tuning parameter, and is common for all nodes.
We assume that, for all k, pk ≥ pmin, for a positive constant
pmin.

Denote by Ω
(k)
i the set of working neighbors of node i

at k, i.e., all nodes j ∈ Ωi with z
(k)
j = 1. The update of

node i is as follows. If z(k)
i = 0, node i is idle and sets

x
(k+1)
i = x

(k)
i . Otherwise, if z(k)

i = 1, node i broadcasts its
state to all its working neighbors j ∈ Ω

(k)
i . The non-working

(idle) neighbors do not receive x(k)
i ; for example, with WSNs,

this corresponds to switching-off the receiving antenna of a
node. Likewise, node i receives x(k)

j from all j ∈ Ω
(k)
i . Upon

reception, node i updates x(k)
i as follows:

x
(k+1)
i = PX

1−

∑
j∈Ω

(k)
i

Cij

x
(k)
i (2)

+
∑
j∈Ω

(k)
i

Cij x
(k)
j −

α

pk
∇fi(x(k)

i)

 .

In (2), PX (y) = arg minv∈X ‖v − y‖ denotes the Euclidean
projection of point y on X , and α > 0 is a constant; we
let α ≤ λN (C)/L. (See ahead Remark 2.) In words, (2)
means that node i makes a convex combination of its own
estimate with the estimates of its working neighbors, takes a
step in the negative direction of its local gradient, and projects
the resulting value onto the constraint set. As we will see,
multiplying the step-size in (2) by 1/pk compensates for non-
working (idle) nodes over iterations.

Remark 1 Setting pk = 1, ∀k, corresponds to the standard
distributed (sub)gradient method in [44].

Compact representation. We present (2) in a compact
form. Denote by x(k) := ((x

(k)
1)>, ..., (x

(k)
N)>)>, and z(k) :=

(z
(k)
1 , ..., z

(k)
N)>. Further, introduce F : RN d 7→ R, with

F (x) = F (x1, ..., xN) :=

N∑
i=1

fi(xi).

Also, denote by XN ⊂ RN d the Cartesian product X×...×X ,
where X is repeated N times. Next, introduce the N × N
random matrix W (k), defined as follows:

W
(k)
ij =

Cijz

(k)
i z

(k)
j for {i, j} ∈ E, i 6= j

0 for {i, j} /∈ E, i 6= j

1−
∑
s6=iW

(k)
is for i = j.

Then, it is easy to see that, for k = 0, 1, ..., update rule (2)

5

can be written as:

x(k+1) = PXN
{

(W (k) ⊗ I)x(k) (3)

− α

pk

(
∇F (x(k))� (z(k) ⊗ 1)

)}
,

where W (k) ⊗ I denotes the Kronecker product of W (k) and
the d×d identity matrix, 1 in (3) is of size d×1, and � denotes
the Hadamard (entry-wise) product. Note that sequence {x(k)}
is a sequence of random vectors, due to the randomness of
the z(k)’s. The case pk ≡ 1, ∀k, corresponds to standard
distributed (sub)gradient method in [11], in which case (3)
becomes:

x(k+1) = PXN
{

(C ⊗ I) x(k) − α∇F (x(k))
}
. (4)

III. STATEMENT OF MAIN RESULTS

We now present our main results on the proposed distributed
method (2). For benchmarking of (2), we first present a
result on the convergence of standard distributed gradient
algorithm (4). All the results in the current section, together
with needed auxiliary results, are proved in Section IV. Recall
that x? ∈ Rd is the solution to (1).

Theorem 1 Consider standard distributed gradient algo-
rithm (4) with step-size α ≤ λN (C)/L. Then, x(k) converges
to a point x• = ((x•1)>, ..., (x•N)>)> ∈ XN that satisfies, for
all i = 1, ..., N :

‖x•i − x?‖2 ≤ ‖x• − 1⊗ x?‖2 ≤ α CΨ (5)

CΨ :=
4N(Mf −mf)

1− λ2(C)
+

2N2G2

µ (1− λ2(C))
. (6)

Furthermore:

‖x(k) − x•‖ ≤ 2
√
N D (1− αµ)k = O

(
(1− αµ)k

)
. (7)

Theorem 1 says that, with algorithm (4), each node’s estimate
x

(k)
i converges to a point x•i in the neighborhood of the true

solution x?; the distance of the limit x•i from x? is controlled
by step-size α – the smaller the step-size, the closer the limit
to the true solution. Furthermore, x(k)

i converges to a solution
neighborhood (to x•i) at a globally linear rate, equal to 1−αµ.
Hence, there is a tradeoff with respect to the choice of α: a
small α means a higher precision in the limit, but a slower rate
to reach this precision. Note also that, for α ≤ λN (C)/L, the
convergence factor (1−αµ) does not depend on the underlying
network, but the distance ‖x•i − x?‖ between arbitrary node
i’s limit x•i and the solution x? depends on the underlying
network – through the number of nodes N and the second
largest eigenvalue of matrix C.

Remark 2 It is possible to extend Theorem 1 to allow also
for the step-sizes α ∈ (λN (C)/L, (1 + λN (C))/L], in which
case the convergence factor (1− αµ) in (5) is replaced with
max {αL− 1, 1− αµ}. We restrict ourselves to the case α ≤
λN (C)/L, both for simplicity and due to the fact that step-
sizes α – needed to achieve sufficient accuracies in practice –
are usually much smaller than 1/L. (See also Section V.)

Remark 3 For α ≤ λN (C)/L, the convergence factor (1 −
αµ) is an exact (tight) worst case convergence factor, in the
following sense: given an arbitrary network and matrix C,
and given an arbitrary step-size α ≤ λN (C)/L, there exists
a specific choice of functions fi’s, set X , and initial point
x(0) ∈ XN , such that ‖x(k+1)− x•‖ = (1−αµ)‖x(k)− x•‖,
for all k = 0, 1, ...2

We benchmark the proposed method against the standard
distributed gradient method by checking: 1) whether it con-
verges to the same point x•; 2) if so, whether it converges
linearly; and 3) if the convergence is linear, how the corre-
sponding convergence factor compares with (1 − αµ) – the
convergence factor of the standard distributed gradient method.

References [20], [21] also analyze the convergence rate of
the standard distributed gradient method, allowing for step-size
ranges wider than α ∈ (0, λN (C)/L]. They establish bounds
on quantity ‖x(k) − 1 ⊗ x?‖ which are in general different
than (7), and they are not directly concerned with quantity
‖x(k) − x•‖, i.e., precise characterization of convergence rate
of x(k) towards its limit. We adopt here (7) as it gives an exact
worst-case characterization of the convergence rate towards x•

for α ∈ (0, λN (C)/L] (see Remark 3).
We now state our main results on the proposed algo-

rithm (2). The first result deals with a more generic sequence
of the pk’s that converge to one; the second result is for the
pk’s that converge to one geometrically.

Theorem 2 Consider algorithm (2) with step-size α ≤
λN (C)/L. Further, suppose that pk ≥ pmin, ∀k, for some
pmin > 0, and let pk → 1 as k →∞. Then, with algorithm (2),
the iterates x(k) converge, in the mean square sense, to the
same point x• as the standard distributed gradient method (4),
i.e., E

[
‖x(k) − x•‖2

]
→ 0 as k → ∞. Assume, in addition,

that pk = 1− uk, with:

0 ≤ uk ≤
Cu

(k + 1)1+ζ
, ∀k,

for some constants Cu > 0 and ζ > 0. Then, x(k) converges
to x• almost surely.

Theorem 3 Consider algorithm (2) with step-size α ≤
λN (C)/L. Further, suppose that pk = 1− δk+1, k = 0, 1, ...,
for some δ ∈ (0, 1), and let η := max{1 − αµ, δ1/2}. Then,
in the mean square sense, algorithm (2) converges to the same
point x• as the standard distributed gradient method (4), and,
moreover:

E
[
‖x(k) − x•‖

]
= O

(
kηk
)

= O
(
(η + ε)k

)
,

for arbitrarily small positive ε. Furthermore, if
√
δ ≤ 1− αµ:

E
[
‖x(k) − x•‖

]
= O

(
k(1− αµ)k

)
= O

(
(1− αµ+ ε)k

)
.

Theorem 2 states that, provided that the pk’s are uniformly
bounded away from zero, from below, and pk → 1, the

2Consider fi : R → R, fi(x) = x2, ∀i, X = {x ∈ R : |x| ≤ 2},
and x(0) = 1. Note that, in this case, x• = 0, and µ = L = 1. For this
example, it is easy to show that ‖x(k+1) − x•‖ = (1−α)‖x(k) − x•‖, for
all k = 0, 1, ..., and so the convergence factor equals 1− αµ.

6

method (4) converges (in the mean square) to the same point as
the standard distributed method (4). If, moreover, pk converges
to one at a sublinear rate at least 1

(k+1)1+ζ
(where ζ > 0

can be arbitrarily small), then the convergence also hold
almost surely. Therefore, in such scenarios, the random idling
schedule governed by the pk’s does not affect the method’s
limit.

Theorem 3 furthermore suggests that, provided that con-
vergence o pk towards unity is linear (geometric) with con-
vergence factor δ ≤ (1 − αµ)2, algorithm (2) converges at
the practically same rate as the standard method (4), i.e.,
as if all the nodes were working all the time (albeit with
a larger hidden constant). Hence, we may expect that the
proposed method (2) achieves the same desired accuracy as (4)
with less amount of resources spent (smaller number of the
overall node activations–communications and computations).
This indeed occurs in practice, as confirmed by simulations in
Section V. The hidden convergence constant is dependent on
the underlying network, the sequence {pk}, and step-size α,
and is given explicitly in Remark 5.

IV. INTERMEDIATE RESULTS AND PROOFS

Subsection IV-A gives intermediate results on the random
matrices W (k) and provides the disagreement estimates –
how far apart are the estimates x

(k)
i of different nodes in

the network. Subsection IV-B introduces a penalty-like in-
terpretation of algorithm (4) and proves Theorem 1. Finally,
Subsection IV-C proves our main results, Theorems 2 and 3,
by applying the penalty-like interpretation on algorithm (3).
For notational simplicity, this section presents auxiliary results
and all the proofs for the case d = 1, but all these extend
to a generic d > 1. Throughout this Section, all the claims
(equalities and inequalities) which deal with random quantities
hold either: 1) surely, for any random realization; or 2) in
expectation. It is clear from notation which of the two cases
is in force.

A. Matrices W (k) and disagreement estimates

Matrices W (k). Recall that J := (1/N)11>. We have the
following Lemma on the matrices W (k). Lemma 4 follows
from simple arguments and standard results on symmetric,
stochastic matrices (see, e.g., [45]). Hence, we omit the proof
for brevity.

Lemma 4 (Matrices W (k)) (a) The sequence {W (k)} is a se-
quence of independent random matrices.

(b) For all k, W (k) is symmetric and stochastic (rows sum to
one and all the entries are nonnegative).

(c) For all k, 0 ≺W (k) � I.
(d) There exists a constant β ∈ (0, 1) such that, ∀k,

E
[
‖W (k) − J‖2

]
< β2.

It can be shown that β can be taken as β2 = 1 −
(pmin)N

[
1− (λ2(C))2

]
; see, e.g., [45].

Remark 4 The quantities E
[
‖W (k) − J‖2

]
clearly depend

on k, and, more specifically, on pk. We adopt here a (possibly

loose) uniform bound β (independent of k) as this suffices to
establish conclusions about convergence rates of algorithm (3)
while simplifying the presentation.

Disagreement estimate. Denote by x(k) := 1
N

∑N
i=1 x

(k)
i

the global average of the nodes’ estimates, and by x̃
(k)
i =

x
(k)
i −x(k). Note that both quantities are random. The quantity
x̃

(k)
i measures how far is the node i’s estimate from the global

average. Denote by x̃(k) := (x̃
(k)
1 , ..., x̃

(k)
N)>. The next Lemma

shows that E
[
‖x̃(k)‖2

]
is uniformly bounded, ∀k, and that

the bound is O(α2), i.e., the disagreement size is controlled
by the step-size. (The smaller the step-size, the smaller the
disagreements are.)

Lemma 5 (Disagreements bound) For all k, there holds:

E
[
‖x̃(k)‖2

]
≤

(
3α
√
NG

pmin(1− β)

)2

.

B. Analysis of the standard distributed gradient method
through a penalty-like reformulation

We analyze the proposed method (3) through a penalty-like
interpretation, to our best knowledge first introduced in [46].
Introduce an auxiliary function Ψα : RN 7→ R, defined by:
Ψα(x) :=

∑N
i=1 fi(xi)+ 1

2αx
>(I−C)x = F (x)+ 1

2αx
>(I−

C)x, and the associated optimization problem:

minimize Ψα(x) =
∑N
i=1 fi(xi) + 1

2αx
>(I − C)x

subject to x ∈ XN . (8)

Function Ψα and (8) will be very useful in the analysis of (2).
In fact, we will show that (2) is an inexact version of the
(projected) gradient method on function Ψα. Clearly, (8) is
solvable, and it has a unique solution, which we denote by x•.3

We start by showing that standard distributed (sub)gradient
method in [11] is an exact (projected) gradient method on Ψα.
Indeed, the derivative ∇Ψα(x) = ∇F (x) + 1

α (I − C)x. The
projected gradient method on Ψα with step-size α then takes
the form:

x(k+1) = PXN
{
x(k) − α∇Ψα(x(k))

}
(9)

= PXN
{
x(k)−

α

(
∇F (x(k)) +

1

α
(I − C)x(k)

)}
,

which, after rearranging terms, is precisely (4).
It is easy to see that Ψα is strongly convex on RN , with

modulus µ′ = µ (which equals the strong convexity modulus
of the fi’s). Further, ∇Ψα is Lipschitz continuous on RN ,
with constant L′ = L+ 1−λN (C)

α . Namely, ∀x, y ∈ RN :

‖∇Ψα(x)−∇Ψα(y)‖ ≤ ‖∇F (x)−∇F (y)‖

+
1

α
‖I − C‖ ‖x− y‖

≤ L‖x− y‖+
1− λN (C)

α
‖x− y‖.

3The point of convergence of algorithm (4) and the solution to (8) are
intentionally denoted by the same symbol because – as we will show – they
actually are the same point.

7

(Note that ‖∇F (x) − ∇F (y)‖ ≤ L‖x − y‖ follows after
summing the inequalities: |∇fi(xi)−∇fi(yi)|2 ≤ L2|xi−yi|2,
i = 1, ..., N , and using ‖∇F (x)‖2 =

∑N
i=1 |∇fi(xi)|2.)

We impose that α satisfies α ≤ 1
L′ , which, after simple

manipulations, gives: α ≤ λN (C)/(L), as introduced before.
An immediate consequence of the fact that algorithm (4)

is precisely the projected gradient method to solve (8) is the
following Lemma, first observed in [46].

Lemma 6 ([46]) Standard distributed gradient algorithm (4)
with step-size α ≤ λN (C)/L converges to the point x• ∈ XN
– the solution to (8).

We proceed by proving Theorem 1.
Proof of Theorem 1: As per Lemma 6, algorithm (4)

converges to x• – the solution to (8). We hence need to prove
for the solution to (8) the characterization in (5).

Consider an arbitrary point x ∈ XN , and let x :=
1
N

∑N
i=1 xi. We first prove the following inequality:

f(x)− f(x?) ≤ (Ψα(x)−Ψα(x•)) +
αNG2

2(1− λ2(C))
. (10)

Indeed, we have that:

x>(I − C)x = (x− x1)>(I − C)(x− x1)

≥ λN−1(I − C)‖x− x1‖2

= (1− λ2(C))‖x̃‖2,

where we let x̃ := x− x1. Further,
N∑
i=1

fi(xi) =
∑
i=1

fi(x) + (
∑
i=1

(fi(xi)− fi(x)))

≥ f(x)−G
N∑
i=1

|xi − x|

≥ f(x)−G
√
N‖x̃‖.

The second from last inequality follows because fi(xi) ≥
fi(x) + ∇fi(x)(xi − x) ≥ fi(x) − G |xi − x|. Combining
the previous conclusions:

Ψα(x)−Ψα(x•) ≥ f(x)−Ψα(x•)−G
√
N‖x̃‖

+
1

2α
(1− λ2(C))‖x̃‖2

≥ f(x)−Ψα(x•)

− sup
t≥0

{
G
√
Nt− 1

2α
(1− λ2(C))t2

}
≥ f(x)−Ψα(x•)− αN G2

2(1− λ2(C))
. (11)

Next, note that Ψα(x•) = minx∈XN Ψα(x) ≤ Ψα(x?1) =
f(x?), and so −Ψα(x•) ≥ −f(x?). Applying this to (11),
completes the proof of (10).

We now prove claim (5) in Theorem 1. We have:

‖x• − x?1‖2 = ‖x• − x•1 + x•1− x?1‖2

≤ 2 ‖x• − x•1‖2 + 2N |x• − x?|2 . (12)

For the second summand in (12), we have:

|x• − x?|2 ≤ 2

µ
(f(x•)− f(x?))

≤ αNG2

µ(1− λ2(C))
.

The first inequality above is due to strong convexity of f ,
and the second applies (10) with x = x• (where x• =
1
N

∑N
i=1 x

•
i). We now upper bound the first summand in (12).

We have that:

Ψα(x•) =

N∑
i=1

fi(x
•
i) +

1

2α
(x•)>(I − C)x•

≥ 1− λ2(C)

2α
‖x̃•‖2 +Nmf ,

where x̃• = x• − x• 1. On the other hand,

Ψα(x•) ≤ f(x?) ≤ N Mf .

Combining the obtained upper and lower bounds on Ψα(x•),
we obtain for the first summand in (12):

‖x• − x•1‖2 ≤ 2αN(Mf −mf)

1− λ2(C)
.

Combining the bounds on the first and second summands, the
claim in (5) follows.

It remains to prove the claim in (7). By standard analysis
of gradient methods, we have that:

‖x(k) − x•‖ ≤ (1− αµ)k‖x(0) − x•‖ ≤ (1− αµ)k2
√
ND,

where we used that ‖x(0)‖ ≤
√
ND, and the same bound for

x•. Thus, the desired result.

C. Analysis of the proposed method (2)

We now turn our attention to the proposed method (3). It is
easy to verify that (3) can be written as:

x(k+1) = PXN
{
x(k) − α

[
∇Ψα(x(k)) + e(k)

]}
, (13)

where e(k) = (e
(k)
1 , ..., e

(k)
N)> is a random vector, with i-th

component equal to:

e
(k)
i =

(
z

(k)
i

pk
− 1

)
∇fi(x(k)

i)

+
1

α

∑
j∈Ωi

Cij (z
(k)
i z

(k)
j − 1)

(
x

(k)
i − x

(k)
j

)
. (14)

Hence, (2) is an inexact projected gradient method applied
to Ψα, with step-size α, where the amount of inexactness is
given by vector e(k).

Overall, our strategy in analyzing (13) consists of two
main steps: 1) analyzing the inexact projected gradient method
(13); and 2) characterizing (upper bounding) the inexactness
vector e(k). For the former step, we apply Proposition 3
in [23]. Adapted to our setting, the proposition says the
following. Consider minimization of φ(y) over y ∈ Y , where
φ : Rm → R is a convex function, and Y ⊂ Rm is a
closed convex set. Let y• be the solution to the above problem.

8

Further, let φ be strongly convex with modulus µφ > 0, and let
φ have a Lipschitz continuous gradient with constant Lφ ≥ µφ.

Lemma 7 (Proposition 3, [23]) Consider the algorithm:

y(k+1) = PY
{
y(k) − 1

Lφ

[
∇φ(y(k)) + e(k)

y

]}
, k = 0, 1, ...,

where e(k)
y is a random vector. Then, ∀k = 1, 2, ...:

‖y(k) − y•‖ ≤ (1− µφ/Lφ)k‖y(0) − y•‖

+
1

Lφ

k∑
t=1

(1− µφ/Lφ)k−t‖e(t−1)
y ‖, (15)

where y(0) ∈ Y is the initial point.

Note that, if ∇φ is Lipschitz continuous with constant Lφ,
then ∇φ is also Lipschitz continuous with constant 1/α ≥ Lφ.
Therefore, for the function φ and the iterations:

y(k+1) = PY
{
y(k) − α

[
∇φ(y(k)) + e(k)

y

]}
, k = 0, 1, ...,

there holds:

‖y(k) − y•‖ ≤ (1− αµφ)k‖y(0) − y•‖

+ α

k∑
t=1

(1− αµφ)k−t‖e(t−1)
y ‖, k = 1, ...(16)

In other words, the modified claim (16) holds even if we take
a step size different (smaller than) 1/Lφ.

For analyzing the inexact projected gradient method (13),
we will also make use of the following result. (The first claim
of it is Lemma 3.1 in in [12].)

Lemma 8 (Lemma 3.1, [12]) Consider a deterministic se-
quence {vk} such that vk → 0 as k → ∞, and let a be a
constant in (0, 1). Then, there holds:

k∑
t=1

ak−tvt−1 → 0. (17)

If, moreover, there exist positive constants Cv and ζ such that,
for all k = 0, 1, ...,

vk ≤
Cv

(k + 1)1+ζ
,

then there exists positive constant C′v such that, for all k =
1, 2, ...,

k∑
t=1

ak−tvt−1 ≤
C′v
k1+ζ

. (18)

Step 1: gradient inexactness. We proceed by charac-
terizing the gradient inexactness; Lemma 9 upper bounds
quantity E

[
‖e(k)‖2

]
.

Lemma 9 (Gradient inexactness) For all k = 0, 1, ..., there

holds:

E
[
‖e(k)‖2

]
≤ 4(1− pk)

N G2

pmin

+ 72(1− p2
k)

NG2

(pmin)2(1− β)2

≤ Ce (1− p2
k), (19)

where

Ce =
4N G2

pmin
+

72NG2

(pmin)2(1− β)2
. (20)

Proof: Consider (14). We have:

|e(k)
i |

2 ≤ 2

∣∣∣∣∣z(k)
i

pk
− 1

∣∣∣∣∣
2

|∇fi(x(k)
i)|2 (21)

+
2

α2

∑
j∈Ωi

Cij |z(k)
i z

(k)
j − 1|2

∣∣∣x(k)
i − x

(k)
j

∣∣∣2
≤ 2G2

∣∣∣∣∣z(k)
i

pk
− 1

∣∣∣∣∣
2

+
4

α2

∑
j∈Ωi

Cij |z(k)
i z

(k)
j − 1|2

×
(∣∣∣x̃(k)

i

∣∣∣2 +
∣∣∣x̃(k)
j

∣∣∣2) . (22)

Inequality (21) uses the following bound: (u + v)2 ≤ 2u2 +

2v2. It also uses, with ui := (z
(k)
i z

(k)
j − 1)(x

(k)
i − x

(k)
j), the

following relation:

(
∑
j∈Ωi

Cijuj)
2 = (

∑
j∈Ωi

Cijuj + Cii · 0)2

≤
∑
j∈Ωi

Ciju
2
j + Cii · 02

=
∑
j∈Ωi

Ciju
2
j ,

which follows due to the fact that
∑
j∈Ωi

Cijuj + Cii · 0

is a convex combination, and v 7→ v2, v ∈ R, is convex.
Inequality (22) uses that∣∣∣x(k)

i − x
(k)
j

∣∣∣2 =
∣∣∣x(k)
i − x

(k) + x(k) − x(k)
j

∣∣∣2
≤ 2

∣∣∣x(k)
i − x

(k)
∣∣∣2 + 2

∣∣∣x(k) − x(k)
j

∣∣∣2 .
Taking expectation, and using independence of x(k) from z(k):

E
[
|e(k)
i |

2
]
≤ 2G2 E

∣∣∣∣∣z(k)
i

pk
− 1

∣∣∣∣∣
2

+
4

α2

∑
j∈Ωi

Cij E
[
|z(k)
i z

(k)
j − 1|2

]
×

(
E
[∣∣∣x̃(k)

i

∣∣∣2]+ E
[∣∣∣x̃(k)

j

∣∣∣2]) . (23)

We proceed by upper bounding E

[∣∣∣∣ z(k)i

pk
− 1

∣∣∣∣2
]

, using the

total probability law with respect to the following partition:

9

{z(k)
i = 1}, and {z(k)

i = 0}:

E

∣∣∣∣∣z(k)
i

pk
− 1

∣∣∣∣∣
2
 =

∣∣∣∣ 1

pk
− 1

∣∣∣∣2 P(z
(k)
i = 1) + P

(
z

(k)
i = 0

)
=

∣∣∣∣ 1

pk
− 1

∣∣∣∣2 pk + (1− pk) (24)

=
1

pk
(1− pk)2 + (1− pk)

≤ 1

pk
(1− pk) + (1− pk)

≤ 2(1− pk)/pmin. (25)

We next upper bound E
[
|z(k)
i z

(k)
j − 1|2

]
, using the total

probability law with respect to the event {z(k)
i = 1, z

(k)
j = 1}

and its complement; we obtain:

E
[
|z(k)
i z

(k)
j − 1|2

]
= (1− P(z

(k)
i = 1, z

(k)
j = 1))

= (1− pk)2. (26)

Substituting (25) and (26) in (23):

E
[
|e(k)
i |

2
]
≤ 4G2 (1− pk)/pmin

+
4

α2

∑
j∈Ωi

Cij (1− p2
k)

×
(
E
[∣∣∣x̃(k)

i

∣∣∣2]+ E
[∣∣∣x̃(k)

j

∣∣∣2]) . (27)

Summing the above inequalities over i = 1, ..., N , using the
fact that

∑
j∈Ωi

Cij ≤ 1, ∀i, E
[
‖e(k)‖2

]
=
∑N
i=1 E

[
|e(k)
i |2

]
,

and E
[
‖x̃(k)‖2

]
=
∑N
i=1 E

[
|x̃(k)
i |2

]
, we obtain:

E
[
‖e(k)‖2

]
≤ 4N G2 (1− pk)/pmin

+
8

α2
(1− p2

k)E
[∥∥∥x̃(k)

∥∥∥2
]
.

Finally, applying Lemma 5 to the last inequality, the claim
follows.

Step 2: Analyzing the inexact projected gradient method.
We first state and prove the following Lemma on algorithm (2).

Lemma 10 Consider algorithm (2) with step-size α ≤
λN (C)/(L). Then, for the iterates x(k) and x•–the solution
to (8), ∀k = 1, 2, ..., there holds:

E
[
‖x(k) − x•‖2

]
≤ 8N (1− αµ)2kD2

+
α Ce
µ

k∑
t=1

(1− αµ)k−t(1− p2
t−1).

Proof: As already established, algorithm (2) is an inexact
projected gradient method to solve (8), with the inexactness
vector e(k). We now apply (16) to sequence x(k) and itera-
tions (3); we obtain:

‖x(k) − x•‖ ≤ (1− αµ)k‖x(0) − x•‖

+ α

k∑
t=1

(1− αµ)k−t‖e(t−1)‖. (28)

Squaring the latter inequality, using (u + v)2 ≤ 2u2 + 2v2,
and ‖x(0) − x•‖ ≤ 2

√
ND:

‖x(k) − x•‖2 ≤ 8(1− αµ)2kND2

+ α2

(
k∑
t=0

(1− αµ)k−t

)

×
k∑
t=1

(1− αµ)k−t‖e(t−1)‖2. (29)

In (29), we used the following. Let θt = (1 − αµ)k−t, and
St :=

∑k
t=1 θt. Then,(
k∑
t=1

θt‖e(t−1)‖

)2

= S2
t

(
k∑
t=1

θt
St
‖e(t−1)‖

)2

≤ S2
t

k∑
t=1

θt
St
‖e(t−1)‖2

= St

k∑
t=1

θt‖e(t−1)‖2,

where we used convexity of the scalar quadratic function v 7→
v2. Now, using

∑k
t=1(1− αµ)k−t ≤ 1

1−(1−αµ) = 1
αµ , (29) is

further upper bounded as:

‖x(k) − x•‖2 ≤ 8(1− αµ)2kND2

+
α2

αµ

k∑
t=1

(1− αµ)k−t‖e(t−1)‖2.

Taking expectation, and applying Lemma 9, we obtain the
claimed result.

We are now ready to prove Theorems 2 and 3.

Proof of Theorem 2: The proof of the mean square sense
convergence claim follows from Lemma 10 by applying (17).
Namely, setting a := 1 − αµ and vt := 1 − p2

t , the desired
result follows.

We now prove the almost sure convergence claim. By
Lemma 10, using pk = 1− uk, we have:

E
[
‖x(k) − x•‖2

]
≤ 8N (1− αµ)2kD2

+
2α Ce
µ

k∑
t=1

(1− αµ)k−tut−1.

Now, from (18), there exists a positive constant C′u such that,
for all k = 1, 2, ...:

k∑
t=1

(1− αµ)k−tut−1 ≤
C′u
k1+ζ

,

10

and hence:

E
[
‖x(k) − x•‖2

]
≤ 8N (1− αµ)2kD2

+
2α Ce C′u

µ

1

k1+ζ
.

Summing the above inequality over k = 1, 2, ..., we obtain
that: ∞∑

k=0

E
[
‖x(k) − x•‖2

]
<∞. (30)

Applying the Chebyshev’s inequality and (30), we conclude
that: ∞∑

k=0

P
(
‖x(k) − x•‖ > ε

)
<∞,

for any ε > 0. Therefore, by the first Borel-Cantelli lemma,
P
(
‖x(k) − x•‖ > ε, infinitely often

)
= 0, which finally im-

plies that x(k) converges to x•, almost surely.

Proof of Theorem 3: Consider (28). Taking expectation:

E
[
‖x(k) − x•‖

]
≤
√
N(1− αµ)k2D (31)

+ α

k∑
t=1

(1− αµ)k−t
√
Ce(1− p2

t−1)

≤
√
N(1− αµ)k2D (32)

+ α

k∑
t=1

(1− αµ)k−t
√
Ce
√

2(
√
δ)t.

The first inequality uses E[|u|] ≤ (E[|u|2])1/2. The second
inequality uses 1 − p2

t−1 = (1 − (1 − δt))2 ≤ 2δt. Consider
the sum in (32). For each t, each summand is upper bounded
by ηk

√
2Ce, and so the sum is O(kηk). The term

√
N(1 −

αµ)k2D = O(ηk). Hence, the overall right-hand-side in (32)
is O(kηk) = O((η + ε)k), which completes the proof.

Remark 5 The proof of Theorem 3 also determines the con-
stant in the convergence rate. From the above proof, substi-
tuting the expression for Ce in (20), it is straightforward to
observe that, for all k = 1, 2, ...:

E
[
‖x(k) − x•‖

]
≤ 12 max

{
√
N D,

α
√
N G

pmin(1− β)

}
k ηk.

V. SIMULATIONS

We provide simulations on the problem of learning a linear
classifier via logistic loss, both on synthetic and real data
sets. Simulations demonstrate that our proposed idling strat-
egy significantly reduces the total cost (both communication
and computational costs), when compared with standard dis-
tributed gradient method where all nodes work at all iterations.
At the same time, the proposed method does not increase –
or even reduces – the total number of iterations. Simulations
also demonstrate the method’s high degree of robustness to
asynchrony and its benefits over gossip-based strategies for
solving (1).

We consider distributed learning of a linear classifier via
logistic loss, e.g., [47]. Each node i possesses J data sam-
ples {aij , bij}Jj=1. Here, aij ∈ R3 is a feature vector, and
bij ∈ {−1,+1} is its class label. We want to learn a
vector x = (x>1 , x0)>, x1 ∈ Rd−1, and x0 ∈ R, d ≥ 1,
such that the corresponding linear classifier sign (Hx(a)) =
sign

(
x>1 a+ x0

)
minimizes the total surrogate loss with l2

regularization:

N∑
i=1

 J∑
j=1

Jlogis (bijHx(aij)) +
1

2
R‖x‖2

 , (33)

subject to a prior knowledge that ‖x‖ ≤ M, whereM > 0 is a
constant. Here, Jlogis(·) is the logistic loss Jlogis(α) = log(1+
e−α), and R is a positive regularization parameter. Clearly,
problem (33) fits the generic framework in (1) with fi(x) =∑J
j=1 Jlogis (bijHx(aij)) +R‖x‖2, f(x) =

∑N
i=1 fi(x), and

X = {x ∈ R4 : ‖x‖ ≤ M}. A strong convexity constant of
the fi’s µ can be taken as µ = R

N , while a Lipschitz constant
L can be taken as 1

4N ‖
∑N
i=1

∑J
j=1 cij c

>
ij‖+ RN , where cij =

(bij a
>
ij , bij)

>.
With all experiments, we test the algorithms on a connected

network with N = 50 nodes and 214 links, generated as a ran-
dom geometric graph: we place nodes randomly (uniformly)
on a unit square, and the node pairs whose distance is less
than a radius are connected by an edge.

Experiments on synthetic data. In the first set of experi-
ments, we generate data and set the algorithm parameters as
follows. Each node i has J = 2 data points whose dimension
is d − 1 = 3. We generate the aij’s independently over i
and j; each entry of aij is drawn independently from the
standard normal distribution. We generate the “true” vector
x? = ((x?1)>, x?0)> by drawing its entries independently
from standard normal distribution. Then, the class labels are
generated as bij = sign

(
(x?1)>aij + x?0 + εij

)
, where εij’s

are drawn independently from normal distribution with zero
mean and standard deviation 0.1. The obtained correspond-
ing strong convexity parameter µ = 0.1, and the Lipschitz
constant L ≈ 0.69. Further, we set M = 100 and R = 0.1.

With both algorithms, we initialize xi(0) to PX (hi), where
the hi’s, i = 1, ..., N , are generated mutually independently,
and the entries of each hi are generated mutually indepen-
dently from the uniform distribution on [−50,+50]. ∀i. We
utilize the Metropolis weights, e.g., [48]. With the proposed
method, we set pk = 1−δk+1, k = 0, 1, ..., and δ = (1−αµ)2.

As an error metric, we use the relative error in the objective
function averaged across nodes:

1

N

N∑
i=1

f(x
(k)
i)− f?

f?
, f? > 0,

where f? is evaluated numerically via the (centralized) pro-
jected gradient method. With the proposed method, we run
200 simulations and consider both the average relative error
(averaged across 200 simulation runs with different instantia-
tions of node activations, i.e., variables z(k)) and the relative
error’s histograms.

We compare the two methods with respect to the total cost

11

(total number of activations across all nodes), where a unit
cost corresponds to a single node activation at one iteration;
we also include the comparisons with respect to the number
of iterations k. We consider two different values of step-sizes,
α ∈ { 1

250L ,
1

50L}, which correspond to different achievable
accuracies by both methods.

Figure 1 compares the proposed and standard distributed
gradient methods for α = 1/(50L). We can see that the
proposed method significantly reduces the total cost to reach
a certain accuracy, while at the same time it does not induce
overhead in the total number of iterations. For example,
we can see from Figure 1 (a) that, to achieve relative er-
ror ε = 0.01, the proposed method has on average the total
cost around 16, 700, while the standard distributed gradient
method requires around 25, 000, which gives relative savings
of about 33%. At the same time, the two methods require
practically the same number of iterations (Figure 1 (b)).
Figure 1 (c) shows the histogram for the proposed method of
the total cost to achieve relative error ε = 0.01, where an arrow
indicates the cost of the standard distributed gradient method.
Figure 1 (d) repeats the study for the total number of iterations.
Figure ?? shows the comparisons for α = 1/(250L), and it
shows histograms to reach ε = 0.005, again demonstrating
very significant improvements.

Experiments on real world data sets. In the second
set of experiments, we consider the same network with
50 nodes and test the algorithms on a real world data
sets, “a1a,” which we downloaded from the repository:
http://www.csie.ntu.edu.tw/ cjlin/libsvm/. With data set “a1a,”
we have N J = 1, 600 data points (J = 32 per node) of
dimension d − 1 = 119 (optimization variable dimension
is 120); with “Mushrooms,” N J = 8, 100 (J = 162) and
d− 1 = 112. we set M = 100 and R = 0.1.

We use all the system and algorithmic parameters the same
as in the first set of experiments, except the following. With
the proposed method, we set pk = max{1 − δk+1, 0.1},
k = 0, 1, ..., and δ = min{(1 − αµ)2, 0.99999}. (See the
discussion in*****.) As error metrics, we use the average cost
function (averaged across nodes)

1

N

n∑
i=1

f
(
x

(k)
i

)
,

and the normalized gradient norm:

1
N

∑N
i=1

∥∥∥∇f (x(k)
i

)∥∥∥
1
N

∑N
i=1

∥∥∥∇f (x(0)
i

)∥∥∥ ,
where

∑N
i=1

∥∥∥∇f (x(0)
i

)∥∥∥ > 0. 4 With the proposed method,
we run one sample path realization.

Figure 3 compares the proposed and standard distributed

4This is a valid performance metric, because we numerically verified that,
with this example, solution x? is not at the boundary of the constraint set, i.e.,
we have that ‖∇f(x?)‖ = 0. We verified this by establishing that f(0) ≤
f(x), for all boundary points x, i.e., for all x with ‖x‖ = M, and hence
the solution is not at the boundary of the constraint set. This claim was
easy to check by numerically evaluating f(0) and numerically verifying that
f(0) ≤ NR

2
M2, which implies, due to strong convexity of f (with modulus

NR), that f(0) ≤ f(x), for all x with ‖x‖ =M.

gradient methods for “a1a” data set, for step size α = 1/(50L)
We can see that the proposed method reduces the total cost
by at an order of magnitude, and it also significantly reduces
the number of iterations for convergence.

Modeling and testing asynchronous operation. In appli-
cations like, e.g., WSNs, accounting for asynchrony in the
algorithm’s operation is highly relevant. In such scenarios,
when node i decides to activate at iteration k and transmit
a message to node j, this message may be lost, due to, e.g.,
packet dropouts in WSNs. In addition, an active node may fail
to calculate the local gradient at iteration k, because the actual
calculation may take longer than the time slot allocated to
iteration k, or due to unavailability of sufficient computational
resources at k. Therefore, under asynchrony, the schedule
of realized inter-neighbor communications and local gradient
evaluations is not under the full control of networked nodes.

We introduce the following model. At each link {i, j} ∈ E
and each k = 0, 1, ..., let ẑ(k)

{i,j} be a binary random variable
which takes value one if the communication link is online and
zero otherwise; let p̂ij := P

(
ẑ

(k)
{i,j} = 1

)
. Therefore, variable

ẑ
(k)
{i,j} models a failure of link {i, j} at k. Similarly, for each

node i, introduce a binary random variable ẑ(k)
i , which takes

the value one if the calculation of ∇fi
(
x

(k)
i

)
is successful

and zero otherwise. We let p̂i := P
(
ẑ

(k)
i = 1

)
. Variable ẑ(k)

{i,j}
hence models failure of node i’s gradient calculation at k. (As
before, each node i activates if z(k)

i = 1 and stays idle if
z

(k)
i = 0.) We assume that the variables ẑ(k)

{i,j} are independent

both across links and across iterations; likewise, the ẑ
(k)
i ’s

are independent both across nodes and across iterations; and
that the node activations, the link failures, and the gradient
calculation failures are mutually independent processes. Note
that z(k)

i is in control of node i, while the ẑ(k)
{i,j}’s and ẑ(k)

i ’s
are governed “by nature.” The update of node i and iteration k
is as follows. If z(k)

i = 0, node i stays idle; else, if z(k)
i = 1,

we have:

x
(k+1)
i = PX { (1−

∑
j∈Ωi

z
(k)
i ẑ

(k)
{i,j}Cij)x

(k)
i (34)

+
∑
j∈Ωi

Cij z
(k)
i ẑ

(k)
{i,j} x

(k)
j

− α

pk
z

(k)
i ẑ

(k)
i ∇fi(x

(k)
i) }.

Note that we assume that nodes do not have prior knowledge
on the asynchrony parameters p̂i’s and p̂{i,j}’s.

We provide a simulation example on the synthetic data set
and the 50-node network considered before with the same
simulation parameters and α = 1/(50L). Each p̂{i,j} is set
to 0.5, while for the p̂i’s we consider two scenarios: 1) lower
failure probabilities, where half of the nodes have p̂i = 0.9 and
the other half has p̂i = 0.5; and 2) higher failure probabilities,
where half of the nodes have p̂i = 0.9 and the other half has
p̂i = 0.1. Note that the latter scenario corresponds to rather
severe conditions, as half of the nodes successfully computes
gradients only with 0.1 probability.

Figure 4 shows the performance of the proposed method

12

for three scenarios: no failures, lower failure probabilities,
and higher failure probabilities. We can see that the proposed
algorithm exhibits a very strong resilience to asynchrony.
First consider the higher failure probabilities scenario (dashed
line in Figure 4 (a)). We can see that, despite the severe
conditions, the proposed algorithm still converges close to the
solution, naturally with a decreased convergence rate and with
a moderately increased limiting error. Now, consider the lower
failure probabilities scenario (dotted line in Figure 4 (a)). The
proposed algorithm again generally slows down convergence,
as it is expected. However, interestingly, it actually achieves
a higher degree of accuracy asymptotically than under the
synchronous scenario. This is explained as follows. The effec-
tive step-size of node i with algorithm (34) equals α

pk
z

(k)
i ẑ

(k)
i ,

which is on average αp̂i. Hence, in a sense, p̂i has the effect
of decreasing the step-size. The step-size decrease has the
known effect of slowing down convergence rate but improving
the asymptotic accuracy, as confirmed in Figure 4 (a). The
improved asymptotic accuracy indeed occurs as long as the
p̂i’s are not mutually too different. When the p̂i’s are mutually
too far apart, different nodes effectively use very different
step-sizes (which equal to αp̂i), and this disbalance makes
a negative effect on both the convergence speed and on the
asymptotic accuracy – as confirmed in Figure 4 (a) for the
higher failure probabilities case.

Comparison with a gossip-based scheme. To further
corroborate the benefits of the proposed idling scheme with
increasing activation probabilities, we compare it on the syn-
thetic data set and α = 1/(50L) with the gossip-based scheme
in [13]. We can see that the proposed scheme outperforms
gossip. Most notably, the gossip scheme has a larger steady
state error under the fair – equal step sizes – comparison.
We explain why this happens. Namely, with gossip, only two
nodes (out of N) are active at all iterations. This means that,
essentially, the gossip-based scheme behaves as an incremen-
tal gradient method (more precisely, a mini-batch) gradient
method, where the full gradient (which equals the sum of N
local nodes functions’ gradients) is at all times approximated
with the sum of two local gradients. Therefore, the gossip-
based scheme incurs an increased steady state error, for a
similar reason as the fact why the (centralized) incremental
gradient method with constant step size does not converge to
the exact solution. In contrast, our method essentially behaves
as a full gradient method, thus leading to a higher accuracy.

VI. DISCUSSION AND EXTENSIONS

A. Relaxing strong convexity and differentiability

We assumed throughout the previous part of the paper that
the fi’s are strongly convex and have Lipschitz continuous
gradients. We now extend our results to more generic cost
functions, when these two assumptions are relaxed. Specifi-
cally, we now let each fi : Rd → R be convex and Lipschitz
over set X , i.e.,

|fi(x)− fi(y)| ≤ G ‖x− y‖, ∀x, y ∈ X . (35)

We continue to assume that X is convex and compact, so the
class of the fi’s which satisfies (35) is fairly wide.

The proposed algorithm (2) generalizes straightforwardly: at
node i and iteration k, gradient ∇fi

(
x

(k)
i

)
is replaced with

an arbitrary subgradient from subdifferential set ∂fi
(
x

(k)
i

)
.

We note that Lemmas 5 and 9 continue to hold here as well.
Before presenting our result on the modified algorithm (2),

we recall that the standard distributed gradient method
achieves for the setting assumed here the following perfor-
mance. Define, for each node i, the running average:

x
(k)
i,ra =

1

k

k−1∑
t=0

x
(t)
i , k = 1, 2, ...

Then, for all i (see, e.g., [44]):

f
(
x

(k)
i,ra

)
− f? ≤ O

(
1

αk

)
+O (α) . (36)

For method (2), we show the following. Assume that activation
probability pk = 1− uk, uk ≥ 0, ∀k, satisfies that:

Su :=

∞∑
k=0

√
uk <∞. (37)

Then, for all i, for all k = 1, 2, ...:

E
[
f(x(K)

ra)− f?
]

(38)

≤ 4ND2

2αK
+

4
√

2α
√
N D

√
Ce Su

K

+ 2α2G2
Ψ + 4α2Ce +

αNG2

2(1− λ2(C))
+

3αNG2

pmin(1− β)
.

Therefore, as long as pk converges to one sufficiently fast
(per condition (37) it suffices to have, e.g., pk = 1− 1

(k+1)2+ζ
,

ζ > 0 arbitrarily small), the idling schedule does not violate
the O

(
α+ 1

αk

)
bound.

B. Quantifying reduction in the total cost

Although Theorem 2 demonstrates that the proposed method
achieves practically the same convergence factor (in terms of
iterations k) as the standard distributed gradient method, the
Theorem does not explicitly quantify the cost reduction needed
for achieving a prescribed ε-accuracy. Quantifying this in full
generality is very challenging. We pursue here the special case
of quadratic costs with identity Hessians.

Setting. We let fi : Rd → R be fi(x) = 1
2‖x − bi‖2,

i = 1, ..., N , where the bi’s are constant vectors in Rd. Note
that µ = L = 1 and x? = 1

N

∑N
i=1 bi. Denote by b? := 1⊗x?

and b := (b1, ..., bN)> ∈ RNd. For simplicity, we consider
equal weights Cij = c0, for all {i, j} ∈ E, so that weight
matrix C = I−c0 L, where L is the (un-normalized) zero-one
graph Laplacian matrix. Then, for c0 ≤ λN (L), we have ‖W−
J‖ = 1−c0 λ2(L). From now on, we write simply λi = λi(L).
Denote by Rsp := ‖[(I − J)⊗ I] b‖, and by R0 := ‖x(0) −
b?‖. Quantity Rsp measures how spread are the bi’s, i.e., how
the bi’s (minimizers of the individual fi’s) are far apart from
solution x? = 1

N

∑N
i=1 bi. With the proposed method, we set

pk = 1− 1
2δ
k+1, k = 0, 1, ..., with pk = 1−α θ, θ ∈ (0, 1/α].

(This is a slightly different choice from one considered in the
rest of the paper.) We consider as error metric the norm of

13

the mean distance to the solution:
∥∥E [x(k)

]
− b?

∥∥. This is
of course not a very strong metric, but nonetheless it allows
to derive neat expressions. We denote the latter quantity with
the standard distributed gradient method by ξ(k) and with the
proposed method by χ(k).

Intermediate results. We derive the following upper
bounds on ξ(k) and χ(k), respectively. For all k = 1, 2, ...,
there holds:

ξ(k) ≤ ξ
(k)
ub := (1− α)k R0 + αRsp(N − 1) (39)

× 1− (1− α− c0 λ2)k

c0λ2 + α

χ(k) ≤ χ
(k)
ub := (1− α)k R0 + αRsp(N − 1) (40)

×

(
1

c0λ2(1− δk/2) + α
+

(1− α− c0 λ2(1− δ))(k−1)/2

c0λ2(1− δ) + α

)
.

Results. Based on the above inequalities, we derive the
following result. Let the desired accuracy be ε, i.e., we want
that: ξ(k)

ub ≤ ε and χ
(k)
ub ≤ ε. Then, for α = c0 λ2 ε

2(N−1)Rsp
and

θ > 1
c0 λ2

, after:

Kε =
Rsp(N − 1)

c0λ2ε
2ln

(
2R0

ε

)
iterations, we have that

ξ
(k)
ub = ε(1 + o(ε)) and χ

(k)
ub = ε(1 + o(ε)),

i.e., both algorithms achieve the same error ε after the same
number of iterations Kε (up to lower orders in ε). Therefore,
the proposed method achieves savings in total cost (per node)
equal to:

Kε −
Kε∑
k=0

pk,

which is approximately

1

2αθ
=

(N − 1)Rsp

c0λ2ε

1

θ
.

VII. CONCLUSION

We explored the effect of two sources of redundancy with
distributed projected gradient algorithms. The first redundancy,
well-known in the literature on distributed multi-agent op-
timization, stems from the fact that not all inter-neighbor
links need to be utilized at all iterations for the algorithm
to converge. The second redundancy, explored before only in
centralized optimization, arises when we minimize the sum
of cost functions, each summand corresponding to a distinct
data sample. In this setting, it is known that performing a
gradient method with an appropriately increasing sample size
can exhibit convergence properties that essentially match the
properties of a standard gradient method, where the full sample
size is utilized at all times. We simultaneously explored the
two sources of redundancy for the first time to develop a novel
distributed gradient method. With the proposed method, each
node, at each iteration k, is active with a certain probability
pk, and is idle with probability 1 − pk, where the activation
schedule is independent across nodes and across iterations.
Assuming that the nodes’ local costs are strongly convex

and have Lipschitz continuous gradients, we showed that the
proposed method essentially matches the linear convergence
rate (towards a solution neighborhood) of the standard dis-
tributed projected gradient method, where all nodes are active
at all iterations. Simulations on l2-regularized logistic losses
demonstrate that the proposed method significantly reduces
the total communication and computational cost to achieve a
desired accuracy, when compared with the standard distributed
gradient method. As a future work, we plan to apply the
proposed idling nodes strategy to other distributed multi-agent
algorithms, including, e.g., the Nesterov gradient variants.

APPENDIX

A. Proof of result (38) in Subsection VI-A

Assume for simplicity that d = 1 but the proof extends to
a generic d > 1. Let x• be a solution of (8) (which exists as
Ψα : RN → R is continuous and constraint set X is compact.)
The update of the proposed method can be written as:

x(k+1) = PXN
{
x(k) − α

[
g

(k)
Ψ + e(k)

]}
.

Here, g(k)
Ψ is a subgradient of Ψα at x(k) which equals:

g
(k)
Ψ = g

(k)
F +

1

α
(I − C)x(k)

= g
(k)
F +

1

α
(I − C)x̃(k),

where g(k)
F = (g

(k)
1 , ..., g

(k)
N)>, and g(k)

i is a subgradient of fi
at x(k)

i . Also, recall e(k) from (14). Note that Lemmas 5 and
9 continue to hold here as well, and therefore, it is easy to
show that, for all k = 0, 1, ...:

E
[
‖g(k)

Ψ ‖
2
]
≤ G2

Ψ := 2NG2 +
18NG2

(pmin)(1− β)2
. (41)

Now, a standard analysis of projected subgradient methods,
following, e.g., [49], gives:

‖x(k+1) − x•‖2 ≤ ‖x(k) − x•‖2

− 2α
(
x(k) − x•

)>
(g

(k)
Ψ + e(k))

+ α2‖g(k)
Ψ + e(k)‖2.

Using
∥∥x(k) − x•

∥∥ ≤ 2
√
ND, and

Ψα(x•) ≥ Ψα(x(k)) + (g
(k)
Ψ)>(x• − x(k)),

we further obtain:

‖x(k+1) − x•‖2 ≤ ‖x(k) − x•‖2 − 2α(Ψα(x(k))

−Ψα(x•)) + 4α
√
ND‖e(k)‖+ 2α2‖g(k)

Ψ ‖
2 + 2α2‖e(k)‖2.

14

Summing the above inequality for k = 0, ...,K − 1, dividing
the resulting inequality by K, and using (41), we obtain:

2α

K

K−1∑
k=0

(
Ψα(x(k))−Ψα(x•)

)
≤ ‖x(0) − x•‖2

K
+

4α
√
ND

K

K−1∑
k=0

‖e(k)‖

+
2α2

K

K−1∑
k=0

‖g(k)
Ψ ‖

2 +
2α

K

K−1∑
k=0

‖e(k)‖2.

Consider the running average x(K)
ra := 1

K

∑K−1
k=0 x(k). Using

convexity of Ψα, applying (41), and taking expectation:

E
[
Ψα(x(K))−Ψα(x•)

]
(42)

≤ 4ND2

2αK
+

4α
√
ND

K

K−1∑
k=0

E[‖e(k)‖]

+ 2α2G2
Ψ +

2α2

K

K−1∑
k=0

E[‖e(k)‖2].

Next, note that E[‖e(k)‖] ≤
√

2Ce
√
uk, and E[‖e(k)‖2] ≤

2Ceuk, where we recall pk = 1 − uk. Applying the latter
bounds on (42), Using the facts that uk ≥ 1, for all k, and
that Su :=

∑∞
k=0

√
uk, we obtain:

E
[
Ψα(x(K)

ra)−Ψα(x•)
]

(43)

≤ 4ND2

2αK
+

4
√

2α
√
N D

√
Ce Su

K
+ 2α2G2

Ψ + 4α2Ce.

Applying (10) to x
(k)
ra . defining x

(k)
ra := 1

N

∑N
i=1 x

(k)
i,ra, and

taking expectations, it follows that:

E
[
f(x(K)

ra)− f?
]

(44)

≤ 4ND2

2αK
+

4
√

2α
√
N D

√
Ce Su

K

+ 2α2G2
Ψ + 4α2Ce +

αNG2

2(1− λ2(C))
.

Finally, using the same argument as in [18], equation (22), we
obtain the desired result.

B. Proof of results in Subsection VI-B

We let d = 1 for notational simplicity. Consider x(k) − b?,
where we recall b? = 1

N

∑N
i=1 bi 1. Then, it is easy to show

that, for k = 0, 1, ..., the following recursive equation holds:(
x(k+1) − b?

)
= C̃

(
x(k) − b?

)
+ α(I − J)b, (45)

where C̃ = C − αI. Therefore, for k = 1, 2, ..., we have:

x(k) − b? = C̃k(x(0) − b?) + α

k−1∑
t=0

C̃k−t(I − J)b. (46)

Let qi denote the i-th unit-norm eigenvector, and λi the i-th
eigenvalue of Laplacian L, ordered in an ascending order. We

have that λ1 = 0, λ2 > 0, and q1 = 1√
N
1. Further, note that

‖C̃‖ = 1− α. Then, there holds:

C̃k−t(I − J)b =

N∑
i=2

(1− c0λi − α)k−tq̃iq̃
>
i (I − J)b,

because q>1 (I − J)b = 0. Therefore, from (46), we obtain:

ξ(k) ≤ (1− α)kR0 + αRsp(N − 1)

k−1∑
t=0

(1− α− c0λ2)k−t,

which yields (39).

Now, we consider algorithm (2). Recall quantity χ(k) =
‖E[x(k)]−b?‖. Considering the recursive equation on E[x(k)]−
b?, completely analogously to the above, we can obtain:

χ(k) ≤ (1− α)kR0 (47)

+ αRsp(N − 1)
k−1∑
t=0

k−1∏
s=t

(
1− α− c0λ2(1− δs+1)

)
.

We now upper bound the sum in (47). We split the sum into
two parts:

S1 =

(k−1)/2∑
t=0

k−1∏
s=t

(
1− α− c0λ2(1− δs+1)

)
(48)

S2 =

k−1∑
t=(k−1)/2+1

k−1∏
s=t

(
1− α− c0λ2(1− δs+1)

)
.(49)

(To avoid notational complications, we consider even k and
k ≥ 2.) Next, note that

S1 ≤
(k−1)/2∑
t=0

(1− α− c0λ2(1− δ))k−1−t

S2 ≤
k−1∑

t=(k−1)/2+1

(
1− α− c0λ2(1− δk/2)

)k−1−t
.

From the above bounds, it is easy to show that (40) follows.

Now, let Kε =
ln(2R0

ε)
α , and α = c0λ2ε

2Rsp(N−1) . It is easy to

show that, for these values, quantity ξ(k)
ub in (39) is ε(1+o(ε)).

We now show that quantity χ
(k)
ub in (40) is also ε(1 + o(ε)).

First, note that (1 − α)Kε = ε
2 (1 + o(ε)). Next, consider the

term:
αRsp(N − 1)

c0λ2(1− δk/2) + α
≤ αRsp(N − 1)

c0λ2(1− δk/2)
.

Note that, for θ > 0, we have that δk/2 ∼
(

ε
2R0

)θ/2
= o(1).

Therefore, we have that:

αRsp(N − 1)

c0λ2(1− δk/2)
=
ε

2
(1 + o(1)).

Therefore, we must show that the remaining term:

αRsp(N − 1) (1− α− c0 λ2(1− δ))(k−1)/2

c0λ2(1− δ) + α

≤ Rsp(N − 1) (1− α− c0 λ2(1− δ))(k−1)/2
= o(ε).

15

Observe that:

(1− α− c0 λ2(1− δ))(k−1)/2 ∼
(

ε

2R0

)(1+c0λ2θ)/2

.

This term is o(1) is if θ > 1/(c0λ2), which we assumed, and
therefore we conclude that χ(k)

ub in (40) is ε(1 + o(1)).

REFERENCES

[1] A. Daneshmand, F. Facchinei, V. Kungurtsev, and G. Scutari, “Hybrid
random/deterministic parallel algorithms for nonconvex big data opti-
mization,” IEEE Transactions on Signal Processing, vol. 63, no. 15, pp.
3914–3929, Aug. 2015.

[2] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimiza-
tion for big data analytics,” IEEE Signal Processing Magazine, vol. 31,
pp. 18–31, 2014.

[3] K. Slavakis, S.-J. Kim, G. Mateos, and G. B. Giannakis, “Stochastic
approximation vis-a-vis online learning for big data analytics,” IEEE
Signal Processing Magazine, vol. 31, no. 11, pp. 124–129, Nov. 2014.

[4] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNs with noisy links – Part I: Distributed estimation of deterministic
signals,” IEEE Trans. Sig. Process., vol. 56, no. 1, pp. 350–364, Jan.
2009.

[5] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in IPSN 2004, 3rd International Symposium on Information Processing
in Sensor Networks, Berkeley, California, USA, April 2004, pp. 20 –
27.

[6] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter esti-
mation in sensor networks: Nonlinear observation models and imperfect
communication,” IEEE Transactions on Information Theory, vol. 58,
no. 6, pp. 3575–3605, June 2012.

[7] C. Lopes and A. H. Sayed, “Adaptive estimation algorithms over
distributed networks,” in 21st IEICE Signal Processing Symposium,
Kyoto, Japan, Nov. 2006.

[8] F. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed
estimation,” IEEE Trans. Sig. Process., vol. 58, no. 3, pp. 1035–1048,
March 2010.

[9] I. Necoara and J. A. K. Suykens, “Application of a smoothing technique
to decomposition in convex optimization,” IEEE Trans. Autom. Contr.,
vol. 53, no. 11, pp. 2674–2679, Dec. 2008.

[10] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed optimization
with local domains: Applications in mpc and network flows,” IEEE
Trans. Autom. Contr., vol. 60, no. 7, pp. 2004–2009, July 2015.

[11] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, January 2009.

[12] S. Ram, A. Nedic, and V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” Jour. Opt. Theory and
App., vol. 147, no. 3, pp. 516–545, 2011.

[13] S. S. Ram, A. Nedic, and V. Veeravalli, “Asynchronous gossip algorithms
for stochastic optimization,” in CDC ’09, 48th IEEE International
Conference on Decision and Control, Shanghai, China, December 2009,
pp. 3581 – 3586.

[14] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton-part I: Al-
gorithm and convergence,” submitted to IEEE Transactions on Signal
Processing, 2015, available at: http://arxiv.org/abs/1504.06017.

[15] ——, “Network Newton-part II: Convergence rate and implementa-
tion,” IEEE Transactions on Signal Processing, 2015, available at:
http://arxiv.org/abs/1504.06020.

[16] ——, “Network newton,” in Asilomar Conference on signals, systems,
and computers, Pacific Grove, CA, November 2014, pp. 1621–1625.

[17] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated
dual descent for network flow optimization,” IEEE Transactions on
Automatic Control, vol. 59, no. 4, pp. 905–920, 2014.

[18] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast distributed gradient
methods,” IEEE Trans. Autom. Contr., vol. 59, no. 5, pp. 1131–1146,
May 2014.

[19] I.-A. Chen and A. Ozdaglar, “A fast distributed proximal gradient
method,” in Allerton Conference on Communication, Control and Com-
puting, Monticello, IL, October 2012, pp. 601–608.

[20] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” to appear in SIAM Journal on Optimization, 2015,
available at: http://arxiv.org/abs/1310.7063.

[21] I. Matei and J. S. Baras, “Performance evaluation of the consensus-
based distributed subgradient method under random communication
topologies,” IEEE Journal of Selected Topics in Signal Processing,
vol. 5, no. 4, pp. 754–771, 2011.

[22] I. Lobel and A. Ozdaglar, “Convergence analysis of distributed sub-
gradient methods over random networks,” in 46th Annual Allerton
Conference onCommunication, Control, and Computing, Monticello,
Illinois, September 2008, pp. 353 – 360.

[23] M. Schmidt, N. L. Roux, and F. Bach, “Convergence rates of inexact
proximal-gradient methods for convex optimization,” in Advances in
Neural Information Processing Systems 24, 2011, pp. 1458–1466.

[24] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Contr., vol. 31, no. 9, pp. 803–812, Sep. 1986.

[25] S. Kar and J. M. F. Moura, “Sensor networks with random links:
Topology design for distributed consensus,” IEEE Transactions on
Signal Processing, vol. 56, no. 7, pp. 3315–3326, July 2008.

[26] T. C. Aysal, A. D. Sarwate, and A. G. Dimakis, “Reaching consensus in
wireless networks with probabilistic broadcast,” in 47th Annual Allerton
Conference on Communication, Control, and Computing, Monticello,
IL, Oct. 2009, pp. 732–739.

[27] T. Aysal, M. Yildiz, A. Sarwate, and A. Scaglione, “Broadcast gossip
algorithms for consensus,” IEEE Transactions on Signal Processing,
vol. 57, no. 7, pp. 2748–2761, July 2009.

[28] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor
networks: Quantized data and random link failures,” IEEE Trans. Sig.
Process., vol. 58, no. 3, pp. 1383–1400, March 2010.

[29] N. Takahashi and I. Yamada, “Link probability control for probabilis-
tic diffusion least-mean squares over resource-constrained networks,”
in ICASSP 2010, IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Dallas, TX, March 2010, pp. 3518–3521.

[30] X. Zhao and A. Sayed, “Asynchronous adaptation and learning over
networks-part I: Modeling and stability analysis,” IEEE Transactions on
Signal Processing, vol. 63, no. 4, pp. 811–826, Feb. 2015.

[31] ——, “Asynchronous adaptation and learning over networks-part II:
Performance analysis,” IEEE Transactions on Signal Processing, vol. 63,
no. 4, pp. 827–842, Feb. 2015.

[32] ——, “Asynchronous adaptation and learning over networks-part III:
Comparison analysis,” IEEE Transactions on Signal Processing, vol. 63,
no. 4, pp. 843–858, Feb. 2015.

[33] S.-Y. Tu and A. H. Sayed, “On the influence of informed agents on
learning and adaptation over networks,” IEEE Trans. Signal Processing,
vol. 61, no. 6, pp. 1339–1356, March 2013.

[34] K. I. Tsianos, S. F. Lawlor, J. Y. Yu, and M. G. Rabbat, “Networked
optimization with adaptive communication,” in IEEE GlobalSIP Network
Theory Sumposium, Austin, Texas, December 2013, pp. 579–582.

[35] G. Deng and M. C. Ferris, “Variable-number sample path optimization,”
Mathematical Programming, vol. 117, no. 1–2, pp. 81–109, 2009.

[36] T. H. de Mello, “Variable-sample methods for stochastic optimization,”
ACM Transactions on Modeling and Computer Simulation, vol. 13, no. 2,
pp. 108–133, 2003.

[37] E. Polak and J. O. Royset, “Efficient sample sizes in stochastic nonlinear
programing,” Journal of Computational and Applied Mathematics, vol.
217, no. 2.

[38] R. Pasupathy, “On choosing parameters in restrospective-approximation
algorithms for simulation-optimization,” in 2006 Winter Simulation
Conference, L.F. Perrone, F.P. Wieland, J. Liu, B.G. Lawson, D.M. Nicol
and R.M. Fujimoto, eds., 2006, pp. 208–215.

[39] ——, “On choosing parameters in retrospective-approximation algo-
rithms for stochastic root finding and simulation optimization,” Opera-
tions Research, vol. 58, no. 4, pp. 889–901, 2010.

[40] F. Bastin, “Trust-region algorithms for nonlinear stochastic programming
and mixed logit models,” 2004, phD Thesis, University of Namur,
Belgium.

[41] F. Bastin, C. Cirillo, and P. L. Toint, “An adaptive monte carlo algorithm
for computing mixed logit estimators,” Computational Management
Science, vol. 3, no. 1, pp. 55–79, 2006.

[42] N. Krejić and N. Krklec, “Line search methods with variable sample size
for unconstrained optimization,” Journal of Computational and Applied
Mathematics, vol. 245, pp. 213–231, 2013.

[43] N. Krejić and N. K. Jerinkić, “Nonmonotone line search methods with
variable sample size,” Numerical Algorithms, vol. 68, no. 4, pp. 711–
739, 2015, DOI: 10.1007/s11075-014-9869-1.

[44] A. Nedic, A. Ozdaglar, and A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Transactions on Automatic
Control, vol. 55, no. 4, pp. 922–938, April 2010.

16

[45] D. Bajovic, J. Xavier, J. M. F. Moura, and B. Sinopoli, “Consensus and
products of random stochastic matrices: Exact rate for convergence in
probability,” IEEE Trans. Sig. Process., vol. 61, no. 10, pp. 2557–2571,
May 2013.

[46] D. Jakovetic, J. M. F. Moura, and J. Xavier, “Distributed Nesterov-like
gradient algorithms,” in CDC’12, 51st IEEE Conference on Decision
and Control, Maui, Hawaii, December 2012, pp. 5459–5464.

[47] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, Michael
Jordan, Editor in Chief, vol. 3, no. 1, pp. 1–122, 2011.

[48] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed
sensor fusion based on average consensus,” in IPSN ’05, Information
Processing in Sensor Networks, Los Angeles, California, 2005, pp. 63–
70.

[49] A. Nedic and D. Bertsekas, “The effect of deterministic noise in
subgradient methods,” Mathematical Programming, vol. 125, no. 1, pp.
75–99, Jan. 2010.

0 2 4 6
x 104

10-3

10-2

10-1

100

101

total cost (all nodes)

re
la

tiv
e

er
ro

r

proposed
standard dis. grad.

(a) Average relative error vs. total cost (all nodes).

0 500 1000 150010-3

10-2

10-1

100

101

iteration number, k

re
la

tiv
e

er
ro

r

proposed
standard dis. grad.

(b) Average relative error vs. number of iterations.

1.6 1.8 2 2.2 2.4 2.6
x 104

0

5

10

15

20

total cost to reach ε relative error

standard dis. grad.

(c) Histogram: total cost to reach rel. err. 0.01.

440 460 480 500 520 5400

5

10

15

number of iterations to reach ε relative error
standard dis. grad.

(d) Histogram: #iterations to reach rel. err. 0.01.

Fig. 1: Comparison of the proposed and standard distributed
gradient methods for α = 1

50L .

17

0 5 10 15
x 104

10-3

10-2

10-1

100

101

total cost (all nodes)

re
la

tiv
e

er
ro

r

proposed
standard dis. grad.

(a) Average relative error vs. total cost (all nodes).

0 1000 2000 300010-3

10-2

10-1

100

101

number of iterations, k

re
la

tiv
e

er
ro

r

proposed
standard dis. grad.

(b) Average relative error vs. number of iterations.

1 1.1 1.2 1.3
x 105

0

5

10

15

20

total cost to reach ε relative error

standard dis. grad.

(c) Histogram: total cost to reach rel. err. 0.005.

2650 2700 2750 28000

5

10

15

20

number of iterations to reach ε relative error
standard dis. grad.

(d) Histogram: total cost to reach rel. err. 0.005.

Fig. 2: Comparison of the proposed and standard distributed
gradient methods for α = 1

250L .

0 0.5 1 1.5 2
x 106

103

total cost (all nodes)

av
er

ag
e

co
st

 fu
nc

tio
n

proposed
standard dis. grad.

(a) Average cost function vs. total cost for “a1a.”

0 2 4 6 8 10
x 104

103

iteration number, k

av
er

ag
e

co
st

 fu
nc

tio
n

standard dis. grad.
proposed

(b) Average cost function vs. number of iterations for “a1a.”

0 5 10 15
x 106

103.2

103.3

103.4

total cost (all nodes)

av
er

ag
e

co
st

 fu
nc

tio
n

proposed
standard dis. grad.

(c) Average cost function vs. total cost for “Madelon.”

0 1 2 3
x 105

103.2

103.3

103.4

iteration number, k

av
er

ag
e

co
st

 fu
nc

tio
n

standard dis. grad.
proposed

(d) Average cost function vs. number of iterations for “Madelon.”

Fig. 3: Comparison of the proposed and standard distributed
gradient methods for data sets “a1a” and “Madelon.”

18

0 500 1000 1500

10-3

10-2

10-1

100

iteration number, k

re
la

tiv
e

er
ro

r

no failures
higher failure prob.
lower failure prob.

(a) Average relative error vs. number of iterations.

580 600 620 640 660 6800

10

20

30

40

50

60

number of iterations for ε-accuracy

(b) total cost to reach rel. err. 0.01 for lower failure prob.

600 800 1000 1200 1400 16000

5

10

15

20

number of iterations for ε-accuracy

(c) total cost to reach rel. err. 0.01 for higher failure prob.

0 1 2 3
x 104

10-2

10-1

100

101

total cost (all nodes)

re
la

tiv
e

er
ro

r

proposed
standard dis. grad.
gossip

(d) Average relative error vs. total cost.

Fig. 4: Figures (a)-(c): Effect of asynchronous operation on
the proposed method for the synthetic data set; Figure (d):
comparison with the gossip-based scheme (α = 1

50L).

