
Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Large scale and distributed optimization - Part 1
Bigmath1 Advanced Course 4

Nataša Krejić
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Outline
I Machine learning and Optimization
I Nonlinear optimization problems, optimality conditions
I Line search methods
I First order methods
I Second order methods
I Optimality conditions for constrained problems
I Special classes of constrained problems
I Penalty methods
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Machine Learning and Optimization
I A data set for analysis

D = {(ai , yi), i = 1, . . . ,N}

I ai ∈ Rn - vector of features
I yi - labels (observations)
I Prediction function Φ such that

Φ(ai) ≈ yi , i = 1, . . . ,N

I approx in some optimal sense
I Data set is a sample.



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

I Supervised learning
I yi ∈ R - regression problem
I yi ∈ {1, . . . ,M} - classification problem
I yi ∈ {−1,1} - binary classification

I Unsupervised learning - the labels are not known; clustering, extracting
interesting information from the data

I Choice of features
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The prediction function Φ properties:
I

Φ(ai) ≈ yi , i = 1, . . . ,N

I reliable prediction for new (unseen) data
I features selection (important ones)
I online learning (streaming data)
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Prediction function Φ depends on parameters x ∈ Rn that we need to learn.
I Data set = training + testing
I

Φ(ai) ≈ yi , i = 1, . . . ,N

I Loss function `(ai , yi , x) - measures discrepancy between Φ(ai) and yi

I

min
N∑

i=1

`(ai , yi , x)

I

L(a, y , x) =
N∑

i=1

`(ai , yi , x)
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Robustness

I Φ should be a good predictor on unseen data
I Overfitting should be avoided
I Adding a regularizer
I

min
N∑

i=1

`(ai , yi , x) + λ‖x‖22

I

min
N∑

i=1

`(ai , yi , x) + λ‖x‖1
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Regressions

I Linear regression
Φ(x) = aT w + b, x = (w ,b)

I Loss function

L(x) =
N∑

i=1

(aT
i w + b − yi)

2

I corresponds to maximum likelihood solution if y = aT w + b + ε, ε : N (0, σ2}
I ai i.i.d.
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I Ridge regression

L(x) =
N∑

i=1

(aT
i w − yi)

2 + λ‖w‖2

I Lasso regression (enforces sparsity)

L(x) =
N∑

i=1

(aT
i w − yi)

2 + λ‖w‖1

I Logistic regression - maximizes likelihood of belonging to one class or another

`L(a, y ,w ,b) = log(1 + exp(−y(wT a− b))

min
w ,b

1
N

N∑
i=1

`L(aI , yi ,w ,b) +
λ

2
‖(w ,b)‖2



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

I Neural networks - many, many loss functions ...
I Activation function, number of hidden layers, type of network
I Training - minimization of the loss function
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Stochastic optimization

min Eξ[f (x , ξ)]

I Sample of i.i.d. ξ1, . . . , ξN

I Sample average approximation (SAA) approximation

Eξ[f (x , ξ)] ≈ 1
N

N∑
i=1

f (x , ξi)

min
1
N

N∑
i=1

f (x , ξi)
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Stochastic approximation (SA) methods

min F (x), subject to noise, not available

f (x) = F (x) + ξ(x)

min f (x)

I f (x),g(x) ≈ ∇f (x),H(x) ≈ ∇2f (x) - noisy values that are available
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Nonlinear optimization problem

min
x∈S

f (x), (1)

I f : D → R and D,S ⊆ Rn.
I f - objective function
I x ∈ Rn - decision variable
I S - feasible set
I S = Rn - unconstrained problem, S - proper subset of Rn - constrained

problem
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Constrained versus unconstrained problems
I

min x2

I
min x2 s.t. x ≤ 2

I
min x2 s.t. x > −1
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Theorem
(Bolzano-Weierstrass) Every real, continuous function attains its global minimum
on any compact subset of Rn.

Definition
A point x∗ is a global solution of the problem (1) if f (x∗) ≤ f (x) for every x ∈ S. If
f (x∗) < f (x) for every x ∈ S, x 6= x∗, then x∗ is a strict global solution.

Definition
A point x∗ is a local solution of the problem (1) if there exists ε > 0 such that
f (x∗) ≤ f (x) for every x ∈ S such that ‖x − x∗‖ ≤ ε. If f (x∗) < f (x) for every
x ∈ S, x 6= x∗ such that ‖x − x∗‖ ≤ ε, then we say that x∗ is strict local solution.
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Optimality conditions

min
x∈Rn

f (x), (2)

Theorem
Suppose that f ∈ C1(Rn). If x∗ is a local solution of (2), then ∇f (x∗) = 0.

Theorem
Suppose that f ∈ C2(Rn). If x∗ is a local solution of (2), then

a) ∇f (x∗) = 0;
b) ∇2f (x∗) � 0.
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Theorem
Suppose that f ∈ C2(Rn). If

1. ∇f (x∗) = 0 and
2. ∇2f (x∗) � 0,

then x∗ is a strict local solution of (2).
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Convexity
Definition
A set S ⊆ Rn is convex if for any x , y ∈ S and any λ ∈ [0,1] there holds
λx + (1− λ)y ∈ S.
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Figure: Convex and non-convex sets.
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Definition
Let S be a convex set. A function f : S → R is convex on S if for any x , y ∈ S and
any λ ∈ [0,1] there holds

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Moreover, we say that the function is strictly convex if the previous inequality is
strict for all x 6= y and λ ∈ (0,1).

Theorem
Suppose that f ∈ C1(S) where S ⊆ Rn is a convex set. Then, the function f is
convex on S if and only if the following inequality holds for all x , y ∈ S

f (y) ≥ f (x) +∇T f (x)(y − x). (3)
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Theorem
Suppose that f ∈ C2(S) where S ⊆ Rn is a convex set. Then, the following
statements hold.

a) If ∇2f (x) � 0 for every x ∈ S, then f is convex on S.
b) If ∇2f (x) � 0 for every x ∈ S, then f is strictly convex on S.
c) If S is open and f is convex on S, then ∇2f (x) � 0 for every x ∈ S.

Theorem
Suppose that f is convex on a convex set S. Then, every local minimizer of the
function f is also the global minimizer.



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Definition
A function f is strongly convex with parameter m > 0 on a convex set S if for any
x , y ∈ S and any λ ∈ [0,1] there holds

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)− m
2
λ(1− λ)‖x − y‖2.

f (y) ≥ f (x) +∇T f (x)(y − x) +
m
2
‖x − y‖2,
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Line search methods

Definition
Consider a point x such ∇f (x) 6= 0. A direction d is called descent direction for f
at the point x if there exists α > 0 such that

f (x + αd) < f (x).
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‖dk‖ ≥ σ‖∇f (xk )‖, (4)

∇T f (xk )dk ≤ −θ‖∇f (xk )‖‖dk‖ (5)

f (xk + αkdk ) ≤ f (xk ) + η∇f (xk )dkArmijo condition (6)

∇f (xk + αkdk ) ≥ c∇f (xk ), c ∈ (, η) Wolfe condition (7)
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Algorithm LS with backtracking
Step 0 Input parameters: x0 ∈ Rn, β, η ∈ (0,1), θ ∈ (0,1], σ > 0, k = 0
Step 1 Stopping criterion: If ∇f (xk ) = 0 STOP.
Step 2 Search direction: Choose dk such that ‖dk‖ ≥ σ‖∇f (xk )‖ and

∇T f (xk )dk ≤ −θ‖∇f (xk )‖‖dk‖.
Step 3 Given β ∈ (0,1), find the smallest nonnegative integer j such that αk = β j

satisfies
f (xk + αkdk ) ≤ f (xk ) + ηαk∇T f (xk )dk .

Step 4 Update: Set xk+1 = xk + αkdk , k = k + 1.
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Theorem
Suppose that f : Rn → R, f ∈ C1(Rn) and ∇T f (xk )dk < 0. Moreover, assume that
the function f is bounded from bellow on the line {xk + αdk | α > 0}. Then, there
exists ᾱ > 0 such that the Armijo condition holds for all α ∈ (0, ᾱ].

.
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Theorem
Suppose that f : Rn → R, f ∈ C1(Rn) and f is bounded from bellow. Moreover,
assume that the sequence of search directions {dk}k∈N is bounded. Then, either
the Algorithm LS with backtracking terminates after a finite number of iterations k̄
at the stationary point x k̄ or every accumulation point of the sequence {xk}k∈N is a
stationary point of the function f .
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Gradient method

dk = −∇f (xk ). (8)

αk = arg min
α>0

f (xk + αdk ) - exact line search

Theorem
Suppose that f ∈ C2(R) and that the gradient method with the exact line search
converges to a point x∗ such that ∇2f (x∗) is positive definite, with m and M being
the smallest and largest eigenvalues. Then Then

f (xk+1)− f (x∗) ≤
(

M −m
M + m

)2

(f (xk )− f (x∗)).
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Gradient method with fixed step size

xk+1 = xk − α∇f (xk ). (9)

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖. (10)

Theorem
Suppose that f ∈ C2(Rn) is convex and that (10) holds. Then, if α < 1/L, the fixed
step size negative gradient method defined with (9) satisfies

f (xk )− f (x∗) ≤ ‖x
0 − x∗‖2

2αk
.
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Minimizing finite sums

min
x∈Rn

f (x), (11)

f (x) = fN(x) =
1
N

N∑
i=1

fi(x), (12)

I f : Rn → R is a Lipschitz smooth function
I fi : Rn → R.
I f is bounded from below in Rn.
I N is very large
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Subsampling

fk =
1

Nk

∑
i∈Nk

fi(xk ), (13)

gk =
1

Nk

∑
i∈Nk

∇fi(xk ). (14)

I Smaller Nk - cheaper method
I Eventually Nk = N for k large enough
I Many, many scheduling strategies
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Stochastic gradient method

I Standard gradient is expensive (N is large)
I Training set might be redundant
I Replace the full gradient with an inexpensive stochastic approximation -

minibatch gradient gk

Algorithm SGD
Step 0 Choose an initial point x0 and a sequence of strictly positive steplengths {αk}.

Set k = 0.
Step 1 Choose randomly and uniformly ik ∈ {1, . . . ,N}. Set gk = ∇fik (xk ).
Step 2 Set xk+1 = xk − αkgk , k = k + 1.
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Variance condition:

E [‖gk‖2] ≤ M1 + M2‖∇f (xk )‖2, (15)

Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . Assume that (15) holds at each iteration. Then, if SGD is
run with αk = β

γ+k , β > 1
µ and γ > 0 such that α1 ≤ 1

L M2
, there exists a constant

ν > 0 such that
E [f (xk )]− f (x∗) ≤

ν

γ + k
. (16)
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Stochastic variance reduction gradient (SVRG) method

I SGD converges sublinearly (very slow)
I The variance of random sampling implies (very) small step size
I Nonconvex problems:

∑
k αk =∞,

∑
k α

2
k = 0

I Larger Nk in subsampled gradient might reduce the variance but it is more
expensive
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Algorithm SVRG
Step 0 Choose an initial point x0 ∈ Rn, an inner loop size m > 0, a steplength α > 0,

the option for the iterate update. Set k = 1.
Step 1 Outer iteration, full gradient evaluation.

Set x̃0 = xk−1. Compute ∇fN(x̃0).
Step 2 Inner iterations

For t = 0, . . . ,m − 1
Uniformly and randomly choose it ∈ {1, . . . ,N}.
Set x̃t+1 = x̃t − α(∇fit (x̃t )−∇fit (x̃0) +∇fN(x̃0)).

Step 3 Outer iteration, iterate update.
Set xk = x̃m (Option I), k = k + 1.
Set xk = x̃t for randomly chosen t ∈ {0, . . . ,m − 1} (Option II), k = k + 1.
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I Outer iterations (epochs) - full gradient is computed
I Inner iterations (m steps) - an unbiased approximation of the gradient is

updated randomly
∇fit (x̃t )−∇fit (x̃0) +∇fN(x̃0)

I Inner iterations m = 2n (convex), m = 5n (non-convex)
I Full gradient can be replaced by mini-batch gradient
I Two option for the final approximation
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . If m and α satisfy

θ =
1

µα(1− 2Lα)m
+

2Lα
1− 2Lα

< 1, (17)

then Algorithm SVRG with Option II generates a sequence which converges
linearly in expectation

E [f (xk )− f (x∗)] ≤ θk (f (x0)− f (x∗)).
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . If m and α satisfy

θ = (1− 2αµ(1− αL)m) +
4αL2

µ(1− αL)
< 1,

then Algorithm SVRG with Option I generates a sequence which converges
linearly in expectation

E [xk − x∗] ≤ θk (x0 − x∗).
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SAG method
I Stochastic Average Gradient tracking method
I Cost of SGD, convergence of FGD

Algorithm SAG
Step 0 Initialization. Choose an initial point x0 ∈ Rn, positive steplengths {αk},

yi = 0, for i = 1, . . . ,N. Set k = 0.
Step 1 Stochastic gradient update. Uniformly and randomly choose ik ∈ {1, . . . ,N}.

Set yik = ∇fik (xk ).
Step 2 Iteration update. Set

xk+1 = xk −
αk

N

N∑
i=1

yi .

Set k = k + 1.
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . If αk = α = 1/(16L) then

E [f (xk )]− f (x∗) ≤
(

1−min

{
µ

16L
,

1
8N

})k

C0,

where C0 > 0 depends on x∗, x0, fN ,L,N.
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SARAH method

I accumulation of stochastic gradient information
I variance reduction
I biased gradient approximation
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Algorithm SARAH
Step 0 Initialization. Choose an initial point x0 ∈ Rn, an inner loop size m > 0, a

steplength α > 0. Set k = 1.
Step 1 Outer iteration, full gradient evaluation. Set x̃0 = xk−1. Compute

y0 = ∇fN(x̃0). Set x̃1 = x̃0 − αy0.
Step 2 Inner iterations.

For t = 1, . . . ,m − 1
Uniformly and randomly choose it ∈ {1, . . . ,N}.
Compute yt = ∇fit (x̃t )−∇fit (x̃t−1) + yt−1.
Set x̃t+1 = x̃t − αyt .

Step 3 Outer iteration, iterate update.
Take xk = x̃t for randomly chosen t ∈ {0, . . . ,m} and set k = k + 1.
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex and
that each function fi , 1 ≤ i ≤ N is convex. Let x∗ be the minimizer of f .If α and m
are such that

σ =
1

µα(m + 1)
+

αL
2− αL

< 1, (18)

then the sequence {‖∇f (xk )‖} generated by Algorithm SARAH satisfy

E [‖∇f (xk )‖2] ≤ σk‖∇f (x0)‖2.
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Theorem
Suppose that f has Lipschitz continuous gradient and each function fi , 1 ≤ i ≤ N is
µ-strongly convex with µ > 0. If α ≤ 2/(µ+ L) then for any t ≥ 1

E [‖yt‖2] ≤
(

1− 2µLα
µ+ L

)t

E [‖∇f (x0)‖2].
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The Newton method

min f (x)

∇f (xk+1) = 0

∇f (xk + dk ) ≈ ∇f (xk ) +∇2f (xk )dk .

The Newton equation
∇f (xk ) +∇2f (xk )dk = 0. (19)

xk+1 = xk + dk or xk+1 = xk + αkdk (20)
I Local quadratic convergence
I Expensive (compute ∇2f (xk ), solve (19))
I Suppose that the function f is quadratic and strongly convex. Then, the

Newton method provides a global minimizer of function f in one iteration with
arbitrary x0.
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Local convergence

Theorem
Suppose that the function f ∈ C2(Rn) and there exists δ > 0 such that ∇2f (x) � 0
and ∇2f (x) is Lipschitz continuous with the constant L for all x ∈ B(x∗, δ). Then
there exists ε > 0 such that the Newton method converges quadratically to the
solution x∗ for all x0 ∈ B(x∗, ε). Moreover, the sequence of the gradient norms
converges quadratically to zero.
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Line search Newton method

I f ∈ C2 - strongly convex function
I dk - descent direction
I Line search can be applied
I Global convergence
I Local (quadratic) rate of convergence αk = 1, k ≥ k0
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Quasi Newton methods
I The main idea: approximate the Hessian matrix with Bk ∈ Rn×n using the first

order information

sk = xk+1 − xk and yk = ∇f (xk+1)−∇f (xk )

Mean-value theorem

yk =

∫ 1

0
∇2f (xk + tsk )skdt

Bk+1sk ≈
∫ 1

0
∇2f (xk + tsk )skdt

Secant equation
Bk+1sk = yk (21)
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Least change secant update

Bk+1 = arg min ‖B − Bk‖ s.t. Bk+1sk = yk ,B = BT , sparsity...

BFGS formula

Bk+1 = Bk +
yk (yk )T

(yk )T sk −
Bksk (sk )T Bk

(sk )T Bksk (22)

DFP formula

Bk+1 =

(
I − yk (sk )T

(yk )T sk

)
Bk

(
I − yk (sk )T

(yk )T sk

)
+

yk (yk )T

(yk )T sk (23)

The inverse B−1
k+1 is computable by SMW formula
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Bkdk = −∇f (xk ). (24)

I Positive definite property of Bk - if (yk )T sk ≥ δ > 0
I dk - descent direction
I superlinear convergence

Theorem
Suppose that f ∈ C2(Rn). Let {xk} be a sequence generated by a quasi Newton
method (24) and assume that {xk}k∈N converges to a point x∗ such that
∇f (x∗) = 0 and ∇2f (x∗) � 0. Then {xk}k∈N converges superlinearly if

lim
k→∞

‖(Bk −∇2f (x∗))dk‖
‖dk‖

= 0. (25)
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Spectral gradient method
Approximate Hessian is a scalar matrix, Bk = γ−1

k I.
The secant equation yields

γk = arg min
γ>0
‖γyk−1 − sk−1‖

and

γk =
(sk−1)T yk−1

‖yk−1‖2
. (26)

Safeguard conditions (curvature condition does not hold)

γ̄k = min{γmax ,max{γk , γmin}}

I Very efficient, nonmonotone bahaviour
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Spectral gradient method for finite sums

min
x∈Rn

f (x),

f (x) = fN(x) =
1
N

N∑
i=1

fi(x)

I Stochastic variance reduction with variable (spectral) step size
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Algorithm SVRG - BB
Step 0 Initialization. Choose an initial point x0 ∈ Rn, an inner loop size m > 0, an

initial steplength α0 > 0. Set k = 1.
Step 1 Outer iteration, full gradient evaluation.

Set x̃0 = xk−1. Compute ∇fN(x̃0).

If k > 0, then set αk =
1
m

‖xk − xk−1‖2

(xk − xk−1)T (∇fN(xk )−∇fN(xk−1))

Step 2 Inner iterations
For t = 0, . . . ,m − 1

Uniformly and randomly choose it ∈ {1, . . . ,N}.
Set x̃t+1 = x̃t − αk (∇fit (x̃t )−∇fit (x̃0) +∇fN(x̃0))

Step 3 Outer iteration, iterate update. Set xk = x̃m and k = k + 1.
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . Define θ = (1− e−2µ/L)/2. If m is chosen such that

m > max

{
2

log(1− 2θ) + 2µ/L
,
4L2

θµ2 +
L
µ

}
,

then SVRG-BB converges linearly in expectation

E [‖xk − x∗‖2] < (1− θ)k‖x̃0 − x∗‖2.
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Inexact Newton method

I The main idea: solve the Newton equation inexactly

∇2f (xk )dk = −∇f (xk ) + r k

‖r k‖ = ‖∇2f (xk )dk +∇f (xk )‖ ≤ ηk‖∇f (xk )‖ (27)

I The rate of convergence depends on ηk
I ηk = η ∈ (0,1) - linear convergence
I ηk → 0 - superlinear convergence
I ηk = O(‖∇f (xk )‖) - quadratic convergence
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Subsampled Newton method for finite sum minimization

f (x) = fN(x) =
1
N

N∑
i=1

fi(x), (28)

I Subsampled (Inexact) Newton method
I Subsampled function, gradient, Hessian approximation

∇2fDk (xk )sk = −∇fNk (xk ) + r k , ‖r k‖ ≤ ηk‖∇fNk (xk )‖, (29)
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I The subsample size Nk ,Dk
I The choice of forcing term ηk - adaptive

ηk = min{η̄,
|fNk (xk )−mk−1(sk−1)|
‖∇fNk−1(xk−1)‖

}, η̄ < 1 (30)

Theorem
Assume that f ∈ C2 is strongly convex and that ∇2f (x) is Lipschitz continuous.
Assume that Dk is chosen such that

max
D:|D|=D

x∈Nδ∗ (x∗)

‖∇2fN (x)−∇2fD(x)‖ ≤ Cηk

holds for some C < (1/η̄ − 1)λ1 and ηk is given by (30). Then {xk} converges to
x∗ locally superlinearly assuming that Nk = N for k large enough.
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Convergence in mean square

I Relaxing the subsampled Hessian error bound

∇2fD(x) =
1
D

D∑
i=1

∇2fi(x)

E(∇2fD(x)) = ∇2fN (x). (31)

I The Bernstein inequality

P(‖∇2fD(x)−∇2fN (x)‖ ≤ γ) ≥ 1− α, (32)

for given γ > 0 and α ∈ (0,1).
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Theorem
Assume that f ∈ C2 is strongly convex and that the subsample D is chosen
randomly and uniformly from N . Let γ > 0 and α ∈ (0,1) be given. Then

P(‖∇2fD(x)−∇2fN (x)‖ ≤ γ) ≥ 1− α,

holds at any point x if the subsample size D satisfies

D ≥ 2(ln 2n − lnα)(λ2
n + λnγ/3)

γ2 := l̃ . (33)



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Take Dk such that

P(‖∇2fD(x)−∇2fN (x)‖ ≤ C max{ηk , ‖∇fNk (xk )‖} ≥ 1− αk (34)

with αk ∈ (0,1).
a) if ηk defined by (30) then

E(‖xk+1 − x∗‖2) ≤
(

V1τ
2k + V2αk

)
E(‖xk − x∗‖2);

b) if ηk = η̄ is sufficiently small then

E(‖xk+1 − x∗‖2) ≤
(

C1τ
2k + C2η̄

2 + V2αk

)
E(‖xk − x∗‖2).
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Constrained optimization

min
x∈S

f (x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. (35)

f ∗ = inf
x∈S

f (x). (36)

I Infeasible problems
I S is empty
I f is unbounded on S

I Explicit constraints h(x) = 0,g(x) ≤ 0
I Implicit constraints; domain of f
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Ex. 1 f (x) = x−2. D = R\{0} and f ∗ = 0, but there is no optimal point.
Ex. 2 f (x) = ln(x). D = R+\{0} and f ∗ = −∞.
Ex. 3 f (x) = x ln(x). D = R+\{0}, f ∗ = −e−1 and the optimal point is x∗ = e−1.
Ex. 4 f (x) = x3 − 3x . No implicit constraints, the optimal value is f ∗ = −∞, one

local minimum at x̃ = 1.
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min
x∈Rn

−
k∑

i=1

ln(bi − xT ai). (37)

I No explicit constraints
I Equivalent form

min
x∈S
−

k∑
i=1

ln(bi − xT ai), S = {x ∈ Rn | xT ai < bi , i = 1, ..., k .}. (38)
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Convex problems
The problem (35) is convex if the objective function f and the inequality constraints
functions g1, ...,gm are convex, while the equality constraints functions h1, ...,hp
are affine.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y S

level
curves

unconstrained
minimizer

optimal point

Figure: Convex constrained problem.
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Theorem
Every local solution of a convex constrained problem is a global solution of the
same problem.

Theorem
Suppose that f ∈ C1(Rn) and that the problem is convex. Then, x∗ is optimal if and
only if x∗ ∈ S and for every y ∈ S there holds

∇T f (x∗)(y − x∗) ≥ 0. (39)
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Lagrangian function

min
x∈S

f (x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}

L(x , λ, µ) := f (x) + λT g(x) + µT h(x) = f (x) +

p∑
i=1

λigi(x) +
m∑

j=1

µjhj(x), (40)

I λ = (λ1, ..., λp)T ∈ Rp - Lagrange multipliers associated to inequality
constraints

I µ = (µ1, ..., µm)T ∈ Rm - Lagrange multipliers associated to equality
constraints

I λ and µ - dual variables
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Daulity

The Lagrange dual function

l(λ, µ) := inf
x∈D

L(x , λ, µ). (41)

The Lagrange dual problem
max
λ≥0

l(λ, µ). (42)

I LDP is convex
I Unique solution (λ∗, µ∗) - dual optimal, optimal Lagrange multipliers
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KKT optimality conditions
Definition
Strong duality holds if the primal and dual optimal values are attained and equal.

Definition
KKT conditions are:

a) g(x∗) ≤ 0 (feasibility - inequality constraints).
b) h(x∗) = 0 (feasibility - equality constraints).
c) λ∗ ≥ 0 (dual feasibility).
d) λ∗i gi(x∗) = 0, i = 1, ...,p (complementarity).
e) ∇f (x∗) +

∑p
i=1 λ

∗
i ∇gi(x∗) +

∑m
i=j µ

∗
j ∇hj(x∗) = 0 (optimality).

I Necessary conditions if the strong duality holds
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Theorem
Suppose that x∗ and (λ∗, µ∗) are such that the KKT conditions are satisfied and
the problem (35) is convex. Then x∗ is a solution of the problem (35).

I Many, many other optimality conditions...
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Linear independence constraint qualification (LICQ)

Definition
LICQ holds at point x∗ if the gradients of active constraints at the point x∗ are
linearly independent.

Theorem
Suppose that x∗ is a local solution of the problem (35) and that LICQ holds at the
point x∗. Then there are Lagrange multipliers (λ∗, µ∗) such that the KKT conditions
are satisfied.
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Second order optimality conditions
Let x∗ and (λ∗, µ∗) be primal and dual variables that satisfy KKT conditions. Then

A1 = {d ∈ Rn | ∇T hi(x∗)d = 0, i = 1, ...,m}, (43)

A2 = {d ∈ Rn | ∇T gi(x∗)d = 0 for all active constraints with λ∗i > 0},
A3 = {d ∈ Rn | ∇T gi(x∗)d ≤ 0 for all active constraints with λ∗i = 0},

A = A1 ∩ A2 ∩ A3. (44)

Theorem
Suppose that x∗ is a local solution of the problem (35) and that LICQ holds at the
point x∗. Suppose that the Lagrange multipliers (λ∗, µ∗) are such that the KKT
conditions hold. Then,

dT∇2
xL(x∗, λ∗, µ∗)d ≥ 0 for all d ∈ A.
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Theorem
Suppose that x∗ and (λ∗, µ∗) are such that the KKT conditions are satisfied and

dT∇2
xL(x∗, λ∗, µ∗)d > 0 for all d ∈ A\{0}.

Then x∗ is a strict local solution of the problem (35).
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Linear constraints

min
Ax=b

f (x), (45)

I f : Rn → R, f ∈ C2(Rn)

I f - convex
I A ∈ Rm×n, b ∈ Rm, rank(A) = m < n

KKT conditions:

∇f (x∗) + ATµ∗ = 0 and Ax∗ = b (46)
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Box constrained optimization

min
l≤x≤u

f (x), (47)

I l ,u ∈ Rn
∞

I f - continuously differentiable on S = {x ∈ Rn : l ≤ x ≤ u}



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Optimality conditions for box constrained problems

Theorem
Let f be continuously differentiable. If x∗ is a local solution of

min f (x) s.t. l ≤ x ≤ u

then

∂f
∂x

=


≥ 0, x∗i = li
= 0 li < x∗i < uI

≤ 0 x∗i = uI
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Orthogonal projections

Orthogonal distance
distS(x) = inf

y∈S
‖y − x‖. (48)

Orthogonal projection of point x on a set S

PS(x) = arg min
y∈S
‖y − x‖. (49)
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Projected gradient direction

d = d(x) = PS(x −∇f (x))− x . (50)

Theorem
Suppose that f ∈ C1(S) and x ∈ S. Then the projected gradient direction d
defined by (50) satisfies the following:

a) dT∇f (x) ≤ −‖d‖2.
b) d = 0 if and only if x is a stationary point for the problem (47).
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Algorithm PG-LS
Step 0 Input parameters: x0 ∈ S, β, η ∈ (0,1), k = 0.
Step 1 Search direction: Compute the projected gradient direction d defined

by (50). If dk = 0 STOP.
Step 2 Step size: Find the smallest nonnegative integer j such that αk = β j

satisfies the Armijo condition

f (xk + αkdk ) ≤ f (xk ) + ηαk∇T f (xk )dk .

Step 3 Update: Set xk+1 = xk + αkdk , k = k + 1.



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Theorem
Suppose that f : Rn → R, f is bounded from bellow on the feasible set
S = {x ∈ Rn | l ≤ x ≤ u} and f ∈ C1(S). Moreover, assume that the sequence of
search directions {dk}k∈N is bounded. Then, either the Algorithm PG-LS
terminates after a finite number of iterations k̄ at a stationary point x k̄ of the
problem (47) or every accumulation point of the sequence {xk}k∈N is a stationary
point of the problem (47).
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Penalty function

min
x∈S

f (x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. (51)

min
x∈Rn

Φ(x), (52)

Φ(x , τ) = f (x) + τρ(x), (53)

I ρ - measure of constraint violation
I τ - penalty parameter

ρ(x) = 0 ⇐⇒ x ∈ S. (54)
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I A sequence of penalty problems of the form

min
x∈Rn

Φ(x , τk ), (55)

are solved
I The sequence of penalty parameters tends to infinity, i.e.,

lim
k→∞

τk =∞. (56)
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Definition
The penalty function Φ is exact if there exists τ̄ > 0 such that for all τ ≥ τ̄ any local
solution of the problem (51) is a local minimizer of the penalty function Φ(x , τ).

Q1(x , τ) = f (x) + τ(
m∑

i=1

|hi(x)|+
p∑

i=1

max{0,gi(x)}).
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Quadratic penalty for equality constrained problems

min
h(x)=0

f (x). (57)

Q(x , τ) = f (x) +
τ

2
(

m∑
i=1

(hi(x))2 (58)

I Introducing slack variables for inequality constraints
I

min
x∈S

f (x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}

min
y∈S̃

f (x), S̃ = {(x , s) ∈ Rn+p, h(x) = 0, g(x) + s = 0, s ≥ 0}
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Algorithm QP
Step 0 Input parameters: Take x0 ∈ Rn, ε0 ≥ 0, τ0 > 0, k = 0.
Step 1 Initialization: x0

start = x0.
Step 2 Solve the subproblem min Q(x , τk ) approximately: Start with xk

start ,
terminate when

‖∇xQ(xk , τk )‖ ≤ εk . (59)

Step 3 Update the penalty parameter: Choose τk+1 > τk .
Step 4 Update the tolerance: Choose εk+1 ∈ [0, εk ).
Step 5 Update the starting point: Set xk+1

start = xk and k = k + 1. Go to Step 2.
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Theorem
Suppose that f ,h ∈ C1(Rn) and that each xk is the exact global minimizer of
function Q(x , τk ). Suppose that (56) holds. Then every accumulation point of the
sequence {xk}k∈N generated by Algorithm 12.1 is a solution of the problem (57).
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Inexact solution of subproblems

Theorem
Suppose that f ,h ∈ C1(Rn) and that limk→∞ εk = 0. Suppose that (56) holds.
Then every accumulation point x∗ of the sequence {xk}k∈N generated by
Algorithm 12.1 at which LICQ holds is a KKT point of the problem (57). Moreover,
Lagrange multipliers associated with x∗ = limk∈K xk are given by

lim
k∈K

τkh(xk ) = µ∗. (60)



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods
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Bellavia, S., Krejić, N., Morini, B., Inexact restoration with subsampled
trust-region methods for finite-sum minimization, arXiv preprint, arXiv:
1902.01710,2019

Bertsekas D.P., Tsitsiklis J.N., Gradient Convergence in Gradient Methods
with Errors, SIAM J. Optimization 10(2) (2000), 627-642.



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Bottou, L., Curtis F.C., Nocedal, J. Optimization Methods for Large-Scale
Machine Learning, SIAM Review, 60(2), (2018) 223-311.

Delyon B., Juditsky A., Accelerated stochastic approximation, SIAM J.
Optimization, Vol.3, No.4, 1993, pp. 868-881.

Lichman M., UCI machine learning repository,
https://archive.ics.uci.edu/ml/index.php, 2013.
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