Fundamentals Applications Open Problems Refferences

Higher Commutators - Some Results and Open Problems -

Nebojša Mudrinski

Department of Mathematics and Informatics, University of Novi Sad, Serbia, nmudrinski@dmi.uns.ac.rs

Novi Sad, 22th November 2010

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Centralizing Property and Commutators

Definition. Let **A** be an algebra, $\alpha_1, \alpha_2, \eta \in \text{Con } \mathbf{A}$. Then we say that α_1 centralize α_2 modulo η if for all polynomials $f(\mathbf{x}_1, \mathbf{x}_2)$ and $\mathbf{a}_1, \mathbf{b}_1, \mathbf{u}, \mathbf{v}$ vectors from **A** such that: $\mathbf{a}_1 \equiv \mathbf{b}_1 \pmod{\alpha_1}$, $\mathbf{u} \equiv \mathbf{v} \pmod{\alpha_2}$ and

 $f(\mathbf{a}_1, \mathbf{u}) \equiv f(\mathbf{a}_1, \mathbf{v}) \pmod{\eta},$

we have

$$f(\mathbf{b}_1,\mathbf{u}) \equiv f(\mathbf{b}_1,\mathbf{v}) \pmod{\eta}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Centralizing Property and Commutators

Definition. Let **A** be an algebra, $\alpha_1, \alpha_2, \eta \in \text{Con } \mathbf{A}$. Then we say that α_1 centralize α_2 modulo η if for all polynomials $f(\mathbf{x}_1, \mathbf{x}_2)$ and $\mathbf{a}_1, \mathbf{b}_1, \mathbf{u}, \mathbf{v}$ vectors from **A** such that: $\mathbf{a}_1 \equiv \mathbf{b}_1 \pmod{\alpha_1}$, $\mathbf{u} \equiv \mathbf{v} \pmod{\alpha_2}$ and

 $f(\mathbf{a}_1, \mathbf{u}) \equiv f(\mathbf{a}_1, \mathbf{v}) \pmod{\eta},$

we have

$$f(\mathbf{b}_1, \mathbf{u}) \equiv f(\mathbf{b}_1, \mathbf{v}) \pmod{\eta}.$$

Definition. (Freese, Gumm, Hagemann, Herrmann, Hobby, Kiss, McKenzie,...) $[\alpha_1, \alpha_2] := \bigwedge \{ \eta \in \text{Con } \mathbf{A} \mid C(\alpha_1, \alpha_2; \eta) \}$

- 本部 ト イヨ ト - - ヨ

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Definition. (R.Freese, R.N.McKenzie) Let **A** be an algebra, $\mathbf{a}_1, \mathbf{b}_1 \in \mathbf{A}^n$, $\mathbf{a}_2, \mathbf{b}_2 \in \mathbf{A}^m$ and $\alpha_1, \alpha_2 \in \text{Con } \mathbf{A}$. Then $M_{\mathbf{A}}(\alpha_1, \alpha_2)$ is the subalgebra of $\mathbf{A}^{2\times 2}$ generated by:

向下 イヨト イヨト

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Definition. (R.Freese, R.N.McKenzie) Let **A** be an algebra, $\mathbf{a}_1, \mathbf{b}_1 \in \mathbf{A}^n$, $\mathbf{a}_2, \mathbf{b}_2 \in \mathbf{A}^m$ and $\alpha_1, \alpha_2 \in \text{Con } \mathbf{A}$. Then $M_{\mathbf{A}}(\alpha_1, \alpha_2)$ is the subalgebra of $\mathbf{A}^{2\times 2}$ generated by:

$$\left(egin{array}{cc} {f a}_1 & {f a}_1 \ {f b}_1 & {f b}_1 \end{array}
ight)$$
 and $\left(egin{array}{cc} {f a}_2 & {f b}_2 \ {f a}_2 & {f b}_2 \end{array}
ight)$

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Definition. (R.Freese, R.N.McKenzie) Let **A** be an algebra, $\mathbf{a}_1, \mathbf{b}_1 \in \mathbf{A}^n$, $\mathbf{a}_2, \mathbf{b}_2 \in \mathbf{A}^m$ and $\alpha_1, \alpha_2 \in \text{Con } \mathbf{A}$. Then $M_{\mathbf{A}}(\alpha_1, \alpha_2)$ is the subalgebra of $\mathbf{A}^{2\times 2}$ generated by:

$$\left(egin{array}{cc} {f a}_1 & {f a}_1 \ {f b}_1 & {f b}_1 \end{array}
ight)$$
 and $\left(egin{array}{cc} {f a}_2 & {f b}_2 \ {f a}_2 & {f b}_2 \end{array}
ight)$

such that $(\mathbf{a}_1, \mathbf{b}_1) \in \alpha_1$ and $(\mathbf{a}_2, \mathbf{b}_2) \in \alpha_2$.

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Definition. (R.Freese, R.N.McKenzie) Let **A** be an algebra, $\mathbf{a}_1, \mathbf{b}_1 \in \mathbf{A}^n$, $\mathbf{a}_2, \mathbf{b}_2 \in \mathbf{A}^m$ and $\alpha_1, \alpha_2 \in \text{Con } \mathbf{A}$. Then $M_{\mathbf{A}}(\alpha_1, \alpha_2)$ is the subalgebra of $\mathbf{A}^{2\times 2}$ generated by:

$$\left(egin{array}{cc} {f a}_1 & {f a}_1 \ {f b}_1 & {f b}_1 \end{array}
ight)$$
 and $\left(egin{array}{cc} {f a}_2 & {f b}_2 \ {f a}_2 & {f b}_2 \end{array}
ight)$

such that $(\mathbf{a}_1, \mathbf{b}_1) \in \alpha_1$ and $(\mathbf{a}_2, \mathbf{b}_2) \in \alpha_2$.

Definition. (R.Freese, R.N.McKenzie) $[\alpha_1, \alpha_2]$ is the smallest congruence η of **A** such that

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Definition. (R.Freese, R.N.McKenzie) Let **A** be an algebra, $\mathbf{a}_1, \mathbf{b}_1 \in \mathbf{A}^n$, $\mathbf{a}_2, \mathbf{b}_2 \in \mathbf{A}^m$ and $\alpha_1, \alpha_2 \in \text{Con } \mathbf{A}$. Then $M_{\mathbf{A}}(\alpha_1, \alpha_2)$ is the subalgebra of $\mathbf{A}^{2\times 2}$ generated by:

$$\left(egin{array}{cc} {f a}_1 & {f a}_1 \ {f b}_1 & {f b}_1 \end{array}
ight)$$
 and $\left(egin{array}{cc} {f a}_2 & {f b}_2 \ {f a}_2 & {f b}_2 \end{array}
ight)$

such that $(\mathbf{a}_1, \mathbf{b}_1) \in \alpha_1$ and $(\mathbf{a}_2, \mathbf{b}_2) \in \alpha_2$.

Definition. (R.Freese, R.N.McKenzie) $[\alpha_1, \alpha_2]$ is the smallest congruence η of **A** such that

$$\begin{array}{c} \text{if } (x_{11}, x_{12}) \in \eta \text{ then } (x_{21}, x_{22}) \in \eta \\ \\ \text{for all } \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in M_{\textbf{A}}(\alpha_1, \alpha_2). \end{array}$$

Ternary Case $C(\alpha, \beta, \gamma; \eta)$

Definition. Let **A** be an algebra and $\alpha, \beta, \gamma, \eta$ be congruences of **A**. Then we say that α, β centralize γ modulo η if for every polynomial $f(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{u}, \mathbf{v}$ vectors from **A** such that: $\mathbf{a} \equiv \mathbf{b} \pmod{\alpha}$, $\mathbf{c} \equiv \mathbf{d} \pmod{\beta}$, $\mathbf{u} \equiv \mathbf{v} \pmod{\gamma}$ and

 $f(\mathbf{a}, \mathbf{c}, \mathbf{u}) \equiv f(\mathbf{a}, \mathbf{c}, \mathbf{v}) \pmod{\eta}$ $f(\mathbf{a}, \mathbf{d}, \mathbf{u}) \equiv f(\mathbf{a}, \mathbf{d}, \mathbf{v}) \pmod{\eta}$ $f(\mathbf{b}, \mathbf{c}, \mathbf{u}) \equiv f(\mathbf{b}, \mathbf{c}, \mathbf{v}) \pmod{\eta},$ we have $f(\mathbf{b}, \mathbf{d}, \mathbf{u}) \equiv f(\mathbf{b}, \mathbf{d}, \mathbf{v}) \pmod{\eta}.$

Higher Centralizing Property and Higher Commutators

Definition. (Bulatov $C(\alpha_1, \ldots, \alpha_n; \eta)$) Let **A** be an algebra, $\alpha_1, \ldots, \alpha_n, \eta \in \text{Con } \mathbf{A}$. Then we say that $\alpha_1, \ldots, \alpha_{n-1}$ centralize α_n modulo η if for all polynomials $f(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ and $\mathbf{a}_1, \ldots, \mathbf{a}_{n-1}, \mathbf{b}_1, \ldots, \mathbf{b}_{n-1}, \mathbf{u}, \mathbf{v}$ vectors from **A** such that: $\mathbf{a}_i \equiv \mathbf{b}_i$ (mod α_i), $1 \leq i \leq n$, $\mathbf{u} \equiv \mathbf{v} \pmod{\alpha_n}$ and

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{u}) \equiv f(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{v}) \pmod{\eta},$$

for all $(x_1, ..., x_{n-1}) \in \{a_1, b_1\} \times \cdots \times \{a_{n-1}, b_{n-1}\}$ and $(x_1, ..., x_{n-1}) \neq (b_1, ..., b_{n-1})$, we have

$$f(\mathbf{b}_1,\ldots,\mathbf{b}_{n-1},\mathbf{u}) \equiv f(\mathbf{b}_1,\ldots,\mathbf{b}_{n-1},\mathbf{v}) \pmod{\eta}.$$

소리가 소문가 소문가 소문가

Higher Centralizing Property and Higher Commutators

Definition. (Bulatov $C(\alpha_1, \ldots, \alpha_n; \eta)$) Let **A** be an algebra, $\alpha_1, \ldots, \alpha_n, \eta \in \text{Con } \mathbf{A}$. Then we say that $\alpha_1, \ldots, \alpha_{n-1}$ centralize α_n modulo η if for all polynomials $f(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ and $\mathbf{a}_1, \ldots, \mathbf{a}_{n-1}, \mathbf{b}_1, \ldots, \mathbf{b}_{n-1}, \mathbf{u}, \mathbf{v}$ vectors from **A** such that: $\mathbf{a}_i \equiv \mathbf{b}_i$ (mod α_i), $1 \leq i \leq n$, $\mathbf{u} \equiv \mathbf{v} \pmod{\alpha_n}$ and

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{u}) \equiv f(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{v}) \pmod{\eta},$$

for all $(x_1, ..., x_{n-1}) \in \{a_1, b_1\} \times \cdots \times \{a_{n-1}, b_{n-1}\}$ and $(x_1, ..., x_{n-1}) \neq (b_1, ..., b_{n-1})$, we have

$$f(\mathbf{b}_1,\ldots,\mathbf{b}_{n-1},\mathbf{u}) \equiv f(\mathbf{b}_1,\ldots,\mathbf{b}_{n-1},\mathbf{v}) \pmod{\eta}.$$

 $[\alpha_1,\ldots,\alpha_n] := \bigwedge \{\eta \in \mathsf{Con} \, \mathsf{A} \,|\, \mathsf{C}(\alpha_1,\ldots,\alpha_n;\eta)\}$

Higher Commutator Relations

Definition. (J. Shaw, 2008) Let **A** be an algebra and $\alpha_1, \ldots, \alpha_n \in \text{Con } \mathbf{A}$. Then $M_{\mathbf{A}}(\alpha_1, \ldots, \alpha_n)$ is the subalgebra of $\mathbf{A}^{2^{n-1}\times 2}$ generated by:

Higher Commutator Relations

Definition. (J. Shaw, 2008) Let **A** be an algebra and $\alpha_1, \ldots, \alpha_n \in \text{Con } \mathbf{A}$. Then $M_{\mathbf{A}}(\alpha_1, \ldots, \alpha_n)$ is the subalgebra of $\mathbf{A}^{2^{n-1} \times 2}$ generated by:

$$\begin{pmatrix} a_{1} & a_{1} \\ \vdots & \vdots \\ a_{1} & a_{1} \\ b_{1} & b_{1} \\ \vdots & \vdots \\ b_{1} & b_{1} \end{pmatrix}, \dots, \begin{pmatrix} a_{n-1} & a_{n-1} \\ b_{n-1} & b_{n-1} \\ \vdots & \vdots \\ a_{n-1} & a_{n-1} \\ b_{n-1} & b_{n-1} \end{pmatrix}, \begin{pmatrix} a_{n} & b_{n} \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{n} & b_{n} \end{pmatrix}$$

イロン イヨン イヨン イヨン

Higher Commutator Relations

Definition. (J. Shaw, 2008) Let **A** be an algebra and $\alpha_1, \ldots, \alpha_n \in \text{Con } \mathbf{A}$. Then $M_{\mathbf{A}}(\alpha_1, \ldots, \alpha_n)$ is the subalgebra of $\mathbf{A}^{2^{n-1} \times 2}$ generated by:

$$\begin{pmatrix} a_{1} & a_{1} \\ \vdots & \vdots \\ a_{1} & a_{1} \\ b_{1} & b_{1} \\ \vdots & \vdots \\ b_{1} & b_{1} \end{pmatrix}, \dots, \begin{pmatrix} a_{n-1} & a_{n-1} \\ b_{n-1} & b_{n-1} \\ \vdots & \vdots \\ a_{n-1} & a_{n-1} \\ b_{n-1} & b_{n-1} \end{pmatrix}, \begin{pmatrix} a_{n} & b_{n} \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{n} & b_{n} \end{pmatrix}$$

such that $(a_i, b_i) \in \alpha_i$ for all $i \in \{1, \ldots, n\}$.

・ロト ・回ト ・ヨト ・ヨト

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Definition. (J. Shaw, 2008) $[\alpha_1, \ldots, \alpha_n]$ is the smallest congruence η of **A** such that

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Definition. (J. Shaw, 2008) $[\alpha_1, \ldots, \alpha_n]$ is the smallest congruence η of **A** such that

$$(x_{i1}, x_{i2}) \in \eta$$
 for all $i \in \{1, \dots, 2^{n-1}-1\}$, then $(x_{2^{n-1}1}, x_{2^{n-1}2}) \in \eta$

for all
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ \vdots & \vdots \\ x_{2^{n-1}1} & x_{2^{n-1}2} \end{pmatrix} \in M_{\mathbf{A}}(\alpha_1, \dots, \alpha_n).$$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Definition. (J. Shaw, 2008) $[\alpha_1, \ldots, \alpha_n]$ is the smallest congruence η of **A** such that

$$(x_{i1}, x_{i2}) \in \eta$$
 for all $i \in \{1, \dots, 2^{n-1}-1\}$, then $(x_{2^{n-1}1}, x_{2^{n-1}2}) \in \eta$

for all
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ \vdots & \vdots \\ x_{2^{n-1}1} & x_{2^{n-1}2} \end{pmatrix} \in M_{\mathbf{A}}(\alpha_1, \dots, \alpha_n).$$

Two definitions are equivalent!

・ロン ・回 と ・ 回 と ・ 回 と

3

Absorbing Polynomials

Definition. Let **A** be an algebra, let $k \in \mathbb{N}$, let $p: A^k \to A$, let $(a_0, \ldots, a_{k-1}) \in A^k$, and let $o \in A$. Then p is absorbing at (a_0, \ldots, a_{k-1}) with value o if for all $(x_0, \ldots, x_{k-1}) \in A^k$ we have: if there is an $i \in \{0, 1, \ldots, k-1\}$ such that $x_i = a_i$, then $p(x_0, \ldots, x_{k-1}) = p(a_0, \ldots, a_{k-1})$, and $p(a_0, \ldots, a_{k-1}) = o$.

Absorbing Polynomials

Definition. Let **A** be an algebra, let $k \in \mathbb{N}$, let $p: A^k \to A$, let $(a_0, \ldots, a_{k-1}) \in A^k$, and let $o \in A$. Then p is absorbing at (a_0, \ldots, a_{k-1}) with value o if for all $(x_0, \ldots, x_{k-1}) \in A^k$ we have: if there is an $i \in \{0, 1, \ldots, k-1\}$ such that $x_i = a_i$, then $p(x_0, \ldots, x_{k-1}) = p(a_0, \ldots, a_{k-1})$, and $p(a_0, \ldots, a_{k-1}) = o$.

Definition. Let **V** be an expanded group and $n \in \mathbb{N}$. A polynomial $p \in Pol_n \mathbf{V}$ is absorbing if

$$p(0, x_2, \ldots, x_n) = p(x_1, 0, \ldots, x_n) = \cdots = p(x_1, x_2, \ldots, 0) = 0,$$

for all $x_1, \ldots, x_n \in V$.

Definition With Absorbing Polynomials

Proposition. [2] Let **A** be a Mal'cev algebra with a Mal'cev term m, $\alpha_0, \ldots, \alpha_n$ congruences of **A** and $n \ge 0$. Then $[\alpha_0, \ldots, \alpha_n]$ is generated as a congruence by the set

Definition With Absorbing Polynomials

Proposition. [2] Let **A** be a Mal'cev algebra with a Mal'cev term m, $\alpha_0, \ldots, \alpha_n$ congruences of **A** and $n \ge 0$. Then $[\alpha_0, \ldots, \alpha_n]$ is generated as a congruence by the set

$$T = \{ (c(b_0, \dots, b_n), c(a_0, \dots, a_n)) \mid b_0, \dots, b_n, a_0 \dots, a_n \in A,$$
$$\forall i : a_i \equiv_{\alpha_i} b_i, c \in \mathsf{Pol}_{n+1}\mathbf{A} \text{ and}$$
$$c|_{\{a_0, b_0\} \times \dots \times \{a_n, b_n\}} \text{ is absorbing at } (a_0, \dots, a_n) \}.$$

Ideals and Congruences

Definition. An ideal of expanded group (V, +, -, 0, F) is a normal subgroup I of the group (V, +) such that $f(\mathbf{a} + \mathbf{i}) - f(\mathbf{a}) \in I$, for all $k \in \mathbb{N}$, all k-ary fundamental operations $f \in F$ and all $\mathbf{a} \in V^k, \mathbf{i} \in I^k$.

Ideals and Congruences

Definition. An ideal of expanded group (V, +, -, 0, F) is a normal subgroup I of the group (V, +) such that $f(\mathbf{a} + \mathbf{i}) - f(\mathbf{a}) \in I$, for all $k \in \mathbb{N}$, all k-ary fundamental operations $f \in F$ and all $\mathbf{a} \in V^k, \mathbf{i} \in I^k$.

Proposition. Let **V** be an expanded group and let $I \in Id\mathbf{V}$. Then

$$\gamma_V(I) := \{ (v_1, v_2) \in V^2 \mid v_1 - v_2 \in I \}$$

is an isomorphism from (Id $\bm{V},\cap,+)$ to (Con $\bm{V},\wedge,\vee)$

Ternary Case in Expanded Groups

Definition. (S. Scott) If $A, B \in \text{Id } \mathbf{V}, \mathbf{V} = \langle V, +, F \rangle$ then the ideal [A, B] is generated by the set

$$\{p(a, b) \mid a \in A, b \in B, p \in \mathsf{Pol}_2 \mathbf{V}\}$$

such that p(x, y) = 0 whenever $x = 0 \lor y = 0$.

Ternary Case in Expanded Groups

Definition. (S. Scott) If $A, B \in \text{Id } \mathbf{V}, \mathbf{V} = \langle V, +, F \rangle$ then the ideal [A, B] is generated by the set

$$\{p(a, b) \mid a \in A, b \in B, p \in \mathsf{Pol}_2 \mathbf{V}\}$$

such that p(x, y) = 0 whenever $x = 0 \lor y = 0$.

If $A, B, C \in Id \mathbf{V}$, $\mathbf{V} = \langle V, +, F \rangle$ then the ideal [A, B, C] is generated by the set

$$\{p(a, b, c) \mid a \in A, b \in B, c \in C, p \in \mathsf{Pol}_3 \mathbf{V}\}$$

such that p(x, y, z) = 0 whenever $x = 0 \lor y = 0 \lor z = 0$.

Higher Commutator Ideals

Definition. Let $n \in \mathbb{N}$. In an expanded group **V** for $A_1, \ldots, A_n \in Id\mathbf{V}$ we define the *n*-ary commutator ideal of A_1, \ldots, A_n , in abbreviation $[A_1, \ldots, A_n]_{\mathbf{V}}$, as an ideal of **V** generated by

 $\{p(a_1,\ldots,a_n) \mid (a_1,\ldots,a_n) \in A_1 \times \cdots \times A_n, p \text{ is absorbing}\}.$

(ロ) (同) (E) (E) (E)

Higher Commutator Ideals

Definition. Let $n \in \mathbb{N}$. In an expanded group **V** for $A_1, \ldots, A_n \in Id\mathbf{V}$ we define the *n*-ary commutator ideal of A_1, \ldots, A_n , in abbreviation $[A_1, \ldots, A_n]_{\mathbf{V}}$, as an ideal of **V** generated by

$$\{p(a_1,\ldots,a_n) \mid (a_1,\ldots,a_n) \in A_1 \times \cdots \times A_n, p \text{ is absorbing}\}.$$

Theorem. [2] Let \mathbf{V} be an expanded group and $A_1, \ldots, A_n \in \mathsf{Id}\mathbf{V}$ and $\gamma_V(A_1), \ldots, \gamma_V(A_n) \in \mathsf{Con}\mathbf{V}$ the corresponding congruences of \mathbf{V} . Then

$$\gamma_V([A_1,\ldots,A_n])=[\gamma_V(A_1),\ldots,\gamma_V(A_n)].$$

(ロ) (同) (E) (E) (E)

Generalized Properties of Binary Commutator

Proposition. [2] If **A** is in a congruence permutable variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$

イロン イヨン イヨン イヨン

Generalized Properties of Binary Commutator

Proposition. [2] If **A** is in a congruence permutable variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] \leq [\beta_1, \ldots, \beta_n]$

Generalized Properties of Binary Commutator

Proposition. [2] If **A** is in a congruence permutable variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] \leq [\beta_1, \ldots, \beta_n]$ (HC4) If π is any permutation of $\{1, \ldots, n\}$ then $[\alpha_1, \ldots, \alpha_n] = [\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}].$

Generalized Properties of Binary Commutator

Proposition. [2] If **A** is in a congruence permutable variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] \leq [\beta_1, \ldots, \beta_n]$ (HC4) If π is any permutation of $\{1, \ldots, n\}$ then $[\alpha_1, \ldots, \alpha_n] = [\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}].$ (HC5) $[\alpha_1, \ldots, \alpha_n] \leq \eta$ iff $C(\alpha_1, \ldots, \alpha_n; \eta)$

Generalized Properties of Binary Commutator

Proposition. [2] If **A** is in a congruence permutable variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] \leq [\beta_1, \ldots, \beta_n]$ (HC4) If π is any permutation of $\{1, \ldots, n\}$ then $[\alpha_1, \ldots, \alpha_n] = [\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}].$ (HC5) $[\alpha_1, \ldots, \alpha_n] \leq \eta$ iff $C(\alpha_1, \ldots, \alpha_n; \eta)$ (HC6) If $\eta \leq \alpha_1, \ldots, \alpha_n$, then $[\alpha_1/\eta, \ldots, \alpha_n/\eta] = ([\alpha_1, \ldots, \alpha_n] \vee \eta)/\eta$

Generalized Properties of Binary Commutator

Proposition. [2] If **A** is in a congruence permutable variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 < \beta_1, \ldots, \alpha_n < \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] < [\beta_1, \ldots, \beta_n]$ (HC4) If π is any permutation of $\{1, \ldots, n\}$ then $[\alpha_1,\ldots,\alpha_n] = [\alpha_{\pi(1)},\ldots,\alpha_{\pi(n)}].$ (HC5) $[\alpha_1, \ldots, \alpha_n] < \eta$ iff $C(\alpha_1, \ldots, \alpha_n; \eta)$ (HC6) If $n < \alpha_1, \ldots, \alpha_n$, then $[\alpha_1/\eta,\ldots,\alpha_n/\eta] = ([\alpha_1,\ldots,\alpha_n] \vee \eta)/\eta$ (HC7) $\bigvee_{i \in I} [\alpha_1, \ldots, \alpha_{i-1}, \rho_i, \alpha_{i+1}, \ldots, \alpha_n] =$ $[\alpha_1,\ldots,\alpha_{i-1},\bigvee_{i\in I}\rho_i,\alpha_{i+1},\ldots,\alpha_n].$

Some Extra Properties

Proposition. [2] If **A** is in a congruence permutable variety then (HC3) $[\alpha_1, \ldots, \alpha_n] \leq [\alpha_2, \ldots, \alpha_n]$

・ロン ・回と ・ヨン ・ヨン

Some Extra Properties

Proposition. [2] If **A** is in a congruence permutable variety then (HC3) $[\alpha_1, \ldots, \alpha_n] \leq [\alpha_2, \ldots, \alpha_n]$

(HC8) $[\alpha_1, \ldots, \alpha_j, [\alpha_{j+1}, \ldots, \alpha_k]] \leq [\alpha_1, \alpha_2, \ldots, \alpha_k].$

・ロット (四) (日) (日)

Some Extra Properties

Proposition. [2] If **A** is in a congruence permutable variety then (HC3) $[\alpha_1, \ldots, \alpha_n] \leq [\alpha_2, \ldots, \alpha_n]$

(HC8)
$$[\alpha_1, \ldots, \alpha_j, [\alpha_{j+1}, \ldots, \alpha_k]] \leq [\alpha_1, \alpha_2, \ldots, \alpha_k].$$

In general the equality in (HC8) is not true!

イロン 不同と 不同と 不同と

What are higher commutators? Fundamental Properties Characterization in Some Special Cases Supernilpotent Algebras

Higher Commutators in Groups

[A, B] is the normal subgroup generated by the set $\{a^{-1}b^{-1}ab \mid a \in A, b \in B\}$ for all normal subgroups A, B of **G**.

イロト イポト イヨト イヨト

Higher Commutators in Groups

[A, B] is the normal subgroup generated by the set $\{a^{-1}b^{-1}ab \mid a \in A, b \in B\}$ for all normal subgroups A, B of **G**.

Proposition. (P. Mayr, 2009) Let $\mathbf{G} = (G, \cdot, ^{-1}, 1)$ and $n \ge 2$. If N_1, \ldots, N_n are normal subgroups of \mathbf{G} , then

$$[N_1,\ldots,N_n] = \prod_{\pi \in S_n} [\ldots [[N_{\pi(1)}, N_{\pi(2)}], N_{\pi(3)}], \ldots, N_{\pi(n)}].$$

Higher Commutators in Rings

Proposition. Let $\mathbf{R} = (R, +, \cdot, -, 0)$ be a ring, let $n \ge 2$ and let J_1, \ldots, J_n be ideals of \mathbf{R} . Then:

$$[J_1,\ldots,J_n] = \sum_{\pi \in S_n} [\ldots [[J_{\pi(1)},J_{\pi(2)}],J_{\pi(3)}]\ldots,J_{\pi(n)}].$$

・ロン ・回と ・ヨン・

Higher Commutators in Rings

Proposition. Let $\mathbf{R} = (R, +, \cdot, -, 0)$ be a ring, let $n \ge 2$ and let J_1, \ldots, J_n be ideals of \mathbf{R} . Then:

$$[J_1,\ldots,J_n] = \sum_{\pi \in S_n} [\ldots [[J_{\pi(1)},J_{\pi(2)}],J_{\pi(3)}]\ldots,J_{\pi(n)}].$$

Proposition. (P. Mayr, 2009) Let $\mathbf{R} = (R, +, \cdot, -, 0)$ be a ring, let $n \ge 1$ and let J_1, \ldots, J_n be ideals of \mathbf{R} . Then:

$$[J_1,\ldots,J_n]=\sum_{\pi\in S_n}J_{\pi(1)}\cdot\ldots\cdot J_{\pi(n)}.$$

소리가 소문가 소문가 소문가

Important Example

Higher commutators can not be ontained by composing binary commutators in general!

イロン イヨン イヨン イヨン

Important Example

Higher commutators can not be ontained by composing binary commutators in general!

Example:

$$[V, [V, V]] \neq [V, V, V]$$
 for $\mathbf{V} = \langle \mathbb{Z}_4, +_4, 2xyz \rangle$

イロン イヨン イヨン イヨン

Multilinear Expanded Groups

Definition. Let (V, +, -, 0, F) be an expanded group and $k \in \mathbb{N}$. An operation $f : V^k \to V$ is called multilinear if

$$f(x_1,\ldots,x_{i-1},y+z,x_{i+1},\ldots,x_k) =$$

$$= f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_k) + f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_k)$$

for every $i \in \{1, \dots, k\}$, and all $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_k, y, z \in V$.

・ロン ・回と ・ヨン ・ヨン

Multilinear Expanded Groups

Definition. Let (V, +, -, 0, F) be an expanded group and $k \in \mathbb{N}$. An operation $f : V^k \to V$ is called multilinear if

$$f(x_1,\ldots,x_{i-1},y+z,x_{i+1},\ldots,x_k) =$$

$$= f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_k) + f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_k)$$

for every $i \in \{1, \dots, k\}$, and all $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_k, y, z \in V$.

Definition. For $k \ge 2$, a multilinear expanded group of degree k is an expanded group (V, +, -, 0, F), where all $f \in F$ are multilinear operations and all operations have at most k arguments.

・ロト ・回ト ・ヨト ・ヨト

Commutator Algebra

Definition. For $n \ge 2$ we define \mathcal{L} to be the language with operation symbols f_2, \ldots, f_n , where each f_i has arity *i*. We abbreviate $f_k(x_1, \ldots, x_k)$ by $[x_1, \ldots, x_k]$ for all $k \in \{2, \ldots, n\}$.

イロン イヨン イヨン イヨン

Commutator Algebra

Definition. For $n \ge 2$ we define \mathcal{L} to be the language with operation symbols f_2, \ldots, f_n , where each f_i has arity *i*. We abbreviate $f_k(x_1, \ldots, x_k)$ by $[x_1, \ldots, x_k]$ for all $k \in \{2, \ldots, n\}$.

We define an algebra I(V) on the language \mathcal{L} whose universe is the set IdV such that:

$$\mathbf{f}_k^{\mathbf{l}(\mathbf{V})}(A_1,\ldots,A_k) := [A_1,\ldots,A_k]$$

for each $k \in \{2, \ldots, n\}$ and for all $A_1, \ldots, A_k \in \mathsf{Id}\mathbf{V}$.

What are higher commutators? Fundamental Properties Characterization in Some Special Cases Supernilpotent Algebras

 $\begin{array}{l} \mbox{Higher Commutators in Multilinear Expanded Groups} \\ \mbox{Example: } t = \left[x_3, x_1, [\left[x_4, [x_7, x_2], [x_6, x_9, x_8], x_{10}\right], x_5] \right] \end{array}$

・ロン ・四マ ・ヨマ ・ヨマ

Higher Commutators in Multilinear Expanded Groups Example: $t = [x_3, x_1, [[x_4, [x_7, x_2], [x_6, x_9, x_8], x_{10}], x_5]]$

$$t^{I(\mathbf{V})}(A_1,\ldots,A_{10}) = \left\lfloor A_3, A_1, \left[\left\lfloor A_4, [A_7, A_2], [A_6, A_9, A_8], A_{10} \right\rfloor, A_5 \right] \right\rfloor$$

・ロン ・回 と ・ ヨ と ・ ヨ と

٦

 $\begin{array}{l} \mbox{Higher Commutators in Multilinear Expanded Groups} \\ \mbox{Example: } t = \left[x_3, x_1, [\left[x_4, [x_7, x_2], [x_6, x_9, x_8], x_{10}\right], x_5] \right] \end{array}$

$$t^{I(V)}(A_1,\ldots,A_{10}) = \left[A_3,A_1,\left[A_4,[A_7,A_2],[A_6,A_9,A_8],A_{10}\right],A_5\right]$$

Theorem. [3] Let **V** be a multilinear expanded group of degree k, let $n \ge 2$, and let A_1, \ldots, A_n be ideals of **V**. Let T be the set of those terms $t \in \mathcal{L}$ with the following properties:

・ロン ・回 と ・ 回 と ・ 回 と

 $\begin{array}{l} \mbox{Higher Commutators in Multilinear Expanded Groups} \\ \mbox{Example: } t = \left[x_3, x_1, [\left[x_4, [x_7, x_2], [x_6, x_9, x_8], x_{10}\right], x_5] \right] \end{array}$

$$t^{I(V)}(A_1, \ldots, A_{10}) = \left[A_3, A_1, \left[A_4, [A_7, A_2], [A_6, A_9, A_8], A_{10}\right], A_5\right]\right]$$

Theorem. [3] Let **V** be a multilinear expanded group of degree k, let $n \ge 2$, and let A_1, \ldots, A_n be ideals of **V**. Let T be the set of those terms $t \in \mathcal{L}$ with the following properties:

• In t, each of the variables x_1, \ldots, x_n occurs exactly once.

・ロン ・回 と ・ 回 と ・ 回 と

 $\begin{array}{l} \mbox{Higher Commutators in Multilinear Expanded Groups} \\ \mbox{Example: } t = \left[x_3, x_1, [\left[x_4, [x_7, x_2], [x_6, x_9, x_8], x_{10}\right], x_5] \right] \end{array}$

$$t^{I(V)}(A_1, \ldots, A_{10}) = \left[A_3, A_1, \left[A_4, [A_7, A_2], [A_6, A_9, A_8], A_{10}\right], A_5\right]\right]$$

Theorem. [3] Let **V** be a multilinear expanded group of degree k, let $n \ge 2$, and let A_1, \ldots, A_n be ideals of **V**. Let T be the set of those terms $t \in \mathcal{L}$ with the following properties:

- In t, each of the variables x_1, \ldots, x_n occurs exactly once.
- t contains only operation symbols in $\{f_i \mid i \leq k\}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

 $\begin{array}{l} \mbox{Higher Commutators in Multilinear Expanded Groups} \\ \mbox{Example: } t = \left[x_3, x_1, [\left[x_4, [x_7, x_2], [x_6, x_9, x_8], x_{10}\right], x_5] \right] \end{array}$

$$t^{I(V)}(A_1, \ldots, A_{10}) = \left[A_3, A_1, \left[A_4, [A_7, A_2], [A_6, A_9, A_8], A_{10}\right], A_5\right]\right]$$

Theorem. [3] Let **V** be a multilinear expanded group of degree k, let $n \ge 2$, and let A_1, \ldots, A_n be ideals of **V**. Let T be the set of those terms $t \in \mathcal{L}$ with the following properties:

- In t, each of the variables x₁,..., x_n occurs exactly once.
- t contains only operation symbols in $\{f_i | i \le k\}$.

Then $[A_1, \ldots, A_n]$ is the join of all ideals

$$\{\mathsf{t}^{\mathsf{I}(\mathsf{V})}(A_1,\ldots,A_n)\,|\,\mathsf{t}\in T\}.$$

소리가 소문가 소문가 소문가

Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if [1, 1] = 0.

イロン イヨン イヨン イヨン

3

Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if [1, 1] = 0.

Definition. An algebra is called nilpotent, if $[[[1,1],1], \ldots, 1] = 0$.

3

Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if [1, 1] = 0.

Definition. An algebra is called nilpotent, if $[[[1, 1], 1], \ldots, 1] = 0$.

Definition. An algebra is called supernilpotent, if there exists a $k \ge 0$ such that

 $[\underbrace{1,\ldots,1}_{k+1}]=0.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Abelian, Nilpotent, Supernilpotent

Definition. An algebra is called Abelian, if [1, 1] = 0.

Definition. An algebra is called nilpotent, if $[[[1,1],1], \ldots, 1] = 0$.

Definition. An algebra is called supernilpotent, if there exists a $k \ge 0$ such that

 $[\underbrace{1,\ldots,1}_{k+1}]=0.$

An algebra is *k*-supernilpotent if *k* is the smallest natural number with the property: $[\underbrace{1, \ldots, 1}_{k+1}] = 0.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

向下 イヨト イヨト

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras

It is real inequality in general!

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras

It is real inequality in general!

Example: Algebra $\mathbf{A} = (\mathbb{Z}_6, +_6, f)$ where $f = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 4 & 0 & 4 & 0 & 4 & 0 \end{pmatrix}$ is nilpotent but not supernilpotent!

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Fundamentals	What are higher commutators?
Applications	Fundamental Properties
Open Problems	Characterization in Some Special Cases
Refferences	Supernilpotent Algebras

Theorem. (E. Aichinger, N. Mudrinski - unpublished) The class of all k-supernilpotent algebras is a variety for all $k \in \mathbb{N}$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras

It is real inequality in general!

Example: Algebra
$$\mathbf{A} = (\mathbb{Z}_6, +_6, f)$$
 where
 $f = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 4 & 0 & 4 & 0 & 4 & 0 \end{pmatrix}$ is nilpotent but not supernilpotent!

Theorem. [2] Let **A** be a finite nilpotent algebra of finite type that generates a congruence modular variety. Then, **A** factors as a direct product of algebras of prime power cardinality if and only if **A** is a supernilpotent Mal'cev algebra.

Supernilpotent in Multilinear Expanded Groups

Theorem. [3] Let $n, k \in \mathbb{N}$ and let **V** be a multilinear expanded group of degree n that is nilpotent of class k. Then, **V** is n^k -supernilpotent.

イロト イポト イヨト イヨト

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Polynomial Completeness in Groups

Problem: Decide weather arbitrary function of \mathbf{A} is a polynomial of \mathbf{A} .

イロト イヨト イヨト イヨト

3

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Polynomial Completeness in Groups

Problem: Decide weather arbitrary function of \mathbf{A} is a polynomial of \mathbf{A} .

Theorem. (P.Mayr, 2009) Let **G** be a finite group all whose Sylow subgroups are abelian. Then $f: G^k \to G$, $k \in \mathbb{N}$ is polynomial iff f preserves all subgroups of $\mathbf{G}^{\max\{4,|G|\}}$ that contain $\{(g,\ldots,g)\in G^{\max\{4,|G|\}} | g\in G\}.$

イロト イポト イヨト イヨト

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Polynomial Interpolation in Rings

Approach: We check weather f can be interpolated by a polynomial function in arbitrarily many places.

イロト イヨト イヨト イヨト

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Polynomial Interpolation in Rings

Approach: We check weather f can be interpolated by a polynomial function in arbitrarily many places.

Theorem. (P. Mayr, 2009) Let **R** be a finite local ring with 1, and let $n \in \mathbb{N}_0$ be such that Jacobson radical J satisfies $J^{n+1} = 0$. Then a function $f : \mathbb{R}^k \to \mathbb{R}$ is a polynomial on **R** iff for all $S \subseteq \mathbb{R}^k$ with $|S| \leq |\mathbb{R}|^n$ there exists a polynomial function p on **R** such that $f|_S = p|_S$.

(ロ) (同) (E) (E) (E)

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Decidability of Affine Completeness

Definition. An algebra \mathbf{A} is *k*-affine complete if every *k*-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Decidability of Affine Completeness

Definition. An algebra \mathbf{A} is *k*-affine complete if every *k*-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

An algebra **A** is affine complete if it is *k*-affine complete for every $k \ge 1$.

イロト イポト イヨト イヨト

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Decidability of Affine Completeness

Definition. An algebra \mathbf{A} is *k*-affine complete if every *k*-ary function on *A* that preserves congruences of \mathbf{A} is a polynomial.

An algebra **A** is affine complete if it is *k*-affine complete for every $k \ge 1$.

Theorem. [2] There is an algorithm that decides whether a finite nilpotent algebra of finite type that is a product of algebras of prime power order and generates a congruence modular variety is affine complete.

イロト イポト イヨト イヨト

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Identity Checking Problem

Let **A** be an algebra.

• Given: s and t arbitrary polynomial terms of A

イロン イヨン イヨン イヨン

3

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Identity Checking Problem

Let **A** be an algebra.

- Given: s and t arbitrary polynomial terms of A
- Do s and t induce the same polynomial functions on A?

イロト イヨト イヨト イヨト

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Identity Checking Problem

Let **A** be an algebra.

- Given: s and t arbitrary polynomial terms of A
- Do s and t induce the same polynomial functions on A?

Theorem. [2] The polynomial equivalence problem for a finite nilpotent algebra \mathbf{A} of finite type that is a product of algebras of prime power order and generates a congruence modular variety has polynomial time complexity in the length of the input terms.

イロト イポト イヨト イヨト

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Constantive Mal'cev Clones

Definition. A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.

<ロ> (日) (日) (日) (日) (日)

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Constantive Mal'cev Clones

Definition. A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.

 $Inv^{k}(A, Pol \mathbf{A})$ is the set of all at most k-ary relations on the set A that are invariant under all polynomial functions of \mathbf{A} .

When a Function is a Polynomial? Identity Checking Problem Mal'cev Clones

Constantive Mal'cev Clones

Definition. A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.

 $Inv^{k}(A, Pol \mathbf{A})$ is the set of all at most k-ary relations on the set A that are invariant under all polynomial functions of \mathbf{A} .

If R is a set of relations on A, we denote the set of all the operations on A that preserve all relations from the set R by Comp(A, R).

Fundamentals Applications Open Problems Refferences Mal'cev Clones

Finitely Related

Theorem. [1] Let **A** be a finite Mal'cev algebra. If there exists an $n \ge 2$ such that $[\underbrace{1, \ldots, 1}_{n}] = 0$, then

 $\mathsf{Pol}\,\mathbf{A} = \mathsf{Comp}(A, \mathsf{Inv}^{|A|^n}(A, \mathsf{Pol}\,\mathbf{A})).$

イロト イヨト イヨト イヨト

Fundamentals Applications Open Problems Refferences Mal'cev Clones

Finitely Related

Theorem. [1] Let **A** be a finite Mal'cev algebra. If there exists an $n \ge 2$ such that $[\underbrace{1, \ldots, 1}_{n}] = 0$, then

$$\mathsf{Pol}\,\mathbf{A} = \mathsf{Comp}(A,\mathsf{Inv}^{|A|^n}(A,\mathsf{Pol}\,\mathbf{A})).$$

Theorem. [1] Let **A** be a finite Mal'cev algebra whose congruence lattice is of height at most two. We define $n \ge 2$ to be the smallest natural number such that $[1, \ldots, 1] = 0$ if such *n* exists,

otherwise n := 1. Then,

$$\mathsf{Pol}\,\mathbf{A} = \mathsf{Comp}(A,\mathsf{Inv}^{max\{4,|A|,|A|^n\}}(A,\mathsf{Pol}\,\mathbf{A})).$$

イロン イ部ン イヨン イヨン 三日

Commutator Preserving Functions Congruence Modular Varieties Maximality

Gumm's Theorem

Theorem. (H.P.Gumm) Let \mathbf{A} be a Mal'cev algebra. Then \mathbf{A} is Abelian iff there exist a ring R and \mathbf{A} is polynomially equivalent to a left R-module.

Commutator Preserving Functions Congruence Modular Varieties Maximality

Gumm's Theorem

Theorem. (H.P.Gumm) Let **A** be a Mal'cev algebra. Then **A** is Abelian iff there exist a ring R and **A** is polynomially equivalent to a left R-module.

Question: Is there a similar characterization for supernilpotent Mal'cev algebras?

Commutator Preserving Functions Congruence Modular Varieties Maximality

Gumm's Theorem

Theorem. (H.P.Gumm) Let **A** be a Mal'cev algebra. Then **A** is Abelian iff there exist a ring R and **A** is polynomially equivalent to a left R-module.

Question: Is there a similar characterization for supernilpotent Mal'cev algebras?

Theorem. Let **A** be an *n*-supernilpotent Mal'cev algebra. Then the polynomial clone of **A** is generated by all polynomials of arity at most n - 1 and the Mal'cev term.

Commutator Preserving Functions Congruence Modular Varieties Maximality

Special 4-ary Relations

Definition. Let **A** be a Mal'cev algebra, *m* a Mal'cev polynomial on **A** and $\alpha, \beta, \eta \in Con A$

$$ho(lpha,eta,\eta,m) := \{(a,b,c,d) \in A^4 \mid a \equiv b \pmod{lpha}, \ b \equiv c \pmod{eta}, \ m(a,b,c) \equiv d \pmod{\eta}\}$$

・ロン ・回と ・ヨン ・ヨン

Commutator Preserving Functions Congruence Modular Varieties Maximality

Special 4-ary Relations

Definition. Let **A** be a Mal'cev algebra, *m* a Mal'cev polynomial on **A** and $\alpha, \beta, \eta \in \text{Con } \mathbf{A}$

$$\rho(\alpha, \beta, \eta, m) := \{ (a, b, c, d) \in A^4 \mid a \equiv b \pmod{\alpha}, \\ b \equiv c \pmod{\beta}, \\ m(a, b, c) \equiv d \pmod{\eta} \}$$

 $\operatorname{Cen}(\mathbf{A}, m) := \{ \rho(\alpha, \beta, \eta, m) \, | \, \alpha \text{ centralizes } \beta \text{ modulo } \eta \}$

・ロト ・回ト ・ヨト ・ヨト

Commutator Preserving Functions Congruence Modular Varieties Maximality

Commutator Preserving Functions

Lemma. Let **A** be a Mal'cev algebra, m a Mal'cev polynomial on **A** and $f : A^k \to A$. Then the following are equivalent: (1) f is a commutator preserving function of **A**

Commutator Preserving Functions Congruence Modular Varieties Maximality

Commutator Preserving Functions

Lemma. Let **A** be a Mal'cev algebra, *m* a Mal'cev polynomial on **A** and $f : A^k \to A$. Then the following are equivalent:

- (1) f is a commutator preserving function of **A**
- (2) f preserves all relations in Con A and Cen(A, m)

Commutator Preserving Functions Congruence Modular Varieties Maximality

Commutator Preserving Functions

Lemma. Let **A** be a Mal'cev algebra, *m* a Mal'cev polynomial on **A** and $f : A^k \to A$. Then the following are equivalent:

- (1) f is a commutator preserving function of **A**
- (2) f preserves all relations in Con A and Cen(A, m)

Corollary. Let A be a Mal'cev algebra and m a Mal'cev polynomial on A. Then all commutator preserving functions of A form a clone.

Commutator Preserving Functions Congruence Modular Varieties Maximality

Some Open Problems

Is it the same true for higher commutators:

Do the functions that preserve the higher commutators of a Mal'cev algebra form a clone?

Commutator Preserving Functions Congruence Modular Varieties Maximality

Some Open Problems

Is it the same true for higher commutators:

Do the functions that preserve the higher commutators of a Mal'cev algebra form a clone?

Is there a generalization of the set of relations $Cen(\mathbf{A}, m)$ for higher commutators?

Commutator Preserving Functions Congruence Modular Varieties Maximality

Partial solution in Expanded Groups

Theorem. (E.Aichinger, N.Mudrinski - unpublished) Let $\mathbf{V} = (V, +, -, 0, F)$ be the expanded group such that (V, +) is an Abelian group and Con**V** is the three element chain $\{0, \alpha, 1\}$. Then the following are equivalent:

Commutator Preserving Functions Congruence Modular Varieties Maximality

Partial solution in Expanded Groups

Theorem. (E.Aichinger, N.Mudrinski - unpublished) Let $\mathbf{V} = (V, +, -, 0, F)$ be the expanded group such that (V, +) is an Abelian group and Con**V** is the three element chain $\{0, \alpha, 1\}$. Then the following are equivalent:

(1) [1, 1, 1] = 0

・ロン ・回 と ・ ヨ と ・ ヨ と

Commutator Preserving Functions Congruence Modular Varieties Maximality

Partial solution in Expanded Groups

Theorem. (E.Aichinger, N.Mudrinski - unpublished) Let $\mathbf{V} = (V, +, -, 0, F)$ be the expanded group such that (V, +) is an Abelian group and Con \mathbf{V} is the three element chain $\{0, \alpha, 1\}$. Then the following are equivalent:

(1)
$$[1, 1, 1] = 0$$

(2) for all $f \in Pol(\mathbf{V})$, f preserves ρ where

$$\rho = \{(v_1, \dots, v_8) \mid -v_1 + v_4 - v_5 + v_8 \equiv 0 \pmod{\alpha} \\ -v_1 + v_2 - v_7 + v_8 \equiv 0 \pmod{\alpha} \\ -v_1 + v_2 - v_3 + v_4 \equiv 0 \pmod{\alpha} \\ v_1 - v_2 + v_3 - v_4 + v_5 - v_6 + v_7 - v_8 = 0\}.$$

Commutator Preserving Functions Congruence Modular Varieties Maximality

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.

イロン イヨン イヨン イヨン

Commutator Preserving Functions Congruence Modular Varieties Maximality

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.

What among the properties (HC1)-(HC8) are true?

Commutator Preserving Functions Congruence Modular Varieties Maximality

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.

What among the properties (HC1)-(HC8) are true?

Proposition. If **A** is in a congruence modular variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$

Commutator Preserving Functions Congruence Modular Varieties Maximality

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.

What among the properties (HC1)-(HC8) are true?

Proposition. If **A** is in a congruence modular variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] \leq [\beta_1, \ldots, \beta_n]$

Commutator Preserving Functions Congruence Modular Varieties Maximality

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.

What among the properties (HC1)-(HC8) are true?

Proposition. If **A** is in a congruence modular variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] \leq [\beta_1, \ldots, \beta_n]$ (HC3) $[\alpha_1, \ldots, \alpha_n] \leq [\alpha_2, \ldots, \alpha_n]$

Commutator Preserving Functions Congruence Modular Varieties Maximality

Congruence Modular Varieties

Generalize Bulatov's definition to congruence modular varieties.

What among the properties (HC1)-(HC8) are true?

Proposition. If **A** is in a congruence modular variety then (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] \leq [\beta_1, \ldots, \beta_n]$ (HC3) $[\alpha_1, \ldots, \alpha_n] \leq [\alpha_2, \ldots, \alpha_n]$

Open: (HC4)-(HC8)?

Maximality

Theorem. (R.Freese, R.N.McKenzie) Let **A** be an algebra in congruence modular variety. Then binary commutator operation $[,]: \operatorname{Con} \mathbf{A} \times \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{A}$ is the largest operation that satisfies:

•
$$[\alpha, \beta] \leq \alpha \wedge \beta$$

•
$$[(\alpha \lor \theta)/\theta, (\beta \lor \theta)/\theta] = ([\alpha, \beta] \lor \theta)/\theta.$$

<ロ> (日) (日) (日) (日) (日)

Maximality

Theorem. (R.Freese, R.N.McKenzie) Let **A** be an algebra in congruence modular variety. Then binary commutator operation [,]: Con **A** × Con **A** → Con **A** is the largest operation that satisfies:

•
$$[\alpha, \beta] \le \alpha \land \beta$$

•
$$[(\alpha \lor \theta)/\theta, (\beta \lor \theta)/\theta] = ([\alpha, \beta] \lor \theta)/\theta.$$

Let **A** be an algebra in congruence permutable variety.

Maximality

Theorem. (R.Freese, R.N.McKenzie) Let **A** be an algebra in congruence modular variety. Then binary commutator operation $[,]: \operatorname{Con} \mathbf{A} \times \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{A}$ is the largest operation that satisfies:

•
$$[\alpha, \beta] \leq \alpha \wedge \beta$$

•
$$[(\alpha \lor \theta)/\theta, (\beta \lor \theta)/\theta] = ([\alpha, \beta] \lor \theta)/\theta.$$

Let **A** be an algebra in congruence permutable variety.

Question: Is the *n*-ary commutator operation [,...,]: $(Con \mathbf{A})^n \rightarrow Con \mathbf{A}$ the largest operation that satisfies (HC1) and (HC6)?

Maximality

Theorem. (R.Freese, R.N.McKenzie) Let **A** be an algebra in congruence modular variety. Then binary commutator operation [,]: Con **A** × Con **A** → Con **A** is the largest operation that satisfies:

•
$$[\alpha, \beta] \leq \alpha \wedge \beta$$

•
$$[(\alpha \lor \theta)/\theta, (\beta \lor \theta)/\theta] = ([\alpha, \beta] \lor \theta)/\theta.$$

Let **A** be an algebra in congruence permutable variety.

Question: Is the *n*-ary commutator operation $[, \ldots,]: (Con \mathbf{A})^n \rightarrow Con \mathbf{A}$ the largest operation that satisfies (HC1) and (HC6)?

Is it true in congruence modular varieties?

- E. Aichinger, N. Mudrinski, *Polynomial clones of Mal'cev* algebras with small congruence lattices, Acta Mathematica Hungarica **126**, no. 4, 315-333 (2010)
- [2] E. Aichinger, N. Mudrinski, Some applications of higher commutators in Mal'cev algebras, Algebra Universalis 63, no. 4, 367-403 (2010)
- [3] E. Aichinger, N. Mudrinski, *On determining the higher commutator operation in certain classes of expanded groups*, submited

- 4 同 6 4 日 6 4 日 6