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ABSTRACT

Community structure is one of prominent features of com-
plex real-world networks. In this paper we propose a novel
technique for detecting communities in research collabora-
tion networks. The main idea of the algorithm is that re-
search communities can be efficiently recovered from sub-
graphs encompassing frequent collaborators. Moreover, the
algorithm can be used to cluster weighted undirected net-
works from other domains as well. An experimental eval-
uation of the algorithm was conducted on a co-authorship
network representing collaborations between researchers em-
ployed at our Department. The results of the evaluation
showed that the algorithm identifies strong and meaningful
clusters corresponding to groups dealing with specific re-
search topics. Moreover, we compared our method to seven
other community detection techniques showing that it per-
forms better or equally with respect to the quality of ob-
tained community structures.
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1. INTRODUCTION

Intuitively speaking, a community, cluster, cohesive group
or module is a subset of nodes in a network that are more
densely internally connected than with the rest of the net-
work [6]. A network has a community structure if its nodes
can be grouped into either non-overlapping or overlapping
communities [3]. Community structure is a typical feature
of social networks since people tend to form cohesive groups
reflecting specific cultural characteristics, interests, opinions
or behavior [12, 6]. The aim of community detection tech-
niques is to identify communities in a network relying only
on the structure of the network. Uncovering communities
helps us to understand internal structure of complex net-
works at a higher level of abstraction, to identify cohesive
subnetworks, and to obtain readable maps of extremely large
networks by constructing their coarse-grained descriptions
(networks of communities).

Scientific research is a driving force of economical and tech-
nological progress. Research findings are mostly collabora-
tive efforts due to the complexity of contemporary research

problems. The social structure of scientific collaboration can
be understood by investigating co-authorship networks [11,
21]. Co-authorship networks are undirected weighted graphs
where nodes represent researchers, links correspond to re-
search collaborations, and link weights express strengths of
research collaborations. The identification of communities
in co-authorship networks reveals cohesive research groups
having different research interest, as well as their interac-
tions [9].

In this paper we propose a novel and simple community de-
tection technique for co-authorship networks. The starting
premise of the algorithm is that research communities are or-
ganized around frequent collaborators. The premise is quite
reasonable since it is very unlikely that two frequent collabo-
rators belong to different research communities. In contrary,
inter-community links, links connecting members from dif-
ferent communities, would have very high weights which is
contradictory to the intuitive understanding of clusters in
co-authorship networks. In other words, we use link weight
as a measure of how intra-communitarian link is: higher
weights indicate intra-community links, while lower weights
indicate inter-community links.

The rest of the paper is structured as follows. Related work
is presented in Section 2. Section 3 describes our approach to
community detection, while the experimental evaluation of
the approach is presented in Section 4. Finally, in Section 5
we give conclusions and directions for future work.

2. RELATED WORK

The algorithms for community detection started intensively
to develop after Newman and Girvan introduced a measure
for the quality of a partition of a network into communities
called modularity [16]. The underlying idea of the modu-
larity measure is that a subnetwork can be considered as a
community if the number of links inside the subnetwork is
significantly higher than the expected number of links con-
sidering some null random graph model. In case of weighted
networks modularity accumulates the differences between
the total weight of links within a community and its mathe-
matical expectation considering a random network with the
same degree and link weight distributions [13].

Although used as a de facto standard, modularity has a
weakness known as the resolution limit [7] — community de-



tection techniques based on modularity maximization may
fail to identify modules smaller than certain size, even in
extreme cases when modules are cliques. Therefore, it is
highly important to consider other notions of community
when performing community detection relying on the mod-
ularity measure. Radicchi et al. [18] proposed definitions
of strong and weak communities. Namely, a community
in a weighted network is called Radicchi strong if for each
node in the community the total weight of incident intra-
community links is higher than the total weight of incident
inter-community links.

A comprehensive overview of community detection techni-
ques can be found in the article written by Santo Fortu-
nato [6]. He classified existing community detection tech-
niques into the following categories: traditional, divisive,
modularity maximization and dynamic methods. Fortunato
emphasized that the traditional graph partitioning meth-
ods (e.g. the Kernighan-Lin algorithm) and data clustering
methods (e.g. k-means) are not widely used due to intrinsic
limitations (e.g. the number of clusters has to be specified
in advance) or demanding computational complexity.

The main characteristic of divisive methods is that they
build clustering dendrograms by progressively removing links
that are most likely to be inter-communitarian. The Girvan-
Newman algorithm [9] relies on the edge-betweenness mea-
sure to detect inter-communitarian links. Other proposed
indicators of inter-communitarian links are edge-clustering
coefficient [18] and information centrality [8].

The optimization of the modularity measure is known to be
a NP-complete problem [2]. Therefore, several researchers
proposed various strategies for modularity maximization.
The most used ones are greedy modularity maximization
strategies [14, 4, 1]. Other approaches include spectral, ex-
tremal and simulated annealing maximization of the modu-
larity measure [6].

The main philosophy of dynamic methods is that communi-
ties can be recovered by some process running on the net-
work. For example, the Walktrap method [17] is based
on the idea that relatively short random walks should be
trapped into dense sub-networks due to the high density
of intra-community links. Another widely used dynamic
method for community detection is Label propagation [19].
The method is based on an iterative process in which each
node adopts a label that most of its neighbors have start-
ing from an initial configuration in which nodes have unique
labels. As labels propagate through the network, densely
connected sets of nodes form a consensus on their labels
which determine the membership of nodes to communities.

It is quite common that authors when proposing a new
community detection algorithm test it on a co-authorship
network. For example, the Girvan-Newman algorithm [9]
was experimentally evaluated on four different networks in-
cluding the co-authorship network of scientists at the Santa
Fe Institute. Other widely used community detection tech-
niques, such as Greedy modularity maximization [14], Label
propagation [19], Louvain [1] and Walktrap [17], were also
experimentally evaluated by their authors on co-authorship
networks. Savié et al. [22] investigated five different commu-
nity detection techniques on a co-authorship network reflect-

ing scientific collaboration in Serbian mathematical journals.
The authors showed that the Louvain method gives the best
performance considering the cohesiveness of identified com-
munities.

3. COMMUNITY DETECTION BASED ON
W-CORES

Through the rest of this Section we will assume that G =
(N, L) denotes an undirected weighted network, where N
and L are the sets of nodes and links in G, respectively.
The weights of links in G will be expressed by a function
named Weight, Weight : L — R, where R represents the set
of real numbers.

The presence of frequent collaborators in co-authorship net-
works can be formalized through a more general notion of
w-cores. A w-core Cy = (Nw, Lyw) in G is a maximal sub-
graph of G such that the weight of each link in C, is higher
or equal than w. W-cores of G can be easily identified by
removing all links whose weight is less than w. Let S de-
note a graph derived from G after the application of previ-
ously mentioned link removal scheme. Then w-cores of G
are actually non-trivial connected components (components
encompassing more than one node) in S. Isolated nodes in
S we call w-isolated nodes, while nodes belonging to w-cores
are called w-nodes.

Our community detection algorithm consists of the two fol-
lowing steps:

e Step 1: Determine w-cores in the network. Assign
community labels (integers) to w-nodes in the network
such that two nodes from the same w-core have the
same label and two nodes from different w-cores have
different labels (see Algorithm 1).

e Step 2: Deterministically propagate community labels
to w-isolated nodes (see Algorithm 2).

Community labels determine membership of nodes to com-
munities, i.e. two nodes with the same community label
belong to the same community. Obviously, the number of
detected communities will be equal to the number of w-cores
in the network since the initial assignment of community la-
bels is completed after Step 1.

We will assign binary states to links and nodes in the net-
work in order to avoid deletion of links in Step 1. Namely,
a link will be considered as active if its weight is higher or
equal than w. Similarly, a node is active if it is incident to at
least one active link. The initial assignment of community
labels can be done using simple graph traversal algorithms,
such as breadth first search, but considering only active links
and nodes as shown in our Algorithm 1.

The propagation of community labels in our community de-
tection algorithm is based on the following principles:

e Safe label propagation: a label is propagated to an
w-isolated node if its labeled neighbors have the same
label.



Algorithm 1: Initial assignment of community labels

Algorithm 2: Propagation of community labels

input : G = (N, L) - undirected weighted network
w — weight threshold

output: G with initial assignment of community labels
A — set of labeled nodes

// initialization - mark all nodes as unlabeled
foreach n € N do
L n.label := co

// determine active links (AL) and nodes (AN)
AL := empty set of links
AN := empty set of nodes
foreach (z,y) € L do
if Weight(z,y) > w then
AL := AL U {(z,y)}
AN := AN U {z,y}

label = 0
foreach n € AN do
if n.label = oo then
label := label + 1
Q := empty queue of nodes
Q.addLast(n)
n.label := label
while @ is not empty do
¢ = Q.removeFirst()
NS = G.getNeighbours(c)
foreach x € NS do
if z € AN A (c,x) € AL A z.label = co then
x.label := label
Q.addLast(x)

e If any safe propagation is not possible then a tie reso-
lution strategy is employed for unlabeled neighbors of
labeled nodes.

e The safe propagation step continues after tie nodes are
resolved.

The process of label propagation starts with determining the
set of unlabeled nodes whose neighbors are labeled. This set
is denoted by C' in Algorithm 2. Each node in C' is examined
in order to check whether it can adopt a label according to
the safe label propagation principle. Otherwise, the node is
added to the set of tie nodes T'. If a label is safely propagated
to a node from C then all of its unlabeled neighbors that are
not ties are added to C in order to continue with the safe
propagation of community labels. When safe propagation is
not possible anymore then tie nodes are resolved.

Let LB be the set of labels of neighbors of a tie node t,
t € T. Let s;; denotes the total strength of links incident
to t whose end-points are labeled by [, i.e.

St = Z Weight(t,z), (t,z) € L Alabel.x =1.
TEN

Then ¢ adopts label [, | € LB, if
(V' € LB,U' #1) 841 > sy

In other words, a tie node adopts the label of a community to
which it has the strongest connection. In case that there are
more than one community with such property then one of
them is selected randomly. Also, it is important to observe

input : G = (N, L) - undirected weighted network with initial
assignment of community labels
A — set of labeled nodes

output: G with full assignment of community labels

// C — the set of unlabeled nodes whose neighbors
// are labeled
C' := empty set of nodes
foreach n € A do
| C:=CU G.getUnlabeledNeighbours(n)
end
while C # 0 do
// T — the set of tie nodes
T:=0

// safe propagation of labels

while C # () do

// D — the set of nodes labeled in the current iteration
D:=0

foreach n € C do

if labeled neigbourhs of n have the same label | then

n.label = [
D:=D Un
end
else
| T:=T Un
end
end
c=90

foreach n € D do
UN := G.getUnlabeledNeighbours(n)
foreach x € UN do

if x ¢ T then
| C:=C U {z}
end
end
end
end

// resolution of tie nodes
sort T" according to weighted degree
foreach t € T do
NS := G.getLabeledNeighbours(t);
w := empty array of weights;
foreach n € NS do

| win.label] := win.label] + Weight(t, n)
end
if w has an unique mazimal element then

| t.abel := i, where w[i] is the maximal element of w
end
else

t.label := randomly selected index of maximal
elements in w

end
end
foreach t € T' do

| C:=CU G.getUnlabeledNeighbours(t)
end
end

that ties nodes are resolved in decreasing order of weighted
degree (the total sum of weights of links incident to a node)
since tie nodes can be connected among themselves. Unla-
beled neighbors of tie nodes are added to C' and the whole
process of safe label propagation and resolution of tie nodes
is repeated until all nodes become labeled.

The community detection algorithm based on w-cores is ac-



tually a graph traversal algorithm where each node is visited
exactly once to set its label. The neighborhood of each la-
beled node is explored either two times (for non-tie nodes)
or three times (for tie nodes). Therefore, the time com-
plexity of the algorithm is O(n + ), where n and [ are the
number of nodes and links in the network, respectively. The
algorithm also includes sorting of tie nodes. However, the
number of tie nodes per one iteration in Algorithm 2 is sig-
nificantly smaller than the total number of nodes, and con-
sequently this operation does not affect the asymptotic time
complexity of the algorithm. The algorithm has exactly one
parameter — weight threshold that is used to determine w-
cores. Therefore, a systematic application of the algorithm
requires O(d(n + 1)) time where d is the number of different
link weights in the network. In the worst case, when all links
have different weights, we have that d = [. In more realis-
tic cases, when the network is sparse and the distribution of
link weights is heavy-tailed, we have that [ ~ n and d ~ log!
which results in O(nlogn) time. Therefore, our method can
be efficiently systematically applied to large-scale real-world
networks.

4. EXPERIMENTAL EVALUATION

We conducted the experimental evaluation of our commu-
nity detection method on a co-authorship network repre-
senting collaborations among researchers employed at our
Department. This network was selected since we are famil-
iar researchers contained in the network (all of the authors
of this paper are also nodes in the network), and conse-
quently in position to verify whether obtained communities
are meaningful. The network was constructed from the data
stored in the institutional CRIS (Current Research Informa-
tion System) [10]. We used the normal weighting scheme for
links, i.e. the weight of a link is the number of papers co-
authored by researchers connected by the link.

The basic structural characteristics of the network are given
in Table 1. In co-authorship networks, the degree of a
node (researcher) is actually the number of co-authors, while
weighted degree represents the number of multi-authored pa-
pers. The majority of links (51.54%) have weight that is less
than 3 which implies that the researchers mostly publish one
or two joint paper together. However, there are pairs of the
researchers whose strength of collaboration is far from the
average: there are two researchers in the network who have
220 papers authored together, while 14 pairs of researchers
(7.21% of the total number) have more than 20 joint papers.

Table 1: Basic structural characteristic of the co-
authorship network used in the experimental evalu-
ation.

The number of nodes 81
The number of links 198
Average degree 4.889
Average weighted degree 38.074
Average link weight 7.789
Network diameter 8
Small-world coefficient 3.565
Clustering coefficient 0.517

We systematically applied the technique considering all pos-
sible values of link weights in order to identify the best par-
titioning that can be obtained. Figure 1 shows the change
of the Girvan-Newman modularity measure (Q) for differ-
ent weight thresholds (w) that are used to identify w-cores
in the network. For w > 60 there is exactly one w-core.
Consequently, only one community encompassing all nodes
in the network will be detected for extremely high values of
w. The maximal value of modularity, Qmax = 0.65834, is
attained when 11-cores constitute the base of communities.
Usually a value of modularity higher than 0.3 is considered
as a clear indication that the network possesses community
organization according to the modularity based definition of
community [7]. As it can be observed, the value of modular-
ity is higher than 0.6 for a wide range of link weights which
implies that the network consists of highly cohesive groups
of researchers.
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Figure 1: The value of modularity measure for dif-
ferent weight thresholds.

Figure 2 shows the visualization of the best partitioning
according to the Newman-Girvan modularity measure. In
total 7 communities are identified (labeled from C1 to C7
in Figure 2 and Table 2). The characteristics of detected
communities are summarized in Table 2. Namely, for each
community C' we measured the following quantities:

e S - the size of C, i.e. the number of nodes that are
contained in C.

e W™ - the total sum of weights of intra-community
links incident to nodes in C,

o W°"! _ the total sum of weights of inter-community
links incident to nodes in C,

e Con - conductance which is defined as W' /(W°"* 4
W*™). The value of conductance smaller than 0.5 im-
plies that C is a Radicchi weak community.

out 3 .
* max (ZT) - the maximal ratio between w°*’ and

w®™ for all nodes in C. w°* and w' denote the total
weight of inter-community and intra-community links,
respectively, incident to a node in C. The value of

max (17“;—::) smaller than 1.0 implies that C' is a Radic-

chi strong community.



As it can be observed from data presented in Table 2 for each
identified community we have that W' > W°“ Con < 0.5

and max (%) < 1.0. This means that all identified com-
munities are Radicchi strong — each member of each com-
munity established stronger collaboration with members of
its own community than with researchers belonging to other

communities.

Table 2: Characteristics of identified communities.
ID § Wi W°“? Con maz (“j—m)

in

Cl 15 171 26 0.13 0.66
C2 15 104 15 0.13 0.33
c3 4 32 17 0.35 0.52
C4 13 204 32 0.14 0.63
Cs 14 131 28 0.18 0.5

C6 16 738 30 0.04 0.11

C7 4 84 8 0.09 0.35
@0 C1
c30 %, "o

o @ oo 0020

o o Q

C2

Q @
© OOOOO

OO

Figure 2: The visualization of the co-authorship net-
work with the partitioning into communities for the
maximum value of the modularity measure.

The largest community (C6) encompasses researchers that
institutionally belong to the Chair of computer science whose
research is focused on software engineering, data mining,
agent-based computing and e-learning. Community C5 en-
compasses members the Chair of information technology and
systems which is the another chair dealing with computing
at our Department. The members of the Laboratory for
the development of the information systems are also part
of C5. The most central community in the network is C4.
This community contains researchers institutionally orga-
nized into the Chair of numerical mathematics. Community
C2 contains researchers who institutionally belong to two
chairs with closely related research directions: the Chair of
mathematical logic and discrete mathematics and the Chair
of algebra and theoretical computer science. The similar sit-
uation can be observed for community C1 which aggregates
researchers organized into the Chair of analysis, probability
and differential equations and researchers from the Chair of

functional analysis, geometry and topology. The two small-
est communities consists of researchers dealing with applied
mathematics: C3 corresponds to the Chair of applied anal-
ysis, while C7 corresponds to the Chair of applied algebra.

We also compared our community detection method to seven
other techniques whose implementation is provided by the
igraph R package [5]: the Girvan-Newman algorithm [9]
(shortened as GN), Greedy modularity maximization [14, 4]
(GMM), Walktrap [17] (WT), Label propagation [19] (LP),
Spectral modularity optimization [15] (SMO), Infomap [20]
(IM), and the Louvain method [1] (L). The results of the
comparative analysis are summarized in Table 3 where our
method is denoted as WC (short form of w-cores). As it
can be seen all methods, except GN, identified community
structures with highly close values of the Girvan-Newman
modularity. The application of GN revealed a community
structure whose modularity is significantly lower compared
to other methods. However, only GMM, L and our method
identified community structures where all communities sat-
isfy the Radicchi strong criterion. Therefore, we can con-
clude that our method performs better than five other widely
used community detection methods. On the other hand,
community structures obtained using GMM, L and our me-
thod are highly similar: the normalized mutual informa-
tion between the community structure identified using our
method and community structures obtained using GMO and
L are 0.941 and 0.966, respectively.

Table 3: The results of the comparative analysis. @
denotes the modularity measure, NC is the number
of identified communities, while RSC is the number
of Radicchi strong communities.

Method @ NC RSC

GN 0.547 3 3
GMM 0.659 7 7
WT 0.658 9 8
LP 0.623 14 12
SMO 0.644 9 6
M 0.652 11 10
L 0.659 6 6
WC 0.658 7 7

S. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel and simple community de-
tection method for co-authorship networks. The baseline of
our method is that frequent collaborators constitute cores of
research communities. The presence of frequent collabora-
tors in research collaboration network is formalized through
a more general notion of w-cores which makes the method
applicable for any weighted undirected network.

The method was experimentally evaluated on a co-author-
ship network consisting of mathematicians and computer
scientists employed at our Department. The analysis of ob-
tained community structure showed that the method iden-
tified meaningful and Radicchi strong communities. More-
over, we showed that it performs better than 5 other widely
used community detection methods and gives similar results
as the Louvian and Greedy modularity maximization meth-



ods.

In our future work we plan to evaluate the method on

other co-authorship networks, as well as on weighted undi-
rected networks from other domains.
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