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a b s t r a c t

Minimization of unconstrained objective functions in the form of mathematical
expectation is considered. The Sample Average Approximation (SAA) method transforms
the expectation objective function into a real-valued deterministic function using a large
sample and thus deals with deterministic function minimization. The main drawback of
this approach is its cost. A large sample of the random variable that defines the expectation
must be taken in order to get a reasonably good approximation and thus the sample average
approximationmethod requires a very large number of function evaluations. We present a
line search strategy that uses variable sample size and thusmakes the process significantly
cheaper. Two measures of progress—lack of precision and a decrease of function value are
calculated at each iteration. Based on these twomeasures a new sample size is determined.
The rule we present allows us to increase or decrease the sample size at each iteration until
we reach some neighborhood of the solution. An additional safeguard check is performed
to avoid unproductive sample decrease. Eventually the maximal sample size is reached so
that the variable sample size strategy generates a solution of the same quality as the SAA
method but with a significantly smaller number of function evaluations. The algorithm is
tested on a couple of examples, including the discrete choice problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem under consideration is

min
x∈Rn

f (x). (1)

Function f : Rn
→ R is in the form of mathematical expectation

f (x) = E(F(x, ξ)),

where F : Rn
× Rm

→ R, ξ is a random vector ξ : Ω → Rm and (Ω, F , P) is a probability space. The form of mathematical
expectation makes this problem difficult to solve, as very often one cannot find its analytical form. This is the case even if
the analytical form of F is known, which is assumed in this paper. Furthermore we assume that F is bounded with respect
to both x and ξ and thus (2) and the mathematical expectation are well defined.

One way of dealing with this kind of problem is to use sample averaging in order to approximate the original objective
function as follows

f (x) ≈ f̂N(x) =
1
N

N
i=1

F(x, ξi). (2)
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This is the approach that we use as well. Here N represents the size of sample that is used to make approximation (2).
An important assumption is that we form the sample by random vectors ξ1, . . . , ξN that are independent and identically
distributed. If F is bounded then the Law of Large Numbers [1] implies that for every x almost surely

lim
N→∞

f̂N(x) = f (x). (3)

In practical applications one cannot have an unbounded sample size but can get close to the original function by choosing a
sample size that is large enough but still finite. So, we focus on finding an optimal solution of

min
x∈Rn

f̂N(x), (4)

where N is a fixed integer and ξ1, . . . , ξN is a sample realization that is generated at the beginning of the optimization
process. Thus the problem we are considering is in fact deterministic and standard optimization tools are applicable. This
approach is called the sample path method or the stochastic average approximation (SAA) method and it is the subject of
many research efforts, see for example [1,2]. Themain disadvantage of the SAAmethod is the need to calculate the expensive
objective function defined by (2) at each iteration. As N in (4) needs to be large the evaluations of f̂N become very costly.
That is particularly true in practical applications where the output parameters of models are expensive to calculate. Given
that almost all optimizationmethods include some kind of gradient information, or even second-order information, the cost
becomes even higher.

Various attempts to reduce the costs of SAAmethods are presented in the literature. Roughly speaking themain idea is to
use some kind of variable sample size strategy andworkwith smaller sampleswhenever possible, at least at the beginning of
the optimization process. One can distinguish two types of variable sample size results. The first type deals with unbounded
samples and seeks almost sure convergence. The strategies of this type in general start with small samples and increase
their size during the iterative procedure. To our best knowledge no such method allows us to decrease the sample size
during the process. One efficient method of this kind is presented in [3]. The proposed method uses a Bayesian scheme to
determine a suitable sample size at each iteration within the trust region framework. It yields almost sure convergence
towards a solution of (1). In general the sample size in this method is unbounded, but in some special cases it can even stay
bounded. The dynamic of increasing the sample size is the main issue of papers [4,5] as well. In [4], convergence is ensured
if (3) is satisfied and the sample size possess sufficient growth. The method in [5] states an auxiliary problem that is solved
before the optimization process is started and the solution of that auxiliary problem provides an efficient increasing variable
sample size strategy.

A refinement of SAAmethods based on a careful analysis of the sequence of sample sizes and error tolerance is presented
in [6,7]. A set of conditions that ensures almost sure convergence is presented in [7] togetherwith a specific recommendation
for sample size and error tolerance sequences. Another interesting approach that offers a quantitative measure of SAA
solutions is presented in [8]. Optimality functions for general stochastic programs (expected value objective and constraint
functions) are considered. An algorithm that utilizes optimality functions to select the sample size is developed.

The second type of algorithm deals directly with problems of type (4) and seeks convergence towards stationary points
of that problem. The algorithms proposed in [9,10] introduce a variable sample size strategy that allows a decrease of the
sample size as well as an increase during the optimization process. Roughly speaking, the main idea is to use the decrease
of the function value and a measure of the width of the confidence interval to determine the change in sample size. The
optimization process is conducted in the trust region framework. We adopt these ideas to the line search framework in this
paper and propose an algorithm that allows both an increase and decrease of sample size during the optimization process.
Given that the final goal is tomake the overall process less costlywe also introduce an additional safeguard rule that prohibits
unproductive sample decreases. As common for this kind of problems, by cost we always assume the number of function
evaluations [11].

Thepaper is organized as follows. In Section2we state theproblem inmoredetail andpresent the assumptions needed for
the proposed algorithm. The algorithm is presented in Section 3 and convergence results are derived in Section 4. Numerical
results are presented in the last section and in the Appendix.

2. Preliminaries

In order to solve (4) we assume that we know the analytical form of a gradient ∇xF(x, ξ). This implies that we are able
to calculate the true gradient of a function f̂N , that is

∇ f̂N(x) =
1
N

N
i=1

∇xF(x, ξi).

Once the sample is generated, we observe the function f̂N and the problem (4) as deterministic [12]. This approach simplifies
the definition of stationary points, which is much more complicated in a stochastic environment. It also provides us with
standard optimization tools. Various optimization algorithms are described in [13], for example. The one that we apply
belongs to the line search type of algorithms. The main idea is to determine a suitable direction and search along that
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direction in order to find a step that provides a sufficient decrease of the objective function value. The goal is to show how
the variable sample scheme presented in [9,10] for trust region methods can be implemented in the line search framework.

Suppose that we are at the iterate xk. Every iteration has its own sample size Nk, therefore we are observing the function

f̂Nk(x) =
1
Nk

Nk
i=1

F(x, ξi).

We perform line search along the direction pk which is decreasing for the observed function, i.e. it satisfies the condition

pTk∇ f̂Nk(xk) < 0. (5)

In order to obtain a sufficient decrease of the objective function, we use the backtracking technique to find a step size αk
which satisfies the Armijo condition

f̂Nk(xk + αkpk) ≤ f̂Nk(xk) + ηαkpTk∇ f̂Nk(xk), (6)

for some η ∈ (0, 1). More precisely, starting from α = 1, we decrease α by multiplying it with β ∈ (0, 1) until the Armijo
condition (6) is satisfied. This can be done in a finite number of trials if the iterate xk is not a stationary point of f̂Nk , assum-
ing that this function is continuously differentiable and bounded from below. For more information about this technique
see [13], for example.

After the suitable step size αk is found, we define the next iterate as xk+1 = xk + αkpk. Now, the main issue is how to
determine a suitable sample size Nk+1 for the following iteration. In the algorithm that we propose the rule for determining
Nk+1 is based on three parameters: the decrease measure dmk, the lack of precision denoted by ε

Nk
δ (xk) and the safeguard

rule parameter ρk. The two measures of progress, dmk and ε
Nk
δ (xk), are taken from [10,9] and adopted to suit the line search

methods while the third parameter is introduced to avoid an unproductive decrease of the sample size as explained below.
The decrease measure is defined as

dmk = −αkpTk∇ f̂Nk(xk). (7)

This is exactly the decrease in the linear model function, i.e.

dmk = mNk
k (xk) − mNk

k (xk+1),

where

mNk
k (xk + s) = f̂Nk(xk) + sT∇ f̂Nk(xk).

The lack of precision represents an approximate measure of the width of confidence interval for the original objective
function f at the current iterate xk, i.e.

ε
Nk
δ (xk) ≈ c,

where

P(f (xk) ∈ [f̂Nk(xk) − c, f̂Nk(xk) + c]) ≈ δ.

The confidence level δ is usually equal to 0.9, 0.95 or 0.99. It is an input parameter of our algorithm. We know that
c = σ(xk)αδ/

√
Nk, where σ(xk) is the standard deviation of random variable F(xk, ξ) and αδ is the quantile of Normal

distribution, i.e. P(−αδ ≤ X ≤ αδ) = δ, where X : N (0, 1). Usually we cannot find σ(xk), so we use the centered sample
variance estimator

σ̂ 2
Nk

(xk) =
1

Nk − 1

Nk
i=1

(F(xk, ξi) − f̂Nk(xk))
2.

Finally, we define the lack of precision as

ε
Nk
δ (xk) = σ̂Nk(xk)

αδ
√
Nk

. (8)

The algorithm that provides us with a candidate N+

k for the next sample size is described in more detail in the following
section. The main idea is to compare the previously defined lack of precision and the decrease measure. Roughly speaking,
if the decrease in function’s value is large compared to the width of the confidence interval then we decrease the sample
size at the next iteration. In the opposite case, when the decrease is relatively small in comparison with the precision, then
we increase the sample size. Furthermore, if the candidate sample size is lower than the current one, that is if N+

k < Nk,
one more test is applied before making the final decision about the sample size to be used at the next iteration. In that case,
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we calculate the safeguard parameter ρk. It is defined as the ratio between the decrease in the candidate function and the
function that has been used to obtain the next iteration, that is

ρk =

f̂N+

k
(xk) − f̂N+

k
(xk+1)

f̂Nk(xk) − f̂Nk(xk+1)
. (9)

The role of ρk is to prevent an unproductive sample size decrease, i.e. we calculate the progress made by the new point and
the candidate sample size and compare it with the progress achieved with Nk. So if ρk is relatively small we do not allow a
decrease of the sample size.

Now, we present the assumptions needed for proving the convergence result of the algorithm that is presented in
Section 3 and analyzed in Section 4.

A1 Random vectors ξ1, . . . , ξN are independent and identically distributed.
A2 For every ξ, F(·, ξ) ∈ C1(Rn).
A3 There exists a constantM1 > 0 such that for every ξ, x

∥∇xF(x, ξ)∥ ≤ M1.

A4 There are finite constantsMF and MFF such that for every ξ, x,

MF ≤ F(x, ξ) ≤ MFF .

The role of the first assumption is already clear. It ensures that our approximation function f̂Nk is, in fact, a centered
estimator of the function f at each point. This is not a fundamental assumption that makes the upcoming algorithm
convergent, but it is important for making the problem (4) close to the original one for N large enough. The assumption A2
ensures the continuity and differentiability of F as well as of f̂N , while A3 and A4 allow us to prove the convergence results.

An important consequence of the previous assumptions is that the interchange between the mathematical expectation
and the gradient operator is allowed (see [1]), i.e. the following is true

∇xE(F(x, ξ)) = E(∇xF(x, ξ)). (10)

Having this in mind, we can use the Law of Large Numbers again, and conclude that for every x almost surely

lim
N→∞

∇ f̂N(x) = ∇f (x).

This justifies using ∇ f̂N(x) as an approximation of the measure of stationarity for problem (1). We have influence on
that approximation because we can change the sample size N and, hopefully, make problem (4) closer to problem (1).
Therefore (10), together with A1, helps us measure the performance of our algorithm regarding (1).

Having these assumptions in mind, one can easily prove the following three lemmas.

Lemma 2.1. If A2 and A3 hold, then for every x ∈ Rn and every N ∈ N the following is true

∥∇ f̂N(x)∥ ≤ M1.

Lemma 2.2. If A2 is satisfied, then for every N ∈ N the function f̂N is in C1(Rn).

Lemma 2.3. If A4 holds, then for every x ∈ Rn and every N ∈ N the following is true

MF ≤ f̂N(x) ≤ MFF .

We also state the following important lemma which, together with the previous two, guarantees that the line search is
well defined.

Lemma 2.4 ([13]). Suppose that function h : Rn
→ R is continuously differentiable and let dk be a descent direction for function

h at point xk. Also, suppose that h is bounded below on {xk + αdk|α > 0}. Then if 0 < c1 < c2 < 1, there exist interval of step
lengths satisfying the Wolfe conditions (11) and (12)

h(xk + αkdk) ≤ h(xk) + c1αkdTk∇h(xk) (11)

∇h(xk + αkdk)Tdk ≥ c2∇h(xk)Tdk. (12)

The backtracking technique that we use in order to find a step size that satisfies the Armijo condition (11) generates an
αk that satisfies the curvature condition (12) as well.
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3. The algorithm

The algorithm below is constructed to solve the problem (4)with the sample sizeN equal to someNmax which is observed
as an input parameter. More precisely, we are searching for a stationary point of the function f̂Nmax . The sample realization
that defines the objective function f̂Nmax is generated at the beginning of the optimization process. Therefore, we can say that
the aim of the algorithm is to find a point xwhich satisfies

∥∇ f̂Nmax(x)∥ = 0.

In this paper we assume that the suitable maximal sample size Nmax can be determined without entering into the details of
such a process.

As already stated, the algorithm is constructed to let the sample size vary across the iterations and to let it decrease if
appropriate. Let us state the main algorithm here, leaving the additional ones to be stated later.

Algorithm 1. S0 Input parameters: Nmax,Nmin
0 ∈ N, x0 ∈ Rn, δ, η, β, γ3, ν1 ∈ (0, 1), η0 < 1.

S1 Generate the sample realization: ξ1, . . . , ξNmax .
Put k = 0,Nk = Nmin

0 .
S2 Compute f̂Nk(xk) and ε

Nk
δ (xk) using (2) and (8).

S3 Test
If ∥∇ f̂Nk(xk)∥ = 0 and Nk = Nmax then STOP.
If ∥∇ f̂Nk(xk)∥ = 0, Nk < Nmax and ε

Nk
δ (xk) > 0 put Nk = Nmax and Nmin

k = Nmax and go to step S2.
If ∥∇ f̂Nk(xk)∥ = 0, Nk < Nmax and ε

Nk
δ (xk) = 0 put Nk = Nk + 1 and Nmin

k = Nmin
k + 1 and go to step S2.

If ∥∇ f̂Nk(xk)∥ > 0 go to step S4.
S4 Determine pk such that pTk∇ f̂Nk(xk) < 0.
S5 Using the backtracking technique with the parameter β , find αk such that

f̂Nk(xk + αkpk) ≤ f̂Nk(xk) + ηαkpTk∇ f̂Nk(xk).

S6 Put sk = αkpk, xk+1 = xk + sk and compute dmk using (7).
S7 Determine the candidate sample size N+

k using Algorithm 2.
S8 Determine the sample size Nk+1 using Algorithm 3.
S9 Determine the lower bound of the sample size Nmin

k+1.
S10 Put k = k + 1 and go to step S2.

Before stating the auxiliary algorithms, let us briefly comment on this one. The point x0 is an arbitrary starting point. The
sample realization generated in step S1 is the one that is used during the whole optimization process. For simplicity, if the
required sample size is Nk < Nmax, we take the first Nk realizations in order to calculate all relevant values. On the other
hand, Nmin

0 is the lowest sample size that is going to be used in the algorithm. The role of the lower sample bound Nmin
k is

explained after the statement of the remaining algorithms. The same is true for parameters η0, γ3 and ν1.
Notice that the algorithm terminates after a finite number of iterations only if xk is a stationary point of the function

f̂Nmax . Moreover, step S3 guarantees that we have a decreasing search direction in step S5, therefore the backtracking is well
defined.

As we alreadymentioned, one of themain issues is how to determine the sample size for the next iteration. Algorithms 2
and 3 stated below provide details. As alreadymentioned Algorithm 2 is adopted from [9,10] to fit the line search framework
and it leads us to the candidate sample size N+

k . Acceptance of that candidate is decided within Algorithm 3. The update rule
for Nmin

k is given after Algorithm 3. For now, the important thing is that the lower bound is determined before we get to
step S7 and it is considered as an input parameter in the algorithm described below. Notice that the following algorithm is
constructed to provide Nmin

k ≤ N+

k ≤ Nmax.

Algorithm 2. S0 Input parameters: dmk, Nmin
k , ε

Nk
δ (xk), ν1 ∈ (0, 1).

S1 Determine N+

k

(1) dmk = ε
Nk
δ (xk) → N+

k = Nk.
(2) dmk > ε

Nk
δ (xk).

Starting with N = Nk, while dmk > εN
δ (xk) and N > Nmin

k , decrease N by 1 and calculate εN
δ (xk) → N+

k .
(3) dmk < ε

Nk
δ (xk)

(i) dmk ≥ ν1ε
Nk
δ (xk).

Starting with N = Nk, while dmk < εN
δ (xk) and N < Nmax, increase N by 1 and calculate εN

δ (xk) → N+

k .
(ii) dmk < ν1ε

Nk
δ (xk) → N+

k = Nmax.
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The basic idea for this kind of reasoning can be found in [9,10]. The main idea is to compare two main measures of the
progress, dmk and ε

Nk
δ (xk), and to keep them as close as possible to each other.

Let us consider dmk as the benchmark. If dmk < ε
Nk
δ (xk), we say that εNk

δ (xk) is too big or that we have a lack of precision.
That implies that the confidence interval is too wide and we are trying to narrow it down by increasing the sample size and
therefore reducing the error made by approximation (2). On the other hand, in order to work with a sample size as small as
possible, if dmk > ε

Nk
δ (xk) we deduce that it is not necessary to have that much precision and we try to reduce the sample

size.
On the other hand, if we set the lack of precision as the benchmark, we have the following reasoning. If the reduction

measure dmk is too small (smaller than ε
Nk
δ (xk)), we say that there is not much that can be done for the function f̂Nk in the

sense of decreasing its value and we move on to the next level, trying to get closer to the final objective function f̂Nmax if
possible.

The previously described mechanism provides us with the candidate for the upcoming sample size. Before accepting it,
we have one more test. First of all, if the precision is increased, that is if Nk ≤ N+

k , we continue with Nk+1 = N+

k . However, if
we have the signal that we should decrease the sample size, i.e. if N+

k < Nk, then we compare the reduction that is already
obtained using the current step sk and the sample size Nk with the reduction this step would provide if the sample size was
N+

k . In order to do that, we compute ρk using (9). If ρk < η0 < 1, we do not approve the reduction because these two
functions are too different and we choose to work with more precision and therefore put Nk+1 = Nk. More formally, the
algorithm is described as follows.

Algorithm 3. S0 Input parameters: N+

k ,Nk, xk, xk+1, η0 < 1.
S1 Determine Nk+1

(1) If N+

k > Nk then Nk+1 = N+

k .
(2) If N+

k < Nk compute

ρk =

f̂N+

k
(xk) − f̂N+

k
(xk+1)

f̂Nk(xk) − f̂Nk(xk+1)
.

(i) If ρk > η0 put Nk+1 = N+

k .
(ii) If ρk < η0 put Nk+1 = Nk.

Let us describe how to update the lower bound Nmin
k .

• If Nk+1 ≤ Nk then Nmin
k+1 = Nmin

k .
• If Nk+1 > Nk and

– Nk+1 is a sample size which has not been used so far then Nmin
k+1 = Nmin

k .
– Nk+1 is a sample size which had been used and we have made a big enough decrease of the function f̂Nk+1 since the last

time it has been used, then Nmin
k+1 = Nmin

k .
– Nk+1 is a sample size which had been used and we have not made a big enough decrease of the function f̂Nk+1 since the

last time, then Nmin
k+1 = Nk+1.

We say that we have not made big enough decrease of the function f̂Nk+1 if, for some constants γ3, ν1 ∈ (0, 1), the
following inequality is true

f̂Nk+1(xh(k)) − f̂Nk+1(xk+1) < γ3ν1(k + 1 − h(k))εNk+1
δ (xk+1),

where h(k) is the iteration at which we started to use the sample size Nk+1 for the last time. For example, if k = 7 and
(N0, . . . ,N8) = (3, 6, 6, 4, 6, 6, 3, 3, 6), then Nk = 3,Nk+1 = 6 and h(k) = 4. So, the idea is that if we come back to some
sample size Nk+1 that we had already used and if, since then, we have not done much in order to decrease the value of f̂Nk+1
we choose not to go below that sample size anymore, i.e. we put it as the lower bound. At the end, notice that the sequence
of the sample size lower bounds is nondecreasing.

4. Convergence analysis

This section is devoted to the convergence results for Algorithm 1. The following important lemma states that after a
finite number of iterations the sample size Nmax is reached and kept until the end.

Lemma 4.1. Suppose that assumptions A2–A4 are true. Furthermore, suppose that there exist a positive constant κ and number
n1 ∈ N such that ε

Nk
δ (xk) ≥ κ for every k ≥ n1. Then, either Algorithm 1 terminates after a finite number of iterations with

Nk = Nmax or there exists q ∈ N such that for every k ≥ q the sample size is maximal, i.e. Nk = Nmax.
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Proof. First of all, recall that Algorithm 1 terminates only if ∥∇ f̂Nk(xk)∥ = 0 and Nk = Nmax. Therefore, we observe the case
where the number of iterations is infinite. Notice that Algorithm 3 implies that Nk+1 ≥ N+

k is true for every k. Now, let us
prove that sample size cannot be stacked at a size that is lower than the maximal one.

Suppose that there exists ñ > n1 such that for every k ≥ ñ Nk = N1 < Nmax. We have already explained that step S3
of Algorithm 1 provides the decreasing search direction pk at every iteration. Therefore, denoting gNk

k = ∇ f̂Nk(xk), we know
that for every k ≥ ñ

f̂N1(xk+1) ≤ f̂N1(xk) + ηαk(gN1

k )Tpk,

i.e., for every s ∈ N

f̂N1(xñ+s) ≤ f̂N1(xñ+s−1) + ηαñ+s−1(gN1

ñ+s−1)
Tpñ+s−1 ≤ · · ·

≤ f̂N1(xñ) + η

s−1
j=0

αñ+j(gN1

ñ+j)
Tpñ+j. (13)

Now, from (13) and Lemma 2.3 we know that

− η

s−1
j=0

αñ+j(gN1

ñ+j)
Tpñ+j ≤ f̂N1(xñ) − f̂N1(xñ+s) ≤ f̂N1(xñ) − MF . (14)

The inequality (14) is true for every s, so

0 ≤

∞
j=0

−αñ+j(gN1

ñ+j)
Tpñ+j ≤

f̂N1(xñ) − MF

η
:= C .

Therefore

lim
j→∞

−αñ+j(∇ f̂N1(xñ+j))
Tpñ+j = 0. (15)

Let us observe the Algorithm 2 and iterations k > ñ. The possible scenarios are the following.

(1) dmk = ε
Nk
δ (xk). This implies

−αk(g
Nk
k )Tpk = ε

Nk
δ (xk) ≥ κ

(2) dmk > ε
Nk
δ (xk). This implies

−αk(g
Nk
k )Tpk > ε

Nk
δ (xk) ≥ κ

(3) dmk < ε
Nk
δ (xk) and dmk ≥ ν1ε

Nk
δ (xk). In this case we have

−αk(g
Nk
k )Tpk ≥ ν1ε

Nk
δ (xk) ≥ ν1κ

(4) The case dmk < ν1ε
Nk
δ (xk) is impossible because it would yield Nk+1 ≥ N+

k = Nmax > N1.

Therefore, in every possible case we know that for every k > ñ

−αk(gN1

k )Tpk ≥ κν1 := C̃ > 0

and therefore

lim inf
k→∞

−αk(gN1

k )Tpk ≥ C̃ > 0,

which is in contradiction with (15).
We have just proved that sample size cannot stay on N1 < Nmax. Therefore, the remaining two possible scenarios are as

follows:

L1 There exists ñ such that for every k ≥ ñNk = Nmax.
L2 The sequence of sample sizes oscillates.

Let us first consider the second scenario L2. Notice that this is the case where Nmin
k cannot reach Nmax for any k. This is

true because sequence of sample size lower bounds {Nmin
k }k∈N is nondecreasing and the existence of k such thatNmin

k = Nmax
would imply scenario L1. Therefore, for every kwe know that

Nmin
k < Nmax.
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Furthermore, this implies that the signal for increasing Nmin
k could come only finitely many times, i.e. Nmin

k+1 = Nk+1 happens
at most finitely many times because this case implies

Nmin
k+1 = Nk+1 > Nk ≥ N+

k−1 ≥ Nmin
k−1.

Notice that, according to the proposed mechanism for updating Nmin
k , updating form Nmin

k+1 = Nk+1 happens only if Nk+1 is
the sample size which had been used already,Nk+1 > Nk and the obtained decrease in f̂Nk+1 was not good enough. Therefore,
we conclude that there exists an iteration r1 such that for every k ≥ r1 we have one of the following scenarios:

M1 Nk+1 ≤ Nk

M2 Nk+1 > Nk and we have enough decrease in f̂Nk+1
M3 Nk+1 > Nk and we have not used the sample size Nk+1 before.

Now, let N̄ be the maximal sample size that is used at infinitely many iterations. Furthermore, define the set of iterations
K̄0 at which sample size changes to N̄ . The definition of N̄ implies that there exists iteration r2 such that for every k ∈ K̄0, k ≥

r2 the sample size is increased to N̄ , i.e.

Nk < Nk+1 = N̄.

Define r = max{r1, r2} and set K̄ = K̄0


{r, r + 1, . . .}. Clearly, each iteration in K̄ excludes the scenario M1. Moreover,
taking out the first member of a sequence K̄ and retaining the same notation for the remaining sequence we can exclude
the scenario M3 as well. This leaves us with M2 as the only possible scenario for iterations in K̄ . Therefore, for every k ∈ K̄
the following is true

f̂N̄(xh(k)) − f̂N̄(xk+1) ≥ γ3ν1(k + 1 − h(k))εN̄
δ (xk+1).

Now, defining the set of iterations K1 = K̄


{n1, n1 + 1, . . .} we can say that for every k ∈ K1 we have

f̂N̄(xh(k)) − f̂N̄(xk+1) ≥ γ3ν1κ > 0.

Recall that h(k) defines the iteration at which we started to use the sample size N̄ for the last time before the iteration k+1.
Therefore, the previous inequality implies that we have reduced the function f̂N̄ for the positive constant γ3ν1κ infinitely
many times, which is in contradiction with Lemma 2.3. From everything above, we conclude that the only possible scenario
is in fact L1, i.e. there exists iteration ñ such that for every k ≥ ñ, Nk = Nmax. �

Now, we prove the main result, for which we need to state one more assumption about the search direction.

A5 The sequence of directions pk generated at S4 of Algorithm 1 is bounded and satisfies the following implication:

lim
k∈K

pTk∇ f̂Nk(xk) = 0 ⇒ lim
k∈K

∇ f̂Nk(xk) = 0,

for any subset of iterations K .

This assumption allows us to consider the general descent direction, but it is obviously satisfied for pk = −∇ f̂Nk(xk).
Furthermore quasi-Newton directions also satisfy the assumption under the standard conditions for such methods such as
uniform boundedness of the inverse Hessian approximation.

Theorem 4.1. Suppose that assumptionsA2–A5 are true. Furthermore, suppose that there exist a positive constant κ and number
n1 ∈ N such that ε

Nk
δ (xk) ≥ κ for every k ≥ n1 and that the sequence {xk}k∈N generated by Algorithm 1 is bounded. Then, either

Algorithm 1 terminates after a finite number of iterations at a stationary point of function f̂Nmax or every accumulation point of
the sequence {xk}k∈N is a stationary point of f̂Nmax .

Proof. First of all, recall that Algorithm 1 terminates only if ∥∇ f̂Nmax(xk)∥ = 0, that is, if the point xk is stationary for the
function f̂Nmax . Therefore, we observe the case where the number of iterations is infinite. In that case, the construction of
Algorithm 1 provides uswith a decreasing search direction at every iteration. Furthermore, Lemma 4.1 implies the existence
of iteration n̂ such that for every k ≥ n̂Nk = Nmax and

f̂Nmax(xk+1) ≤ f̂Nmax(xk) + ηαk(g
Nmax
k )Tpk,

where gNmax
k = ∇ f̂Nmax(xk). Equivalently, for every s ∈ N

f̂Nmax(xn̂+s) ≤ f̂Nmax(xn̂+s−1) + ηαn̂+s−1(g
Nmax
n̂+s−1)

Tpn̂+s−1 ≤ · · ·

≤ f̂Nmax(xn̂) + η

s−1
j=0

αn̂+j(g
Nmax
n̂+j )Tpn̂+j.
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Again, this inequality and Lemma 2.3 imply

−η

s−1
j=0

αn̂+j(g
Nmax
n̂+j )Tpn̂+j ≤ f̂Nmax(xn̂) − f̂Nmax(xn̂+s) ≤ f̂Nmax(xn̂) − MF .

This is true for every s ∈ N, therefore

0 ≤

∞
j=0

−αn̂+j(g
Nmax
n̂+j )Tpn̂+j ≤

f̂Nmax(xn̂) − MF

η
:= C .

This inequality implies

lim
k→∞

αk(∇ f̂Nmax(xk))
Tpk = 0. (16)

Now, let x∗ be an arbitrary accumulation point of the sequence {xk}k∈N, i.e. let K be the subset K ⊆ N such that

lim
k∈K

xk = x∗.

If the sequence of step sizes {αk}k∈K is bounded from below, i.e. if there exists α̂ > 0 such that αk ≥ α̂ for every k ∈ K
sufficiently large, then (16) implies

lim
k∈K

(∇ f̂Nmax(xk))
Tpk = 0.

This result, together with assumption A5 and Lemma 2.2, implies

∇ f̂Nmax(x
∗) = lim

k∈K
∇ f̂Nmax(xk) = 0.

Now, suppose that there exists a subset K1 ⊆ K such that limk∈K1 αk = 0. This implies the existence of k̂ such that for
every k ∈ K2 = K1 ∩ {max{n̂, k̂},max{n̂, k̂}+ 1, . . .} the step size αk that satisfies the Armijo condition (6) is smaller than 1.
That means that for every k ∈ K2 there exists α′

k such that αk = βα′

k and

f̂Nmax(xk + α′

kpk) > f̂Nmax(xk) + ηα′

k(∇ f̂Nmax(xk))
Tpk,

which is equivalent to

f̂Nmax(xk + α′

kpk) − f̂Nmax(xk)
α′

k
> η(∇ f̂Nmax(xk))

Tpk.

By Mean Value Theorem there exists tk ∈ [0, 1] such that the previous inequality is equivalent to

pTk∇ f̂Nmax(xk + tkα′

kpk) > η(∇ f̂Nmax(xk))
Tpk. (17)

Notice that limk∈K2 α ′k = 0 and recall that the sequence of search directions is assumed to be bounded. Therefore, there
exists p∗ and subset K3 ⊆ K2 such that limk∈K3 pk = p∗. Now, taking limit in (17) and using Lemma 2.2, we obtain

(∇ f̂Nmax(x
∗))Tp∗

≥ η(∇ f̂Nmax(x
∗))Tp∗. (18)

On the other hand, we know that η ∈ (0, 1) and pk is the decreasing direction, i.e. (∇ f̂Nmax(xk))
Tpk < 0 for every k ∈ K3.

This implies that

(∇ f̂Nmax(x
∗))Tp∗

≤ 0.

The previous inequality and (18) imply that

lim
k∈K3

(∇ f̂Nmax(xk))
Tpk = (∇ f̂Nmax(x

∗))Tp∗
= 0.

Finally, according to assumption A5,

∇ f̂Nmax(x
∗) = lim

k∈K3
∇ f̂Nmax(xk) = 0,

which completes the proof. �
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5. Numerical implementation

In this section, we present some numerical results obtained by Algorithm 1 and compare themwith the results obtained
by two othermethods. The first subsection contains the results obtained on a set of academic test examples,while the second
subsection dealswith the discrete choice problem,which is relevant inmany applications. The test examples presented in 5.1
consist of two different sets. The first one includes Aluffi-Pentini’s [14] and Rosenbrock problem [3] in noisy environments.
Both of them are convenient for initial testing purposes as one can solve them analytically and thuswe can actually compute
some quality indicators of the approximate solutions obtained by the presented variable sample size line search methods.
The second set of examples consists of five larger dimension problems in noisy environments taken from [14].

The Mixed Logit problem is slightly different than the problem (4). Given the practical importance of this problem we
introduce some minor adjustments of Algorithm 1 and report the results in 5.2. This problem is solved by all considered
methods.

All problems are solved by four different implementations of Algorithm 1, two different heuristic methods as suggested
by one of the referees and two different implementations of SAA. Let us first describe the exit criteria and cost measurement
for all methods and then state the details of their implementation.

As common in numerical testing of noisy problems we are measuring the cost by the number of function evaluations
needed for achieving the exit criteria. In all presented examples we stopped when

∥∇ f̂Nmax(xk)∥ < 10−2. (19)

As the exit criteria implies that the approximate solutions obtained by all methods are of the same quality, the number of
function evaluations is a relevant measure of the cost for each method.

Algorithm 1 uses an unspecified descent direction pk at step S4. We report the results for two possible directions, the
negative gradient of f̂Nk ,

pk = −∇ f̂Nk(xk), (20)

and the second order direction obtained by

pk = −Hk∇ f̂Nk(xk), (21)

where Hk is a positive definite matrix that approximates the inverse Hessianmatrix (∇2 f̂Nk(xk))
−1. Amongmany options for

Hk, we have chosen the BFGS approach with H0 = I , where I denotes the identity matrix. Other possibilities for the initial
approximation H0 can be seen in [13,2]. The inverse Hessian approximation is updated by the BFGS formula that can be
found in [13]. More precisely, taking sk from step S6 of Algorithm 1 and computing

yk = ∇ f̂Nk+1(xk+1) − ∇ f̂Nk(xk),

after step S8 of Algorithm 1, we obtain

Hk+1 =


I −

skyTk
yTk sk


Hk


I −

yksTk
yTk sk


+

sksTk
yTk sk

.

The condition yTk sk > 0 ensures positive definiteness of the next BFGS update. We enforced this condition or otherwise
take Hk+1 = Hk. This way the approximation matrix remains positive definite and provides the decreasing search direc-
tion (21).

Notice also that the assumption A5 is satisfied for both direction (20) or (21), but in the case of (21) we need to assume
that F(·, ξ) ∈ C2 instead of A2. Furthermore, some kind of boundedness for Hk is also necessary. The BFGS matrix in a noisy
environment is analyzed in [15].

Ifwe choose to apply the safeguard rule presented inAlgorithm3,we set the input parameterη0 to be some finite number.
On the other hand, if we set η0 = −∞ the safeguard rule is not applied and thus the algorithm accepts the candidate sample
size for the next iteration. In other words, for every iteration k we have that Nk+1 = N+

k .
Based on the descent direction choice and the safeguard rule application, four different implementations of Algorithm 1

are tested here. As all considered methods are implemented with both descent directions, NG and BFGS are used to denote
the negative gradient search direction and BFGS search direction in general. The implementations of Algorithm 1 that do not
use the safeguard rule, i.e. with η0 = −∞, are denoted by ρ = −∞, while ρ = η0 stands for the implementations that use
the safeguard rule with the value η0. The input parameters for Algorithm 2 and for updating the sample size lower bound
are

ν1 =
1

√
Nmax

and γ3 = 0.5.
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Table 1
Stationary points for Aluffi-Pentini’s problem.

σ 2 Global minimizer −x∗ Local minimizer Maximizer f (x∗)

0.01 (−1.02217, 0) (0.922107, 0) (0.100062, 0) −0.340482
0.1 (−0.863645, 0) (0.771579, 0) (0.092065, 0) −0.269891
1 (−0.470382, 0) (0.419732, 0) (0.05065, 0) −0.145908

A couple of words are due about the implementation of Step 3 in Algorithm 1. The condition ∥∇ f̂Nk(xk)∥ = 0 is replaced by

∥∇ f̂Nk(xk)∥ ≤ max{0, 10−2
− ε̃

Nk
δ (xk)}.

Here ε̃
Nk
δ (xk) is themeasure of the confidence interval for ∥∇f (xk)∥ around ∥∇ f̂Nk(xk)∥. As the gradient∇ f̂Nk(xk) is already

available, this measure for the confidence interval is obtained without additional costs, and it improves overall behavior of
the considered methods.

One of the referees suggested a heuristic scheme for the sample size, proposing that the first 10 iterations are carried
out with the sample size of 0.1 Nmax, then another 10 iterations with the sample size 0.2Nmax and so on. We implemented
this scheme for both descent directions as in Algorithm 1—the negative gradient and BFGS direction. The scheme suggested
by the referee is slightly adjusted to allow us to compare the results with other methods, i.e. to ensure that we get the
approximate solution with the same exit criteria as in all other tested methods. We consider the number of iterations used
by the corresponding Algorithm 1 (negative gradient or BFGS) method with ρ = η0 as the reference number of iterations,
say K . Then we perform 0.1K iterations (rounded if necessary) with the sample size 0.1Nmax, another 0.1K iterations with
the sample size 0.2Nmax and so on until (19) is reached. This way we ensured that the solutions obtained by this scheme are
comparable with those obtained by other methods.

Sample Average Approximation Methods are a wide known class of methods that generate a sample of Nmax realizations
at the beginning of process and proceed with a suitable numerical procedure for solving (4). We tested SAA methods here
with both negative gradient and BFGS direction. The same method was also tested within the framework proposed in [6,7],
but it did not perform very well and these results are not reported in this paper. Our conjecture is the following: we are
dealing with relatively modest Nmax, so the advantages of the variable scheme from [6,7] could not be seen, as this scheme
is intended for Nmax → ∞ case.

The line search used for all of the above-described methods is the one defined in Step 5 of Algorithm 1 with the value for
the Armijo parameter η = 10−4. The backtracking is performed with β = 0.5.

5.1. Numerical results for noisy problems

First of all, we present the numerical results obtained for Aluffi-Pentini’s problem, which can be found in [14]. Originally,
this is a deterministic problemwith box constraints. Following the ideas from [3], some noise is added to the first component
of the decision variable and the constraints are removed, so the objective function becomes

f (x) = E(0.25(x1ξ)4 − 0.5(x1ξ)2 + 0.1ξx1 + 0.5x22),

where ξ represents a random variable with Normal distribution

ξ : N (1, σ 2). (22)

This problem is solved with three different levels of variance. As we are able to calculate the real objective function and its
gradient, we can actually see how close are the approximate and the true stationary points. Table 1 contains the stationary
points for various levels of noise and the global minimums of the relevant objective functions.

We conducted 50 independent runs of each algorithm with x0 = (1, 1)T and Nmin
0 = 3. The sample of size Nmax is

generated for each run and all algorithms are tested with that same sample realization. The results in the following tables
are the average values obtained from these 50 runs (see Table 2). Columns ∥∇ f̂Nmax∥ and ∥∇f ∥ give, respectively, the average
values of the gradient norm for the approximate problem (4) and for problem (1), while fev represents the average number
of function evaluations, with one gradient evaluation being counted as n function evaluations. The last column is added to
facilitate comparison and represents the percentage increase/decrease in the number of function evaluations for different
methods, with ρ = 0.7 being the benchmark method. So, if the number of function evaluations is Eρ for the benchmark
method and Ei is the number of function evaluations for any other method, then the reported number is (Ei − Eρ)/Eρ .

The methods generated by Algorithm 1 clearly outperform the straightforward SAA method as expected. The heuristic
approach is fairly competitive in this example, in particular for problems with smaller variance. The safeguard rule with
η0 = 0.7 is beneficial in all cases, except for the BFGS direction and σ = 0.1, where it does not make significant difference
in comparison to ρ = −∞. The decrease in the sample size is proposed in approximately 20% of iterations and the safeguard
rule is active in approximately half of these iterations.



Author's personal copy

224 N. Krejić, N. Krklec / Journal of Computational and Applied Mathematics 245 (2013) 213–231

Table 2
Aluffi-Pentini’s problem.

Algorithm NG BFGS
∥∇ f̂Nmax∥ ∥∇f ∥ fev % ∥∇ f̂Nmax∥ ∥∇f ∥ fev %

σ 2
= 0.01,Nmax = 100

ρ = −∞ 0.00747 0.01501 1308 9.01 0.00389 0.01208 811 6.64
ρ = 0.7 0.00767 0.01496 1200 0.00 0.00365 0.01279 761 0.00
Heur 0.00618 0.01480 1250 4.24 0.00407 0.01383 852 12.04
SAA 0.00844 0.01378 1832 52.73 0.00527 0.01398 940 23.55

σ 2
= 0.1,Nmax = 200

ρ = −∞ 0.00722 0.03499 3452 7.84 0.00363 0.03530 1948 −0.38
ρ = 0.7 0.00718 0.03435 3201 0.00 0.00341 0.03466 1955 0.00
Heur 0.00658 0.03531 3556 11.09 0.00414 0.03460 2284 16.81
SAA 0.00793 0.03005 4264 33.23 0.00392 0.03051 2928 49.75

σ 2
= 1,Nmax = 600

ρ = −∞ 0.00540 0.06061 13401 17.78 0.00303 0.06110 8478 15.53
ρ = 0.7 0.00528 0.06071 11378 0.00 0.00358 0.06116 7338 0.00
Heur 0.00492 0.05843 13775 21.07 0.00344 0.05656 8719 18.81
SAA 0.00593 0.05734 15852 39.32 0.00336 0.06444 14784 101.46

Table 3
The approximate stationary points for Aluffi-Pentini’s problem.

Algorithm NG BFGS
g l max fgm flm g l max fgm flm

σ 2
= 0.01,Nmax = 100

ρ = −∞ 0 50 0 – −0.14524 0 50 0 – −0.14543
ρ = 0.7 0 50 0 – −0.14542 0 50 0 – −0.14543
Heur 0 50 0 – −0.14542 0 50 0 – −0.14543
SAA 0 50 0 – −0.14542 0 50 0 – −0.14543

σ 2
= 0.1,Nmax = 200

ρ = −∞ 14 35 1 −0.11712 −0.12887 14 36 0 −0.11710 −0.12818
ρ = 0.7 17 32 1 −0.11507 −0.13104 14 36 0 −0.11710 −0.12818
Heur 20 30 0 −0.11364 −0.13275 15 35 0 −0.11635 −0.12882
SAA 1 49 0 −0.10523 −0.12551 1 49 0 −0.10533 −0.12548

σ 2
= 1,Nmax = 600

ρ = −∞ 35 15 0 −0.12674 −0.097026 37 13 0 −0.12047 −0.13036
ρ = 0.7 36 14 0 −0.11956 −0.11337 36 14 0 −0.11982 −0.13133
Heur 34 16 0 −0.12114 −0.11079 28 22 0 −0.11887 −0.12835
SAA 33 17 0 −0.11745 −0.11857 50 0 0 −0.11230 –

Given that the considered problems have more than one stationary point we report the distribution of the approximate
stationary points in Table 3. Columns global, local and max count the numbers of replicants converging to the global
minimizer, local minimizer and maximizer respectively. Columns fgm and flm represent the average values of function f
in the runs that converged to the global minimizer and local minimizer, respectively.

All methods behave more or less similarly. Notice that as the variance increases, the number of replications that are
converging towards the global minimizers increases as well. However, we also registered convergence towards maximizers
when the variance is increased. The only exception from this relatively similar behavior of all methods appears to happen
for σ = 0.1, where SAA strongly favors the local minimizers while all other methods converge to the global minimizers
more frequently.

The next example is based on the Rosenbrock function. Following the example from [3], the noise is added to the first
component in order to make it random. The following objective function is thus obtained

f (x) = E(100(x2 − (x1ξ)2)2 + (x1ξ − 1)2), (23)

where ξ is the random variable defined with (22). This kind of function has only one stationary point which is global
minimizer, but it depends on the level of noise. The algorithms are tested with the dispersion parameter σ 2 equal to 0.001,
0.01 and 0.1. An interesting observation regarding this problem is that the objective function (23) becomes more and more
‘‘optimization friendly’’ when the variance increases. Therefore, we put the samemaximal sample size for all levels of noise.
The stationary points and the minimal values of the objective function are given in Table 4.
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Table 4
Rosenbrock problem—the global minimizers.

σ 2 Global minimizer—x∗ f (x∗)

0.001 (0.711273, 0.506415) 0.186298
0.01 (0.416199, 0.174953) 0.463179
0.1 (0.209267, 0.048172) 0.634960

Table 5
Rosenbrock problem.

BFGS

Algorithm ∥∇ f̂Nmax∥ ∥∇f ∥ fev %

σ 2
= 0.001,Nmax = 3500

ρ = −∞ 0.003939 0.208515 44445 7.51
ρ = 0.7 0.003595 0.208355 41338 0.00
Heur 0.002521 0.206415 127980 209.59
SAA 0.003241 0.208450 247625 499.03

σ 2
= 0.01,Nmax = 3500

ρ = −∞ 0.003064 0.132830 58944 7.74
ρ = 0.7 0.003170 0.132185 54711 0.00
Heur 0.001968 0.132730 114070 108.5
SAA 0.003156 0.132155 216825 296.3

σ 2
= 0.1,Nmax = 3500

ρ = −∞ 0.003387 0.091843 70958 3.49
ρ = 0.7 0.003359 0.091778 68566 0.00
Heur 0.002259 0.091167 106031 54.64
SAA 0.003279 0.092130 161525 135.58

Minimization of the Rosenbrock function is a well known problem and in general the second-order directions are
necessary to solve it. The same appears to be true in a noisy environment. As almost all runs with the negative gradient
failed, only BFGS type results are presented in Table 5. All the parameters are the same as in the previous example, except
that the initial approximation is set to be x0 = (−1, 1.2)T .

The same conclusion is valid for this example as for Aluffi-Pentini’s problem—the variable sample size strategy reduces
the number of function evaluations. Moreover, as far as this example is concerned, a clear advantage is assigned to the
algorithm that uses the safeguard rule. The heuristic sample size scheme does not appear to be well suited for this example,
although the performance improves significantly as the variance increases. The percentage of iterations where the decrease
of a sample size is considered increases with the noise and varies from 7% for σ = 0.001 to 30% for σ = 1. The rejection due
to the safeguard rule from Algorithm 3 also differs, from 15% in the first case to 33% in the case with the largest variance.

Let us now present the results for larger dimension problems. We consider the set of five problems, each one of the
dimension 10. The problems from [14] are stated below together with their initial approximations x0.
• Exponential problem

f (x) = E

−e−0.5∥ξx∥2


, x0 = (0.5, . . . , 0.5)T .

• Griewank problem

f (x) = E


1 +

1
4000

∥ξx∥2
−

10
i=1

cos

xiξ
√
i


, x0 = (10, . . . , 10)T .

• Neumaier 3 problem

f (x) = E


10
i=1

(ξxi − 1)2 −

10
i=2

ξ 2xixi−1


, x0 = (1, . . . , 1)T .

• Salomon problem

f (x) = E

1 − cos(2π∥ξx∥2) + 0.1∥ξx∥2 , x0 = (2, . . . , 2)T .

• Sinusoidal problem

f (x) = E


−A

10
i=1

sin(ξxi − z) −

10
i=1

sin(B(ξxi − z))


,

A = 2.5, B = 5, z = 30, x0 = (1, . . . , 1)T .
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Fig. 1. Performance profile.

The noise component ξ is taken as a Normal random variable N (1, σ 2) for different values of σ as specified in Tables 7–11
in Appendix. All results are obtained taking Nmin

0 = 3 with exit criteria (19). The Armijo parameter is η = 10−4 while
the backtracking is performed with β = 0.5. The considered methods are again the same—four variants of Algorithm 1
(the negative gradient with ρ = −∞ and ρ = 0.7 and the BFGSmethods with ρ = −∞ and ρ = 0.7), the heuristic sample
size scheme and the SAA method, in total 8 methods. Two levels of noise σ 2

= 0.1 and σ 2
= 1 are considered for each of

the five problems, resulting in the set of 10 problems.
The results are presented using the performance profile [16,17] in Fig. 1. As the performance profile clearly indicates, all

implementations of Algorithm 1 clearly outperformed both the heuristic and SAA corresponding methods.
A natural question here is the dynamics of the variable sample scheme and the actual influence of the decrease as well as

the safeguard rule. The number of iterations where N+

k < Nk varies very much through the set of examples and variances.
The Griewank test function is solved by both NG methods without any decrease at all. A number of BFGS iterations where
N+

k < Nk occurred was also rather small and the average number of safeguard rule calls varies from 11% to 20% for this
example, and none of the decreases is beneficial in terms of function evaluations. This is the only example where the
heuristic scheme is the best method for both directions. In all other examples a decrease in the sample size occurs and
the safeguard is applied. However the numbers are rather different, ranging from a couple of percent to almost one half
of the iterations. The same range is valid for the rejection of the decrease according to the safeguard rule. The average
number of iterations where N+

k < Nk for all tested examples and both NG and BFGS methods is 14.87%. The decrease is
judged as unproductive and it is rejected in 20.57% of cases on average. It is quite clear that the safeguard rule, i.e. the
appropriate value of the parameter which determines the acceptance or rejection of the decrease, is problem dependent.
In this paper we report results for the same value of that parameter for all examples and methods to make the comparison
fair, as all other parameters have the same values for all problems. But further research is definitely needed to specify
some kind of recommendation for the safeguard rule that will guarantee its efficient use, and we plan to investigate that in
future work.

To conclude this discussion the plot of the sample scheme dynamic for the Sinusoidal problem and one noise realization
with σ = 1 and NG direction is shown in Fig. 2. The NG ρ = 0.7 method requested 26219 function evaluations, while NG
with ρ = −∞ took 40385 function evaluations, and NG Heur 39983 function evaluations. As in almost all examples SAA
NG is theworst requiring 86500 function evaluations. One can see in Fig. 2 that the safeguard rule rejects the decrease at the
6th iteration and keeps the maximal sample size until the end of the process, while the method with ρ = −∞ performed
a number of sample decreases which are in fact unproductive in this example.

Amore detailed account of these tests is available in the Appendix, Tables 7–11. The structure of the tables is the same as
before—the columns are the value of the sample gradient at the last iteration, the cost measured as the number of function
evaluations and the column showing the relative increase/decrease for different methods. The cost of Algorithm 1 with the
safeguard is taken as the benchmark. All algorithms are tested in 20 independent runs and the reported numbers are the
average values of these 20 runs. The same sample realizations are used for all methods.
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Fig. 2. Sample size versus iteration.

5.2. Application to discrete choice theory—Mixed Logit models

In this sectionwepresent numerical results obtainedby applying slightlymodified algorithmson simulated data. Discrete
choice problems are the subject of various disciplines such as econometrics, transportation, psychology etc. The problem
that we considered is an unconstrained parameter estimation problem. We briefly describe the problem here, while the
more detailed description with further references can be found in [9,10,18].

Let us consider a set of ra agents and rm alternatives. Suppose that every agent chooses one of finitely many alternatives.
The choice is made according to rk characteristics that each alternative has. Suppose that they are all numerical. Further,
each agent chooses the alternative that maximizes his utility. Utility of agent i for alternative j is given by

Ui,j = Vi,j + εi,j,

where Vi,j depends on the vector of characteristics of alternative j defined by mj = (kj1, . . . , k
j
rk)

T and εi,j is the error term.
We observe probably the most popular model in practice where Vi,j is a linear function, that is

Vi,j = Vi,j(β
i) = mT

j β
i.

The vector β i, i = 1, 2, . . . , ra has rk components, all of them normally distributed. More precisely,

β i
= (β i

1, . . . , β
i
rk)

T
= (µ1 + ξ i

1σ1, . . . , µrk + ξ i
rkσrk)

T ,

where ξ i
j , i = 1, 2, . . . , ra, j = 1, 2, . . . , rk are i.i.d. random variables with a standardized Normal distribution. In other

words, β i
k : N (µk, σ

2
k ) for every i. The parameters µk and σk, k = 1, 2, . . . , rk are the ones that should be estimated.

Therefore, the vector of unknowns is

x = (µ1, . . . , µrk , σ1, . . . , σrk)
T

and the dimension of our problem is n = 2rk. Thus Vi,j is a function of x and the random vector ξ i,

Vi,j = mT
j β

i(x, ξ i) =

rk
s=1

kjs(xs + ξ i
sxrk+s) = Vi,j(x, ξ i).

The term εi,j is a random variable whose role is to collect all factors which are not included in the function Vi,j. It can also
be viewed as the taste of each agent. Different assumptions about these terms lead to different models. We assume that for
every i and every j the random variable εi,j follows the Gumbel distribution with mean 0 and scale parameter 1. The Gumbel
distribution is also known as the type 1 extreme value distribution.
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Now, suppose that every agentmakes his own choice among these alternatives. The problem is tomaximize the likelihood
function. Under the assumptions that are stated above, if the realization ξ̄ i of ξ i

= (ξ i
1, . . . , ξ

i
rk)

T is known, the probability
that agent i chooses alternative j becomes

Li,j(x, ξ̄ i) =
eVi,j(x,

¯ξ i)

rm
s=1

eVi,s(x,
¯ξ i)

.

Moreover, the unconditional probability is given by

Pi,j(x) = E(Li,j(x, ξ i)).

Now, if we denote by j(i) the choice of agent i, the problem becomes

max
x∈Rn

ra
i=1

Pi,j(i)(x). (24)

The equivalent form of (24) is given by

min
x∈Rn

−
1
ra

ra
i=1

ln E(Li,j(i)(x, ξ i)).

Notice that this problem is similar, but not exactly the same as (1). The objective function is now

f (x) = −
1
ra

ra
i=1

ln E(Li,j(i)(x, ξ i)),

so the approximating function is

f̂N(x) = −
1
ra

ra
i=1

ln


1
N

N
s=1

Li,j(i)(x, ξ i
s)


.

Here ξ i
1, . . . , ξ

i
N are independent realizations of the random vector ξ i. The realizations are independent across the agents as

well. Calculating the exact gradient of f̂N is affordable and the derivative based approach is suitable.
One of themain differences between algorithms presented in previous sections and the ones that are used forMixed Logit

problem is the way that we calculate the lack of precision, εN
δ (x). We define the approximation of the confidence interval

radius as it is proposed in [18],

εN
δ (x) =

αδ

ra

 ra
i=1

σ̂ 2
N,i,j(i)(x)

NP2
i,j(i)(x)

. (25)

Here, αδ represents the same parameter as in (8) and σ̂ 2
N,i,j(i)(x) is the sample variance estimator, i.e.

σ̂ 2
N,i,j(i)(x) =

1
N − 1

N
s=1


Li,j(i)(x, ξ i

s) −
1
N

N
k=1

Li,j(i)(x, ξ i
k)

2

.

The confidence level that is used for numerical testing is retained at 0.95, therefore αδ ≈ 1.96. The reason for taking (25) is
the fact that it can be shown, by using the Delta method [19,1], that

√
N(f (x)− f̂N(x)) converges in distribution towards the

random variable with Normal distribution with mean zero and variance equal to 1
N2

ra
i=1

σ 2
i,j(i)(x)

P2i,j(i)(x)
.

Let us briefly analyze the convergence conditions for the adjusted algorithm. First of all, notice that for every N , function
f̂N is nonnegative and thus the lower bound in Lemma 2.3 is zero. Assumptions A2–A4 can be reformulated in the following
way

B2 For every N, f̂N ∈ C1(Rn).
B3 There is a positive constantM1 such that for every N, x, ∥∇ f̂N(x)∥ ≤ M1.
B4 There exists a positive constantMFF such that for every N, x, f̂N(x) ≤ MFF .

The following result holds.

Theorem 5.1. Suppose that B2–B4 and A5 are satisfied. Furthermore, suppose that there exist a positive constant κ and number
n1 ∈ N such that ε

Nk
δ (xk) ≥ κ for every k ≥ n1 and that the sequence {xk}k∈N generated by the adjusted Algorithm 1 is

bounded. Then, either the adjusted Algorithm 1 terminates after a finite number of iterations at a stationary point of f̂Nmax or
every accumulation point of the sequence {xk}k∈N is a stationary point of f̂Nmax .
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Table 6
Mixed Logit problem.

Algorithm NG BFGS

∥∇ f̂Nmax∥ fev % ∥∇ f̂Nmax∥ fev %

ρ = −∞ 0.00887 3.98E+07 −8.50 0.00550 5.65E+07 25.16
ρ = 0.7 0.00896 4.36E+07 0.00 0.00523 4.52E+06 0.00
Heur 0.00842 1.09E+08 151.68 0.00674 1.53E+07 237.94
SAA 0.00929 8.07E+07 85.41 0.00810 1.82E+07 303.98

Table 7
Exponential problem.

Algorithm NG BFGS

∥∇ f̂Nmax∥ fev % ∥∇ f̂Nmax∥ fev %

σ 2
= 0.1,Nmax = 200

ρ = −∞ 0.00087 4591 0.00 0.00154 4604 0.00
ρ = 0.7 0.00087 4591 0.00 0.00154 4604 0.00
Heur 0.00111 7033 53.18 0.00131 7018 52.42
SAA 0.00314 11600 152.64 0.00081 12200 164.97

σ 2
= 1,Nmax = 500

ρ = −∞ 0.00313 47454 68.71 0.00088 15752 2.53
ρ = 0.7 0.00217 28128 0.00 0.00138 15364 0.00
Heur 0.00400 575270 1945.22 0.00054 21668 41.04
SAA 0.00474 668025 2274.99 0.00268 36250 135.95

The test problem is generated as follows.We consider five alternatives with five characteristics for each alternative. Thus
we generate thematrixM from R5×5 using the standardized Normal distribution such that each column ofM represents the
characteristics of one of the alternatives. The number of agents is assumed to be 500. So the matrix B ∈ R5×500 is generated
with Bij : N (0.5, 1) and each column of that matrix represents one realization of the random vector β i. Finally, the matrix
of random terms εij from R5×500 is formed such that each component is a realization of a random variable with the Gumbel
distribution with parameters 0 and 1. These three matrices are used to find the vector of choices for 500 agents.

The results presented in Table 6 are obtained after 10 independent runs of each algorithm. At each run, the initial
approximation is set to be x0 = (0.1, . . . , 0.1)T . The maximal sample size for each agent is Nmax = 500. Since we use
independent samples across the agents, the total maximal sample size is 250000. Thus, this is the number of realizations of
random vector ξ which are generated at the beginning of the optimization process. In algorithms with variable sample size,
the starting sample size for each agent is Nmin

0 = 3. The other parameters are set as in the previous subsection.
According to fev columns, the algorithms with variable sample size strategy once again perform better than their fixed-

size counterparts. The heuristic method does not perform well in this example. Notice also that the safeguard rule implies
the decrease of the average number of function evaluations significantly in the case of the BFGS method, but it produces a
relatively small negative effect for the NG method, increasing the number of function evaluations. In the case of the BFGS
method the decrease in the sample size is implied in 16.67% of iterations, but the safeguard rule declines the decrease in
58.33% of these iterations. For the NG method the corresponding numbers are 26.84% and 20.88%.

Several values for the safeguard are tested and the results differ depending on that value. It is rather natural to conjecture
that each problem requires its own ‘‘optimal’’ safeguard parameter, and this question will be the subject of further research.
However we report the results obtained with 0.7 here to maintain the consistency of all presented numerical results in this
paper.
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See Tables 7–11.
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Table 8
Griewank problem.

Algorithm NG BFGS
∥∇ f̂Nmax∥ fev % ∥∇ f̂Nmax∥ fev %

σ 2
= 0.1,Nmax = 500

ρ = −∞ 0.00997 1796250 0.00 0.00795 312840 −0.86
ρ = 0.7 0.00997 1796250 0.00 0.00822 315550 0.00
Heur 0.00988 1160300 −35.40 0.00505 172490 −45.34
SAA 0.00996 1800750 0.25 0.00794 504425 59.86

σ 2
= 1,Nmax = 1000

ρ = −∞ 0.00993 6343500 0.00 0.00758 408585 1.98
ρ = 0.7 0.00993 6343500 0.00 0.00759 400670 0.00
Heur 0.00995 3790300 −40.25 0.00537 264070 −34.09
SAA 0.00994 6355500 0.19 0.00698 340150 −15.10

Table 9
Neumaier 3 problem.

Algorithm NG BFGS
∥∇ f̂Nmax∥ fev % ∥∇ f̂Nmax∥ fev %

σ 2
= 0.1,Nmax = 500

ρ = −∞ 0.00732 798625 −1.85 0.00305 30223 0.80
ρ = 0.7 0.00714 813685 0.00 0.00306 29984 0.00
Heur 0.00598 725680 −10.82 0.00384 40338 34.53
SAA 0.00663 1052025 29.29 0.00278 54825 82.85

σ 2
= 1,Nmax = 2000

ρ = −∞ 0.00949 3050850 0.17 0.00421 138195 2.71
ρ = 0.7 0.00948 3045650 0.00 0.00354 134555 0.00
Heur 0.00945 2199650 −27.78 0.00503 161140 19.76
SAA 0.00937 3496200 14.79 0.00128 190000 41.21

Table 10
Salomon problem.

Algorithm NG BFGS
∥∇ f̂Nmax∥ fev % ∥∇ f̂Nmax∥ fev %

σ 2
= 0.1,Nmax = 500

ρ = −∞ 0.00411 26590 8.55 0.00376 30814 −7.26
ρ = 0.7 0.00396 24495 0.00 0.00297 33226 0.00
Heur 0.00569 54620 122.99 0.00243 59057 77.74
SAA 0.00497 44750 82.69 0.00452 30250 −8.96

σ 2
= 1,Nmax = 2000

ρ = −∞ 0.00164 75078 −16.20 0.00234 154245 0.00
ρ = 0.7 0.00157 89595 0.00 0.00235 154245 0.00
Heur 0.00153 127920 42.78 0.00214 182650 18.42
SAA 0.00272 196100 118.87 0.00349 143100 −7.23

Table 11
Sinusoidal problem.

Algorithm NG BFGS
∥∇ f̂Nmax∥ fev % ∥∇ f̂Nmax∥ fev %

σ 2
= 0.1,Nmax = 200

ρ = −∞ 0.00525 22578 2.99 0.00169 10518 0.54
ρ = 0.7 0.00520 21923 0.00 0.00125 10461 0.00
Heur 0.00457 29512 34.61 0.00202 18450 76.36
SAA 0.00575 32860 49.89 0.00326 18470 76.56

σ 2
= 1,Nmax = 500

ρ = −∞ 0.00473 30968 2.14 0.00349 30550 −0.60
ρ = 0.7 0.00449 30320 0.00 0.00339 30735 0.00
Heur 0.00385 40453 33.42 0.00338 37588 22.30
SAA 0.00527 65475 115.95 0.00473 48525 57.88
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