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Distributed second order methods with increasing
number of working nodes

Nataša Krklec Jerinkić, Dušan Jakovetić, Nataša Krejić, Dragana Bajović

Abstract—Recently, an idling mechanism has been introduced
in the context of distributed first order methods for minimization
of a sum of nodes’ local convex costs over a generic, connected
network. With the idling mechanism, each node i, at each
iteration k, is active – updates its solution estimate and exchanges
messages with its network neighborhood – with probability pk,
and it stays idle with probability 1 − pk, while the activations
are independent both across nodes and across iterations. In
this paper, we demonstrate that the idling mechanism can be
successfully incorporated in distributed second order methods
also. Specifically, we apply the idling mechanism to the recently
proposed Distributed Quasi Newton method (DQN). We show
that, when pk grows to one across iterations geometrically, DQN
with idling exhibits very similar theoretical convergence and
convergence rates properties as the standard DQN method, thus
achieving the same order of convergence rate (R-linear) as the
standard DQN, but with significantly cheaper updates.

Index Terms—Distributed optimization, Variable sample
schemes, Second order methods, Newton-like methods, Linear
convergence.

I. INTRODUCTION

Context and motivation. Distributed optimization has re-
ceived a significant and growing interest in the past decade,
e.g., [1], [2], [3], [4], [5], [6], due to many emerging applica-
tions in various domains, including wireless sensor networks,
e.g., [7], smart grid, e.g., [8], distributed control applications,
e.g., [9], etc. Various formulations of distributed optimization
problems have been considered, including consensus optimiza-
tion, e.g., [1], [3], utility maximization and network flow
problems, e.g., [5], [10], and learning personalized models,
e.g., [11], [12]. In this paper, we focus on the latter class
of problems, where each node in a connected network has a
local private cost function, and the goal is to minimize the
sum of nodes’ local costs fi’s while keeping the nodes’ local
solutions close to each other. This class of problems is also of
direct interest for consensus optimization, as the problem of
learning personalized models can be considered a penalty-like
reformulation of the consensus optimization problem, e.g., [4],
[13], [14].
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In a recent work [15], we proposed a “hybrid” distributed
first order method, motivated by “hybrid” methods from cen-
tralized optimization [16], wherein the tradeoff between the
computational cost of an iteration and the search direction
accuracy is governed by an idling mechanism. More precisely,
each node in the network at iteration k is active with proba-
bility pk and stays idle with probability 1 − pk, where pk is
increasing to one with k, while the activations are independent
both across nodes and through iterations.

Contributions. The purpose of this paper is to demonstrate
that the idling mechanism can be incorporated in distributed
second order, i.e., Newton-like methods also. Specifically, we
incorporate here the idling mechanism in the Distributed Quasi
Newton method (DQN) [14]. (The DQN method has been
proposed and analyzed in [14], only for the scenario when
all nodes are active at all times.) Our main results are as
follows. We first carry out a theoretical analysis of the idling-
DQN assuming that the fi’s are strongly convex and twice
continuously differentiable with bounded Hessians. We show
that, as long as pk converges to one at least as fast as
1 − 1/k1+ζ (ζ > 0 arbitrarily small), the DQN method with
idling converges in the mean square sense and almost surely to
the same point as the standard DQN method that activates all
nodes at all times. Furthermore, when pk converges to one at a
geometric rate, then the DQN algorithm with idling converges
to the solution at a R-linear rate in the mean square sense.

Brief literature review. There has been a significant
progress in the development of distributed second order meth-
ods in past few years. References [4], [17], [14], [18], [19],
[10], [5] propose and analyze various distributed second order
methods. Each of these works assumes that all nodes are active
across all iterations, i.e., they are not concerned with designing
nor analyzing methods with randomized nodes’ activations.
Next, there have been several works that study distributed first
and second order methods with randomized nodes’ or links’
activations, e.g., [1], [20], [21], [22], [23], [2], [24], [25], [26].
It is also worth noting that randomization and “sparsification”
of activations has been considered in different contexts as well;
see, e.g., [27], for a graph filtering perspective.

The authors of [28] propose an asynchronous version of
the (second order) Network Newton method in [4], wherein
a randomly selected node becomes active at a time and
performs a Network Newton-type second order update. The
main difference between the algorithm in [28] and the DQN
with idling lies in the very different nodes’ activation schedule.
With the algorithm in [28], only one node is active at each
algorithm update. In contrast, in the DQN with idling, a time-
varying, random subset of nodes, with a variable size, is active
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at a time. The paper [29], see also [30], [31], proposes and an-
alyzes an asynchronous distributed quasi-Newton method that
is based on an asynchronous implementation of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) matrix update. Perhaps the
closest to our randomized activation model are the models
studied in, e.g., [22], [23], [24], [29]. However, they are
primarily concerned with establishing convergence conditions
under various asynchrony effects that are not controlled by the
networked nodes. In contrast, our aim here is to demonstrate
that a carefully designed “sparsification” of the workload
across network – as inspired by work [16] from centralized
optimization – can yield significant savings in communication
and computation. Finally, in a companion paper [32], we pre-
sented a brief preliminary version of the current paper, wherein
a subset of the results here are presented without proofs.
Specifically, [32] considers convergence of DQN with idling
only when the activation probabilities geometrically converge
to one, while here we also consider the scenarios where the
activation probability converges to one sub-linearly; we also
include here extensions where the activation probability stays
bounded away from one or is kept constant (and less than one)
across iterations.

Paper organization. Section II describes the model that
we assume and gives the necessary preliminaries. Section III
presents the DQN algorithm with idling, while Section IV
analyzes its convergence and convergence rate. Section V
considers DQN with idling in the presence of persisting idling,
i.e., it considers the extension when pk does not necessarily
converge to one, and it provides numerical examples. Finally,
we conclude in Section VI. This note focuses on key technical
novelties; more complete proofs can be found in [33].

Notation. We denote by: R the set of real numbers; Rp
the p-dimensional real coordinate space; aij the entry in the
i-th row and j-th column of a matrix A; AT the transpose
of a matrix A; ⊗ the Kronecker product of matrices; I , 0,
and e, respectively, the identity matrix, the zero matrix, and
the column vector with unit entries; A � 0 (A � 0) means
that the symmetric matrix A is positive definite (respectively,
positive semi-definite); ‖·‖ = ‖·‖2 the Euclidean (respectively,
spectral) norm of its vector (respectively, matrix) argument;
λi(·) the i-th largest eigenvalue, diag (A) the diagonal ma-
trix with the diagonal entries equal to those of matrix A;
diag (A1, ..., An) the n2 × n2 diagonal matrix whose (i, i)-
th n × n block equals Ai, i = 1, ..., n; ∇h(w) and ∇2h(w),
respectively, the gradient and Hessian evaluated at w of a
function h : Rp → R, p ≥ 1; P (A) and E[u] the probability
of an event A and expectation of a random variable u,
respectively.

II. MODEL AND PRELIMINARIES

We consider distributed optimization where n nodes, i =
1, ..., n, constitute an undirected network G = (V, E), with V
being the set of nodes and E the set of undirected edges {i, j}.
The nodes collaboratively solve the following problem:

min Φ(x) := α

n∑
i=1

fi(xi)+
1

2

∑
i<j, {i,j}∈E

wij‖xi−xj‖2. (1)

Here, fi : Rp → R, i = 1, ..., n, is a convex cost function
known only by node i, and the optimization variable is
x = ((x1)T , ..., (xn)T )T ∈ Rnp, with xi ∈ Rp being its i-
th sub-block. Further, α and the wij’s are positive parameters
detailed ahead. There are several motivations for model (1), in-
cluding learning personalized models, spatial field estimation,
animal flocking, etc. [34], and it has been extensively studied,
e.g., [11], [12], [34]. For example, with learning personalized
models [11], each node aims to find a model that minimizes
both 1) the mismatch with its neighbors models (encoded
through the second summand in (1)) and 2) its personal loss fi
(encoded through the first summand in (1)). Here, parameter α
trades off between the two described criteria, while parameter
wij weighs the significance of similarity between node i and
node j’s models. In addition, formulation (1) is often used
as a tractable relaxation of (nonlinear) consensus optimization
problems, e.g., [4], [14].

We make the following assumptions.
Assumption A1. Each function fi : Rp → R, i = 1, . . . , n
is convex, twice continuously differentiable, and there exist
constants 0 < µ ≤ L <∞ such that µI � ∇2fi(x) � LI for
every x ∈ Rp.

Under Assumption A1, problem (1) is solvable and has
the unique solution x∗ ∈ Rp. Assumption A1 also implies
that each function fi is strongly convex with strong convexity
parameter µ, and it also has Lipschitz continuous gradient with
Lipschitz constant L.
Assumption A2. The network G = (V, E) is connected,
undirected and simple (no self-loops nor multiple links).

In our setting, the presence of edge {i, j} ∈ E means that
the nodes i and j can directly exchange messages through a
communication link. Further, let Oi be the set of all neighbors
of a node i (excluding i), and define also Ōi = Oi

⋃
{i}.

Collect all the weights wij in (1) in a n × n matrix W ,
such that: 1) wij = 0 if {i, j} /∈ E, i 6= j; and 2)
wii = 1−

∑
j 6=i wij . Quantity wii is (without loss of generality

– in view of the degree of freedom α in (1)) assumed to be
strictly positive, for all i = 1, ..., n. Note that matrix W is, by
construction, row-stochastic. We also assume it is symmetric
and has the diagonal elements bounded away from zero and
one; that is, there exist constants wmin and wmax such that
for i = 1, . . . , n, there holds 0 < wmin ≤ wii ≤ wmax < 1.

Remark. Under the assumed setting, function Φ has Lips-
chitz continuous gradient with a Lipschitz constant that can be
taken as LΦ = αL + 2(1 − wmin). Moreover, function Φ(x)
is strongly convex with a strong convexity modulus that can
be taken as µΦ = αµ > 0.

Denote by λ1 > λ2 ≥ . . . ≥ λn the eigenvalues of W.
Then, we have that λ1 = 1, all the remaining eigenvalues of
W are strictly less than one in modulus, and the eigenvector
that corresponds to the unit eigenvalue is e := 1√

n
(1, . . . , 1)T .

For future reference, we introduce the following notation.
We denote by Z ∈ Rnp×np the Kronecker product of W
and the identity I ∈ Rp×p,Z = W ⊗ I.1 Define also

1Throughout, we shall use “blackboard bold” upper-case letters for matrices
of size (np)× (np) (e.g., Z), and standard upper-case letters for matrices of
size n× n or p× p (e.g., W ).
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F : Rnp → R, F (x) =
∑n
i=1 fi(xi). Then, (1) can be written

as min αF (x) + 1
2x

T (I− Z)x s.t. x ∈ Rnp.
We study distributed second order algorithms to solve

this problem, or equivalently, (1). Therein, the Hessian of
function Φ and its splitting into a diagonal and an off-diagonal
part will play an important role. Specifically, first consider the
splitting:

Wd = diag(W ), Wu = W −Wd (2)

and the corresponding Z = Z(W ) = Zd + Zu, where Zd =
Wd ⊗ I = diag(Z), and Zu = Wu ⊗ I. Further, decompose
the Hessian of Φ as: ∇2Φ(x) = A(x)−G, with A : Rnp →
R(np)×(np), A(x) = α∇2F (x) + (1 + θ)(I−Zd) and G given
by:

G = G(Z, θ) = Zu + θ(I− Zd), (3)

for some θ ≥ 0. We close this subsection with the following
result that will be needed in subsequent analysis. For claim (a),
see Lemma 3.1 in [35]; for claim (b), see, e.g., Lemma 4.2 in
[36].

Lemma II.1 Consider a deterministic sequence {ak} con-
verging to zero, with ak > 0, k = 0, 1, ..., and let ν ∈ (0, 1).
(a) Then, there holds

∑k
t=1 ν

k−tat−1 → 0 as k →∞. (b) If,
moreover, {ak} converges to zero R-linearly, then the sum in
part (a) converges to zero R-linearly.

III. ALGORITHM DQN WITH IDLING

In this section, we present the proposed algorithm to solve
(1) – the DQN with idling, that builds upon the distributed sec-
ond order method DQN [14]. Subsection III-A first describes
the idling mechanism, while Subsection III-B incorporates this
mechanism in the DQN method.

A. Idling mechanism

We incorporate in DQN the following idling mechanism.
Each node i, at each iteration k, is active with probability pk,
and it is inactive with probability 1−pk.2 Active nodes perform
updates of their solution estimates (to be specified soon) and
participate in each communication round of an iteration, while
inactive nodes do not perform any computations nor com-
munications, i.e., their solution estimates remain unchanged.
Denote by ξki the Bernoulli random variable that governs the
activity of node i at iteration k. Then, we have that probability
P
(
ξki = 1

)
= 1−P

(
ξki = 0

)
= pk, for all i. We furthermore

assume that the ξki ’s are independent both across nodes and
across iterations.

Throughout the paper, we impose the following Assumption
on sequence {pk}.
Assumption A3. Consider the sequence of activation proba-
bilities {pk}. We assume that pk ≥ pmin, for all k, for some
pmin > 0. Further, {pk} is a non-decreasing sequence with
limk→∞ pk = 1. Moreover, we assume that 0 ≤ uk≤ Cu

(k+1)1+ζ ,
where uk = 1 − pk, Cu is a positive constant and ζ > 0 is
arbitrarily small.

2We continue to assume that all nodes are synchronized according to a
global iteration counter k = 0, 1, ...

Assumption A3 means that, on average, an increasing num-
ber of nodes becomes involved in the optimization process;
that is, intuitively, in a sense the precision of the optimization
process increases with the increase of the iteration counter k.
(Extensions to the scenarios when pk does not necessarily
converge to one is provided in Section V.) We also assume
that pk converges to one sufficiently fast, where the sublinear
convergence 1− 1/k1+ζ is sufficient.

For future reference, we also define the diagonal (np)×(np)
(random) matrix Yk = diag(ξk1 , . . . , ξ

k
n) ⊗ I , where I is the

p×p identity matrix. Also, we define the p×p random matrix
W k = [wkij ] by wkij = wijξ

k
i ξ
k
j for i 6= j, and wkii = 1 −∑

i 6=j w
k
ij . Further, we let Zk := W k⊗ I , and, analogously to

(2) and (3):

W k
d = diag(W k), W k

u = W k −W k
d , (4)

where Zk = Z(W k) = Zkd + Zku, Zkd = W k
d ⊗ I = diag(Zk),

and Zku = W k
u ⊗ I, and

Gk = G(Zk, θ) = Zku + θ(I− Zkd), (5)

Notice that wkii = 1 −
∑
i 6=j wijξ

k
i ξ
k
j ≥ 1 −

∑
i6=j wij =

wii ≥ wmin. Further, using the results from [14] (see Lemma
3.1), for the Hessian splitting matrices we obtain the following
important bounds: 3

‖A−1(x)‖ ≤ CA, x ∈ Rnp (6)
‖Gk‖ ≤ CG, k = 0, 1, ... (7)

where CA = (αµ + (1 + θ)(1 − wmax))−1 and CG = (1 +
θ)(1 − wmin). Also, notice that ‖Yk‖ ≤ 1, and Zk � I, for
every k.

B. DQN with idling
We now incorporate the idling mechanism in the DQN

method. Denote by xk =
(
(xk1)T , ..., (xkn)T

)T
the algorithm

iterates, k = 0, 1, ..., where xki is node i’s estimate of the
solution at iteration k. DQN with idling operates as follows. If
the activation variable ξki = 1, node i performs an update; else,
if ξki = 0, node i stays idle and lets xk+1

i = xki . The algorithm
is presented in Algorithm 1 below. Therein, Ak := A(xk), and
Aki is the p×p block at the (i, i)-th position in Ak, while Gkij
is the p× p block of Gk at the (i, j)-th position.

Algorithm 1: DQN with idling – distributed implementa-
tion
At each node i, require x0

i ∈ Rp, ε, ρ, θ, α > 0, {pk}.
1. Initialization: Node i sets k = 0 and x0

i ∈ Rp.
2. Each node i generates ξki ; if ξki = 0, node i is idle, and

goes to step 9; else, if ξki = 1, node i is active and goes
to step 3; all active nodes do steps 3-8 below in parallel.

3. (Active) node i transmits xki to all its active neighbors
j ∈ Oi and receives xkj from all active j ∈ Oi.

3Throughout subsequent analysis, we shall state several relations (equalities
and inequalities) that involve random variables. These relations hold either
surely (for every outcome), or in expectation. E.g., relation (7) holds surely.
It is clear from notation which of the two cases is in force. Also, auxiliary
constants that arise from the analysis will be frequently denoted by the capital
calligraphic letter C with a subscript that indicates a quantity related with the
constant in question; e.g., see CA in (6).
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4. Node i calculates

dki =
(
Aki
)−1

 α

pk
∇fi(xki ) +

∑
j∈Oi

wkij
(
xki − xkj

) .
5. Node i transmits dki to all its active neighbors j ∈ Oi

and receives dkj from all the active j ∈ Oi.
6. Node i chooses a diagonal p × p matrix Λki , such that
‖Λki ‖ ≤ ρ.

7. Node i calculates:

ski = −dki + Λki
∑
j∈Ōi

Gkij d
k
j .

8. Node i updates its solution estimate as:

xk+1
i = xki + ε ski .

9. Set k = k + 1 and go to step 2.

We make a few remarks on Algorithm 1. First, note that the
iterates xki generated by Algorithm 1 are random variables.
(The initial iterates x0

i , i = 1, ..., n, in Algorithm 1 are
assumed deterministic.) Next, note that we implicitly assume
that all nodes have agreed beforehand on scalar parameters
ε, ρ, θ, α; this can actually be achieved in a distributed way
with a low communication and computational overhead (see
Subsection 4.2 in [14]). Nodes also agree beforehand on the
sequence of activation probabilities {pk}. In other words,
sequence {pk} is assumed to be available at all nodes. For
example, as discussed in more detail in [33], we can let
pk = 1 − σk+1, k = 0, 1, ..., where σ ∈ (0, 1) is a scalar
parameter known by all nodes. As each node is aware of the
global iteration counter k, each node is then able to implement
the latter formula for pk. The nodes’ beforehand agreement
on σ can be achieved similarly to the agreement on other
parameters ε, ρ, θ, α [14].

Parameters ε, ρ, and α, and the diagonal matrices Λki play
the same role as in DQN [14]. An important difference with
respect to standard DQN appears in step 4, where the local
node i’s gradient contribution is α

pk
ξki ∇fi(xki ), while with

standard DQN this contribution equals α∇fi(xki ). Note that
the division by pk for DQN with idling makes the terms of
the two algorithms balanced on average, because E[ξki ] = pk.

We next provide practical considerations on how the idling
mechanism and Algorithm 1 can be realized. First, suppose
that there exists a dedicated reliable bi-directional communi-
cation link between any two neighboring nodes. Next, consider
a link between nodes i and j at iteration k. If ξki = 1, node
i performs communication and computation; in particular, it
turns on both its transmitting and receiving antennas. On the
other hand, if ξki = 0, node i switches off both its transmitting
and receiving antennas. Suppose that ξki = 1, and consider
two scenarios: 1) ξkj = 0; and 2) ξkj = 1. In the former case,
node i listens the dedicated channel to node j. As node j
does not transmit, node i verifies that it does not receive the
respective message from node j (e.g., within a prescribed time
window), and hence it does not incorporate node j’s estimate
in the update rule. On the other hand, as ξkj = 0, node j
does not include the estimate by node i, by the algorithm

construction. In fact, node j stays idle. Next, consider the
case ξkj = 1. In this case, node i receives the message
by node j (reliable communication assumed), and thus it
incorporates node j’s estimate in its update. Symmetrically,
node j listens the channel from node i to node j, receives
the respective message, and includes node i’s estimate in its
update. A similar mechanism works if the links are unreliable
but still symmetric, in the sense that if the link from i to j
is online, is strong enough to support communication, then
so is the link from j to i. However, if the physical links
can fail in an asymmetric fashion, then Algorithm 1 cannot
be implemented in its direct form. The algorithm and the
corresponding analysis have to be changed in such scenario.
This lies outside the scope of this paper, but it corresponds to
an interesting future research direction.

We also comment on the relation between the proposed
method and the asynchronous NN in [28]. When the control
parameter pk is available to the algorithm designer for tuning,
our simulation experience suggests that the proposed idling-
DQN method usually shows an improved convergence speed
with respect to the asynchronous NN (See Section V). With
respect to the tuning parameters, besides the sequence of
activation probabilities {pk}, when compared with the asyn-
chronous NN, the idling-DQN has two additional parameters,
θ and ρ. The remaining tuning parameters of the idling-DQN,
namely ε and α, have a very similar role, and a very similar
tuning process, as with the asynchronous NN. We refer to [14]
and [33] for the tuning recommendations for all the parameters
of the idling-DQN.

Using notation (4)–(5), we represent DQN with idling
in Algorithm 2 in a vector format. (Therein, Lk =
diag

(
Λk1 , ...,Λ

k
n

)
.)

Algorithm 2: DQN with idling in vector format
Given x0 ∈ Rnp, ε, ρ, θ, α > 0, {pk}. Set k = 0.

1. Chose a diagonal Lk ∈ Rnp×np with ‖Lk‖ ≤ ρ.
2. sk = −(I− LkGk)A−1

k

(
α
pk

Yk∇F (xk) + (I− Zk)xk
)
.

3. xk+1 = xk + εsk, k = k + 1.

IV. CONVERGENCE ANALYSIS

Subsection IV-A states our main convergence and conver-
gence rate results on DQN with idling, while Subsection IV-B
presents main arguments behind the proofs of the results.

A. Statement of main result

The next theorem summarizes our main results on conver-
gence and convergence rate of DQN with idling.

Theorem IV.1 Let {xk} be the sequence of random variables
generated by Algorithm 1, and let assumptions A1-A3 hold.
Then, there exist positive constants ρ and ε, such that, for
any ρ ∈ [0, ρ] and for any ε ∈ (0, ε], the sequence of iterates
{xk} converges to the solution x∗ of (1) in the mean square
sense and almost surely. Moreover, if pk = 1 − σk+1, with
σ ∈ (0, 1), {xk} converges to the solution x∗ of problem (1)
in the mean square sense at an R-linear rate.
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The constant ρ is given in Lemma IV.1, and ε is given in the
proof of Lemma IV.2. Theorem IV.1 demonstrates that, under
the stated conditions, the order of convergence (R-linear rate)
of the DQN method is preserved despite the idling.

From the technical side, the analysis here brings several
novelties with respect to [15]. A key novelty here lies in
the introduction of time-varying surrogate functions Φk’s
(see ahead the proof of Lemma IV.2). This corresponds to
establishing the boundedness of the iterates of DQN with
idling. With respect to [15], the analysis presented here is
very different as the problem considered in [15] is constrained
within a compact constraint set, and therefore the boundedness
of the iterative sequence is given by the assumed setting. In
contrast, boundedness is very challenging to establish here,
due to the random, inexact, second order search directions
utilized. Another important difference with respect to [15] is in
establishing and quantifying decrease in the objective function
(see Lemma IV.1), as the search directions here are of the
second order. Hence, establishing decrease in the objective
function is more challenging than with the first order directions
in [15].

B. Proof of the main result

We now provide the proof of Theorem IV.1. The analysis
is organized as follows. We first relate the search direction of
DQN with idling and the search direction of DQN, where
the former is viewed as an inexact version of the latter
(Lemma IV.1). Next, we establish the mean square bound-
edness of the iterates of DQN with idling (Lemma IV.2) and
show the implications of this result on the “inexactness” of
search directions (Lemma IV.3). Finally, we make use of these
results to prove Theorem IV.1.

Quantifying inexactness of search directions. For xk (the
iterate of DQN with idling), denote by ŝk the search direction
as with the standard DQN evaluated at xk, i.e.:

ŝk = −(I− LkG)A−1
k (α∇F (xk) + (I− Z)xk). (8)

Then, the search direction sk of DQN with idling can be
viewed as an approximation, i.e., an inexact version, of ŝk.
We will show ahead that the error of this approximation is
controlled by the activation probability pk. In order to simplify
notation in the analysis, we introduce the following quantities:

Hk = I− LkGk

Ĥk = I− LkG
gk = A−1

k (
α

pk
Yk∇F (xk) + (I− Zk)xk)

ĝk = A−1
k (α∇F (xk) + (I− Z)xk).

Therefore, ŝk = −Ĥkĝk and sk = −Hkgk. Notice that
‖Hk‖ ≤ 1 + ρCG := CH and that the same is true for Ĥk.
We have the following result on the error in approximating ŝk

with sk. In the following, we denote by either ai or [a]i
the i-th p × 1 block of a (np)-dimensional vector a; for
example, we write gki for the i-th p-dimensional block of gk.
The following result is a straightforward generalization of
Theorem 3.2 in [14].

Lemma IV.1 Let assumptions A1-A3 hold. Further, let, ρ ∈
[0, ρ] where

ρ =
αµ+ (1 + θ)(1− wmax)

(1− wmin)(1 + θ)

×
(

1

αL+ (1 + θ)(1− wmin)
− δ
)
,

for some constant δ ∈ (0, 1/(αL + (1 + θ)(1 − wmin))).
Further, let ε ≤ εDQN , where

εDQN =
δ − q

2LΦ(β2 + q2)
, (9)

for some constant q ∈ (0, δ). Then, there holds

Φ(xk+1)− Φ(x∗) ≤ (Φ(xk)− Φ(x∗))ν(ε) + ek,

where ν(ε) ∈ (0, 1) is a constant, and ek = (ε2LΦ+ε/q)‖sk−
ŝk‖2.

Mean square boundedness of the iterates and search
directions. We next show that the iterates xk of DQN with
idling are uniformly bounded in the mean square sense.

Lemma IV.2 Let the sequence of random variables {xk} be
generated by Algorithm 1, and let assumptions A1-A3 hold.
Then, for all ρ ∈ [0, ρ] and for all ε ∈ (0, ε], there holds
E
(
‖xk‖2

)
≤ Cx, k = 0, 1, ..., for some positive constant Cx.

Proof.
Setting up the proof. It suffices to prove that E

(
Φ(xk)

)
is

uniformly bounded for all k = 0, 1, ..., since Φ is strongly con-
vex and therefore it holds that Φ(x) ≥ Φ(x∗) + µΦ

2 ‖x−x
∗‖2,

x ∈ Rnp. Further, for the sake of proving boundedness,
without loss of generality we can assume that fi(x) ≥ 0,
for all x ∈ Rp, for every i = 1, ..., n.4 The proof is based on
introducing certain iteration-varying auxiliary functions, and
it is divided in 3 steps: 1) introducing auxiliary functions and
establishing their properties; 2) bounding the auxiliary func-
tions’ gradients; and 3) establishing (approximate) descend on
the auxiliary functions.

Step 1: Auxiliary functions and their properties. For k =
0, 1, ..., define function Φk : Rnp → R, by

Φk(x) =
α

pk
F (x) +

1

2
xT (I− Z)x.

Notice that Φk(x) = Φ(x), x ∈ Rnp, if pk = 1. Also notice
that, for every k = 0, 1, ..., we have:

Φ(x) ≤ Φk+1(x) ≤ Φk(x) ≤ Φ0(x),

since pk is assumed to be non-decreasing. The core of the
proof is to upper bound Φk+1

(
xk+1

)
with a quantity involving

Φk
(
xk
)
, and after that to “unwind” the resulting recursion.

To start, notice that, for every x ∈ Rnp, we have that

µ̄I � ∇2Φk(x) � L̄I,

4Otherwise, since each of the fi’s is lower bounded, we can re-define
each fi as f̂i(x) = fi(x) + c, where c is a constant larger than or equal
maxi=1,...,n |infx∈Rp fi(x)|, and work with the f̂i’s throughout the proof.
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where µ̄ = αµ and L̄ = αL/pmin + 1. Denote by

yk = ∇Φk(xk) =
α

pk
∇F (xk) + (I− Z)xk.

Introduce

Φ̂k(x) = Φ̂k(x; ξk) =
α

pk

n∑
i=1

ξki fi(xi)

+
1

2

∑
{i,j}∈E,i<j

wijξ
k
i ξ
k
j ‖xi − xj‖2

Φ̃k(x) = Φ̃k(x; ξk) = Φk(x)− Φ̂k(x)

=
α

pk

n∑
i=1

(1− ξki )fi(xi)

+
1

2

∑
{i,j}∈E,i<j

wij(1− ξki ξkj )‖xi − xj‖2,

where we recall that ξk = (ξk1 , ..., ξ
k
n)T is the node activation

vector at iteration k. We will be interested in quantities
Φ̂k(xk), Φ̃k(xk) Φ̂k(xk+1), and Φ̃k(xk+1). Notice that they
are all random variables, measurable with respect to the σ-
algebra generated by {ξs}s=0,1,...,k. We will also work with
the gradients of Φ̂k and Φ̃k with respect to x, evaluated at
xk, that we denote by ŷk = ∇Φ̂k(xk) = α

pk
Yk∇F (xk) + (I−

Zk)xk and ỹk = yk−ŷk = ∇Φ̃k(xk). These quantities are also
random variables, measurable with respect to the σ-algebra
generated by {ξs}s=0,1,...,k.

Now, recall that, for each fixed k, ξki , i = 1, ..., n, are
independent identically distributed (i.i.d.) Bernoulli random
variables. Moreover, for each i, ξki are independent across
iterations and the same is true for the minimum and the
maximum

ξkmin = min
i=1,...,n

ξki , ξkmax = max
i=1,...,n

ξki .

Consider now Φ̂k and ŷk, regarded as functions of x ∈ Rnp.
If ξkmax = 1, then Φ̂k is strongly convex (with respect to x)
with the same parameters as Φk, i.e.,

µ̄I � ∇2Φ̂k(x) � L̄I.

Step 2: Bounding gradients of auxiliary functions. De-
note by x̂∗k = x̂∗k(ξk) the minimizer of Φ̂k with respect to x;
using the fact that Φ̂k is nonnegative, and that it has Lipschitz
continuous gradient and is strongly convex, we obtain

‖ŷk‖2 ≤ L̄2‖xk− x̂∗k‖2 ≤
2L̄2

µ̄
(Φ̂k(xk)− Φ̂k(x̂∗k)) ≤ 2L̄2

µ̄
Φ̂k(xk).

Next, using the fact that Φ̂k(x) ≤ Φk(x), for all x, the
previous inequality yields

‖ŷk‖ ≤ L̄
√

2/µ̄
√

Φk(xk). (10)

On the other hand, if ξkmax = 0 then Yk = 0 and Zk = I
which implies ŷk = 0 and the previous inequality obviously
holds. An analogous analysis considering Φ̃k and ỹk shows
the following:

‖ỹk‖ ≤ (1− ξkmin)L̄
√

2/µ̄
√

Φk(xk). (11)

Step 3: Establishing (approximate) descend on auxiliary
functions. Recall the search direction sk in step 2 of Algo-
rithm 1, and define Rk = (I − LkGk)A−1

k . Then, we have
sk = −Rkŷk. Using the bounds (6) and (7), we conclude that
‖Rk‖ ≤ (1 + ρCG)CA := CR and therefore

‖sk‖ ≤ CR‖ŷk‖. (12)

Now, consider Φk. It can be shown that this function
satisfies the following relation:

Φk
(
xk + ε sk

)
≤ Φk(xk) +

1

2
ε2L̄‖sk‖2 + εyTk s

,. (13)

and using the fact that ỹk = yk − ŷk we conclude that

Φk(xk+1) ≤ Φk(xk) + εCR‖ŷk‖‖ỹk‖

≤ Φk(xk) +
2εL̄C2

R

µ̄
(1− ξkmin)Φk(xk),

for
ε ≤ ε := min

{
2δ

L̄C2
R

, εDQN

}
, ρ ≤ ρ, (14)

where εDQN and ρ are given in Lemma IV.1 and δ is assumed
to be small enough, i.e., δ ∈ (0, 1/(αL+ (1 + θ)(1−wmin)))
(see the proof of Lemma IV.1 in [33] for details). Denoting
B =

(
2εL̄C2

R

)
/µ̄, and using the fact that Φk+1(x) ≤ Φk(x),

for all x ∈ Rnp, we obtain

Φk+1(xk+1) ≤ (1 +B(1− ξkmin))Φk(xk). (15)

Applying expectation we obtain

E(Φk+1(xk+1)) ≤ (1 +B(1− pnk ))E(Φk(xk)),

where we use the fact that ξkmin and xk are mutually inde-
pendent. Furthermore, recall that uk = 1− pk and notice that
1− pnk ≤ nuk. Moreover, 1 + t ≤ et for t > 0 and thus

E(Φk+1(xk+1)) ≤ enBukE(Φk(xk)).

Next, by unwinding the recursion, we obtain

E(Φk(xk)) ≤ enB
∑k−1
j=0 ujΦ0(x0) := CΦ,2.

By assumption, {uk} is summable, and since Φ(x) ≤ Φk(x),
for all x, we conclude that E(Φ(xk)) ≤ CΦ,2. Since Φ is
strongly convex, the desired result holds. 2

Notice that an immediate consequence of Lemma IV.1 is
that the gradients are uniformly bounded in the mean square
sense. Indeed,

E
(
‖∇F (xk)‖2

)
= E

(
‖∇F (xk)−∇F (x̃∗)‖2

)
≤ E

(
L2‖xk − x̃∗‖2

)
≤ 2L2(Cx + ‖x̃∗‖2) := CF, (16)

where x̃∗ ∈ Rnp is the minimizer of F , and where we recall
Cx in Lemma IV.2. Next, we show that the “inexactness” of
the search directions of DQN with idling are “controlled”
by the activation probabilities pk’s. For the proof, see [33],
Theorem IV.3.

Lemma IV.3 Let assumptions A1-A3 hold, and consider ρ
and ε as in Lemma IV.2. Then, for all ρ ∈ [0, ρ] and ε ∈ (0, ε],
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the following inequality holds for every k and some positive
constant Cs: E(‖sk − ŝk‖2) ≤ (1− pk)Cs.

Proof. We first split the error as follows: E
(
‖sk − ŝk‖2

)
≤

2
(

(CH)2E
(
‖(ĝk − gk)‖2

)
+ E

(
‖(Hk − Ĥk)gk‖2

))
.,

where CH is a positive constant. Then, going through the
blocks, using the fact that ξki are i.i.d., and using Lemma IV.2
and its consequence (16), it can be shown (see [33], Theorem
IV.3.) that both error terms on the right hand side are
O(1− pk). 2

We are now ready to prove the main result, Theorem IV.1.
Proof. The proof follows similarly to the proof of Theorem 2

in [15]. Namely, unwinding the recursion in Lemma IV.1 and
taking expectation, we obtain for k = 1, 2, ...:

E(Φ(xk)−Φ(x∗)) ≤
(
Φ(x0)− Φ(x∗)

)
νk (17)

+ CΦ
k∑
t=1

νk−t(1− pt−1).

Now, we apply part (a) of Lemma II.1. From this result
and (17), it follows directly that E

(
Φ(xk)− Φ(x∗)

)
→ 0

as k → ∞, because it is assumed that pk → 1. Further-
more, using inequality Φ(xk) − Φ(x∗) ≥ µΦ

2 ‖x
k − x∗‖2,

the mean square convergence of xk towards x∗ follows. It
remains to show that xk → x∗ almost surely, as well. This
is accomplished by using the Borel-Cantelli lemma-based
argument similar to Subsection IV-B in [37]. Finally, the
R-linear mean square convergence rate follows by applying
part (b) of Lemma II.1 on (17). 2

V. EXTENSIONS AND NUMERICAL RESULTS

DQN under persisting idling. This section investigates
DQN with idling when activation probability pk does not
converge to one asymptotically. This scenario is of interest
when activation probability pk is not in full control of the
algorithm designer (and the networked nodes during execu-
tion). Henceforth, regarding Assumption A3, we only keep
the requirement that the sequence {pk} is uniformly bounded
from below. We make here an additional assumption that the
iterates are bounded in the mean square sense, i.e., E

(
‖xk‖2

)
is uniformly bounded from above by a positive constant. Then,
the bound in (22) continues to hold, and we have:

E
(
Φ(xk)− Φ(x∗)

)
≤ (Φ(x0)− Φ(x∗))νk +

CΦ(1− pmin)

1− ν
.

Using strong convexity of Φ (with strong convexity constant
µΦ) and letting k go to infinity we obtain

lim sup
k→∞

E
(
‖xk − x∗‖2

)
≤ 2CΦ(1− pmin)

µΦ(1− ν)
:= E .

Therefore, the proposed algorithm converges (in the mean
square sense) to a neighborhood of the solution x∗ of (1).
Hence, a limiting error is introduced with respect to the case
pk → 1. We can see that the size of the error is proportional
to (1− pmin) – the closer pmin to one, the smaller the error.
However, numerical simulations suggest that the error is only
moderately increased (with respect to the case pk → 1), even

in the presence of very strong persisting idling; see [33],
Figures 3-5.

Simulation example. We compare the proposed DQN
method with idling with other existing methods that utilize
randomized activations of nodes, namely the methods in [28],
referred to as asynchronous network Newton, and [15]. The
comparison is performed on a n = 30-node (connected)
random geometric graph network with 91 links and randomly
generated strongly convex quadratic fi’s. More precisely, for
each i = 1, ..., n, we let fi : Rp → R, fi(x) = 1

2 (x −
bi)

TBi(x − bi), p = 5, where bi ∈ Rp and Bi ∈ Rp×p is a
symmetric positive definite matrix. The data pairs Bi, bi are
generated at random, independently across nodes, as follows.
Each bi’s entry is generated mutually independently from
the uniform distribution on [1, 31]. Each Bi is generated as
Bi = QiDiQ

T
i ; here, Qi is the matrix of orthonormal eigen-

vectors of 1
2 (B̂i + B̂Ti ), and B̂i is a matrix with independent,

identically distributed (i.i.d.) standard Gaussian entries; and
Di is a diagonal matrix with the diagonal entries drawn
in an i.i.d. fashion from the uniform distribution on [1, 31].
With the proposed idling-DQN, the activation probability is
set to pk = 1 − σk+1, with σ = 1 − c αµ, c = 80.
With the algorithm in [15], we let the activation probability
pk = 1−((1−αµ)2)k+1. The weight matrix W is as follows:
for {i, j} ∈ E, i 6= j, wij = 1

2(1+max{di,dj}) , where di is
the node i’s degree; for {i, j} /∈ E, i 6= j, wij = 0; and
wii = 1−

∑
j 6=i wij , for all i = 1, ..., n. We set α = 1/(100L).

Figure 1 plots the relative error ‖xk − x∗‖/‖x∗‖ (where we
recall that x∗ is the solution to (1)) versus total number
of activations for the three methods. We can see that the
proposed method performs better than the other methods on
the considered example.

Fig. 1. Relative error versus total cost (number of activations per node) for
strongly convex quadratic costs and n = 30-node network. The red, dotted
line corresponds to the proposed DQN with idling; blue, solid line to [28];
and black, dash-dot line to [15].
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VI. CONCLUSION

We incorporated an idling mechanism, recently proposed
in the context of distributed first order methods [15], into
distributed second order methods. Specifically, we study the
DQN algorithm [14] with idling. We showed that, as long as
pk converges to one at least as fast as 1−1/k1+ζ , where ζ > 0
is arbitrarily small, the DQN algorithm with idling converges
in the mean square sense and almost surely to the same point
as the standard DQN method that activates all nodes at all
iterations. Furthermore, when pk grows to one at a geometric
rate, DQN with idling converges at a R-linear rate in the
mean square sense. An interesting future research direction
is to extend the DQN with idling algorithm in the direction
that, instead of utilizing a pre-defined increasing sequence of
activation probabilities, the activation law is controlled locally
to trade-off communication and computation.
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