Optimization and data science

Line search methods

Gradient methods

Second order methods

onstrained Optimization

Penalty methods

Large scale and distributed optimization - Part 1 Bigmath¹ Advanced Course 4

Nataša Krejić

¹This project has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 812912.

Outline

- Machine learning and Optimization
- Nonlinear optimization problems, optimality conditions
- Line search methods
- First order methods
- Second order methods
- Optimality conditions for constrained problems
- Special classes of constrained problems
- Penalty methods

Machine Learning and Optimization

A data set for analysis

$$D = \{(a_i, y_i), i = 1, ..., N\}$$

- ▶ $a_i \in \mathbb{R}^n$ vector of features
- ▶ y_i labels (observations)
- Prediction function Φ such that

$$\Phi(a_i)\approx y_i, i=1,\ldots,N$$

- approx in some optimal sense
- Data set is a sample.

Supervised learning

- ▶ $y_i \in \mathbb{R}$ regression problem
- ▶ $y_i \in \{1, ..., M\}$ classification problem
- ▶ $y_i \in \{-1, 1\}$ binary classification
- Unsupervised learning the labels are not known; clustering, extracting interesting information from the data
- Choice of features

The prediction function Φ properties:

$$\Phi(a_i) \approx y_i, i = 1, \dots, N$$

- reliable prediction for new (unseen) data
- features selection (important ones)
- online learning (streaming data)

Prediction function Φ depends on parameters $x \in \mathbb{R}^n$ that we need to learn.

Data set = training + testing

 $\Phi(a_i)\approx y_i, i=1,\ldots,N$

► Loss function $\ell(a_i, y_i, x)$ - measures discrepancy between $\Phi(a_i)$ and y_i

$$\min\sum_{i=1}^N \ell(a_i, y_i, x)$$

$$L(a, y, x) = \sum_{i=1}^{N} \ell(a_i, y_i, x)$$

▲口▶▲□▶▲目▶▲目▶ 目 のへで

Robustness

- Φ should be a good predictor on unseen data
- Overfitting should be avoided
- Adding a regularizer

$$\min \sum_{i=1}^{N} \ell(\mathbf{a}_i, \mathbf{y}_i, \mathbf{x}) + \lambda \|\mathbf{x}\|_2^2$$
$$\min \sum_{i=1}^{N} \ell(\mathbf{a}_i, \mathbf{y}_i, \mathbf{x}) + \lambda \|\mathbf{x}\|_1$$

Regressions

Linear regression

$$\Phi(x) = a^T w + b, \ x = (w, b)$$

Loss function

$$L(x) = \sum_{i=1}^{N} (a_i^T w + b - y_i)^2$$

corresponds to maximum likelihood solution if y = a^Tw + b + ε, ε : N(0, σ²)
 a_i i.i.d.

Ridge regression

$$\mathcal{L}(\mathbf{x}) = \sum_{i=1}^{N} (\mathbf{a}_i^T \mathbf{w} - \mathbf{y}_i)^2 + \lambda \|\mathbf{w}\|^2$$

Lasso regression (enforces sparsity)

$$L(x) = \sum_{i=1}^{N} (a_i^T w - y_i)^2 + \lambda \|w\|_1$$

Logistic regression - maximizes likelihood of belonging to one class or another

$$\ell_L(a, y, w, b) = \log(1 + exp(-y(w^T a - b)))$$
$$\min_{w, b} \frac{1}{N} \sum_{i=1}^N \ell_L(a_i, y_i, w, b) + \frac{\lambda}{2} \|(w, b)\|^2$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

- Neural networks many, many loss functions ...
- Activation function, number of hidden layers, type of network
- Training minimization of the loss function

 Optimization and data science
 Line search methods
 Gradient methods
 Second order methods
 Constrained Optimization
 Penalty method

Stochastic optimization

$\min E_{\xi}[f(x,\xi)]$

- Sample of i.i.d. ξ_1, \ldots, ξ_N
- Sample average approximation (SAA) approximation

$$E_{\xi}[f(x,\xi)] pprox rac{1}{N} \sum_{i=1}^{N} f(x,\xi_i)$$

$$\min \frac{1}{N} \sum_{i=1}^{N} f(x,\xi_i)$$

Optimization and data science

Line search methor

Gradient methods

Constrained Optimization

Penalty methods

Stochastic approximation (SA) methods

min F(x), subject to noise, not available

 $f(x) = F(x) + \xi(x)$ $\min f(x)$

► $f(x), g(x) \approx \nabla f(x), H(x) \approx \nabla^2 f(x)$ - noisy values that are available

・ロト・日本・日本・日本・日本・日本

Nonlinear optimization problem

$$\lim_{x \to S} f(x), \tag{1}$$

- ▶ $f : D \to \mathbb{R}$ and $D, S \subseteq \mathbb{R}^n$.
- f objective function
- ▶ $x \in \mathbb{R}^n$ decision variable
- S feasible set
- ▶ $S = \mathbb{R}^n$ unconstrained problem, S proper subset of \mathbb{R}^n constrained problem

m x)

Constrained versus unconstrained problems

Theorem

(Bolzano-Weierstrass) Every real, continuous function attains its global minimum on any compact subset of \mathbb{R}^n .

Definition

A point x^* is a global solution of the problem (1) if $f(x^*) \le f(x)$ for every $x \in S$. If $f(x^*) < f(x)$ for every $x \in S$, $x \ne x^*$, then x^* is a strict global solution.

Definition

A point x^* is a local solution of the problem (1) if there exists $\varepsilon > 0$ such that $f(x^*) \le f(x)$ for every $x \in S$ such that $||x - x^*|| \le \varepsilon$. If $f(x^*) < f(x)$ for every $x \in S$, $x \ne x^*$ such that $||x - x^*|| \le \varepsilon$, then we say that x^* is strict local solution.

Optimality conditions

$$\min_{x\in\mathbb{R}^n}f(x),\tag{2}$$

Theorem

Suppose that $f \in C^1(\mathbb{R}^n)$. If x^* is a local solution of (2), then $\nabla f(x^*) = 0$.

Theorem

Suppose that $f \in C^2(\mathbb{R}^n)$. If x^* is a local solution of (2), then

a)
$$\nabla f(x^*) = 0;$$

b)
$$\nabla^2 f(x^*) \succeq 0$$
.

Theorem Suppose that $f \in C^2(\mathbb{R}^n)$. If 1. $\nabla f(x^*) = 0$ and 2. $\nabla^2 f(x^*) \succ 0$,

then x^* is a strict local solution of (2).

Convexity

Definition

A set $S \subseteq \mathbb{R}^n$ is convex if for any $x, y \in S$ and any $\lambda \in [0, 1]$ there holds $\lambda x + (1 - \lambda)y \in S$.

Definition

Let S be a convex set. A function $f : S \to \mathbb{R}$ is convex on S if for any $x, y \in S$ and any $\lambda \in [0, 1]$ there holds

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

Moreover, we say that the function is strictly convex if the previous inequality is strict for all $x \neq y$ and $\lambda \in (0, 1)$.

Theorem

Suppose that $f \in C^1(S)$ where $S \subseteq \mathbb{R}^n$ is a convex set. Then, the function f is convex on S if and only if the following inequality holds for all $x, y \in S$

$$f(y) \ge f(x) + \nabla^T f(x)(y - x). \tag{3}$$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Figure: Convex and non-convex functions.

Theorem

Suppose that $f \in C^2(S)$ where $S \subseteq \mathbb{R}^n$ is a convex set. Then, the following statements hold.

- a) If $\nabla^2 f(x) \succeq 0$ for every $x \in S$, then f is convex on S.
- b) If $\nabla^2 f(x) \succ 0$ for every $x \in S$, then f is strictly convex on S.
- c) If S is open and f is convex on S, then $\nabla^2 f(x) \succeq 0$ for every $x \in S$.

Theorem

Suppose that f is convex on a convex set S. Then, every local minimizer of the function f is also the global minimizer.

Definition

A function f is strongly convex with parameter m > 0 on a convex set S if for any $x, y \in S$ and any $\lambda \in [0, 1]$ there holds

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) - \frac{m}{2}\lambda(1-\lambda)\|x-y\|^2.$$

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla^{\mathsf{T}} f(\mathbf{x}) (\mathbf{y} - \mathbf{x}) + \frac{m}{2} \|\mathbf{x} - \mathbf{y}\|^2,$$

Line search methods

Definition

Consider a point x such $\nabla f(x) \neq 0$. A direction d is called descent direction for f at the point x if there exists $\alpha > 0$ such that

 $f(\mathbf{x} + \alpha \mathbf{d}) < f(\mathbf{x}).$

Figure: Insufficient decrease - small steps

Figure: Insufficient decrease - large steps

(日)

Optimization and data science

Line search methods

Gradient methods

Second order methods

Constrained Optimization

Penalty methods

Figure: Insufficient decrease - insufficiently descent direction.

$$\|\boldsymbol{d}^{\boldsymbol{k}}\| \ge \sigma \|\nabla f(\boldsymbol{x}^{\boldsymbol{k}})\|,\tag{4}$$

$$\nabla^{\mathsf{T}} f(x^k) d^k \le -\theta \| \nabla f(x^k) \| \| d^k \|$$
(5)

$$f(x^{k} + \alpha_{k}d^{k}) \leq f(x^{k}) + \eta \nabla f(x^{k})d^{k} \text{Armijo condition}$$
(6)

 $\nabla f(\boldsymbol{x}^{k} + \alpha_{k}\boldsymbol{d}^{k}) \geq \boldsymbol{c}\nabla f(\boldsymbol{x}^{k}), \boldsymbol{c} \in (,\eta) \text{ Wolfe condition}$ (7)

(日)

Algorithm LS with backtracking

Step 0 Input parameters: $x^0 \in \mathbb{R}^n$, $\beta, \eta \in (0, 1)$, $\theta \in (0, 1]$, $\sigma > 0$, k = 0

- Step 1 Stopping criterion: If $\nabla f(x^k) = 0$ STOP.
- Step 2 Search direction: Choose d^k such that $||d^k|| \ge \sigma ||\nabla f(x^k)||$ and $\nabla^T f(x^k) d^k \le -\theta ||\nabla f(x^k)|| ||d^k||$.

Step 3 Given $\beta \in (0, 1)$, find the smallest nonnegative integer *j* such that $\alpha_k = \beta^j$ satisfies

$$f(\boldsymbol{x}^{k} + \alpha_{k}\boldsymbol{d}^{k}) \leq f(\boldsymbol{x}^{k}) + \eta\alpha_{k}\nabla^{T}f(\boldsymbol{x}^{k})\boldsymbol{d}^{k}.$$

Step 4 Update: Set $x^{k+1} = x^k + \alpha_k d^k$, k = k + 1.

Theorem

Suppose that $f : \mathbb{R}^n \to \mathbb{R}$, $f \in C^1(\mathbb{R}^n)$ and $\nabla^T f(x^k)d^k < 0$. Moreover, assume that the function f is bounded from bellow on the line $\{x^k + \alpha d^k \mid \alpha > 0\}$. Then, there exists $\bar{\alpha} > 0$ such that the Armijo condition holds for all $\alpha \in (0, \bar{\alpha}]$.

Theorem

Suppose that $f : \mathbb{R}^n \to \mathbb{R}$, $f \in C^1(\mathbb{R}^n)$ and f is bounded from bellow. Moreover, assume that the sequence of search directions $\{d^k\}_{k\in\mathbb{N}}$ is bounded. Then, either the Algorithm LS with backtracking terminates after a finite number of iterations \bar{k} at the stationary point $x^{\bar{k}}$ or every accumulation point of the sequence $\{x^k\}_{k\in\mathbb{N}}$ is a stationary point of the function f.

Gradient method

$$d^{k} = -\nabla f(x^{k}). \tag{8}$$

$$\alpha_k = \arg\min_{\alpha>0} f(x^k + \alpha d^k)$$
 - exact line search

Theorem

Suppose that $f \in C^2(\mathbb{R})$ and that the gradient method with the exact line search converges to a point x^* such that $\nabla^2 f(x^*)$ is positive definite, with m and M being the smallest and largest eigenvalues. Then Then

$$f(x^{k+1})-f(x^*)\leq \left(rac{M-m}{M+m}
ight)^2(f(x^k)-f(x^*)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty

Gradient method with fixed step size

$$x^{k+1} = x^k - \alpha \nabla f(x^k). \tag{9}$$

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|.$$
(10)

Theorem

Suppose that $f \in C^2(\mathbb{R}^n)$ is convex and that (10) holds. Then, if $\alpha < 1/L$, the fixed step size negative gradient method defined with (9) satisfies

$$f(x^k) - f(x^*) \le \frac{\|x^0 - x^*\|^2}{2\alpha k}.$$

(日)

Minimizing finite sums

$$\min_{x\in\mathbb{R}^n}f(x),\tag{11}$$

$$f(x) = f_N(x) = \frac{1}{N} \sum_{i=1}^N f_i(x),$$
(12)

- $f : \mathbb{R}^n \to \mathbb{R}$ is a Lipschitz smooth function
- ► $f_i : \mathbb{R}^n \to \mathbb{R}$.
- *f* is bounded from below in \mathbb{R}^n .
- ► N is very large

Optimization and data science Line search methods Gradient methods Second order methods Constrained Optimization

Subsampling

$$f_{k} = \frac{1}{N_{k}} \sum_{i \in \mathcal{N}_{k}} f_{i}(x_{k}), \qquad (13)$$
$$g_{k} = \frac{1}{N_{k}} \sum_{i \in \mathcal{N}_{k}} \nabla f_{i}(x_{k}). \qquad (14)$$

- Smaller N_k cheaper method
- Eventually $N_k = N$ for k large enough
- Many, many scheduling strategies

Stochastic gradient method

- Standard gradient is expensive (*N* is large)
- Training set might be redundant
- Replace the full gradient with an inexpensive stochastic approximation minibatch gradient g_k

Algorithm SGD

Step 0 Choose an initial point x_0 and a sequence of strictly positive steplengths $\{\alpha_k\}$. Set k = 0.

Step 1 Choose randomly and uniformly $i_k \in \{1, ..., N\}$. Set $g_k = \nabla f_{i_k}(x_k)$.

Step 2 Set $x_{k+1} = x_k - \alpha_k g_k$, k = k + 1.

Variance condition:

$$E[\|g_k\|^2] \le M_1 + M_2 \|\nabla f(x_k)\|^2, \tag{15}$$

Theorem

Suppose that *f* has Lipschitz continuous gradient and that it is strongly convex. Let x_* be the minimizer of *f*. Assume that (15) holds at each iteration. Then, if SGD is run with $\alpha_k = \frac{\beta}{\gamma+k}$, $\beta > \frac{1}{\mu}$ and $\gamma > 0$ such that $\alpha_1 \le \frac{1}{LM_2}$, there exists a constant $\nu > 0$ such that

$$E[f(x_k)] - f(x_*) \le \frac{\nu}{\gamma + k}.$$
(16)

Stochastic variance reduction gradient (SVRG) method

- SGD converges sublinearly (very slow)
- The variance of random sampling implies (very) small step size
- Nonconvex problems: $\sum_k \alpha_k = \infty$, $\sum_k \alpha_k^2 = 0$
- Larger N_k in subsampled gradient might reduce the variance but it is more expensive
Algorithm SVRG

- Step 0 Choose an initial point $x_0 \in \mathbb{R}^n$, an inner loop size m > 0, a steplength $\alpha > 0$, the option for the iterate update. Set k = 1.
- Step 1 Outer iteration, full gradient evaluation. Set $\tilde{x}_0 = x_{k-1}$. Compute $\nabla f_N(\tilde{x}_0)$.
- Step 2 Inner iterations

For t = 0, ..., m - 1Uniformly and randomly choose $i_t \in \{1, ..., N\}$. Set $\tilde{x}_{t+1} = \tilde{x}_t - \alpha(\nabla f_{i_t}(\tilde{x}_t) - \nabla f_{i_t}(\tilde{x}_0) + \nabla f_N(\tilde{x}_0))$.

Step 3 Outer iteration, iterate update.

Set $x_k = \tilde{x}_m$ (Option I), k = k + 1. Set $x_k = \tilde{x}_t$ for randomly chosen $t \in \{0, ..., m-1\}$ (Option II), k = k + 1.

- Outer iterations (epochs) full gradient is computed
- Inner iterations (m steps) an unbiased approximation of the gradient is updated randomly

 $\nabla f_{i_t}(\tilde{x}_t) - \nabla f_{i_t}(\tilde{x}_0) + \nabla f_N(\tilde{x}_0)$

- lnner iterations m = 2n (convex), m = 5n (non-convex)
- Full gradient can be replaced by mini-batch gradient
- Two option for the final approximation

Theorem

Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let x_* be the minimizer of f. If m and α satisfy

$$\theta = \frac{1}{\mu\alpha(1 - 2L\alpha)m} + \frac{2L\alpha}{1 - 2L\alpha} < 1, \tag{17}$$

then Algorithm **SVRG** with Option II generates a sequence which converges linearly in expectation

$$E[f(x_k) - f(x_*)] \le \theta^k (f(x_0) - f(x_*)).$$

Theorem

Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let x_* be the minimizer of f. If m and α satisfy

$$heta = (1 - 2\alpha\mu(1 - \alpha L)^m) + \frac{4\alpha L^2}{\mu(1 - \alpha L)} < 1,$$

then Algorithm **SVRG** with Option I generates a sequence which converges linearly in expectation

$$E[x_k-x_*] \leq \theta^k(x_0-x_*).$$

SAG method

- Stochastic Average Gradient tracking method
- Cost of SGD, convergence of FGD

Algorithm SAG

Step 0 Initialization. Choose an initial point $x_0 \in \mathbb{R}^n$, positive steplengths $\{\alpha_k\}$, $y_i = 0$, for i = 1, ..., N. Set k = 0.

Step 1 Stochastic gradient update. Uniformly and randomly choose $i_k \in \{1, ..., N\}$. Set $y_{i_k} = \nabla f_{i_k}(x_k)$.

Step 2 Iteration update. Set

$$x_{k+1} = x_k - \frac{\alpha_k}{N} \sum_{i=1}^N y_i.$$

Set k = k + 1.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Theorem

Suppose that f has Lipschitz continuous gradient and that it is strongly convex. Let x_* be the minimizer of f. If $\alpha_k = \alpha = 1/(16L)$ then

$$E[f(x_k)] - f(x_*) \leq \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^k C_0,$$

where $C_0 > 0$ depends on x_*, x_0, f_N, L, N .

Optimization and data science

Gradient methods

Second order method

Constrained Optimization

Penalty methods

SARAH method

- accumulation of stochastic gradient information
- variance reduction
- biased gradient approximation

Algorithm SARAH

- Step 0 Initialization. Choose an initial point $x_0 \in \mathbb{R}^n$, an inner loop size m > 0, a steplength $\alpha > 0$. Set k = 1.
- Step 1 Outer iteration, full gradient evaluation. Set $\tilde{x}_0 = x_{k-1}$. Compute $y_0 = \nabla f_N(\tilde{x}_0)$. Set $\tilde{x}_1 = \tilde{x}_0 \alpha y_0$.
- Step 2 Inner iterations.

For t = 1, ..., m - 1Uniformly and randomly choose $i_t \in \{1, ..., N\}$. Compute $y_t = \nabla f_{i_t}(\tilde{x}_t) - \nabla f_{i_t}(\tilde{x}_{t-1}) + y_{t-1}$. Set $\tilde{x}_{t+1} = \tilde{x}_t - \alpha y_t$.

Step 3 Outer iteration, iterate update.

Take $x_k = \tilde{x}_t$ for randomly chosen $t \in \{0, ..., m\}$ and set k = k + 1.

Theorem

Suppose that f has Lipschitz continuous gradient and that it is strongly convex and that each function f_i , $1 \le i \le N$ is convex. Let x_* be the minimizer of f. If α and m are such that

$$\sigma = \frac{1}{\mu\alpha(m+1)} + \frac{\alpha L}{2 - \alpha L} < 1, \tag{18}$$

then the sequence $\{\|\nabla f(x_k)\|\}$ generated by Algorithm SARAH satisfy

$$E[\|\nabla f(x_k)\|^2] \leq \sigma^k \|\nabla f(x_0)\|^2.$$

Theorem

Suppose that f has Lipschitz continuous gradient and each function f_i , $1 \le i \le N$ is μ -strongly convex with $\mu > 0$. If $\alpha \le 2/(\mu + L)$ then for any $t \ge 1$

$$\boldsymbol{E}[\|\boldsymbol{y}_t\|^2] \leq \left(1 - \frac{2\mu L\alpha}{\mu + L}\right)^t \boldsymbol{E}[\|\nabla f(\boldsymbol{x}_0)\|^2].$$

The Newton method

$$\min f(x)$$

$$\nabla f(x^{k+1}) = 0$$

$$\nabla f(x^k + d^k) \approx \nabla f(x^k) + \nabla^2 f(x^k) d^k.$$

The Newton equation

$$\nabla f(x^k) + \nabla^2 f(x^k) d^k = 0.$$
⁽¹⁹⁾

$$x^{k+1} = x^k + d^k$$
 or $x^{k+1} = x^k + \alpha_k d^k$ (20)

- Local quadratic convergence
- Expensive (compute $\nabla^2 f(x^k)$, solve (19))
- Suppose that the function *f* is quadratic and strongly convex. Then, the Newton method provides a global minimizer of function *f* in one iteration with arbitrary x⁰.

Local convergence

Theorem

Suppose that the function $f \in C^2(\mathbb{R}^n)$ and there exists $\delta > 0$ such that $\nabla^2 f(x) \succ 0$ and $\nabla^2 f(x)$ is Lipschitz continuous with the constant L for all $x \in B(x^*, \delta)$. Then there exists $\epsilon > 0$ such that the Newton method converges quadratically to the solution x^* for all $x^0 \in B(x^*, \epsilon)$. Moreover, the sequence of the gradient norms converges quadratically to zero.

Line search Newton method

- $f \in C^2$ strongly convex function
- d^k descent direction
- Line search can be applied
- Global convergence
- ► Local (quadratic) rate of convergence $\alpha_k = 1, k \ge k_0$

Quasi Newton methods

► The main idea: approximate the Hessian matrix with $B_k \in \mathbb{R}^{n \times n}$ using the first order information

$$s^k = x^{k+1} - x^k$$
 and $y^k = \nabla f(x^{k+1}) - \nabla f(x^k)$

Mean-value theorem

$$y^{k} = \int_{0}^{1} \nabla^{2} f(x^{k} + ts^{k}) s^{k} dt$$
$$B_{k+1}s^{k} \approx \int_{0}^{1} \nabla^{2} f(x^{k} + ts^{k}) s^{k} dt$$

Secant equation

$$B_{k+1}s^k = y^k \tag{21}$$

Least change secant update

$$m{B}_{k+1} = rgmin \|m{B} - m{B}_k\|$$
 s.t. $m{B}_{k+1}m{s}^k = m{y}^k, m{B} = m{B}^T,$ sparsity...

BFGS formula

$$B_{k+1} = B_k + \frac{y^k (y^k)^T}{(y^k)^T s^k} - \frac{B_k s^k (s^k)^T B_k}{(s^k)^T B_k s^k}$$
(22)

DFP formula

$$B_{k+1} = \left(I - \frac{y^{k}(s^{k})^{T}}{(y^{k})^{T}s^{k}}\right) B_{k} \left(I - \frac{y^{k}(s^{k})^{T}}{(y^{k})^{T}s^{k}}\right) + \frac{y^{k}(y^{k})^{T}}{(y^{k})^{T}s^{k}}$$
(23)

The inverse B_{k+1}^{-1} is computable by SMW formula

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

Optimization and data science

Line search methods

Gradient methods

Second order methods

Penalty methods

$$B_k d^k = -\nabla f(x^k). \tag{24}$$

- Positive definite property of B_k if $(y^k)^T s^k \ge \delta > 0$
- d^k descent direction
- superlinear convergence

Theorem

Suppose that $f \in C^2(\mathbb{R}^n)$. Let $\{x^k\}$ be a sequence generated by a quasi Newton method (24) and assume that $\{x^k\}_{k\in\mathbb{N}}$ converges to a point x^* such that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$. Then $\{x^k\}_{k\in\mathbb{N}}$ converges superlinearly if

$$\lim_{k \to \infty} \frac{\|(B_k - \nabla^2 f(x^*))d^k\|}{\|d^k\|} = 0.$$
 (25)

・ロト・日本・日本・日本・日本・日本

Spectral gradient method

Approximate Hessian is a scalar matrix, $B_k = \gamma_k^{-1} I$. The secant equation yields

$$\gamma_k = \arg\min_{\gamma>0} \|\gamma y^{k-1} - s^{k-1}\|$$

and

$$\gamma_k = rac{(s^{k-1})^T y^{k-1}}{\|y^{k-1}\|^2}.$$

l	\mathbf{a}	ົ	۱.
l	2	σ)
١			/

イロト イヨト イヨト イヨト

Penalty methods

Safeguard conditions (curvature condition does not hold)

 $\bar{\gamma}_{k} = \min\{\gamma_{max}, \max\{\gamma_{k}, \gamma_{min}\}\}$

Very efficient, nonmonotone bahaviour

Gradient methods

Second order methods

Constrained Optimization

Penalty methods

Spectral gradient method for finite sums

 $\min_{x\in\mathbb{R}^n}f(x),$

$$f(x) = f_N(x) = \frac{1}{N} \sum_{i=1}^N f_i(x)$$

Stochastic variance reduction with variable (spectral) step size

Algorithm SVRG - BB

Step 0 Initialization. Choose an initial point $x_0 \in \mathbb{R}^n$, an inner loop size m > 0, an initial steplength $\alpha_0 > 0$. Set k = 1.

Step 1 Outer iteration, full gradient evaluation. Set $\tilde{x}_0 = x_{k-1}$. Compute $\nabla f_N(\tilde{x}_0)$. If k > 0, then set $\alpha_k = \frac{1}{m} \frac{\|x_k - x_{k-1}\|^2}{(x_k - x_{k-1})^T (\nabla f_N(x_k) - \nabla f_N(x_{k-1}))}$ Step 2 Inner iterations For $t = 0, \dots, m-1$ Uniformly and randomly choose $i_t \in \{1, \dots, N\}$. Set $\tilde{x}_{t+1} = \tilde{x}_t - \alpha_k (\nabla f_{i_t}(\tilde{x}_t) - \nabla f_{i_t}(\tilde{x}_0) + \nabla f_N(\tilde{x}_0))$

Step 3 Outer iteration, iterate update. Set $x_k = \tilde{x}_m$ and k = k + 1.

Theorem

Suppose that *f* has Lipschitz continuous gradient and that it is strongly convex. Let x_* be the minimizer of *f*. Define $\theta = (1 - e^{-2\mu/L})/2$. If *m* is chosen such that

$$m>\max\left\{rac{2}{\log(1-2 heta)+2\mu/L},rac{4L^2}{ heta\mu^2}+rac{L}{\mu}
ight\},$$

then SVRG-BB converges linearly in expectation

$$E[\|x_k - x_*\|^2] < (1 - \theta)^k \|\tilde{x}_0 - x_*\|^2.$$

Inexact Newton method

The main idea: solve the Newton equation inexactly

$$\nabla^2 f(x^k) d^k = -\nabla f(x^k) + r^k$$

$$\|r^{k}\| = \|\nabla^{2}f(x^{k})d^{k} + \nabla f(x^{k})\| \le \eta_{k}\|\nabla f(x^{k})\|$$
(27)

- The rate of convergence depends on η_k
 - $\eta_k = \eta \in (0, 1)$ linear convergence
 - ▶ $\eta_k \rightarrow 0$ superlinear convergence
 - $\eta_k = \mathcal{O}(\|\nabla f(x^k)\|)$ quadratic convergence

Subsampled Newton method for finite sum minimization

$$f(x) = f_N(x) = \frac{1}{N} \sum_{i=1}^N f_i(x),$$
(28)

Subsampled (Inexact) Newton method

Subsampled function, gradient, Hessian approximation

$$\nabla^2 f_{\mathcal{D}_k}(\boldsymbol{x}^k) \boldsymbol{s}^k = -\nabla f_{\mathcal{N}_k}(\boldsymbol{x}^k) + \boldsymbol{r}^k, \ \|\boldsymbol{r}^k\| \le \eta_k \|\nabla f_{\mathcal{N}_k}(\boldsymbol{x}^k)\|,$$
(29)

Optimization and data science

Line search methods

Gradient methods

Second order methods

Constrained Optimization Penalty methods

• The subsample size N_k, D_k

• The choice of forcing term η_k - adaptive

$$\eta_{k} = \min\{\bar{\eta}, \frac{|f_{\mathcal{N}_{k}}(x^{k}) - m_{k-1}(s^{k-1})|}{\|\nabla f_{\mathcal{N}_{k-1}}(x^{k-1})\|}\}, \ \bar{\eta} < 1$$
(30)

Theorem

Assume that $f \in C^2$ is strongly convex and that $\nabla^2 f(x)$ is Lipschitz continuous. Assume that \mathcal{D}_k is chosen such that

$$\max_{\substack{\mathcal{D}:|\mathcal{D}|=D\\x\in\mathcal{N}_{\delta^*}(x^*)}} \|
abla^2 f_\mathcal{N}(x) -
abla^2 f_\mathcal{D}(x)\| \leq C\eta_k$$

holds for some $C < (1/\bar{\eta} - 1)\lambda_1$ and η_k is given by (30). Then $\{x^k\}$ converges to x^* locally superlinearly assuming that $N_k = N$ for k large enough.

Convergence in mean square

Relaxing the subsampled Hessian error bound

$$\nabla^2 f_{\mathcal{D}}(x) = \frac{1}{D} \sum_{i=1}^D \nabla^2 f_i(x)$$

$$E(\nabla^2 f_{\mathcal{D}}(x)) = \nabla^2 f_{\mathcal{N}}(x). \tag{31}$$

The Bernstein inequality

$$P(\|\nabla^2 f_{\mathcal{D}}(x) - \nabla^2 f_{\mathcal{N}}(x)\| \le \gamma) \ge 1 - \alpha,$$
(32)

for given $\gamma > 0$ and $\alpha \in (0, 1)$.

Theorem

Assume that $f \in C^2$ is strongly convex and that the subsample \mathcal{D} is chosen randomly and uniformly from \mathcal{N} . Let $\gamma > 0$ and $\alpha \in (0, 1)$ be given. Then

$$P(\|\nabla^2 f_{\mathcal{D}}(x) - \nabla^2 f_{\mathcal{N}}(x)\| \leq \gamma) \geq 1 - \alpha,$$

holds at any point x if the subsample size D satisfies

$$D \ge \frac{2(\ln 2n - \ln \alpha)(\lambda_n^2 + \lambda_n \gamma/3)}{\gamma^2} := \tilde{I}.$$
(33)

Take \mathcal{D}_k such that

$$P(\|\nabla^2 f_{\mathcal{D}}(x) - \nabla^2 f_{\mathcal{N}}(x)\| \le C \max\{\eta_k, \|\nabla f_{\mathcal{N}_k}(x^k)\|\} \ge 1 - \alpha_k$$
(34)

with $\alpha_k \in (0, 1)$.

a) if η_k defined by (30) then

$$E(\|x^{k+1}-x^*\|^2) \le (V_1\tau^{2k}+V_2\alpha_k)E(\|x^k-x^*\|^2);$$

b) if $\eta_k = \bar{\eta}$ is sufficiently small then

$${\sf E}(\|x^{k+1}-x^*\|^2) \le \left(C_1 au^{2k}+C_2ar\eta^2+V_2lpha_k
ight){\sf E}(\|x^k-x^*\|^2).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Constrained optimization

$$\min_{x \in S} f(x), \ S = \{ x \in \mathbb{R}^n \mid h(x) = 0, \ g(x) \le 0 \}.$$
(35)
$$f^* = \inf_{x \in S} f(x).$$
(36)

- Infeasible problems
 - S is empty
 - f is unbounded on S
- Explicit constraints $h(x) = 0, g(x) \le 0$
- Implicit constraints; domain of f

Ex. 1 $f(x) = x^{-2}$. $D = \mathbb{R} \setminus \{0\}$ and $f^* = 0$, but there is no optimal point. Ex. 2 $f(x) = \ln(x)$. $D = \mathbb{R}_+ \setminus \{0\}$ and $f^* = -\infty$. Ex. 3 $f(x) = x \ln(x)$. $D = \mathbb{R}_+ \setminus \{0\}$, $f^* = -e^{-1}$ and the optimal point is $x^* = e^{-1}$. Ex. 4 $f(x) = x^3 - 3x$. No implicit constraints, the optimal value is $f^* = -\infty$, one local minimum at $\tilde{x} = 1$.

Optimization and data science	Line search methods	Gradient methods	Second order methods	Constrained Optimization	Penalty methods
				000000000000000000000000000000000000000	

$$\min_{x\in\mathbb{R}^n}-\sum_{i=1}^k\ln(b_i-x^Ta_i). \tag{37}$$

No explicit constraints

Equivalent form

$$\min_{x \in S} - \sum_{i=1}^{k} \ln(b_i - x^T a_i), \ S = \{x \in \mathbb{R}^n \mid x^T a_i < b_i, i = 1, ..., k.\}.$$
(38)

Convex problems

The problem (35) is convex if the objective function f and the inequality constraints functions $g_1, ..., g_m$ are convex, while the equality constraints functions $h_1, ..., h_p$ are affine.

э

Theorem

Every local solution of a convex constrained problem is a global solution of the same problem.

Theorem

Suppose that $f \in C^1(\mathbb{R}^n)$ and that the problem is convex. Then, x^* is optimal if and only if $x^* \in S$ and for every $y \in S$ there holds

$$\nabla^T f(x^*)(y - x^*) \ge 0.$$
 (39)

Lagrangian function

$$\min_{x \in S} f(x), \ S = \{ x \in \mathbb{R}^n \mid h(x) = 0, \ g(x) \le 0 \}$$

$$L(x,\lambda,\mu) := f(x) + \lambda^{T} g(x) + \mu^{T} h(x) = f(x) + \sum_{i=1}^{p} \lambda_{i} g_{i}(x) + \sum_{j=1}^{m} \mu_{j} h_{j}(x), \quad (40)$$

イロト 不得 トイヨト イヨト 二日

- λ = (λ₁,...,λ_p)^T ∈ ℝ^p Lagrange multipliers associated to inequality constraints
- $\mu = (\mu_1, ..., \mu_m)^T \in \mathbb{R}^m$ Lagrange multipliers associated to equality constraints
- \blacktriangleright λ and μ dual variables

Daulity

The Lagrange dual function

$$I(\lambda,\mu) := \inf_{x \in D} L(x,\lambda,\mu).$$
(41)

The Lagrange dual problem

$$\max_{\lambda \ge 0} I(\lambda, \mu). \tag{42}$$

LDP is convex

• Unique solution (λ^*, μ^*) - dual optimal, optimal Lagrange multipliers

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

KKT optimality conditions

Definition

Strong duality holds if the primal and dual optimal values are attained and equal.

イロト イポト イヨト イヨト 二日

Definition

KKT conditions are:

- a) $g(x^*) \leq 0$ (feasibility inequality constraints).
- b) $h(x^*) = 0$ (feasibility equality constraints).
- c) $\lambda^* \geq 0$ (dual feasibility).
- d) $\lambda_i^* g_i(x^*) = 0$, i = 1, ..., p (complementarity).
- e) $\nabla f(x^*) + \sum_{i=1}^{p} \lambda_i^* \nabla g_i(x^*) + \sum_{i=j}^{m} \mu_j^* \nabla h_j(x^*) = 0$ (optimality).

Necessary conditions if the strong duality holds

ptimization and data science Line search methods Gradient methods Second order methods Constrained Optimization Penalty methods

Theorem

Suppose that x^* and (λ^*, μ^*) are such that the KKT conditions are satisfied and the problem (35) is convex. Then x^* is a solution of the problem (35).

Many, many other optimality conditions...

Linear independence constraint qualification (LICQ)

Definition

LICQ holds at point x^* if the gradients of active constraints at the point x^* are linearly independent.

Theorem

Suppose that x^* is a local solution of the problem (35) and that LICQ holds at the point x^* . Then there are Lagrange multipliers (λ^*, μ^*) such that the KKT conditions are satisfied.
Second order optimality conditions

Let x^* and (λ^*, μ^*) be primal and dual variables that satisfy KKT conditions. Then

$$A_{1} = \{ d \in \mathbb{R}^{n} \mid \nabla^{T} h_{i}(x^{*}) d = 0, i = 1, ..., m \},$$
(43)

$$m{A}_2 = \{m{d} \in \mathbb{R}^n \mid
abla^{ op} g_i(x^*)m{d} = 0 ext{ for all active constraints with } \lambda_i^* > 0\}$$

$$A_3 = \{ d \in \mathbb{R}^n \mid \nabla^T g_i(x^*) d \le 0 \text{ for all active constraints with } \lambda_i^* = 0 \},$$

$$A = A_1 \cap A_2 \cap A_3. \tag{44}$$

イロト イポト イヨト イヨト

Theorem

Suppose that x^* is a local solution of the problem (35) and that LICQ holds at the point x^* . Suppose that the Lagrange multipliers (λ^*, μ^*) are such that the KKT conditions hold. Then,

$$d^T \nabla^2_x L(x^*, \lambda^*, \mu^*) d \ge 0$$
 for all $d \in A$.

Theorem

Suppose that x^* and (λ^*, μ^*) are such that the KKT conditions are satisfied and

$$d^T \nabla^2_x L(x^*, \lambda^*, \mu^*) d > 0$$
 for all $d \in A \setminus \{0\}$.

Then x^* is a strict local solution of the problem (35).

> r A

Linear constraints

$$\min_{x=b} f(x), \tag{45}$$

▶
$$f : \mathbb{R}^n \to \mathbb{R}, f \in C^2(\mathbb{R}^n)$$

f - convex

►
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $rank(A) = m < n$

KKT conditions:

$$\nabla f(x^*) + A^T \mu^* = 0$$
 and $Ax^* = b$ (46)

▲□▶▲□▶▲□▶▲□▶ = のへで

Box constrained optimization

$$\min_{\leq x \leq u} f(x), \tag{47}$$

►
$$I, u \in \mathbb{R}^n_\infty$$

▶ *f* - continuously differentiable on $S = \{x \in \mathbb{R}^n : I \le x \le u\}$

Optimality conditions for box constrained problems

Theorem Let *f* be continuously differentiable. If x^* is a local solution of

 $\min f(x) \text{ s.t. } l \leq x \leq u$

then

$$\frac{\partial f}{\partial x} = \begin{cases} \geq 0, & x_i^* = l_i \\ = 0 & l_i < x_i^* < u_l \\ \leq 0 & x_i^* = u_l \end{cases}$$

◆ロ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ● ● ● ●

Orthogonal projections

Orthogonal distance

$$dist_{\mathcal{S}}(x) = \inf_{y \in \mathcal{S}} \|y - x\|.$$
(48)

Orthogonal projection of point x on a set S

$$P_{\mathcal{S}}(x) = \arg\min_{y \in \mathcal{S}} \|y - x\|.$$
(49)

Optimization and data science

Line search metho

Gradient methods

Second order methods

Constrained Optimization

Penalty methods

Projected gradient direction

$$d = d(x) = P_{\mathcal{S}}(x - \nabla f(x)) - x.$$
(50)

Theorem

Suppose that $f \in C^1(S)$ and $x \in S$. Then the projected gradient direction d defined by (50) satisfies the following:

a)
$$d^T \nabla f(x) \leq - \|d\|^2$$
.

b) d = 0 if and only if x is a stationary point for the problem (47).

Algorithm PG-LS

Step 0 Input parameters: $x^0 \in S$, β , $\eta \in (0, 1)$, k = 0.

- Step 1 Search direction: Compute the projected gradient direction *d* defined by (50). If $d^k = 0$ STOP.
- **Step 2** Step size: Find the smallest nonnegative integer *j* such that $\alpha_k = \beta^j$ satisfies the Armijo condition

$$f(\boldsymbol{x}^{k} + \alpha_{k}\boldsymbol{d}^{k}) \leq f(\boldsymbol{x}^{k}) + \eta\alpha_{k}\nabla^{T}f(\boldsymbol{x}^{k})\boldsymbol{d}^{k}.$$

Step 3 Update: Set $x^{k+1} = x^k + \alpha_k d^k$, k = k + 1.

Theorem

Suppose that $f : \mathbb{R}^n \to \mathbb{R}$, f is bounded from bellow on the feasible set $S = \{x \in \mathbb{R}^n \mid l \le x \le u\}$ and $f \in C^1(S)$. Moreover, assume that the sequence of search directions $\{d^k\}_{k \in \mathbb{N}}$ is bounded. Then, either the Algorithm PG-LS terminates after a finite number of iterations \bar{k} at a stationary point $x^{\bar{k}}$ of the problem (47) or every accumulation point of the sequence $\{x^k\}_{k \in \mathbb{N}}$ is a stationary point of the problem (47).

Penalty function

$$\min_{x \in S} f(x), \ S = \{ x \in \mathbb{R}^n \mid h(x) = 0, \ g(x) \le 0 \}.$$
(51)

$$\min_{x\in\mathbb{R}^n}\Phi(x),\tag{52}$$

$$\Phi(\mathbf{x},\tau) = f(\mathbf{x}) + \tau \rho(\mathbf{x}), \tag{53}$$

- \blacktriangleright ρ measure of constraint violation
- \blacktriangleright τ penalty parameter

$$\rho(\mathbf{x}) = \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{x} \in \mathbf{S}. \tag{54}$$

▲□▶▲□▶▲□▶▲□▶ = のへで

A sequence of penalty problems of the form

$$\min_{\boldsymbol{X}\in\mathbb{R}^n}\Phi(\boldsymbol{X},\tau_k),\tag{55}$$

are solved

The sequence of penalty parameters tends to infinity, i.e.,

$$\lim_{k \to \infty} \tau_k = \infty.$$
 (56)

Definition

The penalty function Φ is exact if there exists $\overline{\tau} > 0$ such that for all $\tau \ge \overline{\tau}$ any local solution of the problem (51) is a local minimizer of the penalty function $\Phi(x, \tau)$.

$$Q_1(x, au) = f(x) + au(\sum_{i=1}^m |h_i(x)| + \sum_{i=1}^p \max\{0, g_i(x)\}).$$

Quadratic penalty for equality constrained problems

$$\min_{h(x)=0} f(x). \tag{57}$$

$$Q(x,\tau) = f(x) + \frac{\tau}{2} (\sum_{i=1}^{m} (h_i(x))^2$$
(58)

Introducing slack variables for inequality constraints

$$\begin{split} \min_{x \in S} f(x), \ S &= \{ x \in \mathbb{R}^n \mid h(x) = 0, \ g(x) \le 0 \} \\ \min_{y \in \tilde{S}} f(x), \ \tilde{S} &= \{ (x,s) \in \mathbb{R}^{n+p}, \ h(x) = 0, \ g(x) + s = 0, \ s \ge 0 \} \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

Algorithm QP

Step 0 Input parameters: Take $x^0 \in \mathbb{R}^n$, $\varepsilon_0 \ge 0$, $\tau_0 > 0$, k = 0.

- Step 1 Initialization: $x_{start}^0 = x^0$.
- Step 2 Solve the subproblem min $Q(x, \tau_k)$ approximately: Start with x_{start}^k , terminate when

$$\|\nabla_{\mathbf{x}} Q(\mathbf{x}^{k}, \tau_{k})\| \le \varepsilon_{k}.$$
(59)

Step 3 Update the penalty parameter: Choose $\tau_{k+1} > \tau_k$. Step 4 Update the tolerance: Choose $\varepsilon_{k+1} \in [0, \varepsilon_k)$. Step 5 Update the starting point: Set $x_{start}^{k+1} = x^k$ and k = k + 1. Go to Step 2.

Theorem

Suppose that $f, h \in C^1(\mathbb{R}^n)$ and that each x^k is the exact global minimizer of function $Q(x, \tau_k)$. Suppose that (56) holds. Then every accumulation point of the sequence $\{x^k\}_{k\in\mathbb{N}}$ generated by Algorithm 12.1 is a solution of the problem (57).

Inexact solution of subproblems

Theorem

Suppose that $f, h \in C^1(\mathbb{R}^n)$ and that $\lim_{k\to\infty} \varepsilon_k = 0$. Suppose that (56) holds. Then every accumulation point x^* of the sequence $\{x^k\}_{k\in\mathbb{N}}$ generated by Algorithm 12.1 at which LICQ holds is a KKT point of the problem (57). Moreover, Lagrange multipliers associated with $x^* = \lim_{k\in K} x^k$ are given by

$$\lim_{k \in \mathcal{K}} \tau_k h(x^k) = \mu^*.$$
(60)

- A. Friedlander, N. Krejić, N. Krklec Jerinkić, Fundamentals of Numerical Optimization, University of Novi Sad Faculty of Sciences, 2019, available at https://www.pmf.uns.ac.rs/studije/epublikacije/matinf/ friedlander_krejic_krklecjerinkic_lectures_fundamentals_ numerical_optimization.pdf
- S.Bellavia, T. Bianconcini, N. Krejić, B. Morini, Subsampled first-order optimization methods with applications in imaging, technical report
- Schmidt M., Le Roux N., Bach F., Minimizing Finite Sums with the Stochastic Average Gradient, Mathematical Programming 162, 1-2, (2017), 83-112.
- Defazio, A., Bach, F., Lacoste-Julien, S., SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, Advances in Neural Information Processing Systems 27 (NIPS 2014),

- Babanezhad R., Ahmed M. O., Virani A., Schmidt M., Konečný J., Sallinen S., Stop wasting my gradients: Practical SVRG, Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 Pages 2251-2259 2015
- Bellavia, S., Krejić, N., Krklec Jerinkić, N., Subsampled Inexact Newton methods for minimizing large sums of convex function, IMA J. Numer. Anal, to appear, DOI: https://doi.org/10.1093/imanum/drz027
- Bellavia, S., Krejić, N., Morini, B., Inexact restoration with subsampled trust-region methods for finite-sum minimization, arXiv preprint, arXiv: 1902.01710,2019
- Bertsekas D.P., Tsitsiklis J.N., Gradient Convergence in Gradient Methods with Errors, SIAM J. Optimization 10(2) (2000), 627-642.

- Bottou, L., Curtis F.C., Nocedal, J. Optimization Methods for Large-Scale Machine Learning, SIAM Review, 60(2), (2018) 223-311.
- Delyon B., Juditsky A., Accelerated stochastic approximation, SIAM J. Optimization, Vol.3, No.4, 1993, pp. 868-881.
- Lichman M., UCI machine learning repository, https://archive.ics.uci.edu/ml/index.php, 2013.
- N. Krejić, Z. Lužanin, Z. Ovcin, I. Stojkovska, Descent direction method with line search for unconstrained optimization in noisy environment. Optimization Methods and Software 30(6): 1164-1184 (2015)
- Nocedal, J., Wright, S. J., Numerical Optimization, Springer Series in Operations Research, Springer, 1999.

- Nguyen, L.M., liu, J., Scheinberg, K., Takač, M., SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient, Proceedings of the 34th International Conference on Machine Learning -Volume 70 Pages 2613-2621
- Robbins H., Monro S., A Stochastic Approximation Method, The Annals of Mathematical Statistics, 22(3) (1951), 400-407.
- Tan, C., Ma, S., Dai, Y., Qian, Y., Barzilai-Bprwein step size for stochastic gradient descent, in Neural Information Processing Systems, pp. 685-693 (2016)
- Yousefian F., Nedic A., Shanbhag U.V., On stochastic gradient and subgradient methods with adaptive steplength sequences, Automatica 48 (1),2012, pp. 56-67.

- Wang, C., Chen, X., Smola, A., Xing, E., Variance Reduction for Stochastic Gradient Optimization, In Advances in Neural Information Processing Systems, 181-189, 2013.
- Johnson, R., Zhang, T., Proceedings of the 26th International Conference on Neural Information Processing Systems Volume 1 Pages 315-323, 2013
- L. N. Vicente, S. Gratton, and R. Garmanjani, Concise Lecture Notes on Optimization Methods for Machine Learning and Data Science, ISE Department, Lehigh University, January 2019.