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ABSTRACT 
In this paper we investigate community detection algorithms 

applied to class collaboration networks (CCNs) that represent 

class dependencies of 21 consecutive versions of the Apache Ant 

software system. Four community detection techniques, Girvan-

Newman (GN), Greedy Modularity Optimization (GMO), 

Walktrap and Label Propagation (LP), are used to compute 

community partitions. Obtained community structures are 

evaluated using community quality metrics (inter- and intra-

cluster density, conductance and expansion) and compared to 

package structures of analyzed software. In order to investigate 

evolutionary stability of community detection methods, we 

designed an algorithm for tracking evolving communities. For LP 

and GMO, algorithms that produce partitions with higher values 

of normalized modularity score compared to GN and Walktrap, 

we noticed an evolutionary degeneracy – LP and GMO are 

extremely sensitive to small evolutionary changes in CCN 

structure. Walktrap shows the best performance considering 

community quality, evolutionary stability and comparison with 

actual class groupings into packages. Coarse-grained descriptions 

(CGD) of CCNs are constructed from Walktrap partitions and 

analyzed. Results suggest that CCNs have modular structure that 

cannot be considered as hierarchical, due to the existence of large 

strongly connected components in CGDs.  

Categories and Subject Descriptors 

D.2.8 [Metrics]: Product metrics, Software science; E.1 [Data 

structures]: Graphs and networks 

General Terms 

Algorithms, Measurement, Experimentation. 

Keywords 

Community detection, class collaboration network, community 

evolution, evolutionary degeneracy. 

1. INTRODUCTION 
A large computer program written in an object-oriented (OO) 

programming language is typically divided into a set of classes 

and interfaces. Classes and interfaces can collaborate in various 

ways: a class can implement an interface or extend the 

functionality of another class, define a member variable whose 

type is another class; it may use another class as the type of an 

input parameter or return value of one of its methods, instantiate 

objects of another class, etc. In all these cases we say that a class 

references another class. An OO software system can be 

represented as a graph in which classes defined in the system can 

be viewed as nodes and references between them as links. This 

kind of graph is known as a class collaboration network (CCN). 

CCNs are simplified class diagrams, a notion extensively used in 

object-oriented design and analysis, because they preserve only 

the existence of relations between classes and discard other types 

of information about nodes (classes) and links (OO references) 

presented in class diagrams. Such abstraction enables the study of 

complex software systems as regular networks under the 

framework of the complex network theory. Recent progress in 

complex network theory resulted with network measures, 

statistical analysis techniques, evolutionary principles and 

mathematical models which can reveal and explain frequently 

observed macroscopic properties of complex networks such as the 

small-world property, power-law degree distribution (scale-free 

property), high values of local clustering coefficients comparing 

to random graphs, “robust yet fragile” property and highly 

modular or community structure [1, 2]. 

Informally speaking, a community, cluster or module is a 

cohesive set of nodes in a network that are more highly connected 

to each other than to the rest of the network. Community structure 

is a typical feature of social networks (such as online social 

networks and scientific collaboration networks) but is also 

characteristic to other types of complex networks. For example, 

tightly connected groups of nodes in the WWW often correspond 

to pages dealing with the same topic (as was shown in [3]), while 

in cellular and genetic networks are related to functional modules 

[2]. Uncovering communities helps us to understand the structure 

of the network and to draw a readable map (coarse-grained 

description, network of communities) of extremely large 

networks. 

For software systems, one of the essential design principles is that 

of low coupling and high cohesion between software components 

or modules. In a highly modular OO software system, each 

module is a set of functionally related classes which are highly 

cohesive. Coupling between modules should be loose in order to 

preserve their autonomy, to restrict change propagation and to 

make modules reusable. Therefore, the low coupling and high 

cohesion principle itself promotes the emergence of communities 

in class collaboration networks representing well designed 

software systems. 

An important advance in community detection was made by 

Girvan and Newman [4], who introduced a measure for the 

quality of a partition of a network called modularity. Modularity 

is defined as , where the sum goes over the 

m clusters of the partition, ls is the number of links inside 

community s, L is the total number of links in the network, and ds 

represents the total degree of the nodes in community s. The first 

term of summand in previous equation is the fraction of links 

inside cluster s. The second term represents expected fraction of 

links inside the cluster in the randomized network of the same size 

and same degree sequence (network sampled using the 

configuration model [5]). If the first term is much larger than the 

second, then there are more links inside the cluster that one would 

expect by random chance.  The comparison with the configuration 

model leads to a modularity-based definition of a community (or 

cluster): a sub-graph s is a cluster if  . 



Although widely used, the modularity measure has two 

weaknesses. Fortunato and Barthélemy [6] showed that the 

modularity measure has an intrinsic scale that depends on the total 

number of links in the network (the resolution limit problem). 

Communities that are smaller than this scale cannot be detected 

through modularity maximization methods, even in the extreme 

case when they are complete sub-networks connected by single 

bridges. Good et al. [7] showed that there are typically an 

exponential number of structurally diverse alternative partitions 

with modularity scores very close to the maximum (the 

degeneracy problem). However, modularity is still commonly 

used for evaluation of network community structure in community 

detection algorithms, mainly due to the lack of other measures [8].  

In this paper, we investigate community detection techniques 

applied to an evolutionary sequence of class collaboration 

networks representing Apache Ant in 21 versions, and observe the 

properties of obtained communities. Four community detection 

techniques are considered: Girwan-Newman (GN), Greedy 

Modularity Optimization (GMO), Walktrap and Label 

Propagation (LP).  

The rest of paper is structured as follows. In Section 2 related 

work, motivation for this study and main contributions are 

presented. The following section describes applied techniques for 

community detection and an algorithm for tracking evolving 

communities. In Section 4 obtained results are presented and 

discussed. Finally, in Section 5 we give conclusions and 

directions for future work.  

2. RELATED WORK 
In recent years, studies have shown that many natural and 

artificial complex systems can be investigated under the 

framework of complex network theory [1, 2]. Among others, 

networks representing dependencies between entities defined in a 

software system were identified as an important class of complex 

networks. Different authors [9–12] observed that software 

networks exhibit scale-free (or partial scale-free [13]) and small-

world characteristics. On the other hand, community structure of 

software networks has not yet been thoroughly investigated. In 

this section we present articles that deal with community detection 

in class collaboration networks associated with software systems 

written in Java.   

Dietrich et al. [14] developed BARIO, an Eclipse plugin that can 

detect and visualize clusters in CCNs associated with Java 

programs. BARIO uses the GN algorithm to compute community 

partitions. For four Java programs, the authors investigated how 

APC (the average number of packages per cluster) and ACP (the 

average number of clusters per package) change with the number 

of iterations in the GN algorithm. 

Šubelj and Bajec [8] analyzed the community structure of CCNs 

associated with six Java software systems (JUnit, JavaMail, 

Flamingo, Jung, Colt and JDK). To reveal the community 

structure of each network, the authors employed GN, GMO and 

LP. Obtained partitions possess high values of modularity (0.55–

0.75), but identified communities do not exactly correspond to the 

modular structure defined by the package specification. In this 

work we include the Walktrap community detection algorithm 

that was not considered in [8]. As the main contribution we will 

show that this algorithm gives the best performance when 

clustering Apache Ant considering at the same time three aspects: 

community structure quality, evolutionary stability and 

correspondence with the groupings of classes defined by Apache 

Ant packages. 

Paymal et al. [15] investigated the community structure in CCNs 

extracted from six consecutive versions of JHotDraw software 

using the GMO technique. Authors observed that two largest 

communities contain 50% or more of all nodes in each version 

and that those two communities have continuous and stable 

growth during software evolution. Comparing to [9], we examine 

a software system with higher number of versions and apply more 

than one community detection technique. As we will show, using 

the Apache Ant as the case study, although different community 

detection algorithms produce community partitions with similar 

values of the normalized modularity score (which is stabile during 

software evolution), they drastically differ in the number of 

resulting communities and evolutionary stability. This means that 

more than one community detection approach always needs to be 

employed in practice, and the best partitioning chosen using 

multi-view criteria. 

3. METHODOLOGY 
Class collaboration networks associated with 21 consecutive 

versions of Apache Ant (from version 1.1.0 to 1.8.2) were 

extracted from source code using a software tool called Yaccne 

[12]. Yaccne contains a subprogram called Diff that finds the 

differences between two networks where the second evolves from 

the first one by adding new nodes, deleting some nodes, adding 

new links and/or deleting some links.  

For community detection in Apache Ant class collaboration 

networks, we developed C software based on the igraph library 

[16] that contains implementations of four community detection 

algorithms investigated in this paper: Girwan-Newman (GN), 

Greedy Modularity Optimization (GMO), Walktrap and Label 

Propagation (LP). 

The GN algorithm [4] is based on the edge betweenness centrality 

measure. The betweenness of edge e is defined as the fraction of 

shortest paths between all pairs of nodes passing through e. Since 

the edges that lie between communities are expected to have high 

values of betweenness, a clustering dendrogram can be obtained 

in the divisive manner by recursively removing edges with the 

highest value of betweenness. When all edges are removed, the 

dendrogram is cut at the level with the highest value of the 

modularity score. 

GMO [17] starts with n clusters each containing a single node, 

where n is the size of network. At each iteration, the algorithm 

computes or updates the previous value of the variation Q of the 

modularity score obtained by merging any two communities. The 

merger which maximally increases (or minimally decreases) the 

modularity score is chosen and the merge is performed. Thus, a 

clustering dendrogram is made in the agglomerative manner.  

The main idea of the Walktrap community detection algorithm 

[18] is that random walks would be trap into dense sub-networks 

thanks to the high density of links in the community. The 

algorithm uses a distance measure between nodes that is 

calculated from the probabilities that the random walker moves 

from a node to another in k steps. Nodes are then grouped into 

communities through an agglomerative hierarchical clustering 

technique based on Ward’s method. For each class collaboration 

network we performed d runs of Walktrap varying the value of k 

from 1 to d, where d is the diameter of the network under the 

community detection process. The partition with the highest value 

of the modularity score is recorded. 

The LP algorithm [19] initializes each node with a unique label. 

At each iteration of the algorithm, the set of nodes is shuffled. 

Following the obtained randomized sequence of nodes, each node 



adopts a label that most of its neighbors have (if there is more 

than one label with such property, then one is chosen uniformly 

randomly). As labels propagate through the network, densely 

connected sets of nodes form a consensus on their labels. The 

iterative process of label propagation is repeated until the iteration 

without any label change. At the end of the algorithm, nodes 

having the same labels are grouped together as communities. In 

this study, we performed 100000 runs of the label propagation 

algorithm for each class collaboration network and recorded the 

partition with the highest value of the modularity score. 

We designed and implemented in Java an algorithm for tracking 

evolving communities that is able to detect basic evolutionary 

events related to community evolution: birth of a community, 

death of a community, merging of two communities, split of a 

community into two smaller, community growth, community 

contraction and community stability. For two given partitioned 

networks N1 and N2, the algorithm determines the set of nodes S 

appearing in both networks (since each node represents a Java 

class defined in Apache Ant, nodes are matched using fully 

qualified names of classes). For each two pairs of clusters  

and  the similarity score is calculated by the formula 

introduced in [20]:  

, 

where  and .  

The best match (BM function) for two pairs of clusters belonging 

to different networks is the one with the maximal value of the 

similarity score. Evolutionary events are determined by the 

following rules: 

1.  

2.  

3. 

 

4. 

 

5. 

 

6.  

 

7.  

 

4. RESULTS AND DISCUSSION 
The largest weakly connected component of Apache Ant CCN 

evolves from 77 nodes and 196 links in version 1.1.0 to 821 nodes 

and 3998 links in version 1.8.2. Each CCN representing one 

version of Ant has more nodes and links than the CCN 

representing the previous version. All CCNs are sparse (density is 

0.06 for Ant 1.1.0 and drops below 0.02 after Ant 1.4.1). We 

divided network transitions (change in CCN structure from 

version v to version v + 1) into two categories: 

1. Six small transitions (more than one and less than five 

links added/deleted with the set of nodes remaining the  

same): 1.5.3  1.5.4, 1.6.3  1.6.4, 1.4.0  1.4.1, 

1.6.4  1.6.5, 1.5.2  1.5.3 and 1.5.0  1.5.1 

2. Fourteen large transitions (more than 3 nodes 

added/deleted and more than 5 links added/deleted). The 

biggest transition is from version 1.4.1  1.5.0: 205 

new nodes added, 19 nodes deleted, 981 new links 

added and 177 links deleted. 

Since modularity is not scale independent, we normalized 

modularity values returned by community detection algorithms 

with , where  stands for the 

maximal value of modularity for a network with L links [6]. 

Figure 1 shows the evolution of the normalized modularity score 

for each applied community detection technique. Values of 

normalized modularity scores vary from 0.35 to 0.47, which is a 

clear indicator that analyzed CCNs possess community structure 

by the modularity based definition of community (values above 

0.30 are commonly regarded as an indication of significant 

community structure [6]). It can be seen that in most cases Label 

Propagation produces community partitions with the highest 

values of normalized modularity, while the poorest performer is 

GN, except for the first two versions. Also, from some point in 

time changes in the normalized modularity score are oscillatory in 

the range ±0.04, so it can be concluded that the normalized 

modularity is relatively stable during software evolution. 

 

Figure 1. Evolution of the normalized modularity score. 

 

Figure 2. Number of detected communities together with the 

number of packages (#Packages) existing in Apache Ant. 

While different community detection algorithms give relatively 

close values of the normalized modularity score, the difference 

between the numbers of detected communities is more drastic. 

Figure 2 shows the number of detected communities for each 

clustering technique, together with the number of actual Java 

packages existing in Apache Ant during software evolution. It can 

be seen that the numbers of communities produced by LP and 

GMO are similar and drastically smaller than the numbers of 

packages and the number of communities produced by Walktrap 

and GN. LP and GMO give higher values of the normalized 

modularity score than Walktrap and GM, and the comparison of 

the number of communities detected using LP and GMO with the 
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number of packages suggests that the resolution limit problem 

appeared during community detection for these two techniques.  

 

Figure 3. Evolution of the dominant package score. 

In order to investigate how obtained community structures 

correspond to Java package structures, for each version and 

clustering technique we measured the Dominant Package Score 

(DPC). DPC for a CCN partition is the average fraction of classes 

(nodes) belonging to the dominant package in a community, 

excluding singleton communities (communities that contain 

exactly one node). Higher values of DPC indicate higher 

similarity with the package structure. Figure 3 shows the 

evolution of the dominant package score and it can be clearly seen 

that Walktrap produces community partitions that are most similar 

to the package organization of classes defined in Apache Ant. 

4.1 Community Structure Quality 
Besides the normalized modularity score, we calculated average 

inter- and intra-cluster density, conductance and expansion for 

each CCN version and community detection technique, in order to 

give additional estimates of the quality of obtained community 

partitions. 

Intra-cluster density  of the sub-network C is defined as the 

ratio between the number of internal links of C (links joining 

nodes within C) and the number of all possible internal links. The 

inter-cluster density  is the ratio between the number of 

links running from the nodes in C to the rest of the network and 

the maximum number of inter-cluster links possible. Density-

based definition of a community is related to the comparison of 

intra-cluster density, overall network density D and inter-cluster 

density. For C to be a cluster we expect  

[21]. Figure 4 shows the evolution of , D and  for 

Apache Ant. It can be seen that all community detection 

algorithms produce community structures that satisfy the density 

based definition of community. Walktrap shows the best 

performance considering intra- and inter-cluster density: it 

produces partitions with the highest average values of  in 

17 versions and lowest values of  in 16 versions.  

Conductance is the ratio between the number of links that 

point outside of cluster C and total link volume contained in C. 

More community-like sub-networks have lower conductance [22]. 

Expansion  also measures the number of links pointing 

outside C but normalizes by the number of nodes (not the number 

of all links). Again, lower value of expansion signifies a 

community. Figure 5 shows the evolution of average conductance 

and expansion. LP exhibits the best performance by average 

conductance (21/21 versions), while Walktrap shows the best 

performance by average expansion (10/21 versions, and we have 

7/21 for LP and 3/21 for GMO). 

 

Figure 4. Evolution of average intra-cluster density (D-in), 

network density (line with rhomboids) and average intra-

cluster density (D-out) plotted on semi-log scales. 

 

Figure 5. Evolution of average conductance (CON-) and 

average expansion (EXP-). 

4.2 Evolutionary Stability of Community 

Detection Techniques 
In order to investigate evolutionary stability of community 

detection techniques, we applied an algorithm for tracking 

evolving communities described in Section 4 on six small network 

transitions. The basic characteristic of those transitions is that the 

set of nodes does not change in CCNs representing two successive 

versions of Apache Ant with the small differences in the set of 

links.  

For each clustering technique, we measured the evolutionary 

stability factor (ESF), merge factor (MF) and split factor (SF). 

ESF measures the fraction of nodes in the matched stable, growth 

and contraction communities. In other words, ESF represents the 

fraction of nodes that remained in the same cluster after a 

transition. Stable, growth and contraction clusters are indicators of 

continuous evolution, while merge and split events indicate 

dramatic change in network structure on small transitions. Let T 

denote network transition N1  N2. MF represents the number of 

merge events in T (the number of cluster in N1 that are merged in 
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N2) normalized by the number of clusters in N1. SF measures the 

number of split events in T (the number of clusters in N2 that are 

created by splitting clusters in N1) normalized by the number of 

clusters in N2. If the ESF value is equal to one then we have the 

same partitioning in N1 and N2. On small transitions, higher values 

of EFS indicate evolutionary stability and evolutionary 

traceability of communities, while higher values of MF and SF 

suggest evolutionary degeneracy – extreme sensitivity of the 

community detection algorithm to small changes in network 

structure, resulting in drastically different community partitions. 

The values of ESF for small transitions are summarized in Table 

1, while the values of MF and SF are shown in Table 2. It can be 

seen that Walktrap and GN have extremely higher values of ESF 

(always higher than 0.94 and in some case exactly 1) than GMO 

and LP, whose average ESF scores are 0.74 and 0.65, 

respectively. On the other hand, Walktrap exhibits significantly 

smaller values of SF and MF (always smaller than 0.06 and in 

more than half the cases exactly 0) compared to other algorithms. 

Table 1. Evolutionary stability factor on small network 

transitions 

Transition GMO GN WALKTRAP LP 

1.4.0  1.4.1 0.54 0.94 1 0.91 

1.5.0  1.5.1 0.96 0.96 1 0.73 

1.5.2  1.5.3 0.74 0.96 0.95 0.49 

1.5.3  1.5.4 0.73 1 0.95 0.64 

1.6.3  1.6.4 0.96 0.97 0.99 0.56 

1.6.4  1.6.5 0.51 0.95 0.99 0.6 

 

Table2. Split and merge factor on small network transitions 

Transition 
GMO GN 

SF MF SF MF 

1.4.0  1.4.1 0.3 0.5 0.08 0.04 

1.5.0  1.5.1 0 0.06 0.04 0 

1.5.2  1.5.3 0.26 0.12 0.04 0.03 

1.5.3  1.5.4 0.15 0.15 0 0 

1.6.3  1.6.4 0 0 0.01 0.04 

1.6.4  1.6.5 0.38 0.27 0.17 0.01 

 WALKTRAP LP 

1.4.0  1.4.1 0 0 0.1 0.1 

1.5.0  1.5.1 0 0 0.27 0.21 

1.5.2  1.5.3 0.04 0.06 0.28 0.19 

1.5.3  1.5.4 0 0.02 0.19 0.28 

1.6.3  1.6.4 0.01 0 0.36 0.27 

1.6.4  1.6.5 0 0.01 0.22 0.12 

 

To summarize, LP shows the best performance considering the 

normalized modularity score and average conductance, while 

Walktrap shows the best performance considering the inter- and 

intra-cluster density, average expansion, dominant package score 

and evolutionary aspects (ESF, SF and MF scores). 

4.3 Coarse-Grained Descriptions 
Since Walktrap gives the best performance considering at the 

same time evolutionary aspects, correspondence with the package 

structure and cluster quality metrics, we constructed coarse-

grained descriptions (CGDs) of CCNs using community structures 

computed by this method. A CGD is a network of communities: 

the set of CGD nodes corresponds to the set of communities, 

while CGD directional link A  B denotes that there is a class in 

community A that references another class in community B. CGD 

nodes are named by the dominant package in the communities or 

by class names in the case of one node communities. Figure 6 

shows the CGD representing Apache Ant in version 1.3.0. The 

size of each node indicates the size of the appropriate community. 

Nodes in the same color form strongly connected components (for 

each two nodes in a strongly connected component there is a 

directed path connecting them). It can be seen that four largest 

communities belong to a strongly connected component. The 

same situation we observed in CGDs representing other examined 

versions of Apache Ant: CGD nodes representing largest 

communities are gathered in a strongly connected component of 

significant size compared to the number of nodes. Figure 7 shows 

the relative size of the largest strongly connected components 

(LSCCs) for each version. It can be seen that the size of LSCC 

varies in 0.3–0.6 range. The presence of large cyclic dependencies 

in CGDs implies that CGDs strongly deviate from hierarchical 

structures. 

 

Figure 6. Coarse-grained description of the Apache Ant CCN 

in version 1.3.0 

 

Figure 7. Size of the largest strongly connected component in 

CGDs. 

5. CONCLUSIONS AND FUTURE WORK 
This paper investigated four community detection techniques 

(GN, GMO, Walktrap and LP) applied to class collaboration 

networks representing the Apache Ant software system in 21 

consecutive versions. We showed that the values of the 
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normalized modularity score are similar and stable during 

software evolution for each applied technique. However, there are 

big structural differences in computed partitions. By comparing 

obtained partitions with package structures, evaluating partitions 

qualities (using intra- and inter- cluster density, expansion and 

conductance metrics) and measuring evolutionary stability on 

small network transitions, we concluded that Walktrap is the best 

choice for computing communities in the Apache Ant software 

system. For GMO and LP, we noticed evolutionary degeneracy, a 

phenomenon where a community detection technique is extremely 

sensitive to small changes in the class collaboration network. This 

evidence implies that mentioned techniques cannot be used for 

clustering because they lead to evolutionary intractable 

communities. From Walktrap partitions, we constructed coarse-

grained descriptions of the Apache Ant class collaboration 

networks and conducted strongly connected component analysis 

on them. Results show that CGDs possess large cyclic 

dependencies, which means that the modular organization cannot 

be considered as hierarchical. 

Community detection methods investigated in this paper produce 

non-overlapping partitions. It is still an open question how 

community detection techniques that produce overlapping or 

fuzzy partitions (such as the k-clique percolation method) behave 

when applied to software networks.  
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