Higher Commutators
 - Some Results and Open Problems -

Nebojša Mudrinski

Department of Mathematics and Informatics, University of Novi Sad, Serbia, nmudrinski@dmi.uns.ac.rs

Novi Sad, 22th November 2010

Centralizing Property and Commutators

Definition. Let \mathbf{A} be an algebra, $\alpha_{1}, \alpha_{2}, \eta \in \operatorname{Con} \mathbf{A}$. Then we say that α_{1} centralize α_{2} modulo η if for all polynomials $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{u}, \mathbf{v}$ vectors from \mathbf{A} such that: $\mathbf{a}_{1} \equiv \mathbf{b}_{1}\left(\bmod \alpha_{1}\right), \mathbf{u} \equiv \mathbf{v}$ $\left(\bmod \alpha_{2}\right)$ and

$$
f\left(\mathbf{a}_{1}, \mathbf{u}\right) \equiv f\left(\mathbf{a}_{1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

we have

$$
f\left(\mathbf{b}_{1}, \mathbf{u}\right) \equiv f\left(\mathbf{b}_{1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

Centralizing Property and Commutators

Definition. Let \mathbf{A} be an algebra, $\alpha_{1}, \alpha_{2}, \eta \in \operatorname{Con} \mathbf{A}$. Then we say that α_{1} centralize α_{2} modulo η if for all polynomials $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{u}, \mathbf{v}$ vectors from \mathbf{A} such that: $\mathbf{a}_{1} \equiv \mathbf{b}_{1}\left(\bmod \alpha_{1}\right), \mathbf{u} \equiv \mathbf{v}$ $\left(\bmod \alpha_{2}\right)$ and

$$
f\left(\mathbf{a}_{1}, \mathbf{u}\right) \equiv f\left(\mathbf{a}_{1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

we have

$$
f\left(\mathbf{b}_{1}, \mathbf{u}\right) \equiv f\left(\mathbf{b}_{1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

Definition. (Freese, Gumm, Hagemann, Herrmann, Hobby, Kiss, McKenzie,..) $\left[\alpha_{1}, \alpha_{2}\right]:=\bigwedge\left\{\eta \in \operatorname{Con} \mathbf{A} \mid C\left(\alpha_{1}, \alpha_{2} ; \eta\right)\right\}$

Another Definition: Matrix Form

Definition. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra, $\mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbf{A}^{n}, \mathbf{a}_{2}, \mathbf{b}_{2} \in \mathbf{A}^{m}$ and $\alpha_{1}, \alpha_{2} \in \operatorname{Con} \mathbf{A}$. Then $M_{\mathbf{A}}\left(\alpha_{1}, \alpha_{2}\right)$ is the subalgebra of $\mathbf{A}^{2 \times 2}$ generated by:

Another Definition: Matrix Form

Definition. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra, $\mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbf{A}^{n}, \mathbf{a}_{2}, \mathbf{b}_{2} \in \mathbf{A}^{m}$ and $\alpha_{1}, \alpha_{2} \in \operatorname{Con} \mathbf{A}$. Then $M_{\mathbf{A}}\left(\alpha_{1}, \alpha_{2}\right)$ is the subalgebra of $\mathbf{A}^{2 \times 2}$ generated by:

$$
\left(\begin{array}{ll}
\mathbf{a}_{1} & \mathbf{a}_{1} \\
\mathbf{b}_{1} & \mathbf{b}_{1}
\end{array}\right) \text { and }\left(\begin{array}{ll}
\mathbf{a}_{2} & \mathbf{b}_{2} \\
\mathbf{a}_{2} & \mathbf{b}_{2}
\end{array}\right)
$$

Another Definition: Matrix Form

Definition. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra, $\mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbf{A}^{n}, \mathbf{a}_{2}, \mathbf{b}_{2} \in \mathbf{A}^{m}$ and $\alpha_{1}, \alpha_{2} \in \operatorname{Con} \mathbf{A}$. Then $M_{\mathbf{A}}\left(\alpha_{1}, \alpha_{2}\right)$ is the subalgebra of $\mathbf{A}^{2 \times 2}$ generated by:

$$
\left(\begin{array}{ll}
\mathbf{a}_{1} & \mathbf{a}_{1} \\
\mathbf{b}_{1} & \mathbf{b}_{1}
\end{array}\right) \text { and }\left(\begin{array}{ll}
\mathbf{a}_{2} & \mathbf{b}_{2} \\
\mathbf{a}_{2} & \mathbf{b}_{2}
\end{array}\right)
$$

such that $\left(\mathbf{a}_{1}, \mathbf{b}_{1}\right) \in \alpha_{1}$ and $\left(\mathbf{a}_{2}, \mathbf{b}_{2}\right) \in \alpha_{2}$.

Another Definition: Matrix Form

Definition. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra, $\mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbf{A}^{n}, \mathbf{a}_{2}, \mathbf{b}_{2} \in \mathbf{A}^{m}$ and $\alpha_{1}, \alpha_{2} \in \operatorname{Con} \mathbf{A}$. Then $M_{\mathbf{A}}\left(\alpha_{1}, \alpha_{2}\right)$ is the subalgebra of $\mathbf{A}^{2 \times 2}$ generated by:

$$
\left(\begin{array}{ll}
\mathbf{a}_{1} & \mathbf{a}_{1} \\
\mathbf{b}_{1} & \mathbf{b}_{1}
\end{array}\right) \text { and }\left(\begin{array}{ll}
\mathbf{a}_{2} & \mathbf{b}_{2} \\
\mathbf{a}_{2} & \mathbf{b}_{2}
\end{array}\right)
$$

such that $\left(\mathbf{a}_{1}, \mathbf{b}_{1}\right) \in \alpha_{1}$ and $\left(\mathbf{a}_{2}, \mathbf{b}_{2}\right) \in \alpha_{2}$.
Definition. (R.Freese, R.N.McKenzie) $\left[\alpha_{1}, \alpha_{2}\right]$ is the smallest congruence η of \mathbf{A} such that

Another Definition: Matrix Form

Definition. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra, $\mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbf{A}^{n}, \mathbf{a}_{2}, \mathbf{b}_{2} \in \mathbf{A}^{m}$ and $\alpha_{1}, \alpha_{2} \in \operatorname{Con} \mathbf{A}$. Then $M_{\mathbf{A}}\left(\alpha_{1}, \alpha_{2}\right)$ is the subalgebra of $\mathbf{A}^{2 \times 2}$ generated by:

$$
\left(\begin{array}{ll}
\mathbf{a}_{1} & \mathbf{a}_{1} \\
\mathbf{b}_{1} & \mathbf{b}_{1}
\end{array}\right) \text { and }\left(\begin{array}{ll}
\mathbf{a}_{2} & \mathbf{b}_{2} \\
\mathbf{a}_{2} & \mathbf{b}_{2}
\end{array}\right)
$$

such that $\left(\mathbf{a}_{1}, \mathbf{b}_{1}\right) \in \alpha_{1}$ and $\left(\mathbf{a}_{2}, \mathbf{b}_{2}\right) \in \alpha_{2}$.
Definition. (R.Freese, R.N.McKenzie) $\left[\alpha_{1}, \alpha_{2}\right]$ is the smallest congruence η of \mathbf{A} such that

$$
\text { if }\left(x_{11}, x_{12}\right) \in \eta \text { then }\left(x_{21}, x_{22}\right) \in \eta
$$

for all $\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right) \in M_{\mathbf{A}}\left(\alpha_{1}, \alpha_{2}\right)$.

Ternary Case $C(\alpha, \beta, \gamma ; \eta)$

Definition. Let A be an algebra and $\alpha, \beta, \gamma, \eta$ be congruences of A. Then we say that α, β centralize γ modulo η if for every polynomial $f(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{u}, \mathbf{v}$ vectors from \mathbf{A} such that: $\mathbf{a} \equiv \mathbf{b}(\bmod \alpha), \mathbf{c} \equiv \mathbf{d}(\bmod \beta), \mathbf{u} \equiv \mathbf{v}(\bmod \gamma)$ and

$$
\begin{aligned}
& f(\mathbf{a}, \mathbf{c}, \mathbf{u}) \equiv f(\mathbf{a}, \mathbf{c}, \mathbf{v}) \quad(\bmod \eta) \\
& f(\mathbf{a}, \mathbf{d}, \mathbf{u}) \equiv f(\mathbf{a}, \mathbf{d}, \mathbf{v}) \\
& f(\mathbf{b o d} \eta) \\
& f(\cos , \mathbf{u}) \equiv f(\mathbf{b}, \mathbf{c}, \mathbf{v}) \quad(\bmod \eta)
\end{aligned}
$$

we have $f(\mathbf{b}, \mathbf{d}, \mathbf{u}) \equiv f(\mathbf{b}, \mathbf{d}, \mathbf{v})(\bmod \eta)$.

Higher Centralizing Property and Higher Commutators

Definition. (Bulatov $C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)$) Let \mathbf{A} be an algebra, $\alpha_{1}, \ldots, \alpha_{n}, \eta \in \operatorname{Con} \mathbf{A}$. Then we say that $\alpha_{1}, \ldots, \alpha_{n-1}$ centralize α_{n} modulo η if for all polynomials $f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}, \mathbf{b}_{1} \ldots, \mathbf{b}_{n-1}, \mathbf{u}, \mathbf{v}$ vectors from \mathbf{A} such that: $\mathbf{a}_{i} \equiv \mathbf{b}_{i}$ $\left(\bmod \alpha_{i}\right), 1 \leq i \leq n, \mathbf{u} \equiv \mathbf{v}\left(\bmod \alpha_{n}\right)$ and

$$
f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}, \mathbf{u}\right) \equiv f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

for all $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right) \in\left\{\mathbf{a}_{1}, \mathbf{b}_{1}\right\} \times \cdots \times\left\{\mathbf{a}_{n-1}, \mathbf{b}_{n-1}\right\}$ and $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right) \neq\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right)$, we have

$$
f\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}, \mathbf{u}\right) \equiv f\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

Higher Centralizing Property and Higher Commutators

Definition. (Bulatov $C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)$) Let \mathbf{A} be an algebra, $\alpha_{1}, \ldots, \alpha_{n}, \eta \in \operatorname{Con} \mathbf{A}$. Then we say that $\alpha_{1}, \ldots, \alpha_{n-1}$ centralize α_{n} modulo η if for all polynomials $f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}, \mathbf{b}_{1} \ldots, \mathbf{b}_{n-1}, \mathbf{u}, \mathbf{v}$ vectors from \mathbf{A} such that: $\mathbf{a}_{i} \equiv \mathbf{b}_{i}$ $\left(\bmod \alpha_{i}\right), 1 \leq i \leq n, \mathbf{u} \equiv \mathbf{v}\left(\bmod \alpha_{n}\right)$ and

$$
f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}, \mathbf{u}\right) \equiv f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

for all $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right) \in\left\{\mathbf{a}_{1}, \mathbf{b}_{1}\right\} \times \cdots \times\left\{\mathbf{a}_{n-1}, \mathbf{b}_{n-1}\right\}$ and $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right) \neq\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right)$, we have

$$
f\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}, \mathbf{u}\right) \equiv f\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

$\left[\alpha_{1}, \ldots, \alpha_{n}\right]:=\bigwedge\left\{\eta \in \operatorname{Con} \mathbf{A} \mid C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)\right\}$

Higher Commutator Relations

Definition. (J. Shaw, 2008) Let \mathbf{A} be an algebra and $\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{Con} \mathbf{A}$. Then $M_{\mathbf{A}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the subalgebra of $\mathbf{A}^{2^{n-1} \times 2}$ generated by:

Higher Commutator Relations

Definition. (J. Shaw, 2008) Let A be an algebra and $\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{Con} \mathbf{A}$. Then $M_{\mathbf{A}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the subalgebra of $\mathbf{A}^{2^{n-1} \times 2}$ generated by:

$$
\left(\begin{array}{cc}
a_{1} & a_{1} \\
\vdots & \vdots \\
a_{1} & a_{1} \\
b_{1} & b_{1} \\
\vdots & \vdots \\
b_{1} & b_{1}
\end{array}\right), \ldots,\left(\begin{array}{cc}
a_{n-1} & a_{n-1} \\
b_{n-1} & b_{n-1} \\
\vdots & \vdots \\
\vdots & \vdots \\
a_{n-1} & a_{n-1} \\
b_{n-1} & b_{n-1}
\end{array}\right),\left(\begin{array}{cc}
a_{n} & b_{n} \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)
$$

Higher Commutator Relations

Definition. (J. Shaw, 2008) Let A be an algebra and $\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{Con} \mathbf{A}$. Then $M_{\mathbf{A}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the subalgebra of $\mathbf{A}^{2^{n-1} \times 2}$ generated by:

$$
\left(\begin{array}{cc}
a_{1} & a_{1} \\
\vdots & \vdots \\
a_{1} & a_{1} \\
b_{1} & b_{1} \\
\vdots & \vdots \\
b_{1} & b_{1}
\end{array}\right), \ldots,\left(\begin{array}{cc}
a_{n-1} & a_{n-1} \\
b_{n-1} & b_{n-1} \\
\vdots & \vdots \\
\vdots & \vdots \\
a_{n-1} & a_{n-1} \\
b_{n-1} & b_{n-1}
\end{array}\right),\left(\begin{array}{cc}
a_{n} & b_{n} \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)
$$

such that $\left(a_{i}, b_{i}\right) \in \alpha_{i}$ for all $i \in\{1, \ldots, n\}$.

Definition. (J. Shaw, 2008) $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is the smallest congruence η of \mathbf{A} such that

Definition. (J. Shaw, 2008) $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is the smallest congruence η of \mathbf{A} such that
$\left(x_{i 1}, x_{i 2}\right) \in \eta$ for all $i \in\left\{1, \ldots, 2^{n-1}-1\right\}$, then $\left(x_{2^{n-1} 1}, x_{2^{n-1} 2}\right) \in \eta$
for all $\left(\begin{array}{cc}x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ \vdots & \vdots \\ x_{2^{n-1} 1} & x_{2^{n-12}}\end{array}\right) \in M_{\mathbf{A}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Definition. (J. Shaw, 2008) $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is the smallest congruence η of \mathbf{A} such that
$\left(x_{i 1}, x_{i 2}\right) \in \eta$ for all $i \in\left\{1, \ldots, 2^{n-1}-1\right\}$, then $\left(x_{2^{n-1} 1}, x_{2^{n-1} 2}\right) \in \eta$
for all $\left(\begin{array}{cc}x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ \vdots & \vdots \\ x_{2^{n-1} 1} & x_{2^{n-1} 2}\end{array}\right) \in M_{\mathbf{A}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
Two definitions are equivalent!

Absorbing Polynomials

Definition. Let \mathbf{A} be an algebra, let $k \in \mathbb{N}$, let $p: A^{k} \rightarrow A$, let $\left(a_{0}, \ldots, a_{k-1}\right) \in A^{k}$, and let $o \in A$. Then p is absorbing at $\left(a_{0}, \ldots, a_{k-1}\right)$ with value o if for all $\left(x_{0}, \ldots, x_{k-1}\right) \in A^{k}$ we have: if there is an $i \in\{0,1, \ldots, k-1\}$ such that $x_{i}=a_{i}$, then $p\left(x_{0}, \ldots, x_{k-1}\right)=p\left(a_{0}, \ldots, a_{k-1}\right)$, and $p\left(a_{0}, \ldots, a_{k-1}\right)=0$.

Absorbing Polynomials

Definition. Let \mathbf{A} be an algebra, let $k \in \mathbb{N}$, let $p: A^{k} \rightarrow A$, let $\left(a_{0}, \ldots, a_{k-1}\right) \in A^{k}$, and let $o \in A$. Then p is absorbing at $\left(a_{0}, \ldots, a_{k-1}\right)$ with value o if for all $\left(x_{0}, \ldots, x_{k-1}\right) \in A^{k}$ we have: if there is an $i \in\{0,1, \ldots, k-1\}$ such that $x_{i}=a_{i}$, then $p\left(x_{0}, \ldots, x_{k-1}\right)=p\left(a_{0}, \ldots, a_{k-1}\right)$, and $p\left(a_{0}, \ldots, a_{k-1}\right)=0$.

Definition. Let \mathbf{V} be an expanded group and $n \in \mathbb{N}$. A polynomial $p \in \operatorname{Pol}_{\mathrm{n}} \mathbf{V}$ is absorbing if

$$
p\left(0, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}, 0, \ldots, x_{n}\right)=\cdots=p\left(x_{1}, x_{2}, \ldots, 0\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in V$.

Definition With Absorbing Polynomials

Proposition. [2] Let A be a Mal'cev algebra with a Mal'cev term $\mathrm{m}, \alpha_{0}, \ldots, \alpha_{n}$ congruences of \mathbf{A} and $n \geq 0$. Then $\left[\alpha_{0}, \ldots, \alpha_{n}\right]$ is generated as a congruence by the set

Definition With Absorbing Polynomials

Proposition. [2] Let \mathbf{A} be a Mal'cev algebra with a Mal'cev term $\mathrm{m}, \alpha_{0}, \ldots, \alpha_{n}$ congruences of \mathbf{A} and $n \geq 0$. Then $\left[\alpha_{0}, \ldots, \alpha_{n}\right.$] is generated as a congruence by the set
$T=\left\{\left(c\left(b_{0}, \ldots, b_{n}\right), c\left(a_{0}, \ldots, a_{n}\right)\right) \mid b_{0}, \ldots, b_{n}, a_{0} \ldots, a_{n} \in A\right.$,
$\forall i: a_{i} \equiv{ }_{\alpha_{i}} b_{i}, c \in \operatorname{Pol}_{n+1} \mathbf{A}$ and
$\left.c\right|_{\left\{a_{0}, b_{0}\right\} \times \cdots \times\left\{a_{n}, b_{n}\right\}}$ is absorbing at $\left.\left(a_{0}, \ldots, a_{n}\right)\right\}$.

Ideals and Congruences

Definition. An ideal of expanded group $(V,+,-, 0, F)$ is a normal subgroup I of the group $(V,+)$ such that $f(\mathbf{a}+\mathbf{i})-f(\mathbf{a}) \in I$, for all $k \in \mathbb{N}$, all k-ary fundamental operations $f \in F$ and all $\mathbf{a} \in V^{k}, \mathbf{i} \in I^{k}$.

Ideals and Congruences

Definition. An ideal of expanded group $(V,+,-, 0, F)$ is a normal subgroup I of the group $(V,+)$ such that $f(\mathbf{a}+\mathbf{i})-f(\mathbf{a}) \in I$, for all $k \in \mathbb{N}$, all k-ary fundamental operations $f \in F$ and all $\mathbf{a} \in V^{k}, \mathbf{i} \in I^{k}$.

Proposition. Let \mathbf{V} be an expanded group and let $I \in \operatorname{ld} \mathbf{V}$. Then

$$
\gamma v(I):=\left\{\left(v_{1}, v_{2}\right) \in V^{2} \mid v_{1}-v_{2} \in I\right\}
$$

is an isomorphism from $(\operatorname{Id} \mathbf{V}, \cap,+)$ to $(\operatorname{Con} \mathbf{V}, \wedge, \vee)$

Ternary Case in Expanded Groups

Definition. (S. Scott) If $A, B \in \operatorname{Id} \mathbf{V}, \mathbf{V}=\langle V,+, F\rangle$ then the ideal $[A, B]$ is generated by the set

$$
\left\{p(a, b) \mid a \in A, b \in B, p \in \mathrm{Pol}_{2} \mathbf{V}\right.
$$

such that $p(x, y)=0$ whenever $x=0 \vee y=0\}$.

Ternary Case in Expanded Groups

Definition. (S. Scott) If $A, B \in \operatorname{Id} \mathbf{V}, \mathbf{V}=\langle V,+, F\rangle$ then the ideal $[A, B]$ is generated by the set

$$
\left\{p(a, b) \mid a \in A, b \in B, p \in \mathrm{Pol}_{2} \mathbf{V}\right.
$$

such that $p(x, y)=0$ whenever $x=0 \vee y=0\}$.

If $A, B, C \in \operatorname{ld} \mathbf{V}, \mathbf{V}=\langle V,+, F\rangle$ then the ideal $[A, B, C]$ is generated by the set

$$
\left\{p(a, b, c) \mid a \in A, b \in B, c \in C, p \in \mathrm{Pol}_{3} \mathbf{V}\right.
$$

such that $p(x, y, z)=0$ whenever $x=0 \vee y=0 \vee z=0\}$.

Higher Commutator Ideals

Definition. Let $n \in \mathbb{N}$. In an expanded group \mathbf{V} for $A_{1}, \ldots, A_{n} \in \mathrm{Id} \mathbf{V}$ we define the n-ary commutator ideal of A_{1}, \ldots, A_{n}, in abbreviation $\left[A_{1}, \ldots, A_{n}\right] \mathbf{V}$, as an ideal of \mathbf{V} generated by

$$
\left\{p\left(a_{1}, \ldots, a_{n}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \cdots \times A_{n}, p \text { is absorbing }\right\} .
$$

Higher Commutator Ideals

Definition. Let $n \in \mathbb{N}$. In an expanded group \mathbf{V} for $A_{1}, \ldots, A_{n} \in \mathrm{Id} \mathbf{V}$ we define the n-ary commutator ideal of A_{1}, \ldots, A_{n}, in abbreviation $\left[A_{1}, \ldots, A_{n}\right] \mathbf{V}$, as an ideal of \mathbf{V} generated by

$$
\left\{p\left(a_{1}, \ldots, a_{n}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \cdots \times A_{n}, p \text { is absorbing }\right\} .
$$

Theorem. [2] Let \mathbf{V} be an expanded group and $A_{1}, \ldots, A_{n} \in \operatorname{Id} \mathbf{V}$ and $\gamma_{V}\left(A_{1}\right), \ldots, \gamma_{v}\left(A_{n}\right) \in \mathbf{C o n} \mathbf{V}$ the corresponding congruences of V. Then

$$
\gamma_{v}\left(\left[A_{1}, \ldots, A_{n}\right]\right)=\left[\gamma_{v}\left(A_{1}\right), \ldots, \gamma_{v}\left(A_{n}\right)\right] .
$$

Generalized Properties of Binary Commutator

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then $(\mathrm{HC} 1)\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$

Generalized Properties of Binary Commutator

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then (HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$

Generalized Properties of Binary Commutator

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then (HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
(HC4) If π is any permutation of $\{1, \ldots, n\}$ then

$$
\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left[\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right]
$$

Generalized Properties of Binary Commutator

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then (HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
(HC4) If π is any permutation of $\{1, \ldots, n\}$ then

$$
\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left[\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right]
$$

(HC5) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \eta$ iff $C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)$

Generalized Properties of Binary Commutator

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then
(HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
(HC4) If π is any permutation of $\{1, \ldots, n\}$ then

$$
\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left[\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right]
$$

(HC5) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \eta$ iff $C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)$
(HC6) If $\eta \leq \alpha_{1}, \ldots, \alpha_{n}$, then

$$
\left[\alpha_{1} / \eta, \ldots, \alpha_{n} / \eta\right]=\left(\left[\alpha_{1}, \ldots, \alpha_{n}\right] \vee \eta\right) / \eta
$$

Generalized Properties of Binary Commutator

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then
(HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
(HC4) If π is any permutation of $\{1, \ldots, n\}$ then

$$
\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left[\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right]
$$

(HC5) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \eta$ iff $C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)$
(HC6) If $\eta \leq \alpha_{1}, \ldots, \alpha_{n}$, then
$\left[\alpha_{1} / \eta, \ldots, \alpha_{n} / \eta\right]=\left(\left[\alpha_{1}, \ldots, \alpha_{n}\right] \vee \eta\right) / \eta$
(HC7) $\bigvee_{i \in I}\left[\alpha_{1}, \ldots, \alpha_{j-1}, \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{n}\right]=$
$\left[\alpha_{1}, \ldots, \alpha_{j-1}, \bigvee_{i \in I} \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{n}\right]$.

Some Extra Properties

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then $(\mathrm{HC} 3)\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{2}, \ldots, \alpha_{n}\right]$

Some Extra Properties

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then (HC3) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{2}, \ldots, \alpha_{n}\right]$
(HC8) $\left[\alpha_{1}, \ldots, \alpha_{j},\left[\alpha_{j+1}, \ldots, \alpha_{k}\right]\right] \leq\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right]$.

Some Extra Properties

Proposition. [2] If \mathbf{A} is in a congruence permutable variety then (HC3) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{2}, \ldots, \alpha_{n}\right]$
(HC8) $\left[\alpha_{1}, \ldots, \alpha_{j},\left[\alpha_{j+1}, \ldots, \alpha_{k}\right]\right] \leq\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right]$.
In general the equality in (HC8) is not true!

Higher Commutators in Groups

$[A, B]$ is the normal subgroup generated by the set $\left\{a^{-1} b^{-1} a b \mid a \in A, b \in B\right\}$ for all normal subgroups A, B of \mathbf{G}.

Higher Commutators in Groups

$[A, B]$ is the normal subgroup generated by the set $\left\{a^{-1} b^{-1} a b \mid a \in A, b \in B\right\}$ for all normal subgroups A, B of \mathbf{G}.

Proposition. (P. Mayr, 2009) Let $\mathbf{G}=\left(G, \cdot,{ }^{-1}, 1\right)$ and $n \geq 2$. If N_{1}, \ldots, N_{n} are normal subgroups of \mathbf{G}, then

$$
\left[N_{1}, \ldots, N_{n}\right]=\prod_{\pi \in S_{n}}\left[\ldots\left[\left[N_{\pi(1)}, N_{\pi(2)}\right], N_{\pi(3)}\right], \ldots, N_{\pi(n)}\right] .
$$

Higher Commutators in Rings

Proposition. Let $\mathbf{R}=(R,+, \cdot,-, 0)$ be a ring, let $n \geq 2$ and let J_{1}, \ldots, J_{n} be ideals of \mathbf{R}. Then:

$$
\left[J_{1}, \ldots, J_{n}\right]=\sum_{\pi \in S_{n}}\left[\ldots\left[\left[J_{\pi(1)}, J_{\pi(2)}\right], J_{\pi(3)}\right] \ldots, J_{\pi(n)}\right]
$$

Higher Commutators in Rings

Proposition. Let $\mathbf{R}=(R,+, \cdot,-, 0)$ be a ring, let $n \geq 2$ and let J_{1}, \ldots, J_{n} be ideals of \mathbf{R}. Then:

$$
\left[J_{1}, \ldots, J_{n}\right]=\sum_{\pi \in S_{n}}\left[\ldots\left[\left[J_{\pi(1)}, J_{\pi(2)}\right], J_{\pi(3)}\right] \ldots, J_{\pi(n)}\right]
$$

Proposition. (P. Mayr, 2009) Let $\mathbf{R}=(R,+, \cdot,-, 0)$ be a ring, let $n \geq 1$ and let J_{1}, \ldots, J_{n} be ideals of \mathbf{R}. Then:

$$
\left[J_{1}, \ldots, J_{n}\right]=\sum_{\pi \in S_{n}} J_{\pi(1)} \cdot \ldots \cdot J_{\pi(n)}
$$

Important Example

Higher commutators can not be ontained by composing binary commutators in general!

Important Example

Higher commutators can not be ontained by composing binary commutators in general!

Example:

$$
[V,[V, V]] \neq[V, V, V] \text { for } \mathbf{V}=\left\langle\mathbb{Z}_{4},+_{4}, 2 x y z\right\rangle
$$

Multilinear Expanded Groups

Definition. Let $(V,+,-, 0, F)$ be an expanded group and $k \in \mathbb{N}$. An operation $f: V^{k} \rightarrow V$ is called multilinear if

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{i-1}, y+z, x_{i+1}, \ldots, x_{k}\right)= \\
=f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{k}\right)+f\left(x_{1}, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_{k}\right)
\end{gathered}
$$

for every $i \in\{1, \ldots, k\}$, and all $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}, y, z \in V$.

Multilinear Expanded Groups

Definition. Let $(V,+,-, 0, F)$ be an expanded group and $k \in \mathbb{N}$. An operation $f: V^{k} \rightarrow V$ is called multilinear if

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{i-1}, y+z, x_{i+1}, \ldots, x_{k}\right)= \\
=f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{k}\right)+f\left(x_{1}, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_{k}\right)
\end{gathered}
$$

for every $i \in\{1, \ldots, k\}$, and all $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}, y, z \in V$.

Definition. For $k \geq 2$, a multilinear expanded group of degree k is an expanded group $(V,+,-, 0, F)$, where all $f \in F$ are multilinear operations and all operations have at most k arguments.

Commutator Algebra

Definition. For $n \geq 2$ we define \mathcal{L} to be the language with operation symbols f_{2}, \ldots, f_{n}, where each f_{i} has arity i. We abbreviate $\mathrm{f}_{k}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)$ by $\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right]$ for all $k \in\{2, \ldots, n\}$.

Commutator Algebra

Definition. For $n \geq 2$ we define \mathcal{L} to be the language with operation symbols f_{2}, \ldots, f_{n}, where each f_{i} has arity i. We abbreviate $\mathrm{f}_{k}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)$ by $\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right]$ for all $k \in\{2, \ldots, n\}$.

We define an algebra $\mathbf{I}(\mathbf{V})$ on the language \mathcal{L} whose universe is the set IdV such that:

$$
\mathrm{f}_{k}^{\mathbf{\prime} \mathbf{V})}\left(A_{1}, \ldots, A_{k}\right):=\left[A_{1}, \ldots, A_{k}\right]
$$

for each $k \in\{2, \ldots, n\}$ and for all $A_{1}, \ldots, A_{k} \in \operatorname{Id} \mathbf{V}$.

Higher Commutators in Multilinear Expanded Groups

Example: $\left.t=\left[x_{3}, x_{1},\left[x_{4},\left[x_{7}, x_{2}\right],\left[x_{6}, x_{9}, x_{8}\right], x_{10}\right], x_{5}\right]\right]$

Higher Commutators in Multilinear Expanded Groups

Example: $t=\left[x_{3}, x_{1},\left[\left[x_{4},\left[x_{7}, x_{2}\right],\left[x_{6}, x_{9}, x_{8}\right], x_{10}\right], x_{5}\right]\right]$
$\mathrm{t}^{\mathbf{l}(\mathbf{V})}\left(A_{1}, \ldots, A_{10}\right)=\left[A_{3}, A_{1},\left[\left[A_{4},\left[A_{7}, A_{2}\right],\left[A_{6}, A_{9}, A_{8}\right], A_{10}\right], A_{5}\right]\right]$

Higher Commutators in Multilinear Expanded Groups

Example: $t=\left[x_{3}, x_{1},\left[\left[x_{4},\left[x_{7}, x_{2}\right],\left[x_{6}, x_{9}, x_{8}\right], x_{10}\right], x_{5}\right]\right]$
$\mathrm{t}^{\mathbf{l}(\mathbf{V})}\left(A_{1}, \ldots, A_{10}\right)=\left[A_{3}, A_{1},\left[\left[A_{4},\left[A_{7}, A_{2}\right],\left[A_{6}, A_{9}, A_{8}\right], A_{10}\right], A_{5}\right]\right]$
Theorem. [3] Let \mathbf{V} be a multilinear expanded group of degree k, let $n \geq 2$, and let A_{1}, \ldots, A_{n} be ideals of \mathbf{V}. Let T be the set of those terms $\mathrm{t} \in \mathcal{L}$ with the following properties:

Higher Commutators in Multilinear Expanded Groups

Example: $t=\left[x_{3}, x_{1},\left[\left[x_{4},\left[x_{7}, x_{2}\right],\left[x_{6}, x_{9}, x_{8}\right], x_{10}\right], x_{5}\right]\right]$
$\mathrm{t}^{\mathbf{l}(\mathbf{V})}\left(A_{1}, \ldots, A_{10}\right)=\left[A_{3}, A_{1},\left[\left[A_{4},\left[A_{7}, A_{2}\right],\left[A_{6}, A_{9}, A_{8}\right], A_{10}\right], A_{5}\right]\right]$
Theorem. [3] Let \mathbf{V} be a multilinear expanded group of degree k, let $n \geq 2$, and let A_{1}, \ldots, A_{n} be ideals of \mathbf{V}. Let T be the set of those terms $\mathrm{t} \in \mathcal{L}$ with the following properties:

- In t, each of the variables x_{1}, \ldots, x_{n} occurs exactly once.

Higher Commutators in Multilinear Expanded Groups

Example: $t=\left[x_{3}, x_{1},\left[\left[x_{4},\left[x_{7}, x_{2}\right],\left[x_{6}, x_{9}, x_{8}\right], x_{10}\right], x_{5}\right]\right]$
$\mathrm{t}^{\mathbf{l}(\mathbf{V})}\left(A_{1}, \ldots, A_{10}\right)=\left[A_{3}, A_{1},\left[\left[A_{4},\left[A_{7}, A_{2}\right],\left[A_{6}, A_{9}, A_{8}\right], A_{10}\right], A_{5}\right]\right]$
Theorem. [3] Let \mathbf{V} be a multilinear expanded group of degree k, let $n \geq 2$, and let A_{1}, \ldots, A_{n} be ideals of \mathbf{V}. Let T be the set of those terms $\mathrm{t} \in \mathcal{L}$ with the following properties:

- In t, each of the variables x_{1}, \ldots, x_{n} occurs exactly once.
- t contains only operation symbols in $\left\{\mathrm{f}_{i} \mid i \leq k\right\}$.

Higher Commutators in Multilinear Expanded Groups

Example: $t=\left[x_{3}, x_{1},\left[\left[x_{4},\left[x_{7}, x_{2}\right],\left[x_{6}, x_{9}, x_{8}\right], x_{10}\right], x_{5}\right]\right]$
$\mathrm{t}^{\mathbf{l}(\mathbf{V})}\left(A_{1}, \ldots, A_{10}\right)=\left[A_{3}, A_{1},\left[\left[A_{4},\left[A_{7}, A_{2}\right],\left[A_{6}, A_{9}, A_{8}\right], A_{10}\right], A_{5}\right]\right]$
Theorem. [3] Let \mathbf{V} be a multilinear expanded group of degree k, let $n \geq 2$, and let A_{1}, \ldots, A_{n} be ideals of \mathbf{V}. Let T be the set of those terms $\mathrm{t} \in \mathcal{L}$ with the following properties:

- In t , each of the variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ occurs exactly once.
- t contains only operation symbols in $\left\{\mathrm{f}_{i} \mid i \leq k\right\}$.

Then $\left[A_{1}, \ldots, A_{n}\right]$ is the join of all ideals

$$
\left\{\mathrm{t}^{\mathbf{l}(\mathbf{V})}\left(A_{1}, \ldots, A_{n}\right) \mid \mathrm{t} \in T\right\}
$$

Fundamentals
Applications Open Problems

Refferences

Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if $[1,1]=0$.

Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if $[1,1]=0$.
Definition. An algebra is called nilpotent, if $[[[1,1], 1], \ldots, 1]=0$.

Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if $[1,1]=0$.
Definition. An algebra is called nilpotent, if $[[[1,1], 1], \ldots, 1]=0$.
Definition. An algebra is called supernilpotent, if there exists a $k \geq 0$ such that

$$
[\underbrace{1, \ldots, 1}_{k+1}]=0 \text {. }
$$

Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if $[1,1]=0$.
Definition. An algebra is called nilpotent, if $[[[1,1], 1], \ldots, 1]=0$.
Definition. An algebra is called supernilpotent, if there exists a $k \geq 0$ such that

$$
[\underbrace{1, \ldots, 1}_{k+1}]=0 \text {. }
$$

An algebra is k-supernilpotent if k is the smallest natural number with the property: $[\underbrace{1, \ldots, 1}_{k+1}]=0$.

Variety of Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Variety of Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras

Variety of Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras
It is real inequality in general!

Variety of Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras
It is real inequality in general!
Example: Algebra $\mathbf{A}=\left(\mathbb{Z}_{6},{ }_{6}, f\right)$ where
$f=\left(\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5 \\ 4 & 0 & 4 & 0 & 4 & 0\end{array}\right)$ is nilpotent but not supernilpotent!

Variety of Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras
It is real inequality in general!

Example: Algebra $\mathbf{A}=\left(\mathbb{Z}_{6},+_{6}, f\right)$ where
$f=\left(\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5 \\ 4 & 0 & 4 & 0 & 4 & 0\end{array}\right)$ is nilpotent but not supernilpotent!
Theorem. [2] Let \mathbf{A} be a finite nilpotent algebra of finite type that generates a congruence modular variety. Then, \mathbf{A} factors as a direct product of algebras of prime power cardinality if and only if \mathbf{A} is a supernilpotent Mal'cev algebra.

Supernilpotent in Multilinear Expanded Groups

Theorem. [3] Let $n, k \in \mathbb{N}$ and let \mathbf{V} be a multilinear expanded group of degree n that is nilpotent of class k. Then, \mathbf{V} is n^{k}-supernilpotent.

Polynomial Completeness in Groups

Problem: Decide weather arbitrary function of \mathbf{A} is a polynomial of A.

Polynomial Completeness in Groups

Problem: Decide weather arbitrary function of \mathbf{A} is a polynomial of A.

Theorem. (P.Mayr, 2009) Let G be a finite group all whose Sylow subgroups are abelian. Then $f: G^{k} \rightarrow G, k \in \mathbb{N}$ is polynomial iff f preserves all subgroups of $\mathbf{G}^{\max \{4,|G|\}}$ that contain $\left\{(g, \ldots, g) \in G^{\max \{4,|G|\}} \mid g \in G\right\}$.

Polynomial Interpolation in Rings

Approach: We check weather f can be interpolated by a polynomial function in arbitrarily many places.

Polynomial Interpolation in Rings

Approach: We check weather f can be interpolated by a polynomial function in arbitrarily many places.

Theorem. (P. Mayr, 2009) Let \mathbf{R} be a finite local ring with 1 , and let $n \in \mathbb{N}_{0}$ be such that Jacobson radical J satisfies $J^{n+1}=0$. Then a function $f: R^{k} \rightarrow R$ is a polynomial on \mathbf{R} iff for all $S \subseteq R^{k}$ with $|S| \leq|R|^{n}$ there exists a polynomial function p on \mathbf{R} such that $\left.f\right|_{S}=\left.p\right|_{s}$.

Decidability of Affine Completeness

Definition. An algebra \mathbf{A} is k-affine complete if every k-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

Decidability of Affine Completeness

Definition. An algebra \mathbf{A} is k-affine complete if every k-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

An algebra \mathbf{A} is affine complete if it is k-affine complete for every $k \geq 1$.

Decidability of Affine Completeness

Definition. An algebra \mathbf{A} is k-affine complete if every k-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

An algebra \mathbf{A} is affine complete if it is k-affine complete for every $k \geq 1$.

Theorem. [2] There is an algorithm that decides whether a finite nilpotent algebra of finite type that is a product of algebras of prime power order and generates a congruence modular variety is affine complete.

Identity Checking Problem

Let \mathbf{A} be an algebra.

- Given: s and t arbitrary polynomial terms of \mathbf{A}

Identity Checking Problem

Let \mathbf{A} be an algebra.

- Given: s and t arbitrary polynomial terms of \mathbf{A}
- Do s and t induce the same polynomial functions on \mathbf{A} ?

Identity Checking Problem

Let \mathbf{A} be an algebra.

- Given: s and t arbitrary polynomial terms of \mathbf{A}
- Do s and t induce the same polynomial functions on \mathbf{A} ?

Theorem. [2] The polynomial equivalence problem for a finite nilpotent algebra \mathbf{A} of finite type that is a product of algebras of prime power order and generates a congruence modular variety has polynomial time complexity in the length of the input terms.

Constantive Mal'cev Clones

Definition. A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.

Constantive Mal'cev Clones

Definition. A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.
$\operatorname{lnv}^{k}(A, \operatorname{Pol} \mathbf{A})$ is the set of all at most k-ary relations on the set A that are invariant under all polynomial functions of \mathbf{A}.

Constantive Mal'cev Clones

Definition. A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.
$\operatorname{lnv}^{k}(A, \operatorname{Pol} \mathbf{A})$ is the set of all at most k-ary relations on the set A that are invariant under all polynomial functions of \mathbf{A}.

If R is a set of relations on A, we denote the set of all the operations on A that preserve all relations from the set R by $\operatorname{Comp}(A, R)$.

Finitely Related

Theorem. [1] Let A be a finite Mal'cev algebra. If there exists an $n \geq 2$ such that $[\underbrace{1, \ldots, 1}_{n}]=0$, then

$$
\operatorname{Pol} \mathbf{A}=\operatorname{Comp}\left(A, \operatorname{Inv}{ }^{|A|^{n}}(A, \operatorname{Pol} \mathbf{A})\right) .
$$

Finitely Related

Theorem. [1] Let A be a finite Mal'cev algebra. If there exists an $n \geq 2$ such that $[\underbrace{1, \ldots, 1}_{n}]=0$, then

$$
\operatorname{Pol} \mathbf{A}=\operatorname{Comp}\left(A, \operatorname{lnv}^{|A|^{n}}(A, \operatorname{Pol} \mathbf{A})\right)
$$

Theorem. [1] Let \mathbf{A} be a finite Mal'cev algebra whose congruence lattice is of height at most two. We define $n \geq 2$ to be the smallest natural number such that $[\underbrace{1, \ldots, 1}_{n}]=0$ if such n exists, otherwise $n:=1$. Then,

$$
\operatorname{Pol} \mathbf{A}=\operatorname{Comp}\left(A, \operatorname{lnv} v^{\max \left\{4,|A|,|A|^{n}\right\}}(A, \operatorname{Pol} \mathbf{A})\right) .
$$

Gumm's Theorem

Theorem. (H.P.Gumm) Let \mathbf{A} be a Mal'cev algebra. Then \mathbf{A} is Abelian iff there exist a ring R and \mathbf{A} is polynomially equivalent to a left R-module.

Gumm's Theorem

Theorem. (H.P.Gumm) Let \mathbf{A} be a Mal'cev algebra. Then \mathbf{A} is Abelian iff there exist a ring R and \mathbf{A} is polynomially equivalent to a left R-module.

Question: Is there a similar characterization for supernilpotent Mal'cev algebras?

Gumm's Theorem

Theorem. (H.P.Gumm) Let \mathbf{A} be a Mal'cev algebra. Then \mathbf{A} is Abelian iff there exist a ring R and \mathbf{A} is polynomially equivalent to a left R-module.

Question: Is there a similar characterization for supernilpotent Mal'cev algebras?

Theorem. Let \mathbf{A} be an n-supernilpotent Mal'cev algebra. Then the polynomial clone of \mathbf{A} is generated by all polynomials of arity at most $n-1$ and the Mal'cev term.

Special 4-ary Relations

Definition. Let \mathbf{A} be a Mal'cev algebra, m a Mal'cev polynomial on \mathbf{A} and $\alpha, \beta, \eta \in \operatorname{Con} \mathbf{A}$

$$
\begin{gathered}
\rho(\alpha, \beta, \eta, m):=\left\{(a, b, c, d) \in A^{4} \mid a \equiv b \quad(\bmod \alpha),\right. \\
b \equiv c \quad(\bmod \beta) \\
m(a, b, c) \equiv d \quad(\bmod \eta)\}
\end{gathered}
$$

Special 4-ary Relations

Definition. Let \mathbf{A} be a Mal'cev algebra, m a Mal'cev polynomial on \mathbf{A} and $\alpha, \beta, \eta \in \operatorname{Con} \mathbf{A}$

$$
\begin{gathered}
\rho(\alpha, \beta, \eta, m):=\left\{(a, b, c, d) \in A^{4} \mid a \equiv b \quad(\bmod \alpha),\right. \\
b \equiv c \quad(\bmod \beta) \\
m(a, b, c) \equiv d \quad(\bmod \eta)\}
\end{gathered}
$$

$\operatorname{Cen}(\mathbf{A}, m):=\{\rho(\alpha, \beta, \eta, m) \mid \alpha$ centralizes β modulo $\eta\}$

Commutator Preserving Functions

Lemma. Let A be a Mal'cev algebra, m a Mal'cev polynomial on \mathbf{A} and $f: A^{k} \rightarrow A$. Then the following are equivalent:
(1) f is a commutator preserving function of \mathbf{A}

Commutator Preserving Functions

Lemma. Let A be a Mal'cev algebra, m a Mal'cev polynomial on
\mathbf{A} and $f: A^{k} \rightarrow A$. Then the following are equivalent:
(1) f is a commutator preserving function of \mathbf{A}
(2) f preserves all relations in $\operatorname{Con} \mathbf{A}$ and $\operatorname{Cen}(\mathbf{A}, m)$

Commutator Preserving Functions

Lemma. Let \mathbf{A} be a Mal'cev algebra, m a Mal'cev polynomial on \mathbf{A} and $f: A^{k} \rightarrow A$. Then the following are equivalent:
(1) f is a commutator preserving function of \mathbf{A}
(2) f preserves all relations in $\operatorname{Con} \mathbf{A}$ and $\operatorname{Cen}(\mathbf{A}, m)$

Corollary. Let A be a Mal'cev algebra and m a Mal'cev polynomial on \mathbf{A}. Then all commutator preserving functions of A form a clone.

Some Open Problems

Is it the same true for higher commutators:
Do the functions that preserve the higher commutators of a Mal'cev algebra form a clone?

Some Open Problems

Is it the same true for higher commutators:
Do the functions that preserve the higher commutators of a Mal'cev algebra form a clone?

Is there a generalization of the set of relations $\operatorname{Cen}(\mathbf{A}, m)$ for higher commutators?

Partial solution in Expanded Groups

Theorem. (E.Aichinger, N.Mudrinski - unpublished) Let $\mathbf{V}=(V,+,-, 0, F)$ be the expanded group such that $(V,+)$ is an Abelian group and Con \mathbf{V} is the three element chain $\{0, \alpha, 1\}$. Then the following are equivalent:

Partial solution in Expanded Groups

Theorem. (E.Aichinger, N.Mudrinski - unpublished) Let $\mathbf{V}=(V,+,-, 0, F)$ be the expanded group such that $(V,+)$ is an Abelian group and Con \mathbf{V} is the three element chain $\{0, \alpha, 1\}$. Then the following are equivalent:
(1) $[1,1,1]=0$

Partial solution in Expanded Groups

Theorem. (E.Aichinger, N.Mudrinski - unpublished) Let $\mathbf{V}=(V,+,-, 0, F)$ be the expanded group such that $(V,+)$ is an Abelian group and Con \mathbf{V} is the three element chain $\{0, \alpha, 1\}$.
Then the following are equivalent:
(1) $[1,1,1]=0$
(2) for all $f \in \operatorname{Pol}(\mathbf{V}), f$ preserves ρ where

$$
\begin{aligned}
& \rho=\left\{\left(v_{1}, \ldots, v_{8}\right) \mid-v_{1}+v_{4}-v_{5}+v_{8} \equiv 0 \quad(\bmod \alpha)\right. \\
&-v_{1}+v_{2}-v_{7}+v_{8} \equiv 0 \quad(\bmod \alpha) \\
&-v_{1}+v_{2}-v_{3}+v_{4} \equiv 0 \quad(\bmod \alpha) \\
& v_{1}-\left.v_{2}+v_{3}-v_{4}+v_{5}-v_{6}+v_{7}-v_{8}=0\right\} .
\end{aligned}
$$

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.
What among the properties (HC1)-(HC8) are true?

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.
What among the properties (HC1)-(HC8) are true?
Proposition. If \mathbf{A} is in a congruence modular variety then
$(\mathrm{HC} 1)\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.
What among the properties (HC1)-(HC8) are true?
Proposition. If \mathbf{A} is in a congruence modular variety then
(HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.
What among the properties (HC1)-(HC8) are true?
Proposition. If \mathbf{A} is in a congruence modular variety then
(HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
(HC3) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{2}, \ldots, \alpha_{n}\right]$

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.
What among the properties (HC1)-(HC8) are true?
Proposition. If \mathbf{A} is in a congruence modular variety then
(HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
(HC3) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{2}, \ldots, \alpha_{n}\right]$
Open: $(\mathrm{HC} 4)-(\mathrm{HC} 8) ?$

Maximality

Theorem. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra in congruence modular variety. Then binary commutator operation [,] : Con $\mathbf{A} \times$ Con $\mathbf{A} \rightarrow$ Con \mathbf{A} is the largest operation that satisfies:

- $[\alpha, \beta] \leq \alpha \wedge \beta$
- $[(\alpha \vee \theta) / \theta,(\beta \vee \theta) / \theta]=([\alpha, \beta] \vee \theta) / \theta$.

Maximality

Theorem. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra in congruence modular variety. Then binary commutator operation $[]:, \operatorname{Con} \mathbf{A} \times$ Con $\mathbf{A} \rightarrow$ Con \mathbf{A} is the largest operation that satisfies:

- $[\alpha, \beta] \leq \alpha \wedge \beta$
- $[(\alpha \vee \theta) / \theta,(\beta \vee \theta) / \theta]=([\alpha, \beta] \vee \theta) / \theta$.

Let \mathbf{A} be an algebra in congruence permutable variety.

Maximality

Theorem. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra in congruence modular variety. Then binary commutator operation [,] : Con $\mathbf{A} \times \operatorname{Con} \mathbf{A} \rightarrow \operatorname{Con} \mathbf{A}$ is the largest operation that satisfies:

- $[\alpha, \beta] \leq \alpha \wedge \beta$
- $[(\alpha \vee \theta) / \theta,(\beta \vee \theta) / \theta]=([\alpha, \beta] \vee \theta) / \theta$.

Let \mathbf{A} be an algebra in congruence permutable variety.
Question: Is the n-ary commutator operation $[, \ldots]:,(\operatorname{Con} \mathbf{A})^{n} \rightarrow$ Con \mathbf{A} the largest operation that satisfies (HC1) and (HC6)?

Maximality

Theorem. (R.Freese, R.N.McKenzie) Let \mathbf{A} be an algebra in congruence modular variety. Then binary commutator operation $[]:, \operatorname{Con} \mathbf{A} \times$ Con $\mathbf{A} \rightarrow$ Con \mathbf{A} is the largest operation that satisfies:

- $[\alpha, \beta] \leq \alpha \wedge \beta$
- $[(\alpha \vee \theta) / \theta,(\beta \vee \theta) / \theta]=([\alpha, \beta] \vee \theta) / \theta$.

Let \mathbf{A} be an algebra in congruence permutable variety.
Question: Is the n-ary commutator operation $[, \ldots]:,(\operatorname{Con} \mathbf{A})^{n} \rightarrow$ Con \mathbf{A} the largest operation that satisfies (HC1) and (HC6)?

Is it true in congruence modular varieties?
[1] E. Aichinger, N. Mudrinski, Polynomial clones of Mal'cev algebras with small congruence lattices, Acta Mathematica Hungarica 126, no. 4, 315-333 (2010)
[2] E. Aichinger, N. Mudrinski, Some applications of higher commutators in Mal'cev algebras, Algebra Universalis 63, no. 4, 367-403 (2010)
[3] E. Aichinger, N. Mudrinski, On determining the higher commutator operation in certain classes of expanded groups, submited

