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Outline
I Machine learning and Optimization
I Nonlinear optimization problems, optimality conditions
I Line search methods
I First order methods
I Second order methods
I Optimality conditions for constrained problems
I Special classes of constrained problems
I Penalty methods
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Machine Learning and Optimization
I A data set for analysis

D = {(ai , yi), i = 1, . . . ,N}

I ai ∈ Rn - vector of features
I yi - labels (observations)
I Prediction function Φ such that

Φ(ai) ≈ yi , i = 1, . . . ,N

I approx in some optimal sense
I Data set is a sample.
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I Supervised learning
I yi ∈ R - regression problem
I yi ∈ {1, . . . ,M} - classification problem
I yi ∈ {−1,1} - binary classification

I Unsupervised learning - the labels are not known; clustering, extracting
interesting information from the data

I Choice of features



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

The prediction function Φ properties:
I

Φ(ai) ≈ yi , i = 1, . . . ,N

I reliable prediction for new (unseen) data
I features selection (important ones)
I online learning (streaming data)
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Prediction function Φ depends on parameters x ∈ Rn that we need to learn.
I Data set = training + testing
I

Φ(ai) ≈ yi , i = 1, . . . ,N

I Loss function `(ai , yi , x) - measures discrepancy between Φ(ai) and yi

I

min
N∑

i=1

`(ai , yi , x)

I

L(a, y , x) =
N∑

i=1

`(ai , yi , x)
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Robustness

I Φ should be a good predictor on unseen data
I Overfitting should be avoided
I Adding a regularizer
I

min
N∑

i=1

`(ai , yi , x) + λ‖x‖22

I

min
N∑

i=1

`(ai , yi , x) + λ‖x‖1
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Regressions

I Linear regression
Φ(x) = aT w + b, x = (w ,b)

I Loss function

L(x) =
N∑

i=1

(aT
i w + b − yi)

2

I corresponds to maximum likelihood solution if y = aT w + b + ε, ε : N (0, σ2}
I ai i.i.d.
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I Ridge regression

L(x) =
N∑

i=1

(aT
i w − yi)

2 + λ‖w‖2

I Lasso regression (enforces sparsity)

L(x) =
N∑

i=1

(aT
i w − yi)

2 + λ‖w‖1

I Logistic regression - maximizes likelihood of belonging to one class or another

`L(a, y ,w ,b) = log(1 + exp(−y(wT a− b))

min
w ,b

1
N

N∑
i=1

`L(aI , yi ,w ,b) +
λ

2
‖(w ,b)‖2
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I Neural networks - many, many loss functions ...
I Activation function, number of hidden layers, type of network
I Training - minimization of the loss function
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Stochastic optimization

min Eξ[f (x , ξ)]

I Sample of i.i.d. ξ1, . . . , ξN

I Sample average approximation (SAA) approximation

Eξ[f (x , ξ)] ≈ 1
N

N∑
i=1

f (x , ξi)

min
1
N

N∑
i=1

f (x , ξi)
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Stochastic approximation (SA) methods

min F (x), subject to noise, not available

f (x) = F (x) + ξ(x)

min f (x)

I f (x),g(x) ≈ ∇f (x),H(x) ≈ ∇2f (x) - noisy values that are available
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Nonlinear optimization problem

min
x∈S

f (x), (1)

I f : D → R and D,S ⊆ Rn.
I f - objective function
I x ∈ Rn - decision variable
I S - feasible set
I S = Rn - unconstrained problem, S - proper subset of Rn - constrained

problem
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Constrained versus unconstrained problems
I

min x2

I
min x2 s.t. x ≤ 2

I
min x2 s.t. x > −1
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Theorem
(Bolzano-Weierstrass) Every real, continuous function attains its global minimum
on any compact subset of Rn.

Definition
A point x∗ is a global solution of the problem (1) if f (x∗) ≤ f (x) for every x ∈ S. If
f (x∗) < f (x) for every x ∈ S, x 6= x∗, then x∗ is a strict global solution.

Definition
A point x∗ is a local solution of the problem (1) if there exists ε > 0 such that
f (x∗) ≤ f (x) for every x ∈ S such that ‖x − x∗‖ ≤ ε. If f (x∗) < f (x) for every
x ∈ S, x 6= x∗ such that ‖x − x∗‖ ≤ ε, then we say that x∗ is strict local solution.
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Optimality conditions

min
x∈Rn

f (x), (2)

Theorem
Suppose that f ∈ C1(Rn). If x∗ is a local solution of (2), then ∇f (x∗) = 0.

Theorem
Suppose that f ∈ C2(Rn). If x∗ is a local solution of (2), then

a) ∇f (x∗) = 0;
b) ∇2f (x∗) � 0.
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Theorem
Suppose that f ∈ C2(Rn). If

1. ∇f (x∗) = 0 and
2. ∇2f (x∗) � 0,

then x∗ is a strict local solution of (2).
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Convexity
Definition
A set S ⊆ Rn is convex if for any x , y ∈ S and any λ ∈ [0,1] there holds
λx + (1− λ)y ∈ S.
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Figure: Convex and non-convex sets.
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Definition
Let S be a convex set. A function f : S → R is convex on S if for any x , y ∈ S and
any λ ∈ [0,1] there holds

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Moreover, we say that the function is strictly convex if the previous inequality is
strict for all x 6= y and λ ∈ (0,1).

Theorem
Suppose that f ∈ C1(S) where S ⊆ Rn is a convex set. Then, the function f is
convex on S if and only if the following inequality holds for all x , y ∈ S

f (y) ≥ f (x) +∇T f (x)(y − x). (3)
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Theorem
Suppose that f ∈ C2(S) where S ⊆ Rn is a convex set. Then, the following
statements hold.

a) If ∇2f (x) � 0 for every x ∈ S, then f is convex on S.
b) If ∇2f (x) � 0 for every x ∈ S, then f is strictly convex on S.
c) If S is open and f is convex on S, then ∇2f (x) � 0 for every x ∈ S.

Theorem
Suppose that f is convex on a convex set S. Then, every local minimizer of the
function f is also the global minimizer.
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Definition
A function f is strongly convex with parameter m > 0 on a convex set S if for any
x , y ∈ S and any λ ∈ [0,1] there holds

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)− m
2
λ(1− λ)‖x − y‖2.

f (y) ≥ f (x) +∇T f (x)(y − x) +
m
2
‖x − y‖2,
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Line search methods

Definition
Consider a point x such ∇f (x) 6= 0. A direction d is called descent direction for f
at the point x if there exists α > 0 such that

f (x + αd) < f (x).
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‖dk‖ ≥ σ‖∇f (xk )‖, (4)

∇T f (xk )dk ≤ −θ‖∇f (xk )‖‖dk‖ (5)

f (xk + αkdk ) ≤ f (xk ) + η∇f (xk )dkArmijo condition (6)

∇f (xk + αkdk ) ≥ c∇f (xk ), c ∈ (, η) Wolfe condition (7)
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Algorithm LS with backtracking
Step 0 Input parameters: x0 ∈ Rn, β, η ∈ (0,1), θ ∈ (0,1], σ > 0, k = 0
Step 1 Stopping criterion: If ∇f (xk ) = 0 STOP.
Step 2 Search direction: Choose dk such that ‖dk‖ ≥ σ‖∇f (xk )‖ and

∇T f (xk )dk ≤ −θ‖∇f (xk )‖‖dk‖.
Step 3 Given β ∈ (0,1), find the smallest nonnegative integer j such that αk = β j

satisfies
f (xk + αkdk ) ≤ f (xk ) + ηαk∇T f (xk )dk .

Step 4 Update: Set xk+1 = xk + αkdk , k = k + 1.
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Theorem
Suppose that f : Rn → R, f ∈ C1(Rn) and ∇T f (xk )dk < 0. Moreover, assume that
the function f is bounded from bellow on the line {xk + αdk | α > 0}. Then, there
exists ᾱ > 0 such that the Armijo condition holds for all α ∈ (0, ᾱ].

.
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Theorem
Suppose that f : Rn → R, f ∈ C1(Rn) and f is bounded from bellow. Moreover,
assume that the sequence of search directions {dk}k∈N is bounded. Then, either
the Algorithm LS with backtracking terminates after a finite number of iterations k̄
at the stationary point x k̄ or every accumulation point of the sequence {xk}k∈N is a
stationary point of the function f .
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Gradient method

dk = −∇f (xk ). (8)

αk = arg min
α>0

f (xk + αdk ) - exact line search

Theorem
Suppose that f ∈ C2(R) and that the gradient method with the exact line search
converges to a point x∗ such that ∇2f (x∗) is positive definite, with m and M being
the smallest and largest eigenvalues. Then Then

f (xk+1)− f (x∗) ≤
(

M −m
M + m

)2

(f (xk )− f (x∗)).
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Gradient method with fixed step size

xk+1 = xk − α∇f (xk ). (9)

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖. (10)

Theorem
Suppose that f ∈ C2(Rn) is convex and that (10) holds. Then, if α < 1/L, the fixed
step size negative gradient method defined with (9) satisfies

f (xk )− f (x∗) ≤ ‖x
0 − x∗‖2

2αk
.
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Minimizing finite sums

min
x∈Rn

f (x), (11)

f (x) = fN(x) =
1
N

N∑
i=1

fi(x), (12)

I f : Rn → R is a Lipschitz smooth function
I fi : Rn → R.
I f is bounded from below in Rn.
I N is very large
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Subsampling

fk =
1

Nk

∑
i∈Nk

fi(xk ), (13)

gk =
1

Nk

∑
i∈Nk

∇fi(xk ). (14)

I Smaller Nk - cheaper method
I Eventually Nk = N for k large enough
I Many, many scheduling strategies
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Stochastic gradient method

I Standard gradient is expensive (N is large)
I Training set might be redundant
I Replace the full gradient with an inexpensive stochastic approximation -

minibatch gradient gk

Algorithm SGD
Step 0 Choose an initial point x0 and a sequence of strictly positive steplengths {αk}.

Set k = 0.
Step 1 Choose randomly and uniformly ik ∈ {1, . . . ,N}. Set gk = ∇fik (xk ).
Step 2 Set xk+1 = xk − αkgk , k = k + 1.
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Variance condition:

E [‖gk‖2] ≤ M1 + M2‖∇f (xk )‖2, (15)

Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . Assume that (15) holds at each iteration. Then, if SGD is
run with αk = β

γ+k , β > 1
µ and γ > 0 such that α1 ≤ 1

L M2
, there exists a constant

ν > 0 such that
E [f (xk )]− f (x∗) ≤

ν

γ + k
. (16)
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Stochastic variance reduction gradient (SVRG) method

I SGD converges sublinearly (very slow)
I The variance of random sampling implies (very) small step size
I Nonconvex problems:

∑
k αk =∞,

∑
k α

2
k = 0

I Larger Nk in subsampled gradient might reduce the variance but it is more
expensive



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Algorithm SVRG
Step 0 Choose an initial point x0 ∈ Rn, an inner loop size m > 0, a steplength α > 0,

the option for the iterate update. Set k = 1.
Step 1 Outer iteration, full gradient evaluation.

Set x̃0 = xk−1. Compute ∇fN(x̃0).
Step 2 Inner iterations

For t = 0, . . . ,m − 1
Uniformly and randomly choose it ∈ {1, . . . ,N}.
Set x̃t+1 = x̃t − α(∇fit (x̃t )−∇fit (x̃0) +∇fN(x̃0)).

Step 3 Outer iteration, iterate update.
Set xk = x̃m (Option I), k = k + 1.
Set xk = x̃t for randomly chosen t ∈ {0, . . . ,m − 1} (Option II), k = k + 1.
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I Outer iterations (epochs) - full gradient is computed
I Inner iterations (m steps) - an unbiased approximation of the gradient is

updated randomly
∇fit (x̃t )−∇fit (x̃0) +∇fN(x̃0)

I Inner iterations m = 2n (convex), m = 5n (non-convex)
I Full gradient can be replaced by mini-batch gradient
I Two option for the final approximation



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . If m and α satisfy

θ =
1

µα(1− 2Lα)m
+

2Lα
1− 2Lα

< 1, (17)

then Algorithm SVRG with Option II generates a sequence which converges
linearly in expectation

E [f (xk )− f (x∗)] ≤ θk (f (x0)− f (x∗)).
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . If m and α satisfy

θ = (1− 2αµ(1− αL)m) +
4αL2

µ(1− αL)
< 1,

then Algorithm SVRG with Option I generates a sequence which converges
linearly in expectation

E [xk − x∗] ≤ θk (x0 − x∗).
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SAG method
I Stochastic Average Gradient tracking method
I Cost of SGD, convergence of FGD

Algorithm SAG
Step 0 Initialization. Choose an initial point x0 ∈ Rn, positive steplengths {αk},

yi = 0, for i = 1, . . . ,N. Set k = 0.
Step 1 Stochastic gradient update. Uniformly and randomly choose ik ∈ {1, . . . ,N}.

Set yik = ∇fik (xk ).
Step 2 Iteration update. Set

xk+1 = xk −
αk

N

N∑
i=1

yi .

Set k = k + 1.
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . If αk = α = 1/(16L) then

E [f (xk )]− f (x∗) ≤
(

1−min

{
µ

16L
,

1
8N

})k

C0,

where C0 > 0 depends on x∗, x0, fN ,L,N.
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SARAH method

I accumulation of stochastic gradient information
I variance reduction
I biased gradient approximation
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Algorithm SARAH
Step 0 Initialization. Choose an initial point x0 ∈ Rn, an inner loop size m > 0, a

steplength α > 0. Set k = 1.
Step 1 Outer iteration, full gradient evaluation. Set x̃0 = xk−1. Compute

y0 = ∇fN(x̃0). Set x̃1 = x̃0 − αy0.
Step 2 Inner iterations.

For t = 1, . . . ,m − 1
Uniformly and randomly choose it ∈ {1, . . . ,N}.
Compute yt = ∇fit (x̃t )−∇fit (x̃t−1) + yt−1.
Set x̃t+1 = x̃t − αyt .

Step 3 Outer iteration, iterate update.
Take xk = x̃t for randomly chosen t ∈ {0, . . . ,m} and set k = k + 1.
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex and
that each function fi , 1 ≤ i ≤ N is convex. Let x∗ be the minimizer of f .If α and m
are such that

σ =
1

µα(m + 1)
+

αL
2− αL

< 1, (18)

then the sequence {‖∇f (xk )‖} generated by Algorithm SARAH satisfy

E [‖∇f (xk )‖2] ≤ σk‖∇f (x0)‖2.
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Theorem
Suppose that f has Lipschitz continuous gradient and each function fi , 1 ≤ i ≤ N is
µ-strongly convex with µ > 0. If α ≤ 2/(µ+ L) then for any t ≥ 1

E [‖yt‖2] ≤
(

1− 2µLα
µ+ L

)t

E [‖∇f (x0)‖2].
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The Newton method

min f (x)

∇f (xk+1) = 0

∇f (xk + dk ) ≈ ∇f (xk ) +∇2f (xk )dk .

The Newton equation
∇f (xk ) +∇2f (xk )dk = 0. (19)

xk+1 = xk + dk or xk+1 = xk + αkdk (20)
I Local quadratic convergence
I Expensive (compute ∇2f (xk ), solve (19))
I Suppose that the function f is quadratic and strongly convex. Then, the

Newton method provides a global minimizer of function f in one iteration with
arbitrary x0.
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Local convergence

Theorem
Suppose that the function f ∈ C2(Rn) and there exists δ > 0 such that ∇2f (x) � 0
and ∇2f (x) is Lipschitz continuous with the constant L for all x ∈ B(x∗, δ). Then
there exists ε > 0 such that the Newton method converges quadratically to the
solution x∗ for all x0 ∈ B(x∗, ε). Moreover, the sequence of the gradient norms
converges quadratically to zero.
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Line search Newton method

I f ∈ C2 - strongly convex function
I dk - descent direction
I Line search can be applied
I Global convergence
I Local (quadratic) rate of convergence αk = 1, k ≥ k0
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Quasi Newton methods
I The main idea: approximate the Hessian matrix with Bk ∈ Rn×n using the first

order information

sk = xk+1 − xk and yk = ∇f (xk+1)−∇f (xk )

Mean-value theorem

yk =

∫ 1

0
∇2f (xk + tsk )skdt

Bk+1sk ≈
∫ 1

0
∇2f (xk + tsk )skdt

Secant equation
Bk+1sk = yk (21)
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Least change secant update

Bk+1 = arg min ‖B − Bk‖ s.t. Bk+1sk = yk ,B = BT , sparsity...

BFGS formula

Bk+1 = Bk +
yk (yk )T

(yk )T sk −
Bksk (sk )T Bk

(sk )T Bksk (22)

DFP formula

Bk+1 =

(
I − yk (sk )T

(yk )T sk

)
Bk

(
I − yk (sk )T

(yk )T sk

)
+

yk (yk )T

(yk )T sk (23)

The inverse B−1
k+1 is computable by SMW formula
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Bkdk = −∇f (xk ). (24)

I Positive definite property of Bk - if (yk )T sk ≥ δ > 0
I dk - descent direction
I superlinear convergence

Theorem
Suppose that f ∈ C2(Rn). Let {xk} be a sequence generated by a quasi Newton
method (24) and assume that {xk}k∈N converges to a point x∗ such that
∇f (x∗) = 0 and ∇2f (x∗) � 0. Then {xk}k∈N converges superlinearly if

lim
k→∞

‖(Bk −∇2f (x∗))dk‖
‖dk‖

= 0. (25)
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Spectral gradient method
Approximate Hessian is a scalar matrix, Bk = γ−1

k I.
The secant equation yields

γk = arg min
γ>0
‖γyk−1 − sk−1‖

and

γk =
(sk−1)T yk−1

‖yk−1‖2
. (26)

Safeguard conditions (curvature condition does not hold)

γ̄k = min{γmax ,max{γk , γmin}}

I Very efficient, nonmonotone bahaviour
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Spectral gradient method for finite sums

min
x∈Rn

f (x),

f (x) = fN(x) =
1
N

N∑
i=1

fi(x)

I Stochastic variance reduction with variable (spectral) step size
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Algorithm SVRG - BB
Step 0 Initialization. Choose an initial point x0 ∈ Rn, an inner loop size m > 0, an

initial steplength α0 > 0. Set k = 1.
Step 1 Outer iteration, full gradient evaluation.

Set x̃0 = xk−1. Compute ∇fN(x̃0).

If k > 0, then set αk =
1
m

‖xk − xk−1‖2

(xk − xk−1)T (∇fN(xk )−∇fN(xk−1))

Step 2 Inner iterations
For t = 0, . . . ,m − 1

Uniformly and randomly choose it ∈ {1, . . . ,N}.
Set x̃t+1 = x̃t − αk (∇fit (x̃t )−∇fit (x̃0) +∇fN(x̃0))

Step 3 Outer iteration, iterate update. Set xk = x̃m and k = k + 1.
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Theorem
Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let
x∗ be the minimizer of f . Define θ = (1− e−2µ/L)/2. If m is chosen such that

m > max

{
2

log(1− 2θ) + 2µ/L
,
4L2

θµ2 +
L
µ

}
,

then SVRG-BB converges linearly in expectation

E [‖xk − x∗‖2] < (1− θ)k‖x̃0 − x∗‖2.
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Inexact Newton method

I The main idea: solve the Newton equation inexactly

∇2f (xk )dk = −∇f (xk ) + r k

‖r k‖ = ‖∇2f (xk )dk +∇f (xk )‖ ≤ ηk‖∇f (xk )‖ (27)

I The rate of convergence depends on ηk
I ηk = η ∈ (0,1) - linear convergence
I ηk → 0 - superlinear convergence
I ηk = O(‖∇f (xk )‖) - quadratic convergence
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Subsampled Newton method for finite sum minimization

f (x) = fN(x) =
1
N

N∑
i=1

fi(x), (28)

I Subsampled (Inexact) Newton method
I Subsampled function, gradient, Hessian approximation

∇2fDk (xk )sk = −∇fNk (xk ) + r k , ‖r k‖ ≤ ηk‖∇fNk (xk )‖, (29)
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I The subsample size Nk ,Dk
I The choice of forcing term ηk - adaptive

ηk = min{η̄,
|fNk (xk )−mk−1(sk−1)|
‖∇fNk−1(xk−1)‖

}, η̄ < 1 (30)

Theorem
Assume that f ∈ C2 is strongly convex and that ∇2f (x) is Lipschitz continuous.
Assume that Dk is chosen such that

max
D:|D|=D

x∈Nδ∗ (x∗)

‖∇2fN (x)−∇2fD(x)‖ ≤ Cηk

holds for some C < (1/η̄ − 1)λ1 and ηk is given by (30). Then {xk} converges to
x∗ locally superlinearly assuming that Nk = N for k large enough.
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Convergence in mean square

I Relaxing the subsampled Hessian error bound

∇2fD(x) =
1
D

D∑
i=1

∇2fi(x)

E(∇2fD(x)) = ∇2fN (x). (31)

I The Bernstein inequality

P(‖∇2fD(x)−∇2fN (x)‖ ≤ γ) ≥ 1− α, (32)

for given γ > 0 and α ∈ (0,1).
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Theorem
Assume that f ∈ C2 is strongly convex and that the subsample D is chosen
randomly and uniformly from N . Let γ > 0 and α ∈ (0,1) be given. Then

P(‖∇2fD(x)−∇2fN (x)‖ ≤ γ) ≥ 1− α,

holds at any point x if the subsample size D satisfies

D ≥ 2(ln 2n − lnα)(λ2
n + λnγ/3)

γ2 := l̃ . (33)
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Take Dk such that

P(‖∇2fD(x)−∇2fN (x)‖ ≤ C max{ηk , ‖∇fNk (xk )‖} ≥ 1− αk (34)

with αk ∈ (0,1).
a) if ηk defined by (30) then

E(‖xk+1 − x∗‖2) ≤
(

V1τ
2k + V2αk

)
E(‖xk − x∗‖2);

b) if ηk = η̄ is sufficiently small then

E(‖xk+1 − x∗‖2) ≤
(

C1τ
2k + C2η̄

2 + V2αk

)
E(‖xk − x∗‖2).
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Constrained optimization

min
x∈S

f (x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. (35)

f ∗ = inf
x∈S

f (x). (36)

I Infeasible problems
I S is empty
I f is unbounded on S

I Explicit constraints h(x) = 0,g(x) ≤ 0
I Implicit constraints; domain of f
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Ex. 1 f (x) = x−2. D = R\{0} and f ∗ = 0, but there is no optimal point.
Ex. 2 f (x) = ln(x). D = R+\{0} and f ∗ = −∞.
Ex. 3 f (x) = x ln(x). D = R+\{0}, f ∗ = −e−1 and the optimal point is x∗ = e−1.
Ex. 4 f (x) = x3 − 3x . No implicit constraints, the optimal value is f ∗ = −∞, one

local minimum at x̃ = 1.
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min
x∈Rn

−
k∑

i=1

ln(bi − xT ai). (37)

I No explicit constraints
I Equivalent form

min
x∈S
−

k∑
i=1

ln(bi − xT ai), S = {x ∈ Rn | xT ai < bi , i = 1, ..., k .}. (38)
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Convex problems
The problem (35) is convex if the objective function f and the inequality constraints
functions g1, ...,gm are convex, while the equality constraints functions h1, ...,hp
are affine.
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Figure: Convex constrained problem.
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Theorem
Every local solution of a convex constrained problem is a global solution of the
same problem.

Theorem
Suppose that f ∈ C1(Rn) and that the problem is convex. Then, x∗ is optimal if and
only if x∗ ∈ S and for every y ∈ S there holds

∇T f (x∗)(y − x∗) ≥ 0. (39)
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Lagrangian function

min
x∈S

f (x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}

L(x , λ, µ) := f (x) + λT g(x) + µT h(x) = f (x) +

p∑
i=1

λigi(x) +
m∑

j=1

µjhj(x), (40)

I λ = (λ1, ..., λp)T ∈ Rp - Lagrange multipliers associated to inequality
constraints

I µ = (µ1, ..., µm)T ∈ Rm - Lagrange multipliers associated to equality
constraints

I λ and µ - dual variables
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Daulity

The Lagrange dual function

l(λ, µ) := inf
x∈D

L(x , λ, µ). (41)

The Lagrange dual problem
max
λ≥0

l(λ, µ). (42)

I LDP is convex
I Unique solution (λ∗, µ∗) - dual optimal, optimal Lagrange multipliers
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KKT optimality conditions
Definition
Strong duality holds if the primal and dual optimal values are attained and equal.

Definition
KKT conditions are:

a) g(x∗) ≤ 0 (feasibility - inequality constraints).
b) h(x∗) = 0 (feasibility - equality constraints).
c) λ∗ ≥ 0 (dual feasibility).
d) λ∗i gi(x∗) = 0, i = 1, ...,p (complementarity).
e) ∇f (x∗) +

∑p
i=1 λ

∗
i ∇gi(x∗) +

∑m
i=j µ

∗
j ∇hj(x∗) = 0 (optimality).

I Necessary conditions if the strong duality holds
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Theorem
Suppose that x∗ and (λ∗, µ∗) are such that the KKT conditions are satisfied and
the problem (35) is convex. Then x∗ is a solution of the problem (35).

I Many, many other optimality conditions...
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Linear independence constraint qualification (LICQ)

Definition
LICQ holds at point x∗ if the gradients of active constraints at the point x∗ are
linearly independent.

Theorem
Suppose that x∗ is a local solution of the problem (35) and that LICQ holds at the
point x∗. Then there are Lagrange multipliers (λ∗, µ∗) such that the KKT conditions
are satisfied.
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Second order optimality conditions
Let x∗ and (λ∗, µ∗) be primal and dual variables that satisfy KKT conditions. Then

A1 = {d ∈ Rn | ∇T hi(x∗)d = 0, i = 1, ...,m}, (43)

A2 = {d ∈ Rn | ∇T gi(x∗)d = 0 for all active constraints with λ∗i > 0},
A3 = {d ∈ Rn | ∇T gi(x∗)d ≤ 0 for all active constraints with λ∗i = 0},

A = A1 ∩ A2 ∩ A3. (44)

Theorem
Suppose that x∗ is a local solution of the problem (35) and that LICQ holds at the
point x∗. Suppose that the Lagrange multipliers (λ∗, µ∗) are such that the KKT
conditions hold. Then,

dT∇2
xL(x∗, λ∗, µ∗)d ≥ 0 for all d ∈ A.
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Theorem
Suppose that x∗ and (λ∗, µ∗) are such that the KKT conditions are satisfied and

dT∇2
xL(x∗, λ∗, µ∗)d > 0 for all d ∈ A\{0}.

Then x∗ is a strict local solution of the problem (35).
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Linear constraints

min
Ax=b

f (x), (45)

I f : Rn → R, f ∈ C2(Rn)

I f - convex
I A ∈ Rm×n, b ∈ Rm, rank(A) = m < n

KKT conditions:

∇f (x∗) + ATµ∗ = 0 and Ax∗ = b (46)
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Box constrained optimization

min
l≤x≤u

f (x), (47)

I l ,u ∈ Rn
∞

I f - continuously differentiable on S = {x ∈ Rn : l ≤ x ≤ u}
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Optimality conditions for box constrained problems

Theorem
Let f be continuously differentiable. If x∗ is a local solution of

min f (x) s.t. l ≤ x ≤ u

then

∂f
∂x

=


≥ 0, x∗i = li
= 0 li < x∗i < uI

≤ 0 x∗i = uI
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Orthogonal projections

Orthogonal distance
distS(x) = inf

y∈S
‖y − x‖. (48)

Orthogonal projection of point x on a set S

PS(x) = arg min
y∈S
‖y − x‖. (49)



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

x-∇ f(x)

d

P
S
(x-∇ f(x))

Figure: Projected gradient direction.



Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Projected gradient direction

d = d(x) = PS(x −∇f (x))− x . (50)

Theorem
Suppose that f ∈ C1(S) and x ∈ S. Then the projected gradient direction d
defined by (50) satisfies the following:

a) dT∇f (x) ≤ −‖d‖2.
b) d = 0 if and only if x is a stationary point for the problem (47).
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Algorithm PG-LS
Step 0 Input parameters: x0 ∈ S, β, η ∈ (0,1), k = 0.
Step 1 Search direction: Compute the projected gradient direction d defined

by (50). If dk = 0 STOP.
Step 2 Step size: Find the smallest nonnegative integer j such that αk = β j

satisfies the Armijo condition

f (xk + αkdk ) ≤ f (xk ) + ηαk∇T f (xk )dk .

Step 3 Update: Set xk+1 = xk + αkdk , k = k + 1.
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Theorem
Suppose that f : Rn → R, f is bounded from bellow on the feasible set
S = {x ∈ Rn | l ≤ x ≤ u} and f ∈ C1(S). Moreover, assume that the sequence of
search directions {dk}k∈N is bounded. Then, either the Algorithm PG-LS
terminates after a finite number of iterations k̄ at a stationary point x k̄ of the
problem (47) or every accumulation point of the sequence {xk}k∈N is a stationary
point of the problem (47).
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Penalty function

min
x∈S

f (x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. (51)

min
x∈Rn

Φ(x), (52)

Φ(x , τ) = f (x) + τρ(x), (53)

I ρ - measure of constraint violation
I τ - penalty parameter

ρ(x) = 0 ⇐⇒ x ∈ S. (54)
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I A sequence of penalty problems of the form

min
x∈Rn

Φ(x , τk ), (55)

are solved
I The sequence of penalty parameters tends to infinity, i.e.,

lim
k→∞

τk =∞. (56)
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Definition
The penalty function Φ is exact if there exists τ̄ > 0 such that for all τ ≥ τ̄ any local
solution of the problem (51) is a local minimizer of the penalty function Φ(x , τ).

Q1(x , τ) = f (x) + τ(
m∑

i=1

|hi(x)|+
p∑

i=1

max{0,gi(x)}).
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Quadratic penalty for equality constrained problems

min
h(x)=0

f (x). (57)

Q(x , τ) = f (x) +
τ

2
(

m∑
i=1

(hi(x))2 (58)

I Introducing slack variables for inequality constraints
I

min
x∈S

f (x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}

min
y∈S̃

f (x), S̃ = {(x , s) ∈ Rn+p, h(x) = 0, g(x) + s = 0, s ≥ 0}
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Algorithm QP
Step 0 Input parameters: Take x0 ∈ Rn, ε0 ≥ 0, τ0 > 0, k = 0.
Step 1 Initialization: x0

start = x0.
Step 2 Solve the subproblem min Q(x , τk ) approximately: Start with xk

start ,
terminate when

‖∇xQ(xk , τk )‖ ≤ εk . (59)

Step 3 Update the penalty parameter: Choose τk+1 > τk .
Step 4 Update the tolerance: Choose εk+1 ∈ [0, εk ).
Step 5 Update the starting point: Set xk+1

start = xk and k = k + 1. Go to Step 2.
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Theorem
Suppose that f ,h ∈ C1(Rn) and that each xk is the exact global minimizer of
function Q(x , τk ). Suppose that (56) holds. Then every accumulation point of the
sequence {xk}k∈N generated by Algorithm 12.1 is a solution of the problem (57).
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Inexact solution of subproblems

Theorem
Suppose that f ,h ∈ C1(Rn) and that limk→∞ εk = 0. Suppose that (56) holds.
Then every accumulation point x∗ of the sequence {xk}k∈N generated by
Algorithm 12.1 at which LICQ holds is a KKT point of the problem (57). Moreover,
Lagrange multipliers associated with x∗ = limk∈K xk are given by

lim
k∈K

τkh(xk ) = µ∗. (60)
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