
GLAVA 5

Polinomne matrice. Karakteristični koreni i

vektori

5.1. Polinomne matrice

Do sada smo posmatrali matrice nad poljem, tj. matrice čiji su ele-
menti iz nekog polja. Med̄utim, u raznim oblastima matematike i drugih
nauka pojavljuju se problemi u kojima elementi matrica nisu iz polja već su
elementi drugih struktura. Jedna važna klasa takvih matrica su matrice
čiji su elementi polinomi i takve matrice se nazivaju polinomne matrice.
Proučavanje tih matrica omogućuje da se dobiju rezultati ne samo o poli-
nomnim matricama, već i značajni rezultati o matricama nad poljem koje
smo ranije razmatrali.

Definicija 5.1. Neka je F polje, a F [λ] prsten polinoma po λ sa ko-
eficijentima iz F . Polinomna matrica formata m× n je svako preslikavanje
{1, . . . ,m}×{1, . . . , n} → F [λ]. Kao i kod matrica nad poljem, koje su defi-
nisane ranije, polinomne matrice prikazujemo u obliku pravougaone tablice
sa m vrsta i n kolona:

A(λ) =


a11(λ) a12(λ) . . . a1n(λ)
a21(λ) a22(λ) . . . a2n(λ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1(λ) am2(λ) . . . amn(λ)

 .
Gornju matricu ćemo skraćeno označavati sa [aij(λ)].

Skup svih polinomnih matrica formata m × n nad F [λ] označavaćemo
sa F [λ]m,n.

Operacije na skupu polinomnih matrica i nazive nekih klasa polinom-
nih matrica definǐsemo analogno odgovarajućim definicijama za matrice nad
poljem (Definicije 4.1–4.4).

Definicija 5.2. Ako je

(5.1) A(λ) = Apλ
p + · · ·+A1λ+A0,

89
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gde su Ai, i = 0, 1, . . . , p, matrice iz Fn,n, Ap 6= 0, onda se A(λ) naziva
matrični polinom stepena p. Pri tome, usvajamo konvenciju da je Aλ = λA,
A = [aij ] ∈ Fn,n, dakle,

Aλ = λA =


λa11 λa12 . . . λa1n

λa21 λa22 . . . λa2n

. . . . . . . . . . . . . . . . . . . . . .
λan1 λan2 . . . λann

 .
Sabirajući elemente na desnoj strani jednakosti (5.1), dobija se da je

A(λ) polinomna matrica. Očevidno, svaki matrični polinom može se na
jedinstven način prikazati kao polinomna matrica.

Važi i obrnuto, ako je

A(λ) =


a11(λ) a12(λ) . . . a1n(λ)
a21(λ) a22(λ) . . . a2n(λ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1(λ) an2(λ) . . . ann(λ)

 ,
polinomna matrica, a p maksimalan stepen polinoma aij(λ), i, j = 1, . . . , n,
onda se A(λ) može prikazati kao matrični polinom stepena p

A(λ) = Apλ
p + · · ·+A1λ+A0,

gde je Ai ∈ Fn,n, i = 0, 1, . . . , p.

Primer.

Matrica

A =
[

λ+ 1 λ2 − 3λ− 1
λ3 + 5λ 2λ2 + λ

]
može se prikazati kao matrični polinom

A(λ) =
[

0 0
1 0

]
λ3 +

[
0 1
0 2

]
λ2 +

[
1 −3
5 1

]
λ+

[
1 −1
0 0

]
.

Neka je

A(λ) = Apλ
p + · · ·+A1λ+A0, Ai ∈ Fn,n

matrični polinom. Ako se u tom polinomu stavi λ = c ∈ F , dobija se

A(c) = Apc
p + · · ·+A1c+A0,

i ta vrednost ne zavisi od toga da li je λ pisano sa leve ili desne strane u
polinomu A(λ).
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Med̄utim, ako se u matričnom polinomu A(λ) stavi λ = C ∈ Fn,n,
s obzirom da množenje matrica nije komutativno, mogu se dobiti različite
vrednosti za A(C), zavisno od toga da li je λ pisano sa leve ili desne strane:

Ar(C) = ApC
p + · · ·+A1C +A0

i
Al(C) = CpAp + · · ·+ CA1 +A0.

Ar(C) se naziva desna funkcionalna vrednost matričnog polinoma A(λ) za
λ = C, a Al(C) leva funkcionalna vrednost matričnog polinoma A(λ) za
λ = C.

Iako smo naveli da se svaki matrični polinom može prikazati kao poli-
nomna matrica i obrnuto, zamena promenljive λ matricom moguća je samo
u matričnom polinomu, dok u polinomnoj matrici to nije moguće (jer bi se
pojavili zbirovi matrica i skalara, što nije definisano).

Teorema 5.1. Ako su

A(λ) = Apλ
p + · · ·+A1λ+A0,

i
B(λ) = Bqλ

q + · · ·+B1λ+B0, |Bq| 6= 0,

matrični polinomi, onda postoje jedinstveni matrični polinomi Q1(λ), R1(λ)
i Q2(λ), R2(λ), takvi da je

A(λ) = Q1(λ)B(λ) +R1(λ)

i
A(λ) = B(λ)Q2(λ) +R2(λ),

gde je R1(λ) = 0 ili deg(R1(λ)) < deg(B(λ)); i R2(λ) = 0 ili deg(R2(λ)) <
deg(B(λ)).

R1(λ) se naziva desni ostatak, a R2(λ) levi ostatak pri deobi matričnog
polinoma A(λ) matričnim polinomom B(λ).

Ako je R1(λ) = 0, B(λ) je desni delitelj A(λ), a ako je R2(λ) = 0,
B(λ) je levi delitelj A(λ).

Za deljenje matričnih polinoma važi teorema analogna Bezuovoj teore-
mi za polinome nad poljem.

Teorema 5.2. Ako je A(λ) = Apλ
p + · · ·+A1λ+A0 matrični polinom

nad F [λ], a B ∈ Fn,n, onda je desni ostatak R1 pri deobi A(λ) sa λE −B

R1 = ApB
p + · · ·+A1B +A0 = Ar(B),
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a levi ostatak je

R2 = BpAp + · · ·+BA1 +A0 = Al(B).

Dokaz. Na osnovu Teoreme 5.1 postoje matrični polinomi Q(λ) i R1

takvi da je

(5.2) A(λ) = Q(λ)(λE −B) +R1,

(pri čemu je ostatak označen sa R1, a ne sa R1(λ), jer je delilac λE − B
linearan, pa je ostatak konstanta).

Ako je Q(λ) = Qmλ
m + · · ·+Q1λ+Q0, onda iz

A(λ) = (Qmλ
m + · · ·+Q1λ+Q0)(λE −B) +R1,

sledi

A(λ) = Qmλ
m+1 + (Qm−1 −QmB)λm + · · ·+ (Q0 −Q1B)λ−Q0B +R1.

Stavljajući u prethodnu jednakost λ = B sa desne strane, dobija se

R1 = Ar(B).

Analogno se dokazuje da je R2 = Al(B). �

NAPOMENA. S obzirom da množenje koeficijenata matričnih poli-
noma nije komutativno, ne može se u (5.2) staviti λ = B pre nego što se
izračuna proizvod Q(λ)(λE −B).

5.2. Karakteristični polinom matrice

Definicija 5.3. Ako je A = [aij ] ∈ Fn,n, onda se polinomna matrica

λE −A =


λ− a11 −a12 . . . −a1n

−a21 λ− a22 . . . −a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−an1 −an2 . . . λ− ann


naziva karakteristična matrica matrice A.

Determinanata karakteristične matrice matrice A je nomalizovan poli-
nom n-tog stepena

|λE −A| = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

koji se naziva karakteristični polinom matrice A.
Jednačina

|λE −A| = 0
se naziva karakteristična jednačina matrice A.
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Definicija 5.4. Ako je A ∈ Fn,n, f(λ) = amλ
m+ · · ·+a1λ+a0 ∈ F [λ],

onda je
f(A) = amA

m + · · ·+ a1A+ a0E.

Teorema 5.3. (Cayley-Hamilton) Ako je A ∈ Fn,n matrica čiji je
karakteristični polinom f(λ), onda je f(A) = O. (Svaka matrica zadovoljava
svoju karakterističnu jednačinu.)

Dokaz. Teorema 4.38 je dokazana za matrice nad poljem, med̄utim
u dokazu te teoreme nigde nije korǐsćeno deljenje elemenata polja, pa se
odgovarajući dokaz može primeniti i na polinomne matrice (čiji elementi
čine prsten, a ne polje). Prema tome, Teorema 4.38 važi i za polinomne
matrice.

Tada je

(λE −A)(λE −A)∗ = |λE −A|E = f(λ)E.

Vidimo da je matrični polinom f(λ)E deljiv matričnim polinomom λE −A
(ostatak je nula), a kako je na osnovu Teoreme 5.2 ostatak jednak f(A)E,
sledi f(A)E = f(A) = O. �

NAPOMENA. U matričnom polinomu f(λ)E leva i desna funkcional-
na vrednost za λ = A su jednake jer su koeficijenti matričnog polinoma
f(λ)E matrice koje su komutativne sa svakom matricom.

Napominjemo da sledeći ,,dokaz” Kejli-Hamiltonove teoreme nije ispra-
van:

Ako je f(λ) = |λE − A| karakteristični polinom matrice A, stavljajući
u prethodnu jednakost λ = A dobija se da je f(A) = |AE −A| = O.

Gornje zaključivanje nije korektno jer jednakost f(λ) = |λE − A| važi
samo za skalare λ, dakle, greška je u tome što je u determinanti |λE − A|

umesto promenljive λ stavljena matrica. Na primer, ako je A =
[

1 2
3 4

]
,

onda stavljajući A umesto λ u |λE −A| dobija se nedefinisan izraz:∣∣∣∣∣∣∣∣
[

1 2
3 4

]
− 1 −2

−3
[

1 2
3 4

]
− 4

∣∣∣∣∣∣∣∣ .
Stavljanje matrice umesto λ u karakterističnim polinomu moguće je

samo kada je taj polinom u obliku f(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0,

(Definicija 5.4).
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Primer.

1. Za matricu A =

 1 1 0
4 1 0
1 1 1

 karakteristični polinom je

|λE −A| =

∣∣∣∣∣∣
λ− 1 −1 0
−4 λ− 1 0
−1 −1 λ− 1

∣∣∣∣∣∣ = (λ− 1)((λ− 1)2 − 4)

= λ3 − 3λ2 − λ+ 3,
pa je

A3 − 3A2 −A+ 3E = O.

Koristeći Kejli-Hamiltonovu teoremu možemo, izmed̄u ostalog, odrediti
matricu A−1. Naime, matrica A je regularna jer je slobodan član karakter-
ističnog polinoma te matrice različit od 0.1 Videli smo da je A3−3A2−A+
3E = O, pa množeći ovu jednakost sa A−1 dobijamo:

A−1 = −1
3
(A2 − 3A− E) = −1

3

 1 −1 0
−4 1 0

3 0 −3

 .
5.3. Elementarne transformacije polinomnih matrica i

ekvivalencija polinomnih matrica

Definicija 5.5. Elementarne transformacije polinomne matrice A(λ) ∈
F [λ]m,n su sledeće transformacije:

1) Zamena mesta dve vrste (kolone).
2) Množenje svih elemenata jedne vrste (kolone) konstantom različitom

od nule.
3) Dodavanje elemenata jedne vrste (kolone), prethodno pomnoženih

nekim polinomom, odgovarajućim elementima neke druge vrste (kolone).

Elementarne polinomne matrice definǐsu se i označavaju analogno odgo-
varajućim definicijama za elementarne matrice nad poljem (4.12).

Za elementarne polinomne matrice važe tvrd̄enja analogna tvrd̄enjima
4.13 i 4.14.

Teorema 5.4. Determinante elementarnih polinomnih matrica su kon-
stante različite od nule.

1Ako je |λE − A| = λn + an−1λ
n−1 + · · ·+ a1λ + a0 karakteristični polinom matrice

A, onda je | −A| = |0E −A| = a0.
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Dokaz. Neposredno sledi izračunavanjem odgovarajućih determinanti.
�

Definicija 5.6. Polinomna matrica A(λ) je ekvivalentna sa matricom
B(λ) ako postoje matrice P (λ) i Q(λ) jednake proizvodu elementarnih ma-
trica takve da je

B(λ) = P (λ)A(λ)Q(λ),
tj. A(λ) je ekvivalentna sa B(λ), ako se A(λ) može elementarnim transfor-
macijama svesti na B(λ).

Iz ranijeg neposredno sledi da je relacija definisana u prethodnoj teo-
remi jedna relacija ekvivalencije.

Rang polinomnih matrica ćemo definisati pomoću minora, jer se u toj
definiciji ne koristi deljenje elemenata iz polja, pa se rang može potpuno isto
definisati kao što je definisan za matrice nad poljem. Dakle, rang polinomne
matrice A(λ) je broj r takav da su svi njeni minori reda većeg od r, ako
postoje, jednaki 0, i postoji bar jedan minor reda r koji je različit od nule.
Rang nula matrice je nula.

Važi sledeća teorema koju navodimo bez dokaza.

Teorema 5.5. Ekvivalentne polinomne matrice imaju isti rang.

Definicija 5.7. Polinomna matrica A(λ) reda n je regularna ako je
njen rang n, tj. ako je |A(λ)| 6= 0.

Definicija 5.8. Polinomna matrica A(λ) je invertibilna ako postoji
polinomna matrica B(λ) takva da je

A(λ)B(λ) = B(λ)A(λ) = E.

Matrica B(λ) naziva se inverzna matrica za matricu A(λ).

Polinomna matrica može biti regularna, a da ne bude invertibilna, što
nije slučaj sa matricama nad poljem F . Primer za to je naveden na strani
103.

5.4. Smitova kanonička matrica

Teorema 5.6. Ako je A(λ) ∈ F [λ]n,n matrica ranga r, onda je ona
ekvivalentna sa matricom

N(λ) = diag (f1(λ), . . . , fr(λ), 0, . . . , 0),

gde su f1(λ), . . . , fr(λ) normalizovani polinomi nad F takvi da je fi(λ)
∣∣fi+1(λ),

i = 1, . . . , r − 1.
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Dokaz. Ako je A(λ) = O, onda je ona sama traženog oblika.

Neka je sada A(λ) 6= O. U skupu svih polinomnih matrica ekvivalent-
nih sa A(λ), neka je B(λ) matrica čiji je jedan elemenat polinom najmanjeg
stepena med̄u svim elementima svih matrica koje su ekvivalentne sa A(λ)
(ako ima vǐse takvih polinoma uzimamo bilo koji). Taj elemenat ćemo ele-
mentarnim transformacijama dovesti na mesto (1,1) matrice i neka je

C(λ) =


c11(λ) c12(λ) . . . c1n(λ)
c21(λ) c22(λ) . . . c2n(λ)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
cn1(λ) cn2(λ) . . . cnn(λ)


tako dobijena matrica, gde je c11(λ) polinom najmanjeg stepena med̄u svim
elementima svih matrica koje su ekvivalentne sa A(λ)

Dokažimo da su svi elementi prve vrste i prve kolone matrice C(λ)
deljivi sa c11(λ). Za svaka dva polinoma jedinstveno postoje količnik i os-
tatak, pa za c21(λ), c11(λ) važi

c21(λ) = q(λ)c11(λ) + r(λ),

pri čemu je stepen ostatka r(λ) mani od stepena delioca c11(λ) ili je r(λ) = 0.

Ako sada prvu vrstu matrice C(λ) pomnožimo sa −q(λ) i dodamo dru-
goj, dobija se matrica

C ′(λ) =


c11(λ) c12(λ) . . . c1n(λ)
r(λ) c′22(λ) . . . c′2n(λ)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
cn1(λ) cn2(λ) . . . cnn(λ)


koja je ekvivalentna sa polaznom matricom A(λ) (jer je ekvivalencija poli-
nomnih matrica jedna relacija ekvivalencije), a jedan njen elemenat je r(λ)
koji je stepena manjeg od najmanjeg stepena svih elemenata svih matrica
koje su ekvivalentne sa A(λ) ili je r(λ) = 0. Dakle, r(λ) = 0, tj. c21(λ) je
deljiv sa c11(λ), a matrica C ′(λ) je

C ′(λ) =


c11(λ) c12(λ) . . . c1n(λ)

0 c′22(λ) . . . c′2n(λ)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
cn1(λ) cn2(λ) . . . cnn(λ)

 .
Analognim postupkom, vršeći elementarne transformacije na matrici

C ′(λ) dobija se matrica D(λ), ekvivalentna sa polaznom matricom A(λ),



5.4. SMITOVA KANONIČKA MATRICA 97

koja u prvoj vrsti i prvoj koloni ima sve nule sem prvog elementa

D(λ) =


c11(λ) 0 . . . 0

0 d22(λ) . . . d2n(λ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 dn2(λ) . . . dnn(λ)

 .

Slično se može pokazati da su i svi elementi dij(λ) i = 2, . . . , n j =
2, . . . , n deljivi sa c11(λ). Zaista, ako u matrici D(λ) dodamo i-tu vrstu
prvoj dobija se matrica

D′(λ) =


c11(λ) di2(λ) . . . din(λ)

0 d22(λ) . . . d2n(λ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 dn2(λ) . . . dnn(λ)

 ,
a onda, analognim postupkom kojim smo u matrici C(λ) pokazali da su
elementi prve vrste i prve kolone deljivi sa c11(λ), dokazujemo da su svi
elementi di2(λ), . . . , din(λ) deljivi sa c11(λ).

Sledeći korak je transformisanje elementarnim transformacijama bloka
u matriciD(λ) koji čine sve vrste i sve kolone sem prve vrste i prve kolone, na
potpuno isti način kao što je transformisana matrica C(λ). U tom postupku
prva vrsta i prva kolona matrice D(λ) će ostati neizmenjene. Tako se dobija
matrica F (λ), ekvivalentna sa D(λ) (a to znači i sa A(λ)),

F (λ) =


c11(λ) 0 0 0 0

0 d′22(λ) 0 . . . 0
0 0 f33(λ) . . . f3n(λ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 fn3(λ) . . . fnn(λ)

 ,

S obzirom da smo do matrice F (λ) došli vršenjem elementarnih transforma-
cija, svi elementi matrice F (λ) su i dalje deljivi sa c11(λ), a svi fij(λ) su
deljivi sa d′22(λ).

Nastavljajući tako dalje dobijamo dijagonalnu matricu, i ako u toj
dijagonalnoj matrici sve polinome na dijagonali normalizujemo (množeći
odgovarajuće vrste recipročnom vrednošću vodećeg koeficijenta polinoma),
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konačno se dobija matrica ekvivalentna sa matricom A(λ)

N(λ) =



f1(λ) 0 . . . 0 0 . . . 0
0 f2(λ) . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . fr(λ) 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . 0 0 . . . 0


,

gde su f1(λ), . . . , fr(λ) normalizovani polinomi nad F takvi da je fi(λ)
∣∣fi+1(λ),

i = 1, . . . , r − 1.

Da se na dijagonali matriceN(λ) zaista nalazi tačno r polinoma razičitih
od nule, sledi iz toga što ekvivalentne matrice imaju isti rang, matrica A(λ)
je ranga r, a rang matrice N(λ) je očigledno jednak broju polinoma različitih
od nule na dijagonali te matrice. �

Definicija 5.9. Matrica N(λ) iz prethodne teoreme naziva se Smitova
(Smith) kanonička (ili normalna) matrica za matricu A(λ).

U Teoremi 5.6 dokazali smo da u svakoj klasi med̄usobno ekvivalentnih
kvadratnih polinomnih matrica postoji bar jedna Smitova kanonička matri-
ca, a kasnije ćemo dokazati da Smitova matrica postoji jedinstveno.

Definicija 5.10. Ako je A(λ) ∈ F [λ]n,n, onda sa dkA(λ) označavamo
najveći zajednički delitelj svih minora reda k te matrice. Pri tome, ako su
svi minori reda k jednaki 0, po definiciji je dkA(λ) = 0.

Teorema 5.7. Ako su A(λ) = [aij(λ)] i B(λ) = [bij(λ)] ekvivalentne
polinomne matrice reda n, onda je dkA(λ) = dkB(λ), za svako k = 1, . . . , n.

Dokaz. Kako je A(λ) ∼ B(λ) ako i samo ako se A(λ) može dobiti
od B(λ) vršenjem konačnog niza elementarnih transformacija, dovoljno je
dokazati da se najveći zajednički delitelji minora reda k matrice B(λ) neće
promeniti posle vršenja jedne elementarne transformacije na toj matrici.

1. Ako je A(λ) dobijeno od B(λ) množenjem neke vrste (ili kolone)
skalarom α 6= 0, onda su odgovarajući minori tih matrica ili jednaki ili je
jedan od njih jednak drugom pomnoženom sa α. Kako množenje konstantom
α ne utiče ne deljivost, sledi da je u ovom slučaju dkA(λ) = dkB(λ).

2. Zamena mesta dve vrste (ili kolone) samo menja znake pojedinih
minora, pa sledi da je i u ovom slučaju dkA(λ) = dkB(λ).
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3. Neka je sada A(λ) dobijena od B(λ) dodavanjem elemenata j-te vrste
pomnožene polinomom p(λ) odgovarajućim elementima i-te vrste. Minori
sa sada mogu podeliti na tri klase koje ćemo posebno analizirati.

a) Minori koji ne sadrže elemente i-te vrste su u obe matrice jednaki.

b) Posmatrajmo minore koji sadrže delove i-te i j-te vrste. S obzirom
da se vrednost determinante ne menja ako se elementi jedne vrste, prethodno
pomnoženi nekim polinomom, dodaju odgovarajućim elementima neke druge
vrste, sledi da su i u ovom slučaju odgovarajući minori jednaki.

c) Sada ćemo posmatrati minore koji sadrže delove i-te vrste, a ne
sadrže delove j-te vrste. Neka je jedan takav minor matrice A(λ)

MA(λ) =

∣∣∣∣∣∣
. . . . . . . . .

bi1(λ) + p(λ)bj1(λ) . . . bin(λ) + p(λ)bjn(λ)
. . . . . . . . .

∣∣∣∣∣∣ ,
a odgovarajući minor matrice B(λ)

MB(λ) =

∣∣∣∣∣∣
. . . . . . . . .
bi1(λ) . . . bin(λ)
. . . . . . . . .

∣∣∣∣∣∣ ,
ostali elementi (koji nisu navedeni) ovih minora su jednaki.

Dalje je

MA(λ) =

∣∣∣∣∣∣
. . . . . . . . .
bi1(λ) . . . bin(λ)
. . . . . . . . .

∣∣∣∣∣∣+ p(λ)

∣∣∣∣∣∣
. . . . . . . . .
bj1(λ) . . . bjn(λ)
. . . . . . . . .

∣∣∣∣∣∣ =
= MB(λ)± p(λ)MB(λ).

MB(λ) iMB(λ) su minori matrice B(λ), dakle, deljivi sa dkB(λ), pa iz gornje
jednakosti sledi da je i MA(λ) deljiv sa dkB(λ).

Prema tome, iz a), b) i c) sledi da su svi minori formata k × k matrice
A(λ) deljivi sa dkB(λ), a to znači da je i dkA(λ) deljiv sa dkB(λ).

Ako se A(λ) može dobiti od B(λ) vršenjem jedne elementarne trans-
formacije, onda se vršenjem inverzne elementarne transformacije na matrici
A(λ) dobija B(λ), dakle, dkA(λ) = dkB(λ). �

Dokazaćemo sada da za datu polinomnu matricuA(λ) Smitova kanonička
matrica postoji jedinstveno.
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Neka je za matricu A(λ) ∈ F [λ]n,n ranga r Smitova kanonička matrica

N(λ) =



f1(λ) 0 . . . 0 0 . . . 0
0 f2(λ) . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . fr(λ) 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . 0 0 . . . 0


.

S obzirom da je A(λ) ranga r, u matrici N(λ) na dijagonali ima tačno r
elemenata različitih od nule. Očigledno je najveći zajednički delitelj svih
minora formata k × k matrice N(λ), dkN (λ) = f1(λ)f2(λ) . . . fk(λ), k =
1, . . . , r, a iz prethodne teoreme znamo da je dkA(λ) = dkN (λ), za svako
k = 1, . . . , n.

Dakle,

d1A(λ) = f1(λ),
d2A(λ) = f1(λ)f2(λ),
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
drA(λ) = f1(λ)f2(λ) . . . fr(λ),

a odatle sledi da je

f1(λ) = d1A(λ),

f2(λ) =
d2A(λ)
d1A(λ)

,

. . . . . . . . . . . . . . . . . . . . .

fr(λ) =
drA(λ)

d(r−1)A(λ)
.

S obzirom da najveći zajednički delitelji d1A(λ), . . . , drA(λ) odgovara-
jućih minora matrice A(λ) postoje jedinstveno, sledi da su i f1(λ), . . . , fr(λ)
jedinstveni. To znači da za svaku polinomnu matricu A(λ) postoji tačno
jedna Smitova kanonička matrica.

Definicija 5.11. Ako je A(λ) polinomna matrica, a N(λ) njena Smi-
tova kanonička matrica, onda se polinomi sa dijagonale matrice N(λ) nazi-
vaju invarijantni faktori matrice A(λ). Invarijantni faktori koji su jednaki
1 nazivaju se trivijalni, ostali su netrivijalni.

Pošto je ekvivalencija polinomnih matrica jedna relacija ekvivalencije,
sledi da važi sledeća teorema.
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Teorema 5.8. Dve kvadratne polinomne matrice su ekvivalentne ako i
samo ako imaju redom jednake invarijantne faktore (tj. ako su ekvivalentne
sa istom Smitovom kanoničkom matricom).

Takod̄e očigledno važi i sledeća teorema.

Teorema 5.9. Dve polinomne matrice A(λ) i B(λ) reda n su ekviva-
lentne ako i samo ako je dkA(λ) = dkB(λ), za svako k = 1, . . . , n.

Primer.

Ispitaćemo da li su sledeće dve matrice ekvivalentne

A(λ) =

 λ+ 1 0 0
0 λ+ 1 0
0 0 λ2 − λ+ 1

 ,
B(λ) =

 λ2 + 1 λ− 1 λ2

λ3 + λ λ2 + 1 λ3

λ3 − λ2 −2λ λ3 − λ2 + 1

 .
Najveći zajednički delitelji minora matrice A su:

d1(λ) = 1, d2(λ) = λ+ 1, d3(λ) = (λ+ 1)2(λ2 − λ+ 1).

Na osnovu dokaza Teoreme 5.7 je

f1(λ) = 1, f2(λ) = λ+ 1, f3(λ) = (λ+ 1)(λ2 − λ+ 1) = λ3 + 1.

Što se tiče matrice B(λ), polinom f1(λ) njene Smitove kanoničke ma-
trice je najveći zajednički delitelj za sve elemente matrice B(λ), dakle,
f1(λ) = 1. To znači da treba elementarnim transformacijama matricu B(λ)
svesti na oblik u kome će taj elemenat biti u prvoj vrsti i prvoj koloni, a
zatim elementarnim transformacijama anulirati sve preostale elemente prve
vrste i prve kolone. Kada to dobijemo, onda isti postupak primenjujemo na
blok matrice B(λ) koji čine sve vrste i kolone sem prve vrste i prve kolone
(u slučaju kada je matrica većeg formata, nastavljamo isti postupak dalje
sve dok se ne dobije dijagonalna matrica).

B(λ) =

 λ2 + 1 λ− 1 λ2

λ3 + λ λ2 + 1 λ3

λ3 − λ2 −2λ λ3 − λ2 + 1


∼

 1 λ− 1 λ2

λ λ2 + 1 λ3

−1 −2λ λ3 − λ2 + 1

 ∼
 1 0 0

0 λ+ 1 0
0 −λ− 1 λ3 + 1


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∼

 1 0 0
0 λ+ 1 0
0 0 λ3 + 1

 .
Poslednja matrica u prethodnom nizu je Smitova kanonička matrica za ma-
tricu A(λ), pa sledi da matrice A(λ) i B(λ) imaju redom iste invarijantne
faktore, dakle, one su ekvivalentne.

Teorema 5.10. Matrica A(λ) ∈ F [λ]n,n jednaka je proizvodu elemen-
tarnih matrica ako i samo ako je |A(λ)| konstanta različita od 0.

Dokaz. Teorema (4.29) koja utvrd̄uje da je determinanta proizvoda
dve kvadratne matrice jednaka proizvodu determinanata tih matrica, može
se dokazati koristeći teoreme iz teorija determinanata ne koristeći deljenje,
pa važi i za polinomne matrice.

Ako je
A(λ) = E1(λ) . . . Ek(λ),

gde su E1(λ), . . . , Ek(λ) elementarne matrice, onda je

|A(λ)| = |E1(λ)| . . . |Ek(λ)| = c ∈ F, c 6= 0.

Obrnuto, neka je sada |A(λ)| = c ∈ F, c 6= 0. Na osnovu Teoreme 5.6 i
Definicije 5.6 postoje matrice P (λ) i Q(λ), jednake proizvodu elementarnih
matrice, takve da je

P (λ)A(λ)Q(λ) = N(λ) = diag(f1(λ), . . . , fn(λ)),

gde je N(λ) Smitova kanonička matrica za matricu A(λ). Pred̄emo li na
determinante u gornjoj jednakosti, biće

|P (λ)||A(λ)||Q(λ)| = f1(λ) . . . fn(λ),

tj.
f1(λ) . . . fn(λ) = c ∈ F, c 6= 0,

(jer su |P (λ)|, |A(λ)|, |Q(λ)| konstante različite od 0).

Odavde odmah sledi da je f1(λ) = · · · = fn(λ) = 1. Dakle,

P (λ)A(λ)Q(λ) = E,

pa je
A(λ) = P−1(λ)Q−1(λ),

a P−1(λ), Q−1(λ) su jednake proizvodu elementarnih matrica. �
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Teorema 5.11. Matrica A(λ) ∈ F [λ]n,n je invertibilna, tj. ima in-
verznu matricu nad F [λ], ako i samo ako je A(λ) jednaka proizvodu ele-
mentarnih matrica (ili, s obzirom na prethodnu teoremu, ako i samo ako je
|A(λ)| = c 6= 0, c ∈ F ).

Dokaz. Pošto svaka elementarna matrica ima inverznu matricu nad
F [λ], kada je A(λ) jednaka proizvodu elementarnih matrica očigledno je da
i A(λ) ima inverznu matricu nad F [λ].

Obrnuto, pretpostavimo da postoji A−1(λ) ∈ F [λ]n,n tako da je

A(λ)A−1(λ) = E.

Tada je
|A(λ)||A−1(λ)| = 1,

odakle sledi da je |A(λ)| = c 6= 0, c ∈ F , pa na osnovu Teoreme 5.10 sledi
da je A(λ) jednaka proizvodu elementarnih matrica. �

Dakle, kod polinomnih matrica može se desiti da je matrica A(λ) ∈
F [λ]n,n ranga n, a nema inverznu matricu nad F [λ] (što nije slučaj sa ma-
tricama nad poljem F ).

Na primer, neka su date matrice

A(λ) =
[

1 λ
0 2

]
, B(λ) =

[
λ 1
0 2

]
.

Ovde je

rangA(λ) = rangB(λ) = 2, |A(λ)| = 2 ∈ F, |B(λ)| = 2λ,

pa A(λ) ima inverznu matricu nad F [λ], a B(λ) nema.

Sada ćemo ponovo razmatrati matrice nad poljem. Definisaćemo jednu
relaciju u skupu matrica nad poljem F za koju ćemo pokazati da je tesno
povezana sa nekim relacijama u skupu polinomnih matrica.

5.5. Sličnost matrica

Definicija 5.12. Matrica A ∈ Fn,n je slična sa matricom B ∈ Fn,n

ako postoji regularna matrica P takva da je

B = P−1AP.

Da je matrica A slična sa matricom B zapisujemo sa A S∼ B.
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Očigledno, svake dve matrice koje su slične su i ekvivalentne (Definicija
4.16), dok obrnuto ne važi.

Lako se pokazuje da važi sledeća teorema.

Teorema 5.12. U skupu Fn,n relacija sličnosti definisana u 5.12 je
relacija ekvivalencije.

Sledeća teorema uspostavlja ekvivalenciju izmed̄u sličnosti matrica nad
poljem F i ekvivalencije njihovih karakterističnih matrica nad F [λ].

Teorema 5.13. Matrice A,B ∈ Fn,n su slične ako i samo ako su nji-
hove karakteristične matrice λE − A i λE − B ekvivalentne kao polinomne
matrice nad F [λ].

Dokaz. Ako je A = P−1BP , onda je

λE −A = λE − P−1BP,

i
λE −A = P−1(λE −B)P,

a to znači da su matrice λE −A i λE −B ekvivalentne.
Obrnuto, neka su λE−A i λE−B ekvivalentne polinomne matrice. To

znači da postoje matrice P (λ), Q(λ) ∈ F [λ]n,n jednake proizvodu elemen-
tarnih matrica takve da je

(5.3) λE −A = P (λ)(λE −B)Q(λ).

Na osnovu algoritma deljenja (Teorema 5.1) postoje matrice
R1(λ), S1(λ) ∈ F [λ]n,n i R0, S0 ∈ F takve da je

(5.4) P (λ) = (λE −A)R1(λ) +R0, Q(λ) = S1(λ)(λE −A) + S0

Da bi pojednostavili notaciju u daljem ćemo koristiti sledeće skraćene
oznake:

λE−A = A, λE−B = B, P (λ) = P , Q(λ) = Q, S1(λ) = S1 R1(λ) = R1.

Sa tim oznakama jednakost (5.3) zapisujemo sa

(5.5) A = P B Q,

a jednakost (5.4) sa

(5.6) P = AR1 +R0, Q = S1A+ S0.

Ako vrednosti za P i Q iz (5.6) uvrstimo u (5.5) biće

A = P B Q = (AR1 +R0)B(S1A+ S0)
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= AR1B S1A+AR1B S0 +R0B S1A+R0BS0

= AR1B S1A+AR1B (Q− S1A) + (P −AR1)B S1A+R0BS0

= AR1B S1A+AR1BQ−AR1B S1A+ P B S1A−AR1B S1A+R0BS0

= AR1P
−1
A+AQ

−1
S1A−AR1B S1A+R0B S0

= A(R1P
−1 +Q

−1
S1 −R1B S1)A+R0BS0

= AC A+R0BS0,

gde je uvedena oznaka C = R1P
−1 +Q

−1
S1 −R1B S1.

U gornjem nizu jednakosti, najpre je na oosnovu (5.6) izvršena smena
S0 = Q− S1A, i R0 = P − AR1, a zatim na osnovu (5.5) BQ = P

−1
A i

P B = AQ
−1.

Dakle, dobili smo da je

A = AC A+R0BS0,

što se može, vraćajući se na originalne oznake, zapisati sa

λE −A = (λE −A)C(λ)(λE −A) +R0(λE −B)S0.

Ako bi u prethodnoj jednakosti bilo C(λ) 6= 0, dobili bi kontradikciju - leva
strana bi bio polinom stepena 1, a desna strana polinom stepena najmanje
2. Dakle, C(λ) = 0, pa je

λE −A = R0(λE −B)S0

i
λE −A = λR0S0 −R0BS0.

Izjednačavanjem odgovarajućih koeficijenata dobija se da je

R0S0 = E, tj. R0 = S−1
0 ,

pa je konačno A = S−1
0 BS0, tj. A i B su slične matrice. �

S obzirom na prethodnu teoremu uvodimo sledeću definiciju.

Definicija 5.13. Ako je A ∈ Fn,n, onda se invarijantni faktori matrice
λE −A nazivaju invarijante sličnosti matrice A.

Kako je |λE − A| 6= 0 (jer je |λE − A| karakteristični polinom matrice
A), rang matrice λE−A je n, što znači da su sve invarijante sličnosti matrice
A različite od nule.



106 5. POLINOMNE MATRICE. KARAKTERISTIČNI KORENI I VEKTORI

Primer.
Odredimo invarijante sličnosti matrice

A =

 2 2 1
1 3 1
1 2 2

 .
Vršenjem elementarnih transformacija na karakterističnoj matrici date

matrice dobijamo

λE −A ∼

 λ− 2 −2 −1
−1 λ− 3 −1
−1 −2 λ− 2

 ∼
 −1 −2 λ− 2

−1 λ− 3 −1
λ− 2 −2 −1


∼

 −1 −2 λ− 2
0 λ− 1 1− λ
0 2− 2λ λ2 − 4λ+ 3

 ∼
 1 0 0

0 λ− 1 1− λ
0 2− 2λ λ2 − 4λ+ 3


∼

 1 0 0
0 λ− 1 0
0 2− 2λ λ2 − 6λ+ 5

 ∼
 1 0 0

0 λ− 1 0
0 0 (λ− 1)(λ− 5)

 .
Poslednja matrica u nizu je Smitova kanonička matrica matrice A, a invari-
jante sličnosti matrice A su 1, λ− 1 i (λ− 1)(λ− 5).

Na osnovu prethodnih rezultata sledi da važi sledeća teorema.

Teorema 5.14. Matrice A,B ∈ Fn,n su slične ako i samo ako su im
redom jednake invarijante sličnosti.

Teorema 5.15. Karakteristični polinom matrice A ∈ Fn,n jednak je
proizvodu njenih invarijanata sličnosti.

Dokaz. Matrica λE−A se može elementarnim transformacijama svesti
na Smitovu kanoničku matricu, dakle, postoje matrice P (λ) i Q(λ) jednake
proizvodu elementarnih matrica, takve da je

P (λ)(λE −A)Q(λ) = N(λ),

gde je N(λ) = diag (f1(λ), . . . , fn(λ)) Smitova kanonička matrica za matricu
λE −A.

Tada je
|P (λ)||(λE −A)||Q(λ)| = f1(λ) . . . fn(λ),

a kako je |P (λ)| = c1 i |Q(λ)| = c2, gde su c1, c2 ∈ F (Teorema 5.4), onda je

c1c2|λE −A| = f1(λ) . . . fn(λ).
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Kako je svaki od polinoma |λE−A|, f1(λ), . . . , fn(λ) normalizovan, sledi
da je c1c2 = 1, pa je

|λE −A| = f1(λ) . . . fn(λ).

�

Kako slične matrice imaju redom jednake invarijante sličnosti, sledi da
važi sledeća posledica prethodne teoreme.

Posledica. Slične matrice imaju jednake karakteristične polinome.
Napominjemo da obrnuto tvrd̄enje ne važi. Na primer, matrice

A =
[

1 1
0 1

]
, E =

[
1 0
0 1

]
,

imaju isti karakteristični polinom λ2−2λ+1, ali nisu slične jer je matrica E
slična samo sa samom sobom i ni jednom drugom matricom (P−1EP = E).

5.6. Minimalni polinom matrice

Videli smo da svaka matrica reda n zadovoljava svoju karakterističnu
jednačinu (Cayley-Hamiltonova teorema (5.3)), med̄utim, može se desiti da
matrica zadovoljava i neku jednačinu stepena manjeg od n, pa stoga dajemo
sledeću definiciju.

Definicija 5.14. Ako je A ∈ Fn,n, normalizovan polinom m(λ) ∈ F [λ]
najmanjeg stepena takav da je m(A) = O, naziva se minimalni polinom
matrice A.

Teorema 5.16. Neka je A ∈ Fn,n, f(λ) ∈ F [λ]. f(A) = O ako i samo
ako je polinom f(λ) deljiv minimalnim polinomom m(λ) matrice A.

Dokaz. Pretpostavimo da je m(λ)|f(λ), tj.

f(λ) = q(λ)m(λ).

Tada je f(A) = q(A)m(A) = O, jer je m(A) = O.
Obrnuto, neka je sada f(A) = O. Tada je

f(λ) = q(λ)m(λ) + r(λ),

gde je deg r(λ) < degm(λ) ili je r(λ) = 0. Stavljajući u prethodnu jednakost
λ = A, dobija se

f(A) = q(A)m(A) + r(A),
a kako je f(A) = O i m(A) = O, sledi da mora biti i r(A) = O, odakle je
r(λ) = 0, tj. m(λ)|f(λ). �
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Iz Cayley-Hamiltonove teoreme i prethodne teoreme dobija se sledeća
posledica.

Posledica 1. Karakteristični polinom matrice deljiv je njenim mini-
malnim polinomom.

Takod̄e važi i
Posledica 2. Za svaku matricu postoji jedinstven minimalni polinom.
Dokaz. Ako pretpostavimo da neka matrica ima dva minimalna poli-

noma, onda na osnovu prethodne teoreme prvi od tih polinoma deli drugi,
a i drugi deli prvi, pa kako su to normalizovani polinomi oni moraju biti
jednaki. �

Teorema 5.17. Minimalni polinom matrice A ∈ Fn,n jednak je inva-
rijanti sličnosti najvećeg stepena te matrice.

Dokaz. Neka je dn−1(λ) najveći zajednički delitelj svih minora reda
n − 1 matrice λE − A, a f(λ) karakteristični polinom matrice A. Ako su
f1(λ), . . . , fn(λ) invarijante sličnosti matrice A, onda je dn−1(λ) =
f1(λ) . . . fn−1(λ) i f(λ) = f1(λ) . . . fn(λ).

To znači da je

f(λ) = |λE −A| = dn−1(λ)fn(λ)

i
(λE −A)∗ = dn−1(λ)B(λ),

gde najveći zajednički delitelj svih elemenata matrice B mora biti 1 (jer su
elementi matrice (λE−A)∗ kofaktori reda n− 1 matrice λE−A, a dn−1(λ)
je najveći zajednički delitelj svih tih kofaktora).

Iz
(λE −A)(λE −A)∗ = f(λ)E

sledi
(λE −A)dn−1(λ)B(λ) = dn−1(λ)fn(λ)E,

pa je
(λE −A)B(λ) = fn(λ)E.

Dakle, λE−A je delitelj matričnog polinoma fn(λ)E, pa je po Teoremi
5.2 fn(A) = O. Odavde na osnovu Teoreme 5.16 sledi da je minimalni
polinom m(λ) matrice A delitelj polinoma fn(λ)

fn(λ) = q(λ)m(λ).

Pokazaćemo da mora biti q(λ) = 1, a time će teorema biti dokazana.
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Koristićemo ponovo Teoremu 5.2 i na osnovu te teoreme ostatak pri
deobi polinoma m(λ)E sa λE −A je m(A), a kako je m(A) = O sledi da je
m(λ)E deljivo sa λE −A

m(λ)E = (λE −A)C(λ).

Dakle,

(λE −A)B(λ) = fn(λ)E = q(λ)m(λ)E = q(λ)(λE −A)C(λ),

pa je
B(λ) = q(λ)C(λ),

a kako je najveći zajednički delitelj za sve elemente matrice B(λ) jednak 1,
sledi da je

q(λ) = 1.

�

Teorema 5.18. Karakteristični i minimalni polinom matrice imaju iste
korene, jedino se može razlikovati vǐsestrukost tih korena.

Dokaz. Očigledno sledi iz činjenice da je karakteristični polinom ma-
trice jednak proizvodu njenih invarijanata sličnosti,

f(λ) = f1(λ) . . . fn(λ),

pri čemu je fn(λ) minimalni polinom matrice, a fi(λ)|fi+1(λ), i = 1, . . . , n−
1. �

Primeri.

1. Odredićemo minimalni polinom matrice

A =

 4 −2 2
−5 7 −5
−6 6 −4

 .
Karakteristični polinom matrice A je λ3−7λ2 +16λ−12 = (λ−2)2(λ−3), a
karakteristični koreni su λ1 = 2, λ2 = 2, λ3 = 3. Pošto minimalni polinom
ima iste korene kao karakteristični, minimalni polinom m(λ) date matrice je
(λ−2)(λ−3) ili je jednak karakterističnom polinomu. Proverom (stavljajući
u polinom λ2 − 5λ+ 6 matricu A umesto λ) dobijamo da je

A2 − 5A+ 6E = 0,

pa je m(λ) = λ2 − 5λ+ 6.

2. Minimalni polinom matrice može se odrediti i na sledeći način.
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Odredićemo minimalni polinom matrice

A =

 4 −2 2
−5 7 −5
−6 6 −4

 .
Za svako α ∈ R očigledno je αA 6= E, pa minimalni polinom nije line-

aran. Stavimo A2 = αA+ βE, tj.

A2 =

 14 −10 10
−25 29 −25
−30 30 −26

 = α

 4 −2 2
−5 7 −5
−6 6 −4

+ β

 1 0 0
0 1 0
0 0 1

 .
Odavde dobijamo 9 jednačina sa po dve nepoznate α i β. Rešavajući dve
od tih jednačina dobićemo da je α = 5, β = −6, a zatim ćemo proveriti da
li ta rešenja zadovoljavaju i svih preostalih 7 jednačina. U našem slučaju
dobijena rešenja zadovoljavaju sve jednačine, pa je, prema tome, jednačina
najmanjeg stepena koju matrica A zadovoljava A2 = 5A − 6E, odnosno
minimalni polinom matrice A je

m(λ) = λ2 − 5λ+ 6.

3. Treći način za odred̄ivanje minimalnog polinoma matriceA je svod̄enje
njene karakteristične matrice λE−A na Smitov kanonički oblikN(λ), a onda
je traženi minimalni polinom matrice A invarijanta sličnosti najvećeg ste-
pena te matrice (tj. element u poslednjoj vrsti i poslednjoj koloni matrice
N(λ)).

Dakle,

λE−A =

 λ− 4 2 −2
5 λ− 7 5
6 −6 λ+ 4

 ∼
 1 0 0

0 λ− 2 0
0 0 (λ− 2)(λ− 3)

 = N(λ).

pa je minimalni polinom matrice A

m(λ) = (λ− 2)(λ− 3) = λ2 − 5λ+ 6.

5.7. Prateća matrica

Definicija 5.15. Neka je

f(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

normalizovan polinom nad poljem F . Matrica
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C(f(λ)) =


−an−1 1 0 . . . 0
−an−2 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . .
−a1 0 0 . . . 1
−a0 0 0 . . . 0


se naziva prateća matrica polinoma f(λ).

Prateća matrica polinoma λ+ a je [−a].

Često se u literaturi prateća matrica nekog polinoma definǐse kao tran-
sponovana matrica matrice navedene u prethodnoj definiciji ili kao matrica
dobijena ,,okretanjem” matrice navedene u definiciji oko sporedne dijago-
nale. S obzirom da se osnovna osobina prateće matrice (navedena u sledećoj
teoremi) dobija izračunavanjem determinante matrice λE−C(f(λ)), a vred-
nost determinante se ne menja vršenjem navedenih okretanja, sve te defini-
cije daju tu istu osobinu prateće matrice.

Teorema 5.19. Minimalni i karakteristični polinom prateće matrice
C(f(λ)) polinoma f(λ) je polinom f(λ).

Dokaz. Ako je

f(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0,

onda je

C(f(λ)) =


−an−1 1 0 . . . 0
−an−2 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . .
−a1 0 0 . . . 1
−a0 0 0 . . . 0

 ,
pa je

λE − C(f(λ)) =


λ+ an−1 −1 0 . . . 0
an−2 λ −1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
a1 0 0 . . . −1
a0 0 0 . . . λ

 .

Ako sada prvu vrstu gornje matrice pomnožimo sa λn−1 i dodamo
poslednjoj vrsti, zatim drugu vrstu pomnožimo sa λn−2 i takod̄e dodamo
poslednjoj vrsti i nastavimo tako dalje množeći i-tu vrstu sa λn−i, i =
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1, . . . , n− 1, i dodajući poslednjoj vrsti, dobija se

λE − C(f(λ)) ∼ B(λ) =


λ+ an−1 −1 0 . . . 0
an−2 λ −1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
a1 0 0 . . . −1
f(λ) 0 0 . . . 0

 .
Matrica B(λ) je dobijena od matrice λE − C(f(λ)) vršenjem elemen-

tarnih transformacija koje ne menjaju determinantu matrice, dakle,
|λE − C(f(λ))| = |B(λ)|.

Med̄utim, razvijajući |B(λ)| po elementima poslednje vrste dobija se

|λE − C(f(λ))| = |B(λ)| = f(λ),

dakle, karakteristični polinom matrice C(f(λ)) je f(λ).
Potrebno je još dokazati da je f(λ) i minimalni polinom matrice C(f(λ)).

Minor reda n − 1 matrice λE − C(f(λ)) koji se dobija izostavljajući prvu
kolonu i poslednju vrstu te matrice je (−1)n−1, pa je najveći zajednički
delitelj dn−1(λ) svih minora reda n−1 te matrice 1. S obzirom da je dn−1(λ)
jednak proizvodu prvih n−1 invarijanata sličnosti matrice C(f(λ)), to znači
da su sve invarijante sličnosti te matrice, sem poslednje, trivijalne tj. jed-
nake 1, pa je poslednja invarijanta sličnosti (a to je minimalni polinom ma-
trice C(f(λ))), jednaka karaktrističnom polinomu te matrice (Teoreme 5.15,
5.17). �

Na osnovu Teorema 5.14, 5.15 i 5.17 očigledno sledi da važi i sledeća
teorema.

Teorema 5.20. Neka su karakteristični i minimalni polinom matrice
A ∈ Fn,n jednaki f(λ), a karakteristični i minimalni polinom matrice B ∈
Fn,n jednaki g(λ). Matrice A i B su slične ako i samo ako je f(λ) = g(λ).

5.8. Karakteristični koreni i vektori

Razmotrićemo sada problem odred̄ivanja tzv. karakterističnih korena i
vektora za datu linearnu transformaciju odnosno matricu. Ovaj problem se
često sreće u raznim oblastima matematike, a takod̄e i u primeni u drugim
naukama.

Taj problem se sastoji u sledećem:
Ako je A linearna transformacija vektorskog prostora V nad poljem F ,

naći sve nenula vektore x ∈ V i skalare λ ∈ F takve da je

A(x) = λx.



5.8. KARAKTERISTIČNI KORENI I VEKTORI 113

Ukoliko je vektorski prostor V neki od geometrijskih prostora, onda se nave-
deni problem može prikazati na sledeći način: naći nenula vektor i odgo-
varajući skalar tako da slika tog vektora linearnom transformacijom bude
kolinearna sa originalom.

Pre nego što pokažemo kako se odred̄uju traženi vektori i skalari daćemo
neke definicije.

Definicija 5.16. Neka je A linearna transformacija vektorskog prosto-
ra V (F ). Ako su x ∈ V , x 6= 0 i λ ∈ F takvi da je A(x) = λx, onda se x
naziva karakteristični vektor transformacije A, a λ karakteristični koren te
transformacije.

Definicija 5.17. Neka je A ∈ Fn,n. Ako su x ∈ Fn,1, x 6= 0 i λ ∈
F takvi da je Ax = λx, onda je x karakteristični vektor matrice A, a λ
karakteristični koren te matrice.

Karakteristični koreni i karakteristični vektori nazivaju se i ,,sopstveni”
ili ,,svojstveni” koreni, odnosno vektori, a takod̄e se za karakteristične korene
neki put koristi termin ,,sopstvene (ili svojstvene) vrednosti”.

S obzirom na ranije utvrd̄ene izomorfizme strukture linearnih transfor-
macija konačno dimenzionalnog vektorskog prostora i strukture odgovara-
jućih matrica, sledi da je u konačnodimenzionalnom vektorskom prostoru
koordinatna kolona [x] karakterističnog vektora x linearne transformacije A
tog prostora karakteristični vektor matrice [A] te transformacije, a karak-
teristični koreni linearne transformacije i njene matrice su isti.

Definicija 5.18. Skup svih karakterističnih korena linearne transfor-
macije (matrice) A naziva se spektar te linearne transformacije (matrice) i
označava sa σ(A).

Ako je A linearna transformacija konačnodimenzionalnog vektorskog
prostora, a [A] njena matrica, onda je σ(A) = σ([A]).

Teorema 5.21. Ako je A linearna transformacija vektorskog prostora
V (F ), a λi jedan njen karakteristični koren, onda je skup vektora

SA(λi) = {x |A(x) = λix}
potprostor vektorskog prostora V (F ).

Analogno tvrd̄enje važi za matrice.

Dokaz. Za svako x, y ∈ SA(λi) i α, β ∈ F je

A(αx+ βy) = αA(x) + βA(y) = αλix+ βλiy = λi(αx+ βy).

�
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Definicija 5.19. Ako je A linearna transformacija vektorskog prostora
V (F ), a λi jedan njen karakteristični koren, onda se SA(λi) naziva invari-
jantni potprostor linearne transformacije A koji odgovara karakterističnom
korenu λi.

Analogno se definǐse invarijantni potprostor matrice.
Jednodimenzioni invarijantni potprostor se naziva i invarijantni pravac.

Jednačina Ax = λx, gde je A = [aij ] ∈ Fn,n, a x = [x1, x2, . . . , xn] ′

može se i ovako zapisati
(λE −A)x = 0,

tj. 
λ− a11 −a12 . . . −a1n

−a21 λ− a22 . . . −a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−an1 −an2 . . . λ− ann



x1

x2
...
xn

 = 0.

Prethodna jednakost predstavlja homogen sistem linearnih jednačina po
nepoznatim x1, x2, . . . , xn i on, kao što je poznato, ima netrivijalno rešenje
(različito od nula vektora) ako i samo ako je determinanta sistema jednaka
nuli, tj.

(5.7) |λE −A| = 0.

Dakle, karakteristični koreni matrice A su rešenja po λ u polju F karak-
teristične jednačine matrice A (5.7) (tj. nule karakterističnog polinoma ma-
trice A), drugih karakterističnih korena nema, a karakteristični vektori po-
stoje samo za te vrednosti λ.

Primeri.
1. Neka je V (R) vektorski prostor geometrijskih vezanih vektora sa

zajedničkom početnom tačkom O koji pripadaju jednoj ravni. Ako se u tom
prostoru uvede Dekartov pravougli koordinatni sistem, onda je simetrija σ
u odnosu na pravu y = x jedna linearna transformacija. U odnosu na bazu
e1 = (1, 0), e2 = (0, 1) matrica te transformacije je

[σ] =
[

0 1
1 0

]
.

Njena karakteristična jednačina je

|λE − [σ]| =
∣∣∣∣ λ −1
−1 λ

∣∣∣∣ = λ2 − 1 = 0,
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a karakteristični koreni su λ1 = 1, λ2 = −1.

Karakteristični vektor koji odgovara λ1 dobijamo rešavanjem sistema[
1 −1

−1 1

] [
x1

x2

]
= 0.

Odavde je x1 = x2, pa su karakteristični vektori matrice [σ] sva nenula

rešenja gornjeg sistema, dakle, svaki vektor oblika α
[

1
1

]
, α ∈ R, α 6= 0.

Slično, za λ2 = −1 biće [
−1 −1
−1 −1

] [
x1

x2

]
= 0,

a odatle sledi da je x1 = −x2, pa su karakteristični vektori koji odgovaraju

λ2 svi vektori oblika α
[

1
−1

]
, α ∈ R, α 6= 0.

Kako su karakteristični vektori matrice [σ] koordinatne kolone karak-
terističnih vektora linearne transformacije σ, sledi da su a1 = (1, 1) i a2 =
(1,−1) (pri čemu se koordinate ovih vektora odred̄uju u odnosu na bazu
e1, e2) karakteristični vektori linearne transformacije σ. Invarijantni pot-
prostori linearne transformacije σ su potprostori L(a1) i L(a2) tj. potpros-
tori generisani sa a1, odnosno a2.

S obzirom da su svi nenula skalarni umnošci karakterističnog vektora
takod̄e karakteristični vektori koji odgovaraju istom karakterističnom ko-
renu, to se često ne naglašava posebno, već se samo kao karakteristični vek-
tori navode generatori odgovarajućih invarijantnih potprostora, što smo i mi
u ovom primeru uradili.

2. U vektorskom prostoru V (R) iz prethodnog primera, rotacija ρ te
ravni oko tačke O za ugao π/2 je linearna transformacija čija je matrica u
odnosu na bazu e1, e2

[ρ] =
[

0 −1
1 0

]
.

Karakteristična jednačina je

(5.8) |λE − [ρ]| =
[

λ 1
−1 λ

]
= λ2 + 1 = 0,

a njeni koreni u polju nad kojim je dat vektorski prostor odnosno matrica, su
traženi karakteristični koreni. U našem primeru jednačina (5.8) nema realne
korene, tj. data matrica i njom odred̄ena linearna transformacija nemaju
karakteristične korene, a to znači ni vektore.
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Do istog zaključka se može doći očiglednim geometrijskim razmatra-
njem (ne postoji nenula vektor koji bi posle rotacije za ugao π/2 oko tačke
O bio kolinearan sa originalom).

3. Za matricu

A =

 2 2 1
1 3 1
1 2 2


odredićemo karakteristične korene i vektore.

Karakteristični polinom te matrice je

|λE −A| =

 λ− 2 −2 −1
−1 λ− 3 −1
−1 −2 λ− 2

 = λ3 − 7λ2 + 11λ− 5.

Ako normalizovan polinom sa celim koeficijentima ima racionalne nule,
one su celi brojevi i činioci slobodnog člana. U ovom primeru to mogu biti
±1 i ±5. Proverom se dobija da su karakteristični koreni matrice A, λ1 = 5
i dvostruki koren λ2,3 = 1.

Karakteristični vektor koji odgovara korenu λ1 = 5 dobija se iz 3 −2 −1
−1 2 −1
−1 −2 3

 x1

x2

x3

 = O,

odakle sledi x1 = x2 = x3. Dakle, za svako x1 ∈ R, x1

x1

x1

 = x1

 1
1
1


je karakteristični vektor koji odgovara korenu λ1, a L([1, 1, 1]′) je odgovara-
jući invarijantni potprostor.

Slično, za λ2,3 = 1, iz −1 −2 −1
−1 −2 −1
−1 −2 −1

 x1

x1

x1

 = O,

sledi x1 + 2x2 + x3 = 0, pa su karakteristični vektori oblika −2x2 − x3

x2

x3

 = x2

 −2
1
0

+ x3

 −1
0
1

 .
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Prema tome, karakteristični vektor koji odgovara korenu λ2,3 je vektor
x2[−2, 1, 0]′+x3[−1, 0, 1]′ za svako x2, x3 ∈ R, a dvodimenzionalni potprostor
L([−2, 1, 0]′, [−1, 0, 1]′) je odgovarajući invarijantni potprostor.

Kakva veza postoji izmed̄u vǐsestrukosti karakterističnog korena i di-
menzije odgovarajućeg invarijantnog potprostora sledi iz sledeće teoreme
koju navodimo bez dokaza.

Teorema 5.22. Ako je A ∈ Fn,n, a λi koren vǐsestrukosti k njene
karakteristične jednačine, onda je rang matrice λiE−A veći ili jednak n−k,
a dimenzija odgovarajućeg invarijantnog potprostora je manja ili jednaka k.

S obzirom da je matrica λiE −A singularna, uvek je

n− 1 > rang(λiE −A) > n− k,

1 6 dim(SA(λi)) 6 k,

odakle sledi da je za jednostruki koren λi

rang(λiE −A) = n− 1,

dim(SA(λi)) = 1.

Teorema 5.23. Ako su λ1, λ2, . . . , λn svi karakteristični koreni matrice
A ∈ Fn,n, pri čemu su u prethodnom nizu vǐsestruki koreni navedeni onoliko
puta kolika im je vǐsestrukost, onda je

a) |A| = λ1λ2 . . . λn,
b) trA = λ1 + λ2 + · · ·+ λn.

Dokaz.

(5.9) |λE −A| =

∣∣∣∣∣∣∣∣
λ− a11 −a12 . . . −a1n

−a21 λ− a22 . . . −a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−an1 −an2 . . . λ− ann

∣∣∣∣∣∣∣∣
= λn − (a11 + a22 + . . .+ ann)λn−1 + . . .+ (−1)n|A|.

Zaista, svaki član u razvoju determinante |λE −A| je proizvod n elemenata
matrice λE − A, odakle sledi da je |λE − A| polinom n-tog stepena, a
najveći stepen λn se dobija iz proizvoda dijagonalnih elemenata (λ−a11)(λ−
a22) . . . (λ − ann), pa je vodeći koeficijenat 1. Iz tog istog proizvoda sledi
da je koeficijenat uz λn−1 jednak −(a11 + a22 + . . . + ann), a pošto gornja
jednakost važi za svako λ, stavljajući u tu jednakost λ = 0 dobija se da je
slobodan član (−1)n|A|.



118 5. POLINOMNE MATRICE. KARAKTERISTIČNI KORENI I VEKTORI

Sa druge strane, pošto su λ1, λ2, . . . , λn svi koreni polinoma |λE −A|
(5.10) |λE −A| = (λ− λ1)(λ− λ2) . . . (λ− λn)

= λn − (λ1 + λ2 + . . . λn)λn−1 + · · ·+ (−1)nλ1λ2 . . . λn.

Upored̄ujući jednakosti (5.9) i (5.10) sledi tvrd̄enje teoreme. �

S obzirom da se trag matrice veoma jednostavno izračunava, prethodna
teorema se može korisno upotrebiti u postupku odred̄ivanja karakterističnih
korena ili provere da li su karakteristični koreni tačno izračunati.


