
Community Detection and Analysis of Community
Evolution in Apache Ant Class Collaboration Networks

Miloš Savić
svc@dmi.uns.ac.rs

Miloš Radovanović
radacha@dmi.uns.ac.rs

Mirjana Ivanović
mira@dmi.uns.ac.rs

Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad
Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

ABSTRACT
In this paper we investigate community detection algorithms

applied to class collaboration networks (CCNs) that represent

class dependencies of 21 consecutive versions of the Apache Ant

software system. Four community detection techniques, Girvan-

Newman (GN), Greedy Modularity Optimization (GMO),

Walktrap and Label Propagation (LP), are used to compute

community partitions. Obtained community structures are

evaluated using community quality metrics (inter- and intra-

cluster density, conductance and expansion) and compared to

package structures of analyzed software. In order to investigate

evolutionary stability of community detection methods, we

designed an algorithm for tracking evolving communities. For LP

and GMO, algorithms that produce partitions with higher values

of normalized modularity score compared to GN and Walktrap,

we noticed an evolutionary degeneracy – LP and GMO are

extremely sensitive to small evolutionary changes in CCN

structure. Walktrap shows the best performance considering

community quality, evolutionary stability and comparison with

actual class groupings into packages. Coarse-grained descriptions

(CGD) of CCNs are constructed from Walktrap partitions and

analyzed. Results suggest that CCNs have modular structure that

cannot be considered as hierarchical, due to the existence of large

strongly connected components in CGDs.

Categories and Subject Descriptors

D.2.8 [Metrics]: Product metrics, Software science; E.1 [Data

structures]: Graphs and networks

General Terms

Algorithms, Measurement, Experimentation.

Keywords

Community detection, class collaboration network, community

evolution, evolutionary degeneracy.

1. INTRODUCTION
A large computer program written in an object-oriented (OO)

programming language is typically divided into a set of classes

and interfaces. Classes and interfaces can collaborate in various

ways: a class can implement an interface or extend the

functionality of another class, define a member variable whose

type is another class; it may use another class as the type of an

input parameter or return value of one of its methods, instantiate

objects of another class, etc. In all these cases we say that a class

references another class. An OO software system can be

represented as a graph in which classes defined in the system can

be viewed as nodes and references between them as links. This

kind of graph is known as a class collaboration network (CCN).

CCNs are simplified class diagrams, a notion extensively used in

object-oriented design and analysis, because they preserve only

the existence of relations between classes and discard other types

of information about nodes (classes) and links (OO references)

presented in class diagrams. Such abstraction enables the study of

complex software systems as regular networks under the

framework of the complex network theory. Recent progress in

complex network theory resulted with network measures,

statistical analysis techniques, evolutionary principles and

mathematical models which can reveal and explain frequently

observed macroscopic properties of complex networks such as the

small-world property, power-law degree distribution (scale-free

property), high values of local clustering coefficients comparing

to random graphs, “robust yet fragile” property and highly

modular or community structure [1, 2].

Informally speaking, a community, cluster or module is a

cohesive set of nodes in a network that are more highly connected

to each other than to the rest of the network. Community structure

is a typical feature of social networks (such as online social

networks and scientific collaboration networks) but is also

characteristic to other types of complex networks. For example,

tightly connected groups of nodes in the WWW often correspond

to pages dealing with the same topic (as was shown in [3]), while

in cellular and genetic networks are related to functional modules

[2]. Uncovering communities helps us to understand the structure

of the network and to draw a readable map (coarse-grained

description, network of communities) of extremely large

networks.

For software systems, one of the essential design principles is that

of low coupling and high cohesion between software components

or modules. In a highly modular OO software system, each

module is a set of functionally related classes which are highly

cohesive. Coupling between modules should be loose in order to

preserve their autonomy, to restrict change propagation and to

make modules reusable. Therefore, the low coupling and high

cohesion principle itself promotes the emergence of communities

in class collaboration networks representing well designed

software systems.

An important advance in community detection was made by

Girvan and Newman [4], who introduced a measure for the

quality of a partition of a network called modularity. Modularity

is defined as , where the sum goes over the

m clusters of the partition, ls is the number of links inside

community s, L is the total number of links in the network, and ds

represents the total degree of the nodes in community s. The first

term of summand in previous equation is the fraction of links

inside cluster s. The second term represents expected fraction of

links inside the cluster in the randomized network of the same size

and same degree sequence (network sampled using the

configuration model [5]). If the first term is much larger than the

second, then there are more links inside the cluster that one would

expect by random chance. The comparison with the configuration

model leads to a modularity-based definition of a community (or

cluster): a sub-graph s is a cluster if .

Although widely used, the modularity measure has two

weaknesses. Fortunato and Barthélemy [6] showed that the

modularity measure has an intrinsic scale that depends on the total

number of links in the network (the resolution limit problem).

Communities that are smaller than this scale cannot be detected

through modularity maximization methods, even in the extreme

case when they are complete sub-networks connected by single

bridges. Good et al. [7] showed that there are typically an

exponential number of structurally diverse alternative partitions

with modularity scores very close to the maximum (the

degeneracy problem). However, modularity is still commonly

used for evaluation of network community structure in community

detection algorithms, mainly due to the lack of other measures [8].

In this paper, we investigate community detection techniques

applied to an evolutionary sequence of class collaboration

networks representing Apache Ant in 21 versions, and observe the

properties of obtained communities. Four community detection

techniques are considered: Girwan-Newman (GN), Greedy

Modularity Optimization (GMO), Walktrap and Label

Propagation (LP).

The rest of paper is structured as follows. In Section 2 related

work, motivation for this study and main contributions are

presented. The following section describes applied techniques for

community detection and an algorithm for tracking evolving

communities. In Section 4 obtained results are presented and

discussed. Finally, in Section 5 we give conclusions and

directions for future work.

2. RELATED WORK
In recent years, studies have shown that many natural and

artificial complex systems can be investigated under the

framework of complex network theory [1, 2]. Among others,

networks representing dependencies between entities defined in a

software system were identified as an important class of complex

networks. Different authors [9–12] observed that software

networks exhibit scale-free (or partial scale-free [13]) and small-

world characteristics. On the other hand, community structure of

software networks has not yet been thoroughly investigated. In

this section we present articles that deal with community detection

in class collaboration networks associated with software systems

written in Java.

Dietrich et al. [14] developed BARIO, an Eclipse plugin that can

detect and visualize clusters in CCNs associated with Java

programs. BARIO uses the GN algorithm to compute community

partitions. For four Java programs, the authors investigated how

APC (the average number of packages per cluster) and ACP (the

average number of clusters per package) change with the number

of iterations in the GN algorithm.

Šubelj and Bajec [8] analyzed the community structure of CCNs

associated with six Java software systems (JUnit, JavaMail,

Flamingo, Jung, Colt and JDK). To reveal the community

structure of each network, the authors employed GN, GMO and

LP. Obtained partitions possess high values of modularity (0.55–

0.75), but identified communities do not exactly correspond to the

modular structure defined by the package specification. In this

work we include the Walktrap community detection algorithm

that was not considered in [8]. As the main contribution we will

show that this algorithm gives the best performance when

clustering Apache Ant considering at the same time three aspects:

community structure quality, evolutionary stability and

correspondence with the groupings of classes defined by Apache

Ant packages.

Paymal et al. [15] investigated the community structure in CCNs

extracted from six consecutive versions of JHotDraw software

using the GMO technique. Authors observed that two largest

communities contain 50% or more of all nodes in each version

and that those two communities have continuous and stable

growth during software evolution. Comparing to [9], we examine

a software system with higher number of versions and apply more

than one community detection technique. As we will show, using

the Apache Ant as the case study, although different community

detection algorithms produce community partitions with similar

values of the normalized modularity score (which is stabile during

software evolution), they drastically differ in the number of

resulting communities and evolutionary stability. This means that

more than one community detection approach always needs to be

employed in practice, and the best partitioning chosen using

multi-view criteria.

3. METHODOLOGY
Class collaboration networks associated with 21 consecutive

versions of Apache Ant (from version 1.1.0 to 1.8.2) were

extracted from source code using a software tool called Yaccne

[12]. Yaccne contains a subprogram called Diff that finds the

differences between two networks where the second evolves from

the first one by adding new nodes, deleting some nodes, adding

new links and/or deleting some links.

For community detection in Apache Ant class collaboration

networks, we developed C software based on the igraph library

[16] that contains implementations of four community detection

algorithms investigated in this paper: Girwan-Newman (GN),

Greedy Modularity Optimization (GMO), Walktrap and Label

Propagation (LP).

The GN algorithm [4] is based on the edge betweenness centrality

measure. The betweenness of edge e is defined as the fraction of

shortest paths between all pairs of nodes passing through e. Since

the edges that lie between communities are expected to have high

values of betweenness, a clustering dendrogram can be obtained

in the divisive manner by recursively removing edges with the

highest value of betweenness. When all edges are removed, the

dendrogram is cut at the level with the highest value of the

modularity score.

GMO [17] starts with n clusters each containing a single node,

where n is the size of network. At each iteration, the algorithm

computes or updates the previous value of the variation Q of the

modularity score obtained by merging any two communities. The

merger which maximally increases (or minimally decreases) the

modularity score is chosen and the merge is performed. Thus, a

clustering dendrogram is made in the agglomerative manner.

The main idea of the Walktrap community detection algorithm

[18] is that random walks would be trap into dense sub-networks

thanks to the high density of links in the community. The

algorithm uses a distance measure between nodes that is

calculated from the probabilities that the random walker moves

from a node to another in k steps. Nodes are then grouped into

communities through an agglomerative hierarchical clustering

technique based on Ward’s method. For each class collaboration

network we performed d runs of Walktrap varying the value of k

from 1 to d, where d is the diameter of the network under the

community detection process. The partition with the highest value

of the modularity score is recorded.

The LP algorithm [19] initializes each node with a unique label.

At each iteration of the algorithm, the set of nodes is shuffled.

Following the obtained randomized sequence of nodes, each node

adopts a label that most of its neighbors have (if there is more

than one label with such property, then one is chosen uniformly

randomly). As labels propagate through the network, densely

connected sets of nodes form a consensus on their labels. The

iterative process of label propagation is repeated until the iteration

without any label change. At the end of the algorithm, nodes

having the same labels are grouped together as communities. In

this study, we performed 100000 runs of the label propagation

algorithm for each class collaboration network and recorded the

partition with the highest value of the modularity score.

We designed and implemented in Java an algorithm for tracking

evolving communities that is able to detect basic evolutionary

events related to community evolution: birth of a community,

death of a community, merging of two communities, split of a

community into two smaller, community growth, community

contraction and community stability. For two given partitioned

networks N1 and N2, the algorithm determines the set of nodes S

appearing in both networks (since each node represents a Java

class defined in Apache Ant, nodes are matched using fully

qualified names of classes). For each two pairs of clusters

and the similarity score is calculated by the formula

introduced in [20]:

,

where and .

The best match (BM function) for two pairs of clusters belonging

to different networks is the one with the maximal value of the

similarity score. Evolutionary events are determined by the

following rules:

1.

2.

3.

4.

5.

6.

7.

4. RESULTS AND DISCUSSION
The largest weakly connected component of Apache Ant CCN

evolves from 77 nodes and 196 links in version 1.1.0 to 821 nodes

and 3998 links in version 1.8.2. Each CCN representing one

version of Ant has more nodes and links than the CCN

representing the previous version. All CCNs are sparse (density is

0.06 for Ant 1.1.0 and drops below 0.02 after Ant 1.4.1). We

divided network transitions (change in CCN structure from

version v to version v + 1) into two categories:

1. Six small transitions (more than one and less than five

links added/deleted with the set of nodes remaining the

same): 1.5.3 1.5.4, 1.6.3 1.6.4, 1.4.0 1.4.1,

1.6.4 1.6.5, 1.5.2 1.5.3 and 1.5.0 1.5.1

2. Fourteen large transitions (more than 3 nodes

added/deleted and more than 5 links added/deleted). The

biggest transition is from version 1.4.1 1.5.0: 205

new nodes added, 19 nodes deleted, 981 new links

added and 177 links deleted.

Since modularity is not scale independent, we normalized

modularity values returned by community detection algorithms

with , where stands for the

maximal value of modularity for a network with L links [6].

Figure 1 shows the evolution of the normalized modularity score

for each applied community detection technique. Values of

normalized modularity scores vary from 0.35 to 0.47, which is a

clear indicator that analyzed CCNs possess community structure

by the modularity based definition of community (values above

0.30 are commonly regarded as an indication of significant

community structure [6]). It can be seen that in most cases Label

Propagation produces community partitions with the highest

values of normalized modularity, while the poorest performer is

GN, except for the first two versions. Also, from some point in

time changes in the normalized modularity score are oscillatory in

the range ±0.04, so it can be concluded that the normalized

modularity is relatively stable during software evolution.

Figure 1. Evolution of the normalized modularity score.

Figure 2. Number of detected communities together with the

number of packages (#Packages) existing in Apache Ant.

While different community detection algorithms give relatively

close values of the normalized modularity score, the difference

between the numbers of detected communities is more drastic.

Figure 2 shows the number of detected communities for each

clustering technique, together with the number of actual Java

packages existing in Apache Ant during software evolution. It can

be seen that the numbers of communities produced by LP and

GMO are similar and drastically smaller than the numbers of

packages and the number of communities produced by Walktrap

and GN. LP and GMO give higher values of the normalized

modularity score than Walktrap and GM, and the comparison of

the number of communities detected using LP and GMO with the

0.35

0.37

0.39

0.41

0.43

0.45

0.47

1
.1
.0

1
.3
.0

1
.4
.1

1
.5
.1

1
.5
.3

1
.6
.0

1
.6
.2

1
.6
.4

1
.7
.0

1
.8
.0

1
.8
.2

GMO GN WALKTRAP LP

0

20

40

60

80

100

1
.1
.0

1
.3
.0

1
.4
.1

1
.5
.1

1
.5
.3

1
.6
.0

1
.6
.2

1
.6
.4

1
.7
.0

1
.8
.0

1
.8
.2

GMO GN WALKTRAP

LP #Packages

number of packages suggests that the resolution limit problem

appeared during community detection for these two techniques.

Figure 3. Evolution of the dominant package score.

In order to investigate how obtained community structures

correspond to Java package structures, for each version and

clustering technique we measured the Dominant Package Score

(DPC). DPC for a CCN partition is the average fraction of classes

(nodes) belonging to the dominant package in a community,

excluding singleton communities (communities that contain

exactly one node). Higher values of DPC indicate higher

similarity with the package structure. Figure 3 shows the

evolution of the dominant package score and it can be clearly seen

that Walktrap produces community partitions that are most similar

to the package organization of classes defined in Apache Ant.

4.1 Community Structure Quality
Besides the normalized modularity score, we calculated average

inter- and intra-cluster density, conductance and expansion for

each CCN version and community detection technique, in order to

give additional estimates of the quality of obtained community

partitions.

Intra-cluster density of the sub-network C is defined as the

ratio between the number of internal links of C (links joining

nodes within C) and the number of all possible internal links. The

inter-cluster density is the ratio between the number of

links running from the nodes in C to the rest of the network and

the maximum number of inter-cluster links possible. Density-

based definition of a community is related to the comparison of

intra-cluster density, overall network density D and inter-cluster

density. For C to be a cluster we expect

[21]. Figure 4 shows the evolution of , D and for

Apache Ant. It can be seen that all community detection

algorithms produce community structures that satisfy the density

based definition of community. Walktrap shows the best

performance considering intra- and inter-cluster density: it

produces partitions with the highest average values of in

17 versions and lowest values of in 16 versions.

Conductance is the ratio between the number of links that

point outside of cluster C and total link volume contained in C.

More community-like sub-networks have lower conductance [22].

Expansion also measures the number of links pointing

outside C but normalizes by the number of nodes (not the number

of all links). Again, lower value of expansion signifies a

community. Figure 5 shows the evolution of average conductance

and expansion. LP exhibits the best performance by average

conductance (21/21 versions), while Walktrap shows the best

performance by average expansion (10/21 versions, and we have

7/21 for LP and 3/21 for GMO).

Figure 4. Evolution of average intra-cluster density (D-in),

network density (line with rhomboids) and average intra-

cluster density (D-out) plotted on semi-log scales.

Figure 5. Evolution of average conductance (CON-) and

average expansion (EXP-).

4.2 Evolutionary Stability of Community

Detection Techniques
In order to investigate evolutionary stability of community

detection techniques, we applied an algorithm for tracking

evolving communities described in Section 4 on six small network

transitions. The basic characteristic of those transitions is that the

set of nodes does not change in CCNs representing two successive

versions of Apache Ant with the small differences in the set of

links.

For each clustering technique, we measured the evolutionary

stability factor (ESF), merge factor (MF) and split factor (SF).

ESF measures the fraction of nodes in the matched stable, growth

and contraction communities. In other words, ESF represents the

fraction of nodes that remained in the same cluster after a

transition. Stable, growth and contraction clusters are indicators of

continuous evolution, while merge and split events indicate

dramatic change in network structure on small transitions. Let T

denote network transition N1 N2. MF represents the number of

merge events in T (the number of cluster in N1 that are merged in

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
1
.1
.0

1
.3
.0

1
.4
.1

1
.5
.1

1
.5
.3

1
.6
.0

1
.6
.2

1
.6
.4

1
.7
.0

1
.8
.0

1
.8
.2

GMO GN WALKTRAP LP

0.001

0.01

0.1

1

Density D-in(GMO)
D-in(GN) D-in(WALKTRAP)
D-in(LP) D-out(GMO)
D-out(GN) D-out(WALKTRAP)

0

0.5

1

1.5

2

2.5

3

1
.1
.0

1
.3
.0

1
.4
.1

1
.5
.1

1
.5
.3

1
.6
.0

1
.6
.2

1
.6
.4

1
.7
.0

1
.8
.0

1
.8
.2

EXP-GMO EXP-GN

EXP-WALKTRAP EXP-LP

CON-GMO CON-GN

CON-WALKTRAP CON-LP

N2) normalized by the number of clusters in N1. SF measures the

number of split events in T (the number of clusters in N2 that are

created by splitting clusters in N1) normalized by the number of

clusters in N2. If the ESF value is equal to one then we have the

same partitioning in N1 and N2. On small transitions, higher values

of EFS indicate evolutionary stability and evolutionary

traceability of communities, while higher values of MF and SF

suggest evolutionary degeneracy – extreme sensitivity of the

community detection algorithm to small changes in network

structure, resulting in drastically different community partitions.

The values of ESF for small transitions are summarized in Table

1, while the values of MF and SF are shown in Table 2. It can be

seen that Walktrap and GN have extremely higher values of ESF

(always higher than 0.94 and in some case exactly 1) than GMO

and LP, whose average ESF scores are 0.74 and 0.65,

respectively. On the other hand, Walktrap exhibits significantly

smaller values of SF and MF (always smaller than 0.06 and in

more than half the cases exactly 0) compared to other algorithms.

Table 1. Evolutionary stability factor on small network

transitions

Transition GMO GN WALKTRAP LP

1.4.0 1.4.1 0.54 0.94 1 0.91

1.5.0 1.5.1 0.96 0.96 1 0.73

1.5.2 1.5.3 0.74 0.96 0.95 0.49

1.5.3 1.5.4 0.73 1 0.95 0.64

1.6.3 1.6.4 0.96 0.97 0.99 0.56

1.6.4 1.6.5 0.51 0.95 0.99 0.6

Table2. Split and merge factor on small network transitions

Transition
GMO GN

SF MF SF MF

1.4.0 1.4.1 0.3 0.5 0.08 0.04

1.5.0 1.5.1 0 0.06 0.04 0

1.5.2 1.5.3 0.26 0.12 0.04 0.03

1.5.3 1.5.4 0.15 0.15 0 0

1.6.3 1.6.4 0 0 0.01 0.04

1.6.4 1.6.5 0.38 0.27 0.17 0.01

 WALKTRAP LP

1.4.0 1.4.1 0 0 0.1 0.1

1.5.0 1.5.1 0 0 0.27 0.21

1.5.2 1.5.3 0.04 0.06 0.28 0.19

1.5.3 1.5.4 0 0.02 0.19 0.28

1.6.3 1.6.4 0.01 0 0.36 0.27

1.6.4 1.6.5 0 0.01 0.22 0.12

To summarize, LP shows the best performance considering the

normalized modularity score and average conductance, while

Walktrap shows the best performance considering the inter- and

intra-cluster density, average expansion, dominant package score

and evolutionary aspects (ESF, SF and MF scores).

4.3 Coarse-Grained Descriptions
Since Walktrap gives the best performance considering at the

same time evolutionary aspects, correspondence with the package

structure and cluster quality metrics, we constructed coarse-

grained descriptions (CGDs) of CCNs using community structures

computed by this method. A CGD is a network of communities:

the set of CGD nodes corresponds to the set of communities,

while CGD directional link A B denotes that there is a class in

community A that references another class in community B. CGD

nodes are named by the dominant package in the communities or

by class names in the case of one node communities. Figure 6

shows the CGD representing Apache Ant in version 1.3.0. The

size of each node indicates the size of the appropriate community.

Nodes in the same color form strongly connected components (for

each two nodes in a strongly connected component there is a

directed path connecting them). It can be seen that four largest

communities belong to a strongly connected component. The

same situation we observed in CGDs representing other examined

versions of Apache Ant: CGD nodes representing largest

communities are gathered in a strongly connected component of

significant size compared to the number of nodes. Figure 7 shows

the relative size of the largest strongly connected components

(LSCCs) for each version. It can be seen that the size of LSCC

varies in 0.3–0.6 range. The presence of large cyclic dependencies

in CGDs implies that CGDs strongly deviate from hierarchical

structures.

Figure 6. Coarse-grained description of the Apache Ant CCN

in version 1.3.0

Figure 7. Size of the largest strongly connected component in

CGDs.

5. CONCLUSIONS AND FUTURE WORK
This paper investigated four community detection techniques

(GN, GMO, Walktrap and LP) applied to class collaboration

networks representing the Apache Ant software system in 21

consecutive versions. We showed that the values of the

0.2

0.3

0.4

0.5

0.6

normalized modularity score are similar and stable during

software evolution for each applied technique. However, there are

big structural differences in computed partitions. By comparing

obtained partitions with package structures, evaluating partitions

qualities (using intra- and inter- cluster density, expansion and

conductance metrics) and measuring evolutionary stability on

small network transitions, we concluded that Walktrap is the best

choice for computing communities in the Apache Ant software

system. For GMO and LP, we noticed evolutionary degeneracy, a

phenomenon where a community detection technique is extremely

sensitive to small changes in the class collaboration network. This

evidence implies that mentioned techniques cannot be used for

clustering because they lead to evolutionary intractable

communities. From Walktrap partitions, we constructed coarse-

grained descriptions of the Apache Ant class collaboration

networks and conducted strongly connected component analysis

on them. Results show that CGDs possess large cyclic

dependencies, which means that the modular organization cannot

be considered as hierarchical.

Community detection methods investigated in this paper produce

non-overlapping partitions. It is still an open question how

community detection techniques that produce overlapping or

fuzzy partitions (such as the k-clique percolation method) behave

when applied to software networks.

ACKNOWLEDGMENTS
The authors acknowledge the support of this work by the Serbian

Ministry of Education and Science through project “Intelligent

Techniques and Their Integration into Wide-Spectrum Decision

Support”, no. OI174023.

6. REFERENCES
[1] Albert, R., and Barabási, A.-L. 2002. Statistical mechanics of

complex networks. Rev. Mod. Phys. 74 (1), 47–97.

[2] Boccaletti, S., Latora, V., Moreno Y., Chavez, M., Hwang,

D. 2006. Complex networks: Structure and dynamics.

Physics Reports 424, 175–308.

[3] Flake, G. W., Lawrence, S., Giles C. L, and Coetzee, F. M.

2002. Self-organization and identification of Web

communities. IEEE Computer 35 (3), 66–71.

[4] Newman, M. E. J., and Girvan, M. 2004. Finding and

evaluating community structure in networks. Phys. Rev. E.

69, 026113.

[5] Bollobás, B. 2001. Random Graphs. Cambridge University

Press.

[6] Fortunato, S., and Barthélemy, M. 2007. Resolution limit in

community detection. In Proceedings of the National

Academy of Sciences 104(1), 36–41.

[7] Good, B. H., de Montoye, Y.-A., and Clauset A. 2010. The

performance of modularity maximization in practical

context. Phys. Rev. E. 81, 046106.

[8] Šubelj, L., and Bajec, M. 2011. Community structure of

complex software systems. Physica A. 390(16), 2968–2975.

[9] Myers, C. R. 2003. Software systems as complex networks:

Structure, function, and evolvability of software

collaboration graphs. Phys. Rev. E 68 (4), 046116.

[10] Valverde, R., and Solé, V. 2007. Hierarchical small worlds in

software architecture. Dyn. Contin. Discret. Impuls. Syst. Ser.

B: Appl. Algorithms 14 (S6), 305–315.

[11] Hylland-Wood, D., Carrington, D., and Kaplan S. 2006.

Scale-free nature of Java software package, class and method

collaboration graphs, Tech. Rep. TR-MS1286, MIND

Laboratory, University of Maryland, College Park.

[12] Savić, M., Ivanović, M., and Radovanović, M. 2011.

Characteristics of class collaboration networks in large Java

software projects, Information Technology and Control 40

(1), 45–54.

[13] Savić, M., Ivanović, M., and Radovanović, M. 2011.

Connectivity properties of the Apache Ant class

collaboration network. In Proceedings of the 15th

International Conference on System Theory, Control and

Computing, 544–549.

[14] Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., and

Duchrow, M. 2008. Cluster analysis of Java dependency

graphs. In Proceedings of the 4th ACM Symposium on

Software Visualization, 91–94.

[15] Paymal, P., Patil, R., Bhomwick, S., and Siy, H. 2011.

Empirical study of software evolution using community

detection. Preprint available at

http://cs.unomaha.edu/~bhowmick/STARyNet/papers/techsh

ort.pdf

[16] Csárdi, G., and Nepusz, T. 2006. The igraph software

package for complex network research. InterJournal,

Complex Systems, 1695. The library can be downloaded at

http://igraph.sourceforge.net/

[17] Clauset, A., Newman, M. E. J., and Moore, C. 2004. Finding

community structure in very large networks. Phys. Rev. E 70,

066116.

[18] Pons, P. and Latapy, M. 2004. Computing communities in

large networks using random walks. J. Graph Algorithms

Appl. 10 (2), 191–218.

[19] Raghavan, U. N., Albert, R., and Kumara, S. 2007. Near

linear time algorithm to detect community structures in large-

scale networks. Phys. Rev. E 76, 03616.

[20] Hopcroft, J. E., Khan, O., Kulis, B., and Selman, B. 2004.

Tracking evolving communities in large linked networks.

Proc. Natl. Acad. Sci. 101, 5249–5253.

[21] Fortunato, S. 2010. Community detection in graphs. Physics

Reports 486, 75–174.

[22] Leskovec, J., Lang, K. J., and Mahoney M. 2010. Empirical

comparison of algorithms for network community detection.

In Proceedings of the 19th international conference on the

World Wide Web, 631–640.

http://cs.unomaha.edu/~bhowmick/STARyNet/papers/techshort.pdf
http://cs.unomaha.edu/~bhowmick/STARyNet/papers/techshort.pdf
http://igraph.sourceforge.net/

