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Abstract An equality constrained optimization problem with a deterministic objec-
tive function and constraints in the form of mathematical expectation is considered.
The constraints are transformed into the Sample Average Approximation form re-
sulting in deterministic problem. A method which combines a variable sample size
procedure with line search is applied to a penalty reformulation. The method gener-
ates a sequence that converges towards first-order critical points. The final stage of
the optimization procedure employs the full sample and the SAA problem is even-
tually solved with significantly smaller cost. Preliminary numerical results show that
the proposed method can produce significant savings compared to SAA method and
some heuristic sample update counterparts while generating a solution of the same
quality.

Keywords stochastic optimization · equality constraints · variable sample size ·
penalty method · line search
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Nataša Krklec Jerinkić
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1 Introduction

We consider the following equality constrained optimization problem

min
x

f (x), subject to h(x) = 0, (1)

where the objective function f : Rn→R is deterministic and the constraints are in the
form of mathematical expectation, i.e. h(x) = E(H(x,ξ )) where H : Rn×Rp→ Rm,
ξ is a random vector ξ : Ω → Rp and (Ω ,F ,P) is a probability space.

In general it is difficult to compute the mathematical expectation and the com-
mon approach is to generate a sample of random vectors and replace the expectation
function by the sample average function. In variable sample methods, [10], differ-
ent samples are used along the optimization process. Another approach is to fix a
sample (rather large in general) at the beginning of the optimization procedure, so
the stochastic problem is converted into a deterministic problem. This approach is
known as the Sample Average Approximation (SAA) or the sample path, details can
be found for example in [17,18]. The obtained SAA problem can be solved by stan-
dard optimization techniques. Since the sample often needs to be large to ensure a
good approximation of the mathematical expectation, the sample average function
(and possibly its gradient) is expensive to evaluate and thus solving the SAA prob-
lem is expensive. One possible way to eliminate this drawback is to vary a sample
size throughout the optimization process. Namely, when the current iteration point
is far from the solution, a smaller sample size can give an iteration point which is
good enough and therefore reduce a number of function evaluations. Some methods
for controlling the sample size are presented in [4,10]. Roughly speaking the op-
timization method starts with a small size subsample and increases the subsample
throughout the iterations. An alternative approach, which can be classified as adap-
tive, relays on the progress achieved in each iteration and thus allows sample size to
oscillate until eventually working with the full sample, [1,2,12,13].

The approach we consider in this paper is based on penalty methods, [8,14,11,
6]. Penalty methods are successfully applied in stochastic environment. In [16,20]
an exact penalty method is used to solve a stochastic optimization problem with ex-
pected value objective function and deterministic constraints. Polak and Royset, in
[16], considered an inequality constraints and proposed an algorithm for solving the
SAA reformulation for sufficiently large penalty parameter. Constraints in [20] are
defined in form of equalities and the rule for varying the penalty parameter is defined
through minimization of a subproblem.

We propose an algorithm for solving the SAA reformulation of the problem (1).
As an optimization procedure we apply the quadratic penalty method combined with
the variable sample size scheduling and line search technique. We show that if Linear
Independence Constraint Qualification (LICQ) holds, then the proposed algorithm
generates a sequence that converges to a Karush-Kuhn-Tucker (KKT) point of the
SAA problem. The algorithm is implemented on a set of test problems from [9] with
added noise, and the numerical results show that the proposed algorithm requires a
significantly smaller number of function evaluation than the full sample SAA method
as well as some heuristic procedure.
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The rest of the paper is structured as follows. In the next section details of the
observed problem and the algorithm are presented. The convergence results are stated
in Section 3. Section 4 contains numerical results. Conclusions and some details that
complete the paper are given in the last two sections.

Throughout this paper ‖ · ‖ denotes the Euclidian norm.

2 The Algorithm

From now on, we consider the SAA reformulation of problem (1), i.e.

min
x

f (x), subject to ĥNmax(x) = 0, (2)

where the Sample Average Approximation for any N ∈ N, N ≤ Nmax is

ĥN(x) =
1
N

N

∑
i=1

H(x,ξi)

and the full sample ξ1,ξ2, . . . ,ξNmax is given in advance. Even if the problem (1) is
feasible, (2) may be infeasible. Thus we must assume the existence of a solution.
Moreover, the objective function is assumed to be bounded from bellow on the feasi-
ble set given by (2).

The method presented here aims to solve (2) by exploiting an efficient sample size
update combined with an update of the penalty parameter µ of the penalty function

φ(x;N; µ) = f (x)+µθ̂N(x), with θ̂N(x) = ‖ĥN(x)‖2. (3)

The penalty function (3) is defined for an arbitrary N ≤ Nmax. Thus at each itera-
tion k we are dealing with a sample size Nk and a penalty parameter µk, i.e. with the
function φ(x,Nk,µk). While the sequence of penalty parameters µk is nondecreas-
ing, the sample sizes Nk may oscillate depending on the progress of the algorithm.
Roughly speaking, µk is increased when a stationary point of function φ(x;Nk; µk) is
approached. Notice that Nk changes through iterations and an additional scheduling
procedure is needed. Thus we are using different penalty functions in each iteration
instead of φ(x;Nmax; µk). The sample size update is based on two error measures
denoted by dmk and ε

Nk
δ
(xk). Both of them have to be nonnegative and ε

Nk
δ
(xk) is as-

sumed to be bounded away from zero. The first one, dmk measures the distance from
the stationary point of φ(x;Nk; µk), while the second one approximates the distance
from the target (full sample) problem, i.e. it estimates the error of the approximation
ĥNk ≈ ĥNmax . We assume that the gradient gk := ∇φ(xk;Nk; µk) is available, thus we
define dmk = dmk(αk) =−αkgT

k dk, where αk is a step length and dk is assumed to be
a descent search direction. There are other possibilities for choosing dmk, see [13] for
instance. The estimator ε

Nk
δ
(xk) can be chosen in many ways, but the common choice

is the following sample variance. For instance,

ε
Nk
δ
(xk) = σ̂Nk(xk)1.96/

√
Nk, (4)

where σ̂2
Nk
(xk) = 1/(Nk−1)∑

Nk
i=1 ‖H(xk,ξi)− ĥNk(xk)‖2.
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The rule for changing the sample size is taken over from [13] with specified
weighting parameter, i.e. the aim is to find a sample size Nk+1 such that dmk ≈
Nk/Nk+1 ε

Nk+1
δ

(xk) and Nmin
k ≤ Nk+1 ≤ Nmax, where {Nmin

k } is a lower bound se-
quence. This sequence is updated as in [13], but instead of the objective function
we observe the measure of infeasibility θ̂Nk+1 . These algorithms are stated in the Ap-
pendix for completeness, while here we give only a brief discussion.

The main idea behind the sample size updating is as follows. A relatively small
value of dmk suggest the proximity of a solution to the current approximate problem
(i.e. a statonary point of φ(x,Nk,µk)) and thus the sample size is increased, to get a
better approximation of (2). On the other hand, if dmk is relatively large, the sample
size is decreased (but not below Nmin

k ) in order to save computational efforts since
we are probably still far away from the solution. That way, the algorithm copes with
different kinds of approximations simultaneously.

Although the lower bound Nmin
k update does not interfere within the main sample

size update in most of the tested applications, it plays an important role in the con-
vergence theory. Its main role is to prevent permanent oscillations of the sample size
and to push it to the full sample, eventually. This is done by tracking different levels
of precision determined by the sample size, or more precisely, by the function θ̂N . If
a sample size is increased to some precision, let us say Nk, and if there is not enough
decrease in measure of infeasibility θ̂Nk since the last time that this same level of
precision has been used, the lower bound is increased. Consequently, it pushes up the
overall precision controlled by the sample size. The main algorithm is stated below.

Algorithm 1
Step 0 Input parameters: Nmin ∈ N, x0 ∈ Rn, β ,η ,ν1 ∈ (0,1), µ0 > 0, γ > 1.
Step 1 Set k = 0, Nk = Nmin, xk = x0, µk = µ0, l = 1, Nmin

0 = Nmin.
Step 2 Determine the descent search direction dk.
Step 3 Find the smallest nonnegative integer j such that αk = β j satisfies

φ(xk +αkdk;Nk; µk)≤ φ(xk;Nk; µk)−ηdmk(αk). (5)

Set xk+1 = xk +αkdk and dmk = dmk(αk).
Step 4 If dmk ≤ αk/µ

2
k , set zt = xk and t = t +1.

Step 5 Determine the sample size Nk+1 using Algorithm 2.
Step 6 Determine the lower bound of the sample size Nmin

k+1 using Algorithm 3.
Step 7 Determine the penalty parameter µk+1:

If Nk = Nk+1 < Nmax or dmk > αk/µ
2
k , then µk+1 = µk, else µk+1 = γµk.

Step 8 Set k = k+1 and go to Step 2.

The details of Algorithm 2 and 3 are available in the Appendix.

3 Convergence analysis

To show the convergence of Algorithm 1 we need the following standard assumption.

Assumption 1 Function f is bounded from bellow on a feasible set given in (2).
Moreover, f ,H(·,ξi)∈C1(Rn) for every i = 1,2, . . . ,Nmax and the sequence {xk}k∈N0
generated by Algorithm 1 has at least one accumulation point.
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Assumption 1 provides continuity and differentiability of the function ĥN for ev-
ery N ∈ N and therefore ensures that the penalty function (3) is continuously dif-
ferentiable. Moreover, the measure of infeasibility θ̂N is nonnegative so the penalty
function (3) is also bounded from below whenever f is. Furthermore, notice that
fixing the penalty parameter and the sample size to µ̄ and N̄, respectively, yields a
standard backtracking line search method applied on φ(x; N̄; µ̄). Therefore, using the
standard technique (see [12] for instance), we can prove the following lemma.

Lemma 1 Suppose that the Assumption 1 holds and there exists n̄ ∈ N such that
µk = µ̄ and Nk = N̄ for all k ≥ n̄. Then limk→∞ dmk = 0.

Proof Define φ(x) := φ(x; N̄; µ̄) and let x∗ be an arbitrary accumulation point of the
sequence {xk}k∈N0 , i.e. x∗ = lim j→∞ xk j for some subsequence {xk j} j∈N0 ⊆ {xk}k∈N0 .
Without loss of generality we can assume that k j ≥ n̄ for every j and that {xk j} j∈N0
belongs to some compact set S. This, together with the Assumption 1, implies the
existence of a constant M such that φ(xk j) ≥M for every j. Furthermore, using the
line search rule (Step 3, Algorithm 1) we obtain the following inequality which holds
for every j

M ≤ φ(xk j)≤ φ(xk0)−η

k j−1

∑
i=k0

dmi.

Letting j tend to infinity we obtain the result. ut

The proof of the following lemma leans on the proof of Lemma 4.1 in [12], thus
we provide only a brief version in order to maintain completeness.

Assumption 2 There are κ > 0 and n1 ∈ N such that ε
Nk
δ
(xk)≥ κ for every k ≥ n1.

Lemma 2 Suppose that the Assumptions 1-2 hold. Then there exists q ∈ N such that
Nk = Nmax for every k ≥ q.

Proof Suppose that there exists n̄ > n1 such that for all k ≥ n̄ we have Nk = N1 <
Nmax. Then the updating rule for the penalty parameter implies that the penalty pa-
rameter also remains fixed and Lemma 1 implies limk→∞ dmk = 0. However, since
ε

Nk
δ
(xk) ≥ κ > 0, eventually we would have dmk < ε

Nk
δ
(xk) and the sample size will

be increased, which is clearly a contradiction.
On the other hand, assume that the sample size permanently oscillates. In that

case we know that the lower bound Nmin
k is smaller that Nmax as otherwise we would

have Nk ≥Nmin
k =Nmax for all k sufficiently large. Therefore, the lower bound remains

constant after a finite number of iterations, i.e. Nmin
k+1 = Nmin

k for every k large enough.
Denote the maximal sample size that is used infinitely many times by N̄ and notice
that there are infinitely many iterations in which the sample size is increased on N̄.
Now, observing the lower bound updating rule ( Algorithm 3, Step 1 2)) we conclude
that there exists a subsequence {xki} such that

θ̂N̄(xki)− θ̂N̄(xki+1)≥
N̄

Nmax
(ki+1− ki)ε

N̄
δ
(xki+1)≥

N̄
Nmax

(ki+1− ki)κ.

But such subsequence can not exist since θ̂N̄(x)≥ 0. Therefore, we conclude that the
statement is true. ut
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In order to prove the main result, we need an additional assumption. Notice that
the following implication is obviously satisfied for the negative gradient.

Assumption 3 The search directions dk are descent, bounded and the implication
limk∈K gT

k dk = 0 =⇒ limk∈K gk = 0 holds for any subsequence K ⊆ N.

Theorem 1 Suppose that the Assumptions 1-3 hold. Then limk→∞ µk = ∞.

Proof Due to Lemma 2 there exists q∈N such that Nk =Nmax for every k≥ q. There-
fore, by Step 7 of Algorithm 1 there are two possibilities for k ≥ q: µk is increased
if dmk ≤ αk/µ2

k , otherwise it remains unchanged. If the increase happens infinitely
many times, the result holds. Therefore, let us consider the opposite case, i.e. sup-
pose that there exists an iteration q1 > q such that dmk > αk/µ2

k for every k > q1.
In that case µk = µq1 for every k > q1 and the previous inequality is equivalent to
−gT

k dk > µ−2
q1

. Therefore, the sequence {−gT
k dk}k>q1 is bounded from below. On the

other hand, since the sample size and the penalty parameter are fixed for every k > q1,
Lemma 1 implies

0 = lim
k→∞

dmk = lim
k→∞

(
−αkgT

k dk
)
.

Consequently, limk→∞ αk = 0 which implies the existence of q2 > q1 such that for
every k > q2 the step size αk is smaller than 1. This further implies that for all k > q2
there exists α ′k such that αk = βα ′k and

φ(xk +α
′
kdk;Nmax; µq1)> φ(xk;Nmax; µq1)+ηα

′
kgT

k dk.

Defining φ(xk) := φ(xk;Nmax; µq1), using the Mean value theorem and rearranging
we obtain

dT
k ∇xφ(xk + tkα

′
kdk)> ηdT

k ∇xφ(xk).

Let x∗ be an arbitrary accumulation point of the sequence {xk}k∈N and denote by
K the subset such that limk∈K(xk,dk) = (x∗,d∗). Notice here that d∗ exists since the
sequence of search directions is bounded. Letting k∈K tend to infinity in the previous
inequality we obtain (d∗)T ∇φ(x∗)≥ η(d∗)T ∇φ(x∗), i.e.

(d∗)T
∇φ(x∗)≥ 0.

On the other hand, the search direction is assumed to be descent, so (d∗)T ∇xφ(x∗)≤ 0
which further implies that

(d∗)T
∇φ(x∗) = 0.

This is in contradiction with
−gT

k dk > µ
−2
q1

and we conclude that the penalty parameter can not be increased only finitely many
times. This completes the proof. ut

Notice that Theorem 1 implies the existence of an infinite sequence {zt} defined
by Step 4 of Algorithm 1. Finally we prove the global convergence result.

Theorem 2 Suppose that the Assumptions 1-3 hold. Then every accumulation point
x∗ of {zt}t∈N is stationary for θ̂Nmax . Moreover, if LICQ holds then x∗ is a KKT point
of the problem (2).
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Proof Let x∗ be an arbitrary accumulation point of the sequence {zt}. Since {zt} ⊆
{xk}, there is a set K ⊆N such that limk∈K xk = x∗ and dmk ≤ αk/µ2

k , or equivalently
0 <−gT

k dk ≤ µ
−2
k , for all k ∈ K. Due to Lemma 2 there exists q ∈ N such that Nk =

Nmax for every k≥ q. Also, Theorem 1 implies limk→∞ µk = ∞. Without loss of gener-
ality, we can assume that k≥ q for all k ∈ K. Therefore, it holds that limk∈K gT

k dk = 0
and the Assumption 3 implies limk∈K gk = 0. Since gk = ∇ f (xk)+µk∇θ̂Nmax(xk) we
obtain

‖∇θ̂Nmax(xk)‖ ≤ (‖∇ f (xk)‖+‖gk‖)/µk

and taking the limit we get
∇θ̂Nmax(x

∗) = 0,

i.e. x∗ is a stationary point of θ̂Nmax .
Besides, if LICQ holds then ∇ĥNmax(x

∗) has a full rank. Since

∇θ̂Nmax(x
∗) = 2∇ĥNmax(x

∗)T ĥNmax(x
∗),

we conclude that ĥNmax(x
∗) must be zero, i.e. x∗ is feasible. Moreover, it is a KKT

point of problem (2) with the Lagrange multiplier

λ
∗ =−

(
∇ĥNmax(x

∗)∇ĥNmax(x
∗)T )−1

∇ĥNmax(x
∗)∇ f (x∗). (6)

To see this, define λk := 2µkĥNmax(xk). Then

gk = ∇ f (xk)+∇ĥNmax(xk)
T

λk. (7)

Due to the continuity of ∇ĥNmax , the matrix ∇ĥNmax(xk) has a full rank for sufficiently
large k. So, for sufficiently large k the matrix ∇ĥNmax(xk)∇ĥNmax(xk)

T is nonsingular.
Therefore, after multiplying (7) by ∇ĥNmax(xk) from the left side and rearranging, we
obtain

λk =
(
∇ĥNmax(xk)∇ĥNmax(xk)

T )−1
∇ĥNmax(xk)(gk−∇ f (xk)) .

Now, using the fact that limk∈K gk = 0 we conclude that limk∈K λk = λ ∗ given by (6)
and

0 = lim
k∈K

gk = lim
k∈K

(
∇ f (xk)+∇

T ĥNmax(xk)λk
)
= ∇ f (x∗)+∇ĥNmax(x

∗)T
λ
∗.

ut

4 Numerical results

The test collection consists of 14 standard optimization problems with the unique so-
lution and the objective function bounded from below on Rn. The problems (6, 27,
28, 42, 46-52, 61, 77 and 79) are taken from Hock and Schittkowski [9] and trans-
formed into SAA by H(x,ξ ) = c(ξ x) where ξ follows Normal distribution N (1,1)
and c(x) is the function defining constraints in [9]. For each of the problems, 10 dif-
ferent samples of size Nmax = 2000 are generated and in total 140 different problems
have been tested.
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Fig. 1 Performance profile

The proposed procedure (VSS) is compared with two other sample scheduling
schemes – the SAA where Nk = Nmax for each k, and the heuristic (HEUR) where
Nk+1 = dmin{1.1Nk,Nmax}e as in [7,13,15]. To make the comparison fair, all the
remaining parameters are the same for all tests. The BFGS search direction with the
safeguard that ensures the descent property of dk and the gradient difference yk =
∇φ(xk+1;Nk+1; µk)−∇φ(xk;Nk; µk) is used. Line search is performed with β = 0.5
and η = 10−4. The initial penalty parameter is set to µ0 = 1 and the increase factor
is γ = 1.5. The initial points are as in [9] and the initial (and minimal) sample size is
Nmin = 3. Furthermore, Algorithm 1 is applied with ν1 = 1/

√
Nmax and ε

Nk
δ

defined
by (4).

The comparison is based on number of function H evaluations (FEV) where each
component of ∇H is counted as one FEV (see [19] for instance). The stopping crite-
rion is

‖
(
∇xφ(xk;Nmax; µk), ĥNmax(xk)

)
‖ ≤ 10−1.

Notice that the algorithms terminate (successfully) only if Nk = Nmax and a KKT
point is approximated. On the other hand, if the stopping criterion is not met within
108 FEVs, the run is considered unsuccessful.

The results are presented in Figure 1 throughout the performance profile intro-
duced by Dolan and Moré [5]. As we can see, the winning probabilities (results for
τ = 1) of SAA, HEUR and VSS are 0.12, 0.29 and 0.52, respectively. Moreover,
considering the whole profile, the savings produced by VSS are significant.

We conclude this section by addressing the robustness of the methods. In the vast
majority of cases, algorithms approached a KKT point. The exceptions are problems
46 and 77. In the case of 46, HEUR and VSS failed each one at one run, while the
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SAA was fully successful. On the other hand, in problem 77 all the tested methods
failed except for VSS which managed to solve one run.

5 Conclusions

Difficulties of solving stochastic problems of the form considered in this paper are
due to high cost of computing the mathematical expectation. This difficulty can be
resolved by transforming the problem (1) into an SAA problem, with sufficiently
large sample. However, solving the SAA problem with large sample which ensures a
good approximation of the original problem, leads to computationally costly proce-
dure with very high number of function evaluations. The algorithm proposed in this
paper is such that the sample size is varying during optimization process. Under a
set of standard conditions, the convergence of sequence generated by the proposed
algorithm to a KKT point of the SAA problem is shown. The presented numerical re-
sults demonstrate that the algorithm requires significantly smaller number of function
evaluations than the SAA method and the heuristic procedure. The proposed method
is also fairly robust.

6 Appendix

Algorithm 2
Step 0 Input parameters: dmk, ε

Nk
δ
(xk), xk, Nk, Nmin

k , ν1 ∈ (0,1).
Step 1 Determine Nk+1

1) dmk = ε
Nk
δ
(xk) → Nk+1 = Nk.

2) dmk > ε
Nk
δ
(xk)

Starting with N = Nk, while dmk >
Nk
N εN

δ
(xk) and N > Nmin

k , decrease N by 1
and calculate εN

δ
(xk) → Nk+1 = N.

3) dmk < ε
Nk
δ
(xk)

i) dmk ≥ ν1ε
Nk
δ
(xk)

Starting with N = Nk, while dmk <
Nk
N εN

δ
(xk) and N < Nmax, increase N

by 1 and calculate εN
δ
(xk) → Nk+1 = N.

ii) dmk < ν1ε
Nk
δ
(xk) → Nk+1 = Nmax.

Algorithm 3 We say that we have not made big enough decrease of the function
θ̂Nk+1 if the following inequality is true

θ̂Nk+1(xl(k))− θ̂Nk+1(xk+1)

k+1− l(k)
<

Nk+1

Nmax
ε

Nk+1
δ

(xk+1),

where l(k) is the iteration at which we started to use the sample size Nk+1 for the last
time.

Step 0 Input parameters: Nk, Nk+1, Nmin
k .

Step 1 Determine Nmin
k+1:
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1) If Nk+1 ≤ Nk then Nmin
k+1 = Nmin

k .
2) If Nk+1 > Nk and

i) if Nk+1 is a sample size which has not been used so far then Nmin
k+1 = Nmin

k .
ii) if Nk+1 is a sample size which had been used and if we have made big

enough decrease of the function θ̂Nk+1 since the last time we used it, then
Nmin

k+1 = Nmin
k .

iii) if Nk+1 is a sample size which had been used and if we have not made
big enough decrease of the function θ̂Nk+1 since the last time we used it,
then Nmin

k+1 = Nk+1.
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