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Radovanović
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Abstract Understanding coupling between classes in object-oriented (OO)
software systems is useful for a variety of software development and mainte-
nance activities. In this paper we propose a novel, network-based methodology
to analyze high structural class coupling in OO software systems. The pro-
posed methodology is based on statistically robust structural analysis of class
collaboration networks whose nodes are enriched with both software metrics
and domain-independent metrics used in analysis of complex networks. To
demonstrate the usefulness of the methodology we analyze five open-source,
large-scale software systems written in Java. Contrary to frequently reported
findings, the obtained results indicate that high structural class coupling in
real software systems cannot be accurately modeled by power-law distribu-
tions. Our analysis also shows that highly-coupled classes tend to be signifi-
cantly more voluminous and functionally important compared to loosely cou-
pled classes, and do not tend to be localized in class inheritance hierarchies.
Finally, in four out of five analyzed systems highly coupled classes tend to
have drastically higher afferent than efferent coupling. This implies that the
existence of high class coupling in an OO software system would rather indi-
cate negative aspects of extensive internal class reuse than negative aspects of
extensive internal class aggregation.
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1 Introduction

“Low coupling, high cohesion” is one of basic design principles in software
engineering [30]. This principle states that the coupling between modules of a
software system has to be as minimal as possible, at the same time keeping
strong relations between constituent elements of each module. The complete
class coupling structure of an OO software system can be represented by a
directed graph that is also known as a class collaboration graph [20], class
dependency network [27] or class collaboration network [24]. Namely, nodes of
class collaboration networks represent individual classes, while two classes A
and B are connected by the directed link A→ B if class A references class B.

Internal class reuse (afferent coupling) and internal class aggregation (ef-
ferent coupling) jointly constitute the structural coupling of a class. Internal
class reuse can be considered as good software engineering practice, since it
reduces or eliminates duplicated code inside the system. However, there are
two potential negative aspects of extensive class reuse: high criticality and low
testability of highly reused classes [5]. On the other hand, high internal class
aggregation can negatively impact the following external attributes of software
systems: understandability, error-proneness, and external reusability [5].

Classes that are highly coupled are also called hubs. In recent years, re-
searchers investigated a variety of real-world software systems under the frame-
work of complex network theory, revealing the presence of the scale-free prop-
erty [2] in class collaboration networks, as well as networks representing soft-
ware systems at other levels of abstraction. A network exhibits the scale-free
property if its degree distribution (the distribution of the number of links in-
cident to a node) can be described by a power-law, i.e. a relation of the form
Y ∼ X−γ where Y denotes the fraction of nodes having X incident links and
γ is the power-law scaling exponent. The scale-free property of a class col-
laboration network directly implies the existence of hubs in the corresponding
software system. Additionally, the scaling exponent of the fitted power-law can
be used as a metric of software design quality. However, empirically observed
degree distributions of class collaboration networks in the majority of previ-
ous studies were tested only against a power-law, and often by applying linear
regression on log-log plots which is a biased methodology to confirm the pres-
ence of power-laws and accurately estimate their scaling exponents [8]. This
further implies that the current state of empirical evidence does not provide a
clear indication weather class collaboration networks are truly scale-free, and,
consequently, weather the power-law scaling exponent can be reliably used as
a software metric. Additionally, previous studies have not addressed charac-
teristics of afferent and efferent coupling of hubs, as well as their distinctive
characteristics compared to loosely coupled classes.

In this paper we propose a novel, network-based methodology to analyze
high structural class coupling in real-world software systems. The methodol-
ogy encompasses statistically robust techniques to investigate the structure
of enriched class collaboration networks – class collaboration networks whose
nodes are enriched with metric vectors containing both software metrics and
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domain-independent metrics used in the analysis of complex networks. The
metric vectors attached to nodes quantify internal complexity, inheritance and
functional importance of classes present in the system and enable us to deter-
mine characteristics of highly coupled classes with respect to those attributes.
Our methodology encompasses the following techniques:

– Degree distribution analysis based on a robust statistical test introduced
by Clauset et al. [8] in order to examine properties of empirically observed
degree distributions. To the best of our knowledge, this is the first time
that this robust statistical procedure is considered to analyze degree dis-
tributions of class collaboration networks.

– The identification of distinctive characteristics of hubs using a metric-based
comparison test proposed in this paper. The metric-based comparison test
combines the Mann-Whitney test [17] and probabilities of superiority [10]
applied to metric vectors attached to nodes of enriched class collaboration
networks. The main goal of the test is to determine key differences between
hubs and loosely coupled classes regarding their internal complexity, inher-
itance and functional importance. Knowing these differences may lead to a
deeper understanding of high class coupling present in a concrete software
system, which in turn can be useful for planning and estimating impacts
of software maintenance activities.

– The analysis of the balance between afferent and efferent coupling of hubs
in order to detect whether high class coupling was dominantly caused by
extensive class reuse, by extensive class aggregation, or significantly by
both factors. The main goal of this analysis is to determine what high
class coupling in a concrete software system may actually indicate – the
negative aspects of extensive class reuse, the negative aspects of extensive
class aggregation or the negative aspects of both.

To demonstrate the usefulness of the methodology we applied it to five enriched
class collaboration networks extracted from the source code of five large-scale
software systems written in Java.

The rest of the paper is structured as follows. Necessary preliminaries
and definitions are given in Section 2. Section 3 presents related works. Our
methodology to analyze high class coupling is described in Section 4. The next
section, Section 5, presents the application of our methodology to real-world
software systems. The importance of obtained results for software engineering
practitioners is discussed in Section 6. The last section presents conclusions
and directions for future work.

2 Preliminaries

Class collaboration networks describe structural dependencies between classes
and interfaces defined in object-oriented software systems. They can be more
formally defined as follows.
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Definition 1 (Class collaboration network) A class collaboration net-
work corresponding to an object-oriented software system S is the directed
graph whose nodes represent classes and interfaces of S. Two nodes A and B
are connected by the directed link A→ B if any of the following holds:

– A extends B or implements B (in the case that B is an interface),
– A declares a member variable (field, class attribute) whose type is B,
– A instantiates objects whose type is B by calling a constructor of B,
– A contains a method that declares a local variable whose type is B,
– A contains a method that has a parameter whose type is B,
– A contains a method whose return type is B,
– A contains a method that access a member variable declared in B, or
– A contains a method that calls a method declared in B.

If A→ B then we also say that (1) classes A and B are coupled, (2) class
A internally aggregates class B, and (3) class B is internally used by class A.
If there is another class C defined in the system such that C → B then we say
that class B is internally reused since it is used by more than one class.

Definition 2 (Node degree) The degree of node i in network G, denoted
by ki, is the number of links incident with i. If G does not contain parallel
links (different links connecting the same pair of nodes) then ki is equal to the
number of nodes to which i is directly connected.

Definition 3 (Degree distribution) The degree distribution of network G
is given by the probability mass function P (k) = P{D = k}, where D is a
random variable that represents the degree of a randomly chosen node. In
other words, P (k) is the fraction of nodes in G whose degree is equal to k.

Definition 4 (Complementary cumulative degree distribution) The
complementary cumulative degree distribution of network G, CCD(k), is the
probability of observing a node with degree greater than or equal to k.

In directed networks each node has in-degree (the number of links point-
ing to a node) and out-degree (the number of links emanating from a node).
The degree of the node is then the sum of its in-degree and out-degree, and is
often called total-degree in order to emphasize the directed nature of the net-
work. Consequently, for directed networks we have three degree distributions
describing the connectivity of nodes: in-, out- and total-degree distributions.

Since class collaboration networks do not contain parallel links we can state
the following:

1. The in-degree of the node representing class A is the number of other classes
that use A, i.e. it is a measure of afferent coupling of A. If the in-degree of
A is higher than 1 then A is being internally reused (used by more than
one class). In other words, the in-degree of A reflects the degree of internal
reuse of A.

2. The out-degree of class A is the number of other classes used (aggregated)
by A, i.e. it is a measure of efferent coupling of A.
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3. The total-degree of class A is the number of other classes to which A
is coupled either through afferent or efferent coupling. This measure is
equivalent to the well-known Coupling Between Objects (CBO) software
metric from the Chidamber-Kemerer OO metric suite [7].

Many real-world networks belong to a class of heterogeneous networks char-
acterized by a heavy-tailed, often power-law degree distribution [1,21,4], which
means that the distribution has a long right tail of values that are far above
the average degree.

Definition 5 (Power-law) Discrete probability distributions of the form
P (k) = Ck−γ , where C and γ are constants, are said to follow a power-
law. The constant γ is called the scaling exponent of the power-law. Smaller
γ implies slower decay of P (k) and consequently causes a more skewed distri-
bution. The constant C is determined by the normalization requirement that∑∞
k=kmin

P (k) = 1.

Definition 6 (Scale-free network) Networks whose (total) degree distri-
butions follow a power-law in the tail, P (k) ∼ Ck−γ , are known as scale-free
networks.

3 Related Work

Valverde et al. [26] reported the first empirical evidence of scale-free and small-
world properties in software systems. The authors examined the degree distri-
butions, the small-world and clustering coefficients of undirected projections
of class collaboration networks associated with JDK (Java Development Kit)
version 1.2 and UbiSoft ProRally (computer game).

Myers [20] examined class collaboration networks representing 3 software
systems written in C++ and static call graphs representing 3 software systems
written in C. He computed the complementary cumulative in-degree and out-
degree distributions reporting that these distributions have a power-law scaling
region.

De Moura et al. [19] investigated properties of networks associated with
four open source software projects written in C/C++. Similarly to previous
studies, the authors reported that analyzed networks exhibit scale-free and
small-world properties.

Hylland-Wood et al. [13] analyzed software networks of two Java open
source software systems for a fifteen-month period of development. The au-
thors constructed monthly snapshots of the networks at the package, class and
method level and investigated properties of their in-degree and out-degree dis-
tributions. The results showed that the distributions follow truncated power-
laws for each evolutionary snapshot. The study by Jenkins et al. [14] which
examined properties of four Java class collaboration networks also indicated
that the scale-free property in software systems is persistent across subsequent
software releases.
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Louridas et al. [16] analyzed a dataset of nineteen software networks that
includes Java class collaboration networks. They found that in- and out-degree
distributions of examined networks can be approximated by power laws, con-
cluding that the scale-free property in software systems appears at various
levels of abstraction, in diverse systems and languages.

Wheeldon and Counsell [29] examined statistical properties of software
networks that represent different forms of OO coupling. The networks used
in the study were extracted from three Java software systems. The results
of the analysis showed that power-law scaling behavior characterizes different
forms of class coupling. Baxter et al. [3] extended the study of Wheeldon
and Counsell to a larger corpus of software networks associated with 56 Java
software systems. In contrast to all previously mentioned studies, the authors
considered power-law, log-normal and stretched exponential distributions to
model empirically observed degree distributions.

Concas et al. [9] presented a comprehensive statistical analysis of an im-
plementation of the Smalltalk system. Computed complementary cumulative
distributions were tested against power-law and log-normal distributions. The
parameters of the theoretical distributions were determined using maximum
likelihood estimators, while the Pearson’s χ2 test was used to assess the quality
of the fits. The authors found that the in-degree distributions show a power-
law behavior in the tails, while the out-degree distributions exhibit log-normal
behavior.

Taube-Schock et al. [25] examined 97 networks associated with software
systems written in Java. The unique characteristic of their work is that the
networks were constructed to encompass not only architectural elements as
nodes, but also statements. The authors examined degree distributions of net-
works concluding that all of them are heavy-tailed. However, the decision to
include statements in the analyzed networks can be considered as problem-
atic. Statements can not be referenced and typically reference a low number
of methods through method calls that are part of the statement. Since the
number of statements in any large-scale software is drastically higher than the
number architectural elements, the resulting network will have a vast majority
of nodes with a low degree. Therefore, a heavy-tailed degree distribution of the
network will be practically caused by the existence of nodes representing state-
ments, not by the structure of dependencies among architectural elements.

4 Methodology to Analyze High Structural Class Coupling

Our methodology to analyze high structural class coupling is based on the
notion of enriched class collaboration networks. Enriched class collaboration
networks are class collaboration networks whose nodes are enriched with met-
ric vectors containing both software metrics, as well as domain-independent
metrics used in analysis of complex networks. In one of our previous works
we presented SNEIPL [24] – a language-independent extractor of networks
representing dependencies between source code entities. SNEIPL relies on a
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language-independent, enriched Concrete Syntax Tree (eCST) representation
of source code [22]. From an input set of eCSTs produced by ANTLR-generated
source code parsers, SNEIPL forms a variety of software networks, also includ-
ing class collaboration networks and their subsets restricted to a particular
coupling type (e.g. class inheritance). To support the methodology proposed
in this paper, we extended the SNEIPL tool to form enriched class collabora-
tion networks. More specifically, SNEIPL was extended to compute:

– domain-independent node centrality metrics (betweenness centrality and
page rank) and object-oriented design metrics from the Chidamber-Kemerer
metric suite [7]. Those metrics are calculated from class collaboration and
class inheritance networks which the tool extracts from the eCST repre-
sentation of source code.

– software metrics of class complexity (lines of code, cyclomatic complexity,
etc.) that are calculated directly from the eCST representation of source
code.

Our methodology to analyze high structural class coupling consists of four
general steps:

1. The identification of weakly connected components in an enriched class
collaboration network in order to isolate its giant weakly connected com-
ponent (GWCC).

2. The degree distribution analysis of the GWCC relying on descriptive statis-
tics and the power-law test introduced by Clauset et al. [8].

3. The analysis of highly coupled nodes in the GWCC relying on the metric-
based comparison test in order to determine distinctive characteristics of
hub classes.

4. The analysis of in-degree and out-degree of highly coupled nodes in the
GWCC in order to determine weather high coupling was caused dominantly
by internal class reuse or by internal class aggregation.

4.1 Connected Component Analysis

Weakly connected components in directed networks can be determined us-
ing fundamental graph traversal algorithms: depth-first search or breadth-first
search. The existence of a GWCC in the analyzed class collaboration network
implies that we are analyzing a software system that does not contain a large
number of unused classes and/or small, functionally isolated groups of loosely
coupled classes. In other words, small size weakly connected components in
the class collaboration network correspond to software components composed
of loosely coupled classes that are either (1) components in an early phase of
development and not yet functionally integrated into the system, or (2) depre-
cated components which are not removed from the source code distribution. In
both cases they can be omitted in further analysis since they are not coupled
to highly coupled classes which, if exist, are located in the GWCC.

On the other hand, the absence of a GWCC indicates one of the following
two scenarios:
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– The whole system is an early phase of development that is conducted in
a bottom-up manner, i.e. the software system is growing from indepen-
dent components whose integration into fully functional system is not yet
completed.

– The software system provides a set of unrelated functionalities.

In both of the above mentioned cases, the subsequent steps of our methodology
should be performed separately for each of the weakly connected components
that are large enough to ensure statistically valid findings.

4.2 Analysis of Degree Distributions

The connectivity of nodes in a network can be summarized by the degree
distribution – the probability distribution of node degrees over the whole net-
work. Knowing statistical properties of degree distributions of class collabo-
ration networks is useful from both the theoretical and practical perspective.
More precisely, statistical properties of degree distributions of class collabora-
tion networks can motivate and guide theoretical principles behind predictive
models of class coupling evolution. On the other side, software engineering
practitioners can rely on parameters of fitted theoretical probability distribu-
tions in order to assess the design quality of software systems with respect
to the principle of low coupling. For example, if the degree distribution of a
class collaboration network follows a power-law P (k) ∼ k−γ (as frequently
reported in the literature, see Section 3) then the scaling exponent γ can be
effectively used as an indicator of software design quality – smaller γ implies
a more skewed distribution of class coupling which means a higher deviation
from the principle of low coupling.

Regarding the high class coupling phenomenon, the most important de-
scriptive statistics of empirically observed degree distributions are:

– Mean degree (µ) – the average number of in-/out-/total links incident to
a node.

– Coefficient of variation (cv) – a normalized measure of dispersion defined
as the ratio of the standard deviation and the mean degree.

– Skewness (G1) – the third standardized moment of the distribution which
quantifies its asymmetry. Skewness equal to 0 implies that the distribution
is perfectly symmetric (e.g. the normal distribution). Negative skewness
indicates that the left tail of the distribution is longer than the right tail,
while positive skewness indicates the opposite.

The absence of highly coupled classes implies that extreme values of node
degree are absent. In other words, all nodes in the network have in-/out-
/total degree that is close to the mean and, consequently, the network can be
modeled by the Erdős-Renyi (ER) model of random graphs [11]. The basic
characteristic of large-scale, finite size ER random graphs is that their de-
gree distributions can be well approximated by the Poisson distribution. The
Poisson distribution has coefficient of variation and skewness that are equal
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to 1/
√
µ. Therefore, if the coefficient or variation and skewness of empirically

observed degree distributions are drastically higher than 1/
√
µ then we can

conclude that the analyzed network drastically deviates from the ER model
of random graphs, further implying that it contains highly coupled nodes.

In recent years, researchers investigated a variety of real-world software
systems under the framework of complex network theory, revealing the pres-
ence of the scale-free property in software networks. However, a common point
in the majority of these studies is that the empirically observed degree distri-
butions were tested only against a power-law. In only a few studies ([3],[28]
and [9]) distributions different than the power-law were additionally consid-
ered as theoretical models. The emergence of power-laws in evolving complex
networks is most commonly explained by the principle of linear preferential
attachment [2]. In order to use the linear preferential attachment principle
in the prediction of class coupling evolution we have to exclude other two
complementary principles governing evolution of complex networks: non-linear
preferential attachment (the attachment probability depends on current class
coupling but not linearly) and uniform attachment (the attachment probability
does not depend on current class coupling). The uniform attachment principle
results in networks whose degree distributions are exponential [2]. Super-linear
preferential attachment leads to star networks that are very unlikely to occur
for real-world software systems. Finally, sub-linear preferential attachment re-
sults in networks whose degree distributions are log-normal [23]. Therefore, in
our methodology we propose investigation of statistical properties of degree
distributions by testing them against power-law, exponential and log-normal
distributions.

To determine parameters of previously mentioned theoretical distributions
and assess the quality of obtained fits we rely on the power-law test intro-
duced by Clauset et al. [8] which is currently the best performing test to vali-
date power-laws in empirical data that considers also other theoretical models
different than power-law. The test consists of the following three steps:

1. The scaling parameter of a power-law (α) is determined using the maxi-
mum likelihood estimation (MLE) with respect to some lower bound of the
power-law behavior in the data (denoted by xm). xm is determined by the
minimization of the weighted Kolmogorov-Smirnov (KS) statistic.

2. A large number of power-law synthetic data is generated using the esti-
mated values of xm and α in order to compute the goodness of the power-
law model. The quality of the power-law fit (p-value) is the probability that
a randomly selected synthetic dataset has a higher value of the weighted
KS statistic compared to the value of the same statistic for real data.

3. The parameters of alternative distributions are also determined using the
appropriate MLEs. The power-law fit is compared to the fits of alternative
distributions using the likelihood ratio test.
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4.3 Metric-based Analysis of Highly Coupled Classes

There is one obvious difference between highly and loosely coupled classes
– their coupling. Knowing other differences between those two categories of
classes may be very helpful for a deeper understanding of the high class
coupling phenomenon. Knowing distinctive characteristics of highly coupled
classes may also be very useful for software engineering practitioners. For
example, if highly coupled classes tend to have more complex control-flow
compared to loosely coupled classes, then software developers should check
whether they went through proper white-box testing before internally reusing
them. Another example is related to the position of highly coupled classes in
the class hierarchy: if highly coupled classes tend to have lower depth in the
inheritance tree, then their refactoring may cause ripple effects through the
whole class hierarchy.

Characteristics of OO classes can be quantitatively expressed not only by
OO software metrics, but also by domain-independent, network-based metrics.
For example, the functional importance of a class can be estimated by global
centrality metrics used in social network analysis. Our methodology relies on
two such metrics, betweenness centrality [12,15] and page rank [6], which are
suitable and unbiased centrality indices for directed networks.

Definition 7 (Betweenness centrality, BC) The betweenness centrality
of node z in directed network G, denoted by Cb(z), is the extent to which z is
located on the shortest paths connecting two arbitrary nodes different than z:

Cb(z) =
∑

x,y∈V,x 6=y 6=z

σ(x, y, z)

σ(x, y)
,

where V is the set of nodes of G, σ(x, y) is the total number of shortest
paths connecting x and y, and σ(x, y, z) is the total number of shortest paths
connecting x and y that pass through z.

Definition 8 (Page rank, PR) The page rank of node z in directed network
G, denoted by PR(z), is given by the following recurrence relation:

PR(z) =
1− α
n

+ α

n∑
i=1

Aiz
PR(i)

kout(i)
,

where A is the adjacency matrix of G, α is a constant called damping factor
(usually set to 0.85), and kout(i) represents the out-degree of node i.

To determine distinctive characteristics of highly coupled nodes in enriched
class collaboration networks we propose the metric-based comparison test (see
Algorithm 1). To apply the test, each node in the network has to be char-
acterized by a metric vector that minimally contains previously mentioned
domain-independent centrality metrics and the following software metrics:
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1. Metrics of volume and internal complexity. Those measures reflect how
“big” and complex classes are. Metrics belonging to this category are:
LOC (lines of code), CC (the cyclomatic complexity metric proposed by
McCabe [18]), NUMA (the number of attributes in a class) and NUMM
(the number of methods in a class).

2. Metrics of class coupling: in-degree (IN, afferent class coupling), out-degree
(OUT, efferent class coupling) and total-degree (CBO) of nodes in the class
collaboration network.

3. Inheritance metrics from the Chidamber-Kemerer metric suite: NOC (the
number of children – the number of classes extending a class measuring
the degree of internal reuse of the class through inheritance), and DIT (the
depth of a class in the inheritance tree, measuring the degree of specializa-
tion of the class).

Algorithm 1: Metric-based comparison test

input : N (class collaboration network), HC (hub classifier)

for each metric M do
G1 := empty set
G2 := empty set
for each node n in N do

if n is hub according to HC then
G1 := G1 ∪ {M(n)}

else
G2 := G2 ∪ {M(n)}

p := apply the MWU test to G1 and G2

ps1 := 0
ps2 := 0
for each g1 in G1 do

for each g2 in G2 do
if g1 > g2 then

ps1 := ps1 + 1

else if g2 > g1 then
ps2 := ps2 + 1

PS1 := ps1/(|G1| · |G2|)
PS2 := ps2/(|G1| · |G2|)
if p ≥ 0.05 then

No statistically significant difference between hub nodes and non-hub nodes
regarding metric M

else
Statistically significant difference between hub nodes and non-hub nodes
regarding metric M
if PS1 ≥ 0.75 then

Hubs tend to have systematically higher values of M

else if PS2 ≥ 0.75 then
Non-hubs tend to have systematically higher values of M
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The metric-based comparison test is based on the application of the Mann-
Whitney U (MWU) test [17]. The MWU test is a non-parametric statistical
procedure that can be used to check whether values (scores) in one group tend
to be systematically greater (or smaller) than the values in another group,
when the values of both groups are not normally distributed and groups are
not of equal size. The metric-based comparison test uses a binary classifier
(HC) which separates hub nodes from non-hub nodes. Then for each metric
from the metric vector it forms two sets of metric values: G1 – metric values for
hub nodes, and G2 – metric values for non-hub nodes. After that, the MWU
test is applied to G1 and G2. The MWU test checks the null hypothesis that
the values in G1 do not tend to be systematically (stochastically) greater or
smaller than the values in G2. The effect size of the Mann-Whitney test can be
quantified by the so called probability of superiority (PS) [10]. We recorded two
probabilities of superiority that were computed in a straightforward manner
(by comparing each value from G1 to each value from G2):

– PS1 = P{X > Y } – the probability that a randomly selected value from G1

(denoted by X) is larger than a randomly selected value from G2 (denoted
by Y ).

– PS2 = P{Y > X} – the probability that a randomly selected value from
G2 is larger than a randomly selected value from G1.

If the null hypothesis of the MWU test is rejected for metric M and PS1 ≥ 0.75
then we can conclude that hub nodes tend to have systematically higher values
of metric M compared to non-hub nodes. The correctness of the metric-based
comparison test directly follows from the correctness of the MWU test. The
time complexity of the test is O(mn2) where m is the dimension of metric
vector and n is the number of nodes in the network.

To apply the metric based comparison test it is necessary to define a hub
classifier HC which separates hub classes from non-hub classes. In other words,
we need to give a precise, mathematical definition of what is meant by highly
coupled class. In the context of our methodology, we propose an approach that
takes into account the size of the analyzed system.

Definition 9 (Highly coupled class, hub) Let V be the set of nodes in a
class collaboration network, and let H denote a minimal subset of V which
satisfies the following condition:∑

h∈H

degree(h) >
∑

o∈V \H

degree(o).

Then, a class is considered highly coupled or hub if it belongs to the H set.

In other words, a class is considered highly coupled if it belongs to the
minimal set of classes whose total CBO is higher than the total CBO of the
rest of classes contained in the system. It is not hard to see that the H set
can be computed in a straightforward manner using an appropriate greedy
algorithm.
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4.4 Analysis of Afferent and Efferent Coupling of Hubs

In the previous section we described the metric-based comparison test which
can be employed to determine distinctive characteristics of highly coupled
classes compared to loosely coupled classes. However, highly coupled classes
can also be significantly different among themselves. We can distinguish be-
tween three categories of highly coupled classes:

1. Highly coupled classes whose coupling was dominantly caused by extensive
internal reuse. Those classes are in class collaboration networks represented
by nodes having high in-degrees that are close to their total degrees (or,
equivalently, CBO values).

2. Highly coupled classes whose coupling was dominantly caused by internal
aggregation of other classes present in the system. Classes belonging to this
category are represented by nodes having high out-degrees that are close
to their total degrees.

3. Highly coupled classes whose coupling was caused by both extensive in-
ternal reuse and aggregation, i.e. classes having both high in-degree and
out-degree in class collaboration networks.

If the coupling of highly coupled classes tends to be dominantly caused by
internal reuse, then the presence of high coupling in the system can indicate
only the negative aspect of extensive internal reuse, not the negative aspects of
extensive internal aggregation. On the opposite side, high coupling dominantly
caused by extensive internal aggregation can indicate only the negative aspects
of extensive internal aggregation, not the negative aspects of extensive internal
reuse. To detect whether high coupling in a software system was dominantly
caused by internal class reuse or internal class aggregation we propose the
following metric named afferent-efferent coupling balance.

Definition 10 (Afferent-Efferent Coupling Balance) The afferent-efferent
coupling balance, denoted by Ck, is the average ratio of in-degree to total de-
gree (CBO) for classes whose total degree is higher or equal to k, i.e.

Ck =

∑
i∈Hk

kin(i)/k(i)

|Hk|
= 1−

∑
i∈Hk

kout(i)/k(i)

|Hk|
,

where Hk denotes the subset of nodes in the network whose total degree is
higher than or equal to k, while kin(i), kout(i) and k(i) are in-, out- and total
degree of node i, respectively.

Ck is a normalized measure taking values in the range [0, 1] since in-degree
is always smaller than or equal to total-degree. If Ck = 1 for some k then all
classes having CBO ≥ k have out-degree that is equal to zero, which means
that their coupling is caused entirely by internal class reuse. On the opposite
side Ck = 0 implies that the coupling of all classes having CBO ≥ k is caused
entirely by internal aggregation of other classes.
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Definition 11 (Afferent-Efferent Coupling Balance Plot) An afferent-
efferent coupling balance plot is the graph showing Ck for k ∈ [m,M ] where
m and M are the minimal and maximal total degree of highly coupled classes
(see Definition 9).

The afferent-efferent coupling balance plot shows the change of Ck for
highly coupled classes. If Ck tends to have a high value which increases with
k then we can conclude that internal class reuse is the prevalent cause of high
structural class coupling. This further implies that software maintainers should
take appropriate actions to prevent or reduce the negative aspects of extensive
internal class reuse if highly coupled classes tend to be a source of problems
during software evolution. On the opposite side, software maintainers should
be aware of negative aspects of extensive class aggregation when Ck tends to
have a low value which decreases with k. In the worst case, when Ck tends to
take mid-range values and changes independently from k, software maintainers
should act in a way to prevent the negative effects of both extensive class reuse
and extensive class aggregation.

5 Experiments and Results

Using the methodology described in the previous section we analyzed the high
coupling phenomenon in five open-source, large-scale software systems written
in Java (each of them having more than 106 LOC in total). The analyzed
software systems are:

1. Apache Tomcat, a servlet container that implements the official Java Servlet
and JavaServer Pages specifications,

2. Apache Lucene, a search engine library written in Java,
3. Apache Ant, a Java-based build tool,
4. Apache Xerces, a Java XML parsing library,
5. JFreeChart, a Java framework for creating and displaying charts.

The basic structural characteristics of enriched class collaboration networks
corresponding to previously mentioned software systems are summarized in
Table 1. The networks were extracted using the SNEIPL tool [24]. It is impor-
tant to emphasize that the selected software systems are exactly those that are
used to validate the correctness and completeness of SNEIPL. In other words,
the experimental dataset consists of networks which were shown to be highly
similar to those extracted by another tool (DependencyFinder) and from a
different data source (Java bytecode) [24].

The size of the largest weakly connected component for networks from our
dataset varies from 92% to 99% of the number of nodes implying that each of
them has a giant connected component. In each network the fraction of isolated
nodes is extremely small (less than 3%) indicating that in examined software
systems the presence of unused classes is reduced to a minimum. For each
giant weakly connected component of the class collaboration networks from
our experimental dataset we computed corresponding in-degree, out-degree
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Table 1: Experimental dataset of class collaboration networks. N is the number
of nodes, while L is the number of links.

Software system Version LOC N L

Tomcat 7.0.29 329924 1494 6841
Lucene 3.6.0 111763 789 3544
Ant 1.9.2 219094 1175 5521
Xerces 2.11.0 216902 876 4775
JFreeChart 1.0.17 226623 624 3218

and total-degree distributions. Table 2 shows the basic quantities describing
empirically observed degree distributions.

Table 2: The basic characteristics of empirically observed degree distributions.
µ – mean, σ – standard deviation, cv – the coefficient of variation, G1 – skew-
ness, M – maximal value.

Software system Distribution µ σ cv G1 M

Tomcat Total-degree 9.58 15.93 1.66 8.05 293
In-degree 4.79 13.86 2.90 11.49 293

Out-degree 4.79 7.07 1.48 3.36 73
Lucene Total-degree 9.02 11.58 1.28 5.95 175

In-degree 4.51 9.84 2.18 7.22 153
Out-degree 4.51 5.30 1.17 2.93 46

Ant Total-degree 9.46 24.73 2.62 15.25 534
In-degree 4.73 23.57 4.99 16.53 533

Out-degree 4.73 5.46 1.16 2.38 40
Xerces Total-degree 10.92 14.23 1.30 2.87 106

In-degree 5.46 10.97 2.01 4.22 105
Out-degree 5.46 8.71 1.60 3.84 91

JFreeChart Total-degree 10.54 16.02 1.52 5.78 211
In-degree 5.27 14.01 2.66 7.95 211

Out-degree 5.27 7.48 1.42 4.39 93

The obtained values of the coefficient of variation, skewness and maxi-
mal degree indicate the presence of hubs in the networks – classes whose
in/out/total degree is significantly higher than the average degree. The co-
efficient of variation and skewness of degree distributions of Erdős-Renyi ran-
dom graphs are equal to 1/

√
µ where µ is the mean degree. Therefore, the

coefficient of variation and skewness of degree distributions of Erdős-Renyi
random graphs comparable to our networks are smaller than 0.5 (µ > 4 for
each empirically observed degree distribution). The coefficient of variation of
empirically observed degree distributions is always higher than 0.5, while the
skewness is drastically higher than 0.5 implying the presence of strong hubness
in the analyzed class collaboration networks.
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Using the power-law test proposed by Clauset et al. [8] (whose implemen-
tation is provided by the poweRlaw R package1) we investigated whether the
degree distributions of examined software systems follow power-laws and con-
sequently exhibit the scale-free property. Additionally, the test compares the
best power-law fit to the best fits of the exponential probability mass function
(PMF) and log-normal PMF in the obtained power-law scaling region. The
results of the test are summarized in Table 3. As can be observed, power-
laws are plausible models for all examined degree distributions since obtained
p-values are always higher than 0.1.

Table 3: The results of the power-law test.

System Distr. xm L α p-value Rln p(Rln) Re p(Re)

Tomcat Total 17 276 2.8 0.99 -0.68 0.49 1.95 0.05
In 4 289 2.07 0.74 -1.84 0.06 3.32 0.0009

Out 19 54 3.69 0.46 -1.07 0.28 -0.75 0.45
Lucene Total 10 165 2.68 0.64 -1.39 0.16 1.24 0.21

In 3 150 1.95 0.17 -2.76 0.005 1.75 0.08
Out 11 35 3.72 0.84 -0.29 0.76 1.28 0.19

Ant Total 11 523 2.6 1.00 0.41 0.68 2.77 0.005
In 7 526 2.08 0.78 -0.38 0.7 3.36 0.0007

Out 14 26 4.17 0.42 -0.94 0.34 -0.29 0.76
Xerces Total 49 57 4.65 0.83 -0.75 0.45 -0.85 0.39

In 6 99 2.1 0.60 -2.45 0.01 1.18 0.23
Out 27 64 4.29 0.66 -0.22 0.81 0.53 0.59

JFreeChart Total 14 197 2.65 0.88 -0.47 0.63 2.38 0.01
In 9 202 2.31 0.94 -0.4 0.68 2.31 0.02

Out 14 79 3.79 0.14 -0.07 0.94 1.16 0.24

The results of the likelihood ratio tests which compare the power-law fits
to the best fits of the log-normal and exponential PMFs in obtained power-law
scaling regions are also shown in Table 3. The value of the log likelihood ratio
is denoted by Rd in Table 3, where d is an alternative distribution (“ln” –
log-normal, “e” – exponential). Positive and statistically significant Rd (Rd >
0, p(Rd) < 0.1) indicates that the power-law fit is favored over the best fit of
the alternative distribution d. On the other hand, negative and statistically
significant Rd (Rd < 0, p(Rd) < 0.1) implies that the alternative distribution
better fits the tail of the distribution. If Rd is not statistically significant
(p(Rd) ≥ 0.1) then the best fits of both theoretical distributions are equally
far from the empirically observed tail where the power-law fit is plausible. It
can be seen that for all distributions that have a small power-law scaling region
all considered theoretical distributions are equally plausible models. Moreover,
all considered theoretical distributions are equally plausible models for the tail
of the total degree distribution of the Lucene class collaboration network. For
the rest of the distributions it can be concluded that:

1 http://cran.r-project.org/web/packages/poweRlaw/index.html
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– The best power-law fit is always better than the exponential fit except for
the tail of the Xerces in-degree distribution where the log-normal PMF is
the most plausible model.

– The power-law fit is never preferred over the log-normal fit. To the contrary,
log-normal PMF is the better model for the tail of the Tomcat in-degree
distribution, the Lucene in-degree distribution, and the Xerces in-degree
distribution.

Using the likelihood ratio test we also investigated which theoretical dis-
tribution provides the best fit considering the whole range of degree values
(xm = 1). The results are summarized in Table 4. The value of the log like-
lihood ratio is denoted by R(d1/d2), where d1 and d2 are two theoretical
distributions (“pw” – power-law, “ln” – log-normal, “e” – exponential). Pos-
itive and statistically significant R (R(d1/d2) > 0, p < 0.1) indicates that
d1 is preferred over d2, while a negative and significant value of R indicates
the opposite. In the case when the value of R is not statistically significant
(p ≥ 0.1) then both distributions are equally plausible. As can be seen, the
log-normal distribution provides the best fit to all distributions except for the
out-degree distribution of Lucene and Ant where log-normal and exponential
distributions are equally plausible.

Table 4: The results of the power-law test through the whole range of values
(xm = 1).

System Distr. R
(pw

ln

)
p R

(pw
e

)
p R

(
ln
e

)
p

Tomcat Total -19.56 < 10−4 -7.80 < 10−4 3.81 0.0001
In -5.04 < 10−4 5.77 < 10−4 6.64 < 10−4

Ou -12.88 < 10−4 -6.23 < 10−4 3.78 0.0002
Lucene Total -19.66 < 10−4 -14.44 < 10−4 3.86 0.0001

In -4.68 < 10−4 4.70 < 10−4 6.12 < 10−4

Out -11.88 < 10−4 -10.12 < 10−4 0.31 0.7578
Ant Total -18.89 < 10−4 -4.24 < 10−4 3.26 0.0011

In -3.06 0.0022 4.24 < 10−4 4.61 < 10−4

Out -13.63 < 10−4 -11.27 < 10−4 -0.88 0.3807
Xerces Total -18.48 < 10−4 -10.86 < 10−4 5.82 < 10−4

In -5.08 < 10−4 7.00 < 10−4 9.15 < 10−4

Out -10.19 < 10−4 -2.06 0.0397 5.37 < 10−4

JFreeChart Total -16.20 < 10−4 -9.28 < 10−4 4.07 < 10−4

In -4.51 < 10−4 3.57 0.0004 4.94 < 10−4

Out -8.95 < 10−4 -3.40 0.0007 2.49 0.0127

Having in mind the definition of scale-free networks we can conclude that
examined class collaboration networks are not scale-free for two reasons:

– The log-normal distribution provides a better fit to empirically observed
degree distributions through the whole range of degree values, compared
to the power-law.

– The tails of the distribution can be modeled by power-laws, but alternative
distributions are either equally plausible models or even provide better fits.
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We applied the metric-based comparison test with the previously defined
hub classifier in order to detect metric differences between hubs and loosely
coupled classes. The results are summarized in Table 5. For four software sys-
tems (all except Lucene) the null hypothesis of the Mann-Whitney U test is
accepted only for the DIT (depth in inheritance tree) metric. This means that
highly coupled classes tend to exhibit the same degree of specialization as
loosely coupled classes. In all other aspects (voluminosity, internal complexity,
degree of reuse and aggregation, centrality and importance) the differences
between hubs and non-hubs are statistically significant. Drastic differences in
all cases are present for the following metrics: LOC, BET and IN. This means
that highly coupled classes tend to be drastically more voluminous, function-
ally important and internally reused compared to lowly coupled classes.

Table 5: The results of the metric-based comparison test. C1 – the average
value of the corresponding metric for hubs, C2 – the average value of the cor-
responding metric for non-hubs, U – the Mann-Whitney U statistic, p – p-value
of U , NH – if acc then the null hypothesis of the MWU test is accepted, PS 1 –
the probability of superiority of hubs over non-hubs (bold values indicate that
hubs tend to have systematically higher values of the corresponding metric),
PS 2 – the probability of superiority of non-hubs over hubs.

System Metric C1 C2 U p NH PS1 PS2

Tomcat LOC 699.03 137.29 204480 < 10−4 0.84 0.15
CC 71.47 13.69 176951 < 10−4 0.68 0.22
NUMA 12.18 3.89 178509 < 10−4 0.7 0.22
NUMM 31.68 7.21 206308 < 10−4 0.84 0.13
IN 20.36 2.35 198789 < 10−4 0.78 0.14
OUT 15.42 3.04 199959 < 10−4 0.8 0.15
NOC 1.25 0.18 136294 0.006 0.18 0.05
DIT 0.63 0.47 126201 0.35 acc 0.27 0.23
BET 4777.76 169.75 208000 < 10−4 0.83 0.11
PR 0.002055 0.000474 179470 < 10−4 0.74 0.26

Lucene LOC 332.5 93.03 69044 < 10−4 0.78 0.22
CC 37.11 13.32 62822 < 10−4 0.66 0.25
NUMA 7.52 2.93 59358 < 10−4 0.62 0.28
NUMM 15.17 5.91 65950 < 10−4 0.72 0.23
IN 16.26 2.04 76210 < 10−4 0.82 0.11
OUT 10.05 3.33 64601 < 10−4 0.69 0.24
NOC 1.68 0.26 55865 < 10−4 0.35 0.09
DIT 0.46 0.88 53421 0.0002 0.2 0.4
BET 2828.94 139.12 71292 < 10−4 0.76 0.15
PR 0.00347 0.000809 70588 < 10−4 0.79 0.2

Ant LOC 574.78 114.32 132568 < 10−4 0.86 0.14
CC 49.67 9.63 124300 < 10−4 0.78 0.17
NUMA 12.37 3.66 117880 < 10−4 0.73 0.2
NUMM 26.08 6.25 133043 < 10−4 0.85 0.13
IN 24.36 1.79 126563 < 10−4 0.78 0.14
OUT 13.30 3.42 129639 < 10−4 0.82 0.14
NOC 2.88 0.2 95863 < 10−4 0.31 0.07

Continued on next page
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Table 5 – continued from previous page

System Metric C1 C2 U p NH PS1 PS2

DIT 1.28 1.11 83411 0.11 acc 0.39 0.32
BET 7715.53 249.41 129761 < 10−4 0.8 0.12
PR 0.003835 0.000411 117779 < 10−4 0.75 0.23

Xerces LOC 766.36 145.84 71757 < 10−4 0.79 0.21
CC 100.54 15.78 64222 < 10−4 0.64 0.22
NUMA 22.35 3.18 66545 < 10−4 0.69 0.22
NUMM 24.35 8.26 67912 < 10−4 0.73 0.23
IN 22.72 2.71 77836 < 10−4 0.83 0.11
OUT 17.67 3.51 66649 < 10−4 0.7 0.23
NOC 1.46 0.23 53140 0.003 0.26 0.09
DIT 0.68 1.07 50199 0.06 acc 0.23 0.33
BET 3897.61 182.87 72166 < 10−4 0.76 0.16
PR 0.003367 0.000788 67360 < 10−4 0.74 0.25

JFreeChart LOC 854.12 202.85 37753 < 10−4 0.77 0.23
CC 59.83 12.32 36467 < 10−4 0.71 0.22
NUMA 11.97 3.35 33972 < 10−4 0.65 0.27
NUMM 37.25 10.02 38177 < 10−4 0.77 0.21
IN 21.45 2.34 39365 < 10−4 0.76 0.16
OUT 14.38 3.56 37118 < 10−4 0.72 0.21
NOC 1.77 0.23 31594 < 10−4 0.35 0.06
DIT 1 0.83 27197 0.08 acc 0.39 0.27
BET 931.58 67.69 39678 < 10−4 0.77 0.14
PR 0.004705 0.001066 35461 < 10−4 0.71 0.26

For Tomcat, Ant and JFreeChart, the drastic differences between hubs and
ordinary classes can also be observed with respect to the NUMM (the number
of methods) metric. This means that hubs in those systems tend to define
drastically more methods than ordinary classes. In the case of Ant, we can
observe a large difference between the cyclomatic complexity of hubs and the
cyclomatic complexity of ordinary classes. This implies that highly coupled
classes in Ant have significantly more complex control-flow implying that they
are more difficult to test compared to non-hub classes.

Looking back to the data presented in Table 2 we can observe that the co-
efficients of variation, skewness and maximal degree of in-degree distributions
are (drastically) higher than the same quantities describing out-degree distri-
butions. This means that the tails of the in-degree distributions are longer
(“heavier”) than the tails of the out-degree distributions. The previous ob-
servation suggests that highly coupled classes, classes contained in tails of
the total-degree distributions, tend to have higher in-degree than out-degree.
Figure 1 shows the afferent-efferent coupling balance plots (see Definition 11)
for the examined software systems. Additionally, each of the graphs shows the
change of Pk, the probability that a randomly selected class whose total degree
is higher than or equal to k has more two times higher in-degree than out-
degree, with k. As can be observed for all software systems except Xerces, both
Ck and Pk tend to increase with k. This means that the disbalance between
the afferent and efferent coupling becomes more drastic with higher values of
the CBO metric.
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Fig. 1: The afferent-efferent coupling balance plot for (a) Tomcat, (b) Lucene,
(c) Ant, (d) Xerces, and (e) JFreeChart.

In the case of Xerces, Ck starts to decrease from 0.71 at k = 50 to 0.43
at k = 96. Highly coupled classes (CBO > 50) in Xerces are dominantly
caused by internal reuse (C50 = 0.71 and P50 = 0.67) but the magnitude of
in-degree dominance decreased for higher values of CBO. This means that
Xerces contains a significant portion of extremely highly coupled classes that
are either dominantly caused by internal aggregation or both aggregation and
reuse significantly contribute to total coupling. The top ten most coupled
classes in Xerces are shown in Table 6. It can be observed that the list contains:
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Table 6: The top ten most coupled classes in Xerces.

Class In Out CBO

org.apache.xerces.impl.xs.traversers.XSDHandler 15 91 106
org.apache.xerces.xni.XNIException 105 0 105
org.apache.xerces.impl.xs.XMLSchemaValidator 15 81 96
org.apache.xerces.util.SymbolTable 86 1 87
org.apache.xerces.xni.QName 86 0 86
org.apache.xerces.dom.CoreDocumentImpl 47 33 80
org.apache.xerces.impl.xs.SchemaGrammar 35 44 79
org.apache.wml.dom.WMLDocumentImpl 37 39 76
org.apache.xerces.impl.Constants 72 1 73
org.apache.xerces.impl.XMLEntityManager 28 40 68

– Two classes (XSDHandler and XMLSchemaValidator) whose coupling is
dominantly caused by the internal aggregation of a large number of other
classes.

– Four classes (XNIException, QName, SymbolTable and Constants) whose
coupling is entirely or almost entirely caused by their excessive internal
reuse.

– Four classes where both internal aggregation and internal reuse signifi-
cantly contribute to total coupling.

6 Discussion

The analysis of five large-scale software systems using the methodology pro-
posed in this paper firstly revealed that high structural class coupling in real
software systems cannot be accurately modeled by power-law distributions.
This observation has both theoretical and practical relevance. From the prac-
tical point of view, it implies that the scaling exponent of fitted power-laws
can not be used by software engineering practitioners as a metric of software
design quality. From the theoretical stand point, it means that generating
mechanisms of power-law distributions cannot be used to guide and formulate
theoretical models of class coupling evolution.

Degree distribution analysis also showed that empirically observed in-, out-
and total-degree distributions are heavy-tailed distributions that can be mod-
eled with the log-normal distribution. The near-linear preferential attachment
principle, a generating mechanism for log-normal degree distributions, suggests
the tendency of increasing internal reuse for already highly reused classes as
the class collaboration network grows through software evolution. Software en-
gineering practice encourages internal code reuse and this tendency may seem
very desirable. However, modifications of a highly reused class may affect a
very large number of classes which directly depend on it. In addition, highly
reused classes are particularly critical (externally responsible) because any de-
fect in classes with high degrees of internal reuse are more likely to propagate
to other parts of the system [5]. In the case when defects need to propagate to
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other parts of the system and cause failures there in order to be detected, they
may not be detected when testing the entity in isolation. Thus, identifying
highly reused classes, especially ones which do not realize simple functional-
ities, and their effective testing or validation before they become extremely
reused may help to prevent the following conflict situation: the presence of
highly reused, hard-to-modify and hard-to-test classes with an increasing ten-
dency of internal reuse which makes them even more critical and harder to
maintain in terms of modifiability and use-context-required testability.

Similarly as for in-degree distributions, a heavy-tailed out-degree distribu-
tion implies a broad spectrum of internal aggregation among classes. As stated
by Briand et al. [5], a high degree of internal aggregation of other classes by a
class can cause its

– lower understandability due to high class aggregation – in order to fully
comprehend a class that aggregates a large number of other classes one has
also to examine and understand all aggregated classes,

– higher proneness to errors – the probability that some aggregated class
contains a fault or that it is incorrectly used increases with the number of
aggregated classes,

– lower external reusability – if a class aggregates a large number of other
classes then its reuse in some other software project would require reuse of
aggregated classes as well.

In software development practice, it is desirable to keep class coupling as
low as possible. Heavy-tailed total degree distributions imply that coupling
among classes has no characteristic scale: average class coupling is relatively
small, but there is a statistically significant number of highly coupled classes
whose degree of coupling is extremely large. From the software engineering
perspective, this phenomenon is considered to be bad, because highly coupled
entities can cause difficulties in software maintenance and program comprehen-
sion. The analysis of the balance between in-degree and out-degree for highly
coupled classes in four Java software systems (all except Xerces) showed that
the origin of their high coupling, which is as already mentioned considered as
an indicator of poor software design, is in extensive internal reuse, which is, to
the contrary, considered desirable in software development practice. This seems
to be a paradox. However, high coupling caused by extensive internal reuse
can indicate only negative aspects of extensive internal reuse, not negative
aspects of extensive internal aggregation. In systems where hubs are caused
predominantly by internal reuse, the existence of high coupling can suggest
high criticality and lower maintainability in terms of context-required testa-
bility, but not lower maintainability in terms of lower understandability and
higher error-proneness due to high class aggregation. In the case when highly
reused classes tend to be simple (and thus problem-free) or when they are ex-
tensively tested (or validated) in early phases of software development and do
not tend to change drastically during the evolution, we can actually consider
high coupling caused by extensive internal reuse as an indicator of good rather
than poor modularization. In such situations, high coupling means low redun-
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dancy of code and proper abstraction of highly reused classes. However, in the
case when a highly reused class tends to be unstable during software evolu-
tion, in the sense that its modification forces modifications in a large number
of classes that depend on it, then software maintainers need to control its
coupling/internal reuse and keep it as low as possible. In the case of Xerces,
high coupled classes are caused significantly by both internal class reuse and
aggregation. Therefore, the maintainers of this system should be aware of the
negative aspects of both extensive class reuse and extensive class aggregation.

The application of the metric-based comparison test showed that highly
coupled classes in all examined systems tend to be drastically more voluminous
(contain more lines of code) and more functionally important compared to
loosely coupled classes. This observation directly implies that (1) the internal
logic of highly coupled classes is harder to comprehend compared to loosely
coupled classes and (2) changes in highly coupled classes may have bigger
impact to the overall system stability and evolution. Additionally, in the case
of Ant we observed that highly coupled classes tend to have systematically
higher cyclomatic complexity than loosely coupled classes. This implies that
highly coupled Ant classes require a significantly larger number of test cases for
white-box testing due to their complex control flow. Therefore, we can conclude
that Ant hubs are harder to test compared to loosely coupled classes. Having
in mind that hubs in Ant are dominantly caused by extensive class reuse we
can infer the following:

– Ant developers that intend to reuse Ant hub classes should be aware of
their complex control flow and check whether reused classes went through
proper white-box testing in order to avoid the situation that faults in their
classes were caused by errors propagated from hub classes.

– Ant maintainers should be aware of the fact that faults associated to hub
classes are most probably not caused by propagated errors (errors in classes
referenced by hub classes) since hub classes do not tend to aggregate a large
number of other classes, but by errors in their complex control-flow.

– Ant project managers should be aware of the fact that hub classes are the
most important classes in the system and that failures in these classes can
have a big impact to the stability of the whole system. Therefore, they
should initiate proper testing procedures if it is observed that hub classes
tend to cause faults in other classes.

7 Conclusions and Future Work

In this paper we proposed an innovative, statistically robust, network-based
methodology to examine high structural class coupling in object-oriented soft-
ware systems. The main idea of the methodology is to enrich nodes of class
collaboration networks with both software and domain-independent metrics
proposed under the framework of complex network theory in order to perform
a more comprehensive analysis of highly coupled classes.
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Following the proposed methodology, we analyzed high class coupling in
five open-source software systems written in Java. The obtained results showed
that high class coupling in real software systems cannot be accurately mod-
eled by power-law distributions, further implying that the scaling-exponent
of power-laws is not a reliable metric of software design quality. Secondly, we
showed that our methodology enables the identification of key differences be-
tween highly and loosely coupled classes that enhance the understanding of
the high class coupling phenomenon in concrete software systems. Finally, the
experimental results indicate that extremely highly coupled classes in real soft-
ware systems are caused predominantly by internal reuse, and consequently
that high coupling would rather indicate only negative aspects of internal class
reuse, not negative aspects of internal class aggregation.

In future work we plan to extend this study to a larger experimental dataset
also encompassing class collaboration networks representing large-scale soft-
ware systems written in programming languages different than Java. Using the
same methodological framework we will also investigate the coupling structure
of software systems at different levels of abstraction such as those represented
by package and method collaboration networks. Finally, our future work will
be devoted to evolutionary analysis of the high class coupling phenomenon.
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