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What are higher commutators?
Fundamental Properties
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Supernilpotent Algebras

Centralizing Property and Commutators

Definition. Let A be an algebra, α1, α2, η ∈ ConA. Then we say
that α1 centralize α2 modulo η if for all polynomials f (x1, x2) and
a1,b1,u, v vectors from A such that: a1 ≡ b1 (mod α1), u ≡ v
(mod α2) and

f (a1,u) ≡ f (a1, v) (mod η),

we have
f (b1,u) ≡ f (b1, v) (mod η).

Definition. (Freese, Gumm, Hagemann, Herrmann, Hobby, Kiss,
McKenzie,...) [α1, α2] :=

∧
{η ∈ ConA |C (α1, α2; η)}
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Neboǰsa Mudrinski Higher Commutators - Some Results and Open Problems -



Fundamentals
Applications

Open Problems
Refferences

What are higher commutators?
Fundamental Properties
Characterization in Some Special Cases
Supernilpotent Algebras

Another Definition: Matrix Form
Definition. (R.Freese, R.N.McKenzie) Let A be an algebra,
a1,b1 ∈ An, a2,b2 ∈ Am and α1, α2 ∈ ConA. Then MA(α1, α2) is
the subalgebra of A2×2 generated by:

(
a1 a1

b1 b1

)
and

(
a2 b2

a2 b2

)
such that (a1,b1) ∈ α1 and (a2,b2) ∈ α2.

Definition. (R.Freese, R.N.McKenzie) [α1, α2] is the smallest
congruence η of A such that

if (x11, x12) ∈ η then (x21, x22) ∈ η

for all

(
x11 x12

x21 x22

)
∈ MA(α1, α2).
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Ternary Case C (α, β, γ; η)

Definition. Let A be an algebra and α, β, γ, η be congruences of
A. Then we say that α, β centralize γ modulo η if for every
polynomial f (x, y, z) and a,b, c,d,u, v vectors from A such that:
a ≡ b (mod α), c ≡ d (mod β), u ≡ v (mod γ) and

f (a, c,u) ≡ f (a, c, v) (mod η)

f (a,d,u) ≡ f (a,d, v) (mod η)

f (b, c,u) ≡ f (b, c, v) (mod η),

we have f (b,d,u) ≡ f (b,d, v) (mod η).
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Higher Centralizing Property and Higher Commutators

Definition. (Bulatov C (α1, . . . , αn; η)) Let A be an algebra,
α1, . . . , αn, η ∈ ConA. Then we say that α1, . . . , αn−1 centralize
αn modulo η if for all polynomials f (x1, . . . , xn) and
a1, . . . , an−1,b1 . . . ,bn−1,u, v vectors from A such that: ai ≡ bi

(mod αi ), 1 ≤ i ≤ n, u ≡ v (mod αn) and

f (x1, . . . , xn−1,u) ≡ f (x1, . . . , xn−1, v) (mod η),

for all (x1, . . . , xn−1) ∈ {a1,b1} × · · · × {an−1,bn−1} and
(x1, . . . , xn−1) 6= (b1, . . . ,bn−1), we have

f (b1, . . . ,bn−1,u) ≡ f (b1, . . . ,bn−1, v) (mod η).

[α1, . . . , αn] :=
∧
{η ∈ ConA |C (α1, . . . , αn; η)}
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Higher Commutator Relations

Definition. (J. Shaw, 2008) Let A be an algebra and
α1, . . . , αn ∈ ConA. Then MA(α1, . . . , αn) is the subalgebra of
A2n−1×2 generated by:



a1 a1
...

...
a1 a1

b1 b1
...

...
b1 b1


, . . . ,



an−1 an−1

bn−1 bn−1
...

...
...

...
an−1 an−1

bn−1 bn−1


,



an bn
...

...
...

...
...

...
an bn


such that (ai , bi ) ∈ αi for all i ∈ {1, . . . , n}.
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Definition. (J. Shaw, 2008) [α1, . . . , αn] is the smallest
congruence η of A such that

(xi1, xi2) ∈ η for all i ∈ {1, . . . , 2n−1− 1}, then (x2n−11, x2n−12) ∈ η

for all


x11 x12

x21 x22
...

...
...

...
x2n−11 x2n−12

 ∈ MA(α1, . . . , αn).

Two definitions are equivalent!
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Absorbing Polynomials

Definition. Let A be an algebra, let k ∈ N, let p : Ak → A, let
(a0, . . . , ak−1) ∈ Ak , and let o ∈ A. Then p is absorbing at
(a0, . . . , ak−1) with value o if for all (x0, . . . , xk−1) ∈ Ak we have:
if there is an i ∈ {0, 1, . . . , k − 1} such that xi = ai , then
p(x0, . . . , xk−1) = p(a0, . . . , ak−1), and p(a0, . . . , ak−1) = o.

Definition. Let V be an expanded group and n ∈ N. A polynomial
p ∈ PolnV is absorbing if

p(0, x2, . . . , xn) = p(x1, 0, . . . , xn) = · · · = p(x1, x2, . . . , 0) = 0,

for all x1, . . . , xn ∈ V .
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Definition With Absorbing Polynomials

Proposition. [2] Let A be a Mal’cev algebra with a Mal’cev term
m, α0, . . . , αn congruences of A and n ≥ 0. Then [α0, . . . , αn] is
generated as a congruence by the set

T = {
(
c(b0, . . . , bn), c(a0, . . . , an)

)
| b0, . . . , bn, a0 . . . , an ∈ A,

∀i : ai ≡αi bi , c ∈ Poln+1A and

c |{a0,b0}×···×{an,bn} is absorbing at (a0, . . . , an)}.
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Ideals and Congruences

Definition. An ideal of expanded group (V ,+,−, 0,F ) is a normal
subgroup I of the group (V ,+) such that f (a + i)− f (a) ∈ I , for
all k ∈ N, all k-ary fundamental operations f ∈ F and all
a ∈ V k , i ∈ I k .

Proposition. Let V be an expanded group and let I ∈ IdV. Then

γV (I ) := {(v1, v2) ∈ V 2 | v1 − v2 ∈ I}

is an isomorphism from (IdV,∩,+) to (ConV,∧,∨)
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Ternary Case in Expanded Groups

Definition. (S. Scott) If A,B ∈ IdV, V = 〈V ,+,F 〉 then the ideal
[A,B] is generated by the set

{p(a, b) | a ∈ A, b ∈ B, p ∈ Pol2 V

such that p(x , y) = 0 whenever x = 0 ∨ y = 0}.

If A,B,C ∈ IdV, V = 〈V ,+,F 〉 then the ideal [A,B,C ] is
generated by the set

{p(a, b, c) | a ∈ A, b ∈ B, c ∈ C , p ∈ Pol3 V

such that p(x , y , z) = 0 whenever x = 0 ∨ y = 0 ∨ z = 0}.
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Higher Commutator Ideals

Definition. Let n ∈ N. In an expanded group V for
A1, . . . ,An ∈ IdV we define the n-ary commutator ideal of
A1, . . . ,An, in abbreviation [A1, . . . ,An]V, as an ideal of V
generated by

{p(a1, . . . , an) | (a1, . . . , an) ∈ A1 × · · · × An, p is absorbing}.

Theorem. [2] Let V be an expanded group and A1, . . . ,An ∈ IdV
and γV (A1), . . . , γV (An) ∈ ConV the corresponding congruences of
V. Then

γV ([A1, . . . ,An]) = [γV (A1), . . . , γV (An)].
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Generalized Properties of Binary Commutator

Proposition. [2] If A is in a congruence permutable variety then

(HC1) [α1, . . . , αn] ≤
∧n

i=1 αi

(HC2) α1 ≤ β1, . . . , αn ≤ βn ⇒ [α1, . . . , αn] ≤ [β1, . . . , βn]

(HC4) If π is any permutation of {1, . . . , n} then
[α1, . . . , αn] = [απ(1), . . . , απ(n)].

(HC5) [α1, . . . , αn] ≤ η iff C (α1, . . . , αn; η)

(HC6) If η ≤ α1, . . . , αn, then
[α1/η, . . . , αn/η] = ([α1, . . . , αn] ∨ η)/η

(HC7)
∨

i∈I [α1, . . . , αj−1, ρi , αj+1, . . . , αn] =
[α1, . . . , αj−1,

∨
i∈I ρi , αj+1, . . . , αn].
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Some Extra Properties

Proposition. [2] If A is in a congruence permutable variety then

(HC3) [α1, . . . , αn] ≤ [α2, . . . , αn]

(HC8) [α1, . . . , αj , [αj+1, . . . , αk ]] ≤ [α1, α2, . . . , αk ].

In general the equality in (HC8) is not true!
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Higher Commutators in Groups

[A,B] is the normal subgroup generated by the set
{a−1b−1ab | a ∈ A, b ∈ B} for all normal subgroups A,B of G.

Proposition. (P. Mayr, 2009) Let G = (G , ·,−1 , 1) and n ≥ 2. If
N1, . . . ,Nn are normal subgroups of G, then

[N1, . . . ,Nn] =
∏

π∈Sn

[. . . [[Nπ(1),Nπ(2)],Nπ(3)], . . . ,Nπ(n)].
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Higher Commutators in Rings

Proposition. Let R = (R,+, ·,−, 0) be a ring, let n ≥ 2 and let
J1, . . . , Jn be ideals of R. Then:

[J1, . . . , Jn] =
∑
π∈Sn

[. . . [[Jπ(1), Jπ(2)], Jπ(3)] . . . , Jπ(n)].

Proposition. (P. Mayr, 2009) Let R = (R,+, ·,−, 0) be a ring, let
n ≥ 1 and let J1, . . . , Jn be ideals of R. Then:

[J1, . . . , Jn] =
∑
π∈Sn

Jπ(1) · . . . · Jπ(n).
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Important Example

Higher commutators can not be ontained by composing binary
commutators in general!

Example:

[V , [V ,V ]] 6= [V ,V ,V ] for V = 〈Z4,+4, 2xyz〉
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Multilinear Expanded Groups

Definition. Let (V ,+,−, 0,F ) be an expanded group and k ∈ N.
An operation f : V k → V is called multilinear if

f (x1, . . . , xi−1, y + z , xi+1, . . . , xk) =

= f (x1, . . . , xi−1, y , xi+1, . . . , xk) + f (x1, . . . , xi−1, z , xi+1, . . . , xk)

for every i ∈ {1, . . . , k}, and all x1, . . . , xi−1, xi+1, . . . , xk , y , z ∈ V .

Definition. For k ≥ 2, a multilinear expanded group of degree k is
an expanded group (V ,+,−, 0,F ), where all f ∈ F are multilinear
operations and all operations have at most k arguments.

Neboǰsa Mudrinski Higher Commutators - Some Results and Open Problems -



Fundamentals
Applications

Open Problems
Refferences

What are higher commutators?
Fundamental Properties
Characterization in Some Special Cases
Supernilpotent Algebras

Multilinear Expanded Groups

Definition. Let (V ,+,−, 0,F ) be an expanded group and k ∈ N.
An operation f : V k → V is called multilinear if

f (x1, . . . , xi−1, y + z , xi+1, . . . , xk) =

= f (x1, . . . , xi−1, y , xi+1, . . . , xk) + f (x1, . . . , xi−1, z , xi+1, . . . , xk)

for every i ∈ {1, . . . , k}, and all x1, . . . , xi−1, xi+1, . . . , xk , y , z ∈ V .

Definition. For k ≥ 2, a multilinear expanded group of degree k is
an expanded group (V ,+,−, 0,F ), where all f ∈ F are multilinear
operations and all operations have at most k arguments.
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Commutator Algebra

Definition. For n ≥ 2 we define L to be the language with ope-
ration symbols f2, . . . , fn, where each fi has arity i . We abbreviate
fk(x1, . . . , xk) by [x1, . . . , xk ] for all k ∈ {2, . . . , n}.

We define an algebra I(V) on the language L whose universe is the
set IdV such that:

f
I(V)
k (A1, . . . ,Ak) := [A1, . . . ,Ak ]

for each k ∈ {2, . . . , n} and for all A1, . . . ,Ak ∈ IdV.
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Neboǰsa Mudrinski Higher Commutators - Some Results and Open Problems -



Fundamentals
Applications

Open Problems
Refferences

What are higher commutators?
Fundamental Properties
Characterization in Some Special Cases
Supernilpotent Algebras

Higher Commutators in Multilinear Expanded Groups

Example: t =

[
x3, x1, [

[
x4, [x7, x2], [x6, x9, x8], x10

]
, x5]

]

tI(V)(A1, . . . ,A10) =

[
A3,A1, [

[
A4, [A7,A2], [A6,A9,A8],A10

]
,A5]

]
Theorem. [3] Let V be a multilinear expanded group of degree k,
let n ≥ 2, and let A1, . . . ,An be ideals of V. Let T be the set of
those terms t ∈ L with the following properties:

� In t, each of the variables x1, . . . , xn occurs exactly once.

� t contains only operation symbols in {fi | i ≤ k}.
Then [A1, . . . ,An] is the join of all ideals

{tI(V)(A1, . . . ,An) | t ∈ T}.

.
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Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if [1, 1] = 0.

Definition. An algebra is called nilpotent, if [[[1, 1], 1], . . . , 1] = 0.

Definition. An algebra is called supernilpotent, if there exists a
k ≥ 0 such that

[ 1, . . . , 1︸ ︷︷ ︸
k+1

] = 0.

An algebra is k-supernilpotent if k is the smallest natural number
with the property: [ 1, . . . , 1︸ ︷︷ ︸

k+1

] = 0.
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with the property: [ 1, . . . , 1︸ ︷︷ ︸

k+1

] = 0.
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What are higher commutators?
Fundamental Properties
Characterization in Some Special Cases
Supernilpotent Algebras

Variety of Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of
all k-supernilpotent algebras is a variety for all k ∈ N.

Abelian Algebras ⊆ Supernilpotent Algebras ⊆ Nilpotent Algebras

It is real inequality in general!

Example: Algebra A = (Z6,+6, f ) where

f =

(
0 1 2 3 4 5
4 0 4 0 4 0

)
is nilpotent but not supernilpotent!

Theorem. [2] Let A be a finite nilpotent algebra of finite type
that generates a congruence modular variety. Then, A factors as a
direct product of algebras of prime power cardinality if and only if
A is a supernilpotent Mal’cev algebra.
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Supernilpotent in Multilinear Expanded Groups

Theorem. [3] Let n, k ∈ N and let V be a multilinear expanded
group of degree n that is nilpotent of class k. Then, V is
nk -supernilpotent.
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Polynomial Completeness in Groups

Problem: Decide weather arbitrary function of A is a polynomial of
A.

Theorem. (P.Mayr, 2009) Let G be a finite group all whose Sylow
subgroups are abelian. Then f : G k → G , k ∈ N is polynomial iff f
preserves all subgroups of Gmax{4,|G |} that contain
{(g , . . . , g) ∈ Gmax{4,|G |} | g ∈ G}.
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Polynomial Interpolation in Rings

Approach: We check weather f can be interpolated by a
polynomial function in arbitrarily many places.

Theorem. (P. Mayr, 2009) Let R be a finite local ring with 1, and
let n ∈ N0 be such that Jacobson radical J satisfies Jn+1 = 0.
Then a function f : Rk → R is a polynomial on R iff for all
S ⊆ Rk with |S | ≤ |R|n there exists a polynomial function p on R
such that f |S = p|S .
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Decidability of Affine Completeness

Definition. An algebra A is k-affine complete if every k-ary
function on A that preserves congruences of A is a polynomial.

An algebra A is affine complete if it is k-affine complete for every
k ≥ 1.

Theorem. [2] There is an algorithm that decides whether a finite
nilpotent algebra of finite type that is a product of algebras of
prime power order and generates a congruence modular variety is
affine complete.
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Identity Checking Problem

Let A be an algebra.

� Given: s and t arbitrary polynomial terms of A

� Do s and t induce the same polynomial functions on A?

Theorem. [2] The polynomial equivalence problem for a finite
nilpotent algebra A of finite type that is a product of algebras of
prime power order and generates a congruence modular variety has
polynomial time complexity in the length of the input terms.
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Constantive Mal’cev Clones

Definition. A polynomial Mal’cev clone is a clone that contains a
Mal’cev term and all constant operations.

Invk(A,PolA) is the set of all at most k-ary relations on the set A
that are invariant under all polynomial functions of A.

If R is a set of relations on A, we denote the set of all the
operations on A that preserve all relations from the set R by
Comp(A,R).
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Finitely Related
Theorem. [1] Let A be a finite Mal’cev algebra. If there exists an
n ≥ 2 such that [ 1, . . . , 1︸ ︷︷ ︸

n

] = 0, then

PolA = Comp(A, Inv|A|
n
(A,PolA)).

Theorem. [1] Let A be a finite Mal’cev algebra whose congruence
lattice is of height at most two. We define n ≥ 2 to be the
smallest natural number such that [ 1, . . . , 1︸ ︷︷ ︸

n

] = 0 if such n exists,

otherwise n := 1. Then,

PolA = Comp(A, Invmax{4,|A|,|A|n}(A,PolA)).
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Gumm’s Theorem

Theorem. (H.P.Gumm) Let A be a Mal’cev algebra. Then A is
Abelian iff there exist a ring R and A is polynomially equivalent to
a left R-module.

Question: Is there a similar characterization for supernilpotent
Mal’cev algebras?

Theorem. Let A be an n-supernilpotent Mal’cev algebra. Then
the polynomial clone of A is generated by all polynomials of arity
at most n − 1 and the Mal’cev term.
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Special 4-ary Relations

Definition. Let A be a Mal’cev algebra, m a Mal’cev polynomial
on A and α, β, η ∈ ConA

ρ(α, β, η, m) := {(a, b, c , d) ∈ A4 | a ≡ b (mod α),

b ≡ c (mod β),

m(a, b, c) ≡ d (mod η)}

Cen(A,m) := {ρ(α, β, η, m) |α centralizes β modulo η}
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Commutator Preserving Functions

Lemma. Let A be a Mal’cev algebra, m a Mal’cev polynomial on
A and f : Ak → A. Then the following are equivalent:

(1) f is a commutator preserving function of A

(2) f preserves all relations in ConA and Cen(A,m)

Corollary. Let A be a Mal’cev algebra and m a Mal’cev polynomial
on A. Then all commutator preserving functions of A form a clone.
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Some Open Problems

Is it the same true for higher commutators:

Do the functions that preserve the higher commutators of a
Mal’cev algebra form a clone?

Is there a generalization of the set of relations Cen(A,m) for
higher commutators?
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Partial solution in Expanded Groups

Theorem. (E.Aichinger, N.Mudrinski - unpublished) Let
V = (V ,+,−, 0,F ) be the expanded group such that (V ,+) is an
Abelian group and ConV is the three element chain {0, α, 1}.
Then the following are equivalent:

(1) [1, 1, 1] = 0

(2) for all f ∈ Pol(V), f preserves ρ where

ρ = {(v1, . . . , v8) | − v1 + v4 − v5 + v8 ≡ 0 (mod α)

−v1 + v2 − v7 + v8 ≡ 0 (mod α)

−v1 + v2 − v3 + v4 ≡ 0 (mod α)

v1 − v2 + v3 − v4 + v5 − v6 + v7 − v8 = 0}.
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Congruence Modular Varieties

Generalize Bulatov’s definition to congruence modular varieties.

What among the properties (HC1)-(HC8) are true?

Proposition. If A is in a congruence modular variety then

(HC1) [α1, . . . , αn] ≤
∧n

i=1 αi

(HC2) α1 ≤ β1, . . . , αn ≤ βn ⇒ [α1, . . . , αn] ≤ [β1, . . . , βn]

(HC3) [α1, . . . , αn] ≤ [α2, . . . , αn]

Open: (HC4)-(HC8)?

Neboǰsa Mudrinski Higher Commutators - Some Results and Open Problems -



Fundamentals
Applications

Open Problems
Refferences

Commutator Preserving Functions
Congruence Modular Varieties
Maximality

Congruence Modular Varieties

Generalize Bulatov’s definition to congruence modular varieties.

What among the properties (HC1)-(HC8) are true?

Proposition. If A is in a congruence modular variety then

(HC1) [α1, . . . , αn] ≤
∧n

i=1 αi

(HC2) α1 ≤ β1, . . . , αn ≤ βn ⇒ [α1, . . . , αn] ≤ [β1, . . . , βn]

(HC3) [α1, . . . , αn] ≤ [α2, . . . , αn]

Open: (HC4)-(HC8)?
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Generalize Bulatov’s definition to congruence modular varieties.

What among the properties (HC1)-(HC8) are true?

Proposition. If A is in a congruence modular variety then

(HC1) [α1, . . . , αn] ≤
∧n

i=1 αi

(HC2) α1 ≤ β1, . . . , αn ≤ βn ⇒ [α1, . . . , αn] ≤ [β1, . . . , βn]

(HC3) [α1, . . . , αn] ≤ [α2, . . . , αn]

Open: (HC4)-(HC8)?
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Maximality

Theorem. (R.Freese, R.N.McKenzie) Let A be an algebra in
congruence modular variety. Then binary commutator operation
[, ] : ConA× ConA → ConA is the largest operation that satisfies:

� [α, β] ≤ α ∧ β

� [(α ∨ θ)/θ, (β ∨ θ)/θ] = ([α, β] ∨ θ)/θ.

Let A be an algebra in congruence permutable variety.

Question: Is the n-ary commutator operation
[, . . . , ] : (ConA)n → ConA the largest operation that satisfies
(HC1) and (HC6)?

Is it true in congruence modular varieties?
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